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Abstract

We consider N independent stochastic processes (Xj (),t €0, T]),j=1,...,N,defined by a one-
dimensional stochastic differential equation with coefficients depending on a random variable ¢ ; and study
the nonparametric estimation of the density of the random effect ¢; in two kinds of mixed models. A
multiplicative random effect and an additive random effect are successively considered. In each case, we
build kernel and deconvolution estimators and study their L2-risk. Asymptotic properties are evaluated as
N tends to infinity for fixed T or for T = T (N) tending to infinity with N. For T(N) = N 2, adaptive
estimators are built. Estimators are implemented on simulated data for several examples.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Random effects models are increasingly used in the biomedical field and have proved to be
adequate tools for the study of repeated measurements collected on a series of subjects (see
e.g. [5,20,7,15,1]).

Such mixed models are defined through a hierarchical structure where, first, a distribution
describes the intra-individual variability and, second, a distribution describes the inter-individual
variability. In stochastic differential equations (SDEs) with random effects, the dynamics of each
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individual is given by a SDE with drift and/or diffusion coefficient depending on parameters,
and the parameters of each SDE are random variables thus taking into account the variability
between individuals. To be more precise, consider the following one-dimensional SDE modeling
a continuous evolution for N subjects:

dXj(t) =b(X;(1), pj))dt + (X (1), p))dW;(t),  X;0) =x/, j=1,...,N.(I)

Here, x!, ..., x" are known values, (W1, ..., Wy) are independent standard Brownian motions,

P1,...,¢nN are i.i.d. random variables and (Wy, ..., Wy) and (¢1, ..., ¢n) are independent.
Each process (X (#)) represents an individual and the random variable ¢ ; represents the random
effect of individual j. The functions b(x, ¢), o (x, ¢) are supposed to be known, as usually done,
for instance, in pharmacokinetic models [7] or in neuronal models [18]. Statistical inference is
mainly concerned with the common unknown distribution of the random effects ¢;. In several
recent contributions, a parametric model is proposed for the latter distribution and various
numerical as well as theoretical results have been obtained concerning maximum likelihood
estimation (see e.g. [16,8,18,19,9,6]).

Nonparametric estimation in the context of random effects models has been recently
investigated for linear discrete time models (see e.g. [4]) or non-linear discrete time models
(see e.g. [1]). To our knowledge, the problem of nonparametric estimation of the population
distribution (distribution of ¢ ;) has not been yet investigated in the context of SDEs with random
effects. In this paper, we study this topic in two special cases of (1). First, a multiplicative random
effect in the drift:

dX(t) = ¢; b(X;(@))dt +0o(X;())dW;(1), Xj(O)zxj, j=1,...,N. 2)
Second, an additive random effect in the drift:
dXi(t) = (¢; + b(X;@®))dt +o(X;(@))dW;(1), X;0) = x/, j=1,...,N.(3)

We assume that the functions » : R — R and o0 : R — R are known. We assume that the
random variables ¢1, ..., ¢ have a common density f on R and that the processes (X (¢)) are
continuously observed on a time interval [0, T] with 7 > 0 given. We build a series of
nonparametric estimators of the density f from the observations {X;(#),0 <t < T,j =
1,..., N} which are either kernel (see [22] or [23]) or deconvolution estimators (see [10]).
We study the L2-risk of the proposed estimators and discuss their asymptotic properties as
N tends to infinity. We distinguish the case of fixed T and the case of T = T (N) tending
to infinity with N. In view of practical implementation, the case of discrete observations
(Xj(kd),0 <k <n,j=1,...,N), withnd = T is studied. Numerical simulation results
using discretized sample paths for various models are given.

Section 2 concerns model (2). For large T, we propose a kernel estimator fh(l) of f. The
bound of its L?-risk shows that 7 = T (N) > N ensures the possibility of obtaining the usual
optimal rates on Nikol’ski classes of regularity for f. Section 2.2 is devoted to the special case
b = o. Using an approach analogous to the one in [4], we build a deconvolution estimator f,,(f)
and discuss its properties for fixed and large 7. Then, under the condition 7 = T(N) = N2,
a special class of deconvolution estimators ( f,, T < N?) is introduced. We propose a data-
driven selection of the parameter t which is non standard and leads to an adaptive estimator
(Theorem 1).

Section 3 concerns model (3). We follow an analogous scheme. The model assumptions and
the constraints on 7 are weaker. First, a kernel estimator fAh(4) is proposed which attains usual
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optimal rates for T = T(N) > N2, Then, for T = T(N) = N? a class of deconvolution
estimators ( fr, T<N 2) and a data-driven selection of t are studied.

In view of practical implementation, we consider the case of discrete observations with small
sampling interval 6 and check that the estimators can be adapted to this case (Section 4). This
is used indeed in Section 5, devoted to numerical simulation on various models: the kernel and
the adaptive deconvolution estimators are implemented. The results are satisfactory, even when
the condition 7 (N) = N? is not fulfilled. In Section 6, model properties are investigated in the
general framework of (1) or in the special cases of (2) and (3). Some concluding remarks are
given in Section 7. Proofs are gathered in Section 8.

2. Multiplicative random effect in the drift

We consider in this section model (2) where ¢ belongs to R and b and o are known functions
satisfying:
(H1) b and o are Lipschitz: 3L > 0,Vx,y € R, |b(x) —b(y)| + |o(x) —o(y)| < L|x — y|.
(H2) [y B (X;(s)ds < +oo, j=1,....N, as.
The processes (Wq, ..., Wy) and the r.v.’s (¢, ..., ¢n) are defined on a common probability
space ({2, F,P). Consider the filtration (F;, t > 0) defined by F; = o(¢;, Wi(s),s < t,j =
l,....,N). As F; = o(Wi(s),s < 1) V F!, with FI = o (¢, (¢;, W;(s),s < 1),j # i)
independent of W;, each process W; is a (F;,¢ > 0)-Brownian motion. The random variables
¢; are Fp-measurable. Under (H1), Eq. (2) admits a strong solution adapted to the filtration
(F;,t = 0) (see Proposition 8). Assumption (H2) is clearly fulfilled, for instance, if o is lower
bounded. Following Delattre et al. [6], we may now introduce statistics which have a central role
in the estimation procedure. For j = 1, ..., N, we denote

t b tb2
U = /0 OGO, Vi) = fo (X6 @)
Then, Eq. (2) yields:
Uui®)=9;Vi)+M;@), j=1,...,N, 5)
with M;(1) = [ (b/o) (X ;()dW; (s).

2.1. Large observation time

In this paragraph, we consider the asymptotic framework where both N and T tend to infinity.
And, in addition to (H1)—(H2), we assume:
(H3) [ L(X;(s)ds = +00, j=1,..., N, as.
Let
_ Ui
ST = m

The statistic A; 7 coincides with the maximum in ¢ of the conditional likelihood of (2) given
¢;j = ¢.From (5),weseethat Aj 7 = ¢; +M;(T)/V;(T) (see e.g. [6]). The second term is the
ratio of a martingale divided by its quadratic variation, which under (H3), tends to zero a.s. when
T tends to infinity. Thus, A; 7 is a consistent estimator of the random variable ¢ ;. To deal with
expectations, we need the following stronger assumption implying (H3):
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(H4) There exist positive constants cg, ¢ such that

c(z) < b2(x)/02(x) < c%, Vx e R.

As A 7 approximates ¢ ;, we introduce a standard kernel estimator (see [22] and the references
therein) for the unknown density f of ¢;:

N
ﬁ%m=%2§mu—mﬂ, kit = 1 K (4, (©)
where K is integrable with f K (u)du = 1, C! and satisfies
umﬂ:/KRWM<+w, |mm%5/m¥mMu<+w, (7)
where K’ denotes the derivative of K and || - || the L?-norm. We define f, = f » K, where *

denotes the convolution product.

Proposition 1. Consider estimator f;fl) given by (6) under (H1), (H2), (H4) and (7). Then

2+nmﬁ+%ﬂnw 1 ®
Nh cg Th3'

E(AD = £1%) < 21F = fall

The proof of Proposition 1, as all other proofs, is relegated to Section 8.

Under weak regularity assumptions on f, | f — f»||> tends to zero when & tends to zero.
The estimating method is consistent, as soon as 1/(Nh) + 1/ (Th3) tends to zero. Since N is
the number of i.i.d. observed trajectories, we now look at the rate of the L2-risk expressed as a
function of N and thus let 7 and & be expressed as functions of N. We recall that a kernel of
order £ satisfies kaK(x)dx =O0fork=1,...,¢ Forconstants 8 > 0,¢ = | 8] and L > 0,
the Nikol’ski class A/(8, L) is defined by:

1/2
N@B, L) = {f:]Rn—) R: [/ (f“>(x+t)—f<‘f>(x))2dx} <Lit|Pt vieR}.

The following corollary holds.

Corollary 1. Assume that f belongs to N'(B, L) and that the kernel K has order £ = | B] with
f |x|P|K (x)|dx < +o00. Under the condition

hoo N“VCBHY  gnad T = T(N) > N@B+3)/@A+D) )
we have
Al 3
E(l £, " = fI?) S N72/CAFD, (10)

We give here the classical discussion implying Corollary 1. If f belongs to N'(8, L) and if
the kernel K has order ¢, then || f — f,]|> < C?h%f with C = L [ |u|?|K (u)|du /¢! (see [22]).
For the first two terms on the r.h.s. of (8), the classical rate-optimal compromise imposes that
h o« N~V @B+D thus implying h%# + 1/(Nh) o« N=2F/CB+D) Fitting the last term with this rate
requires that 1/(Th%) < N72#/CF+D This holds for T > N?A+3)/CB+D The conditions in (9)
yield the rate (10).
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The constraint on 7 is satisfied for any nonnegative 8 if T > N3.If 8 > o for some known
Bo, we only require 7 > N@Fo+3)/Cho+D) ‘Even if B is very large, we always need 7//N tends to
infinity when N tends to infinity.

With T = T(N) > N3, an adaptive selection of the bandwidth 4 could be done relying on
the method described in [11].

2.2. The special case b = o for fixed T

The following approach is inspired by the discrete time model studied in [4]. Indeed, when
b = o, the variables in Egs. (4) and (5) reduce to:

Uit ft X, (s) Vity=t, Uj®)=¢jt+W;t), j=1,...,N
j == TN S N j =1, j = j j ) J = L,..., .
J o o(X;(5) J J J J
Assume that T is fixed and let A be a sampling interval to be discussed later. For k =
I,...,K,ty = kA, T = KA, we consider the following random variables based on observations
Uj(t) — Uj(tr-1) 1 W) — Wjtr-1)
Uji = —2 ! ¢+ ——2 ! . (11)
A VA VA

In this setting, the noise is not small and must be taken into account. We recognize a setting
of observations with measurement errors where the noise density is known. Hence, we apply a
deconvolution method (see [10]) in the presence of Gaussian noise, and we define the estimator:

mTm

. 1 oA LK. 20N
f,f,z)(x) — _/ efmx Z Ze’”Uf'ke” /(2 )du, (12)
27 ) _nm NT i

where m is a cutoff which should be chosen adaptively (see [17,3]).

Recall some standard notations. For possibly complex-valued functions g, € L*(R) N L'
(R), we denote by g*(u) = [ ¢/“*g(x)dx the Fourier transform of g, by (g, h) = [ g(x)h(x)dx
the L2-scalar product. The Plancherel theorem yields (g, k) = (g*, h*)/2x. Let now

1 mm . .
Jux) = 5 / e " frwydu, e faw) = fF@)L—gm m) (1)
T J—mm
so that f,ilz) (x) is, for all x, an unbiased estimator of f,;(x), i.e. E( f,,(f) (x)) = fin(x). We have
the following result.

Proposition 2. Consider the estimator fA,f,z) given by (12). We have

E 22) 12 2 i MZ/Ad m
_ < - N
U = £ = 1F = foll 4 g [ e+
2 2
A Aem m /A e m
- * 2d _VA VA 13
- 2 \ulznm|f @l u+7‘l’NT ( T " 2 i N "

The bound of the L2-risk is classically split into the sum of a bias term || f — f,,||*> and a
variance term, itself the sum of two expressions (last two terms on the r.h.s. of (13)). Let us
discuss the possible best choice of A for fixed T'.

Do we have interest to take small A? The function A > A2e™*/4 decreases for A <

w?m? /2, increases for A > 7?m?/2 and thus admits a unique minimum reached at 72m?/2.
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As m has to be large (for the bias to be small), the choice of A minimizing A%e™ m?/A s
excluded. Consequently, with fixed T > 1, the best choice of A < 1 is just A = 1. It follows
that the dominating variance term is oc (™ m)? /m)/N. This is the standard order of variance in
nonparametric deconvolution when measurement errors are Gaussian. We refer the reader to e.g.
Comte et al. [3] for defining the adequate adaptive choice of the cut-off m.

In view of the next section, let us consider the case of a large 7. Then, we can choose a large
AIf T > (wm)?/2. With A = (wm)?/2 and T > (wm)?/2, the first variance term in (13) is no
more exponential but we have

AZe(nm)z/A 2 m

72m N T 2 N’
Thus the two variance terms in (13) have the same order m /N, which is the standard order of
the variance in density estimation without noise. For instance, consider the very particular case
A=T,K =1,mm = /T, then the variance term in (13) is simply (3¢/2)v/T /N + m/N =
¢+/T/N. This suggests the choice T(N) o N? as adequate. Therefore, the idea is to link m and

T, and to select this cut-off adequately for bias—variance compromise: this is the purpose of the
next section.

IA

2.3. Estimation in the case b = o for large T

In the case of large T, with b = o, we take T = T (N) proportional to N 2, Let us assume, for
simplicity, that

T =T(N)= N>

The previous discussion suggests to introduce a new class of estimators defined by

N
fr x) = L fﬁ e_i”l Zei”AJ’”euz/(zr)du,
2 J_ JT N =
based on the observed processes
Ui(t
Ajr= # T € [0, N?] (14)
and to build an adaptive choice of t, among the integer values {1, ..., N 2}. Note that the class of

estimators ( ﬁ) presents a non standard feature as the parameter t appears not only as a cut-off
parameter for deconvolution but also inside the integral. The following risk bound holds when ©
is fixed.

Proposition 3. Assume (H1), b = o and t < T(N) = N°. Then,

1
E(lfs — fIP) < — / o) P+ YT (/ e”zdv> .
27 0

lul= /7 N
Let f; be such that f* = f*1,_ /7., 7]- The bias term above is:

1
If— fell* = o | f*(u)2du.

270 Jjuj=y7
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Regularity spaces usually considered in deconvolution setting are Sobolev balls defined by:

C(a,L) = {f e L'NnLH®), /(1 + u®)| ) *du < L} . (15)

Clearly, if f belongs to C(a, L):

1
7 |f* @) Pdu < (L/2m)T™".
270 Julzy7

Thus, the bias—variance compromise is obtained for v of order N?/?4+D_ The resulting rate
is proportional to N —2a/(2a+1) Evidently, as a is unknown, this choice of T cannot be done.
Therefore, we now define the data-driven selection of T. With k a constant to be specified later, let

Jk
k) = k—, 16
pen(k) =« N (16)
and
I = ( A 22 _ ;o or2
= max ||l fkar — fkl” —pen(k)) = max ([fr — fkl® —pen(k)) (17)
1<k<N? +  r<k<NZ? +
where (x)4+ = max(x, 0).
Now define
7 =arg min {ff+pen(r)}. (18)
1<7t<N2

As in the Goldenshluger-Lepski method (see [11]), f, is a data-driven estimation of the bias
term || f — f||> while pen(z) corresponds to the variance term. The choice of 7 is thus done to
minimize the bias—variance compromise.

Recall that f; is defined by £ = f*1,_ 7 7.

Theorem 1. Assume (H1), b = o and T(N) = N2. Fork > 1.4 fol e”zdv/n, we get

/

~ C
E(lf; — fIH <C inf (I f: — fI* + pen(r)) + —,
1<t<N2 N

where C is a numerical constant (C = 21) and C' is a constant.

Theorem 1 states that the bias—variance compromise is automatically achieved by the adaptive
estimator ff— without knowledge of the regularity of f.

The condition 7 (N) = N? may appear rather strong, but can be weakened if some knowledge
on the regularity of f is available. For instance, assume that f € C(a, L) with a > 2. Then the
optimal 7 has order N 2/2a+l) < N2/3 Therefore, the condition 7 (N) = N? can be replaced by
T(N) = N%/>,

2.4. Miscellaneous remarks

The two strategies described in Sections 2.1 and 2.2 have links. Under (H1) and (H4), f can
be as well estimated using deconvolution as follows:

" 1 mm o N 1 L sin(rm(A; 7 —
n(13)(x) — _/ e iux ZemAj_Tdu _ Z (mm( j.T X)) (19)
2 J _am N st TN st Ajr—x
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This estimator corresponds to a kernel estimator as (6) with K (x) = sin(;rx)/(;rx) (not fulfilling
(7)) and bandwidth 4 = 1/m and is also a possible estimator of f in the special case b = o. The
risk is then bounded as follows.

Proposition 4. Consider the estimator given by (19) under (H1) and (H4). We have

2 3

~ 1 T sz m
E(| f® — 2<—/ *wPdu + —L— + —. 20
UL = 11 < 5 |ulzmw )] TN (20)
If b =o0,
Ewﬂ”—fW><3—/ | f* () Pdu + /mﬂmﬂﬂwn%u+ﬂu Q1)
" T 2 lu|=mm 87TT2 —Tm N

Compared with Proposition 1, the bound in (20) is analogous to (8). In the special case b = o,
the risk bound of fh(l) is unchanged.

On the contrary, the bound of fn(f) in (21) contains an additional bias term (middle term on the
r.h.s. of (21)) which allows to weaken the constraints on 7. For instance, if | | f* () Pdu <

~+o00, which is true if f € C(a, L) for a > 2, the new term is negligible as soon as T > JN.
Thus, if the regularity index of f is larger than 2, rates of density estimation without noise can
be attained.

If we have no knowledge at all on the behavior of | f *(u)|2, we can only use that | f*(u)| <1
and get the order m> / T? which is better than m>/T.

3. Additive random effect in the drift
We study in this section model (3), under (H1).
3.1. Large time strategy

Relying on Eq. (3), we set:
X;(T) — X;(0) — [ b(X;(5))ds

1 T
Zjr = T =¢j+7[) o(X;j(s)dW;(s),
and define the estimator
) 1 &
fil =5 3 Knte=Zjm), (22)
Jj=1

where K, (x) = (1/h)K(x/h), K is Cc?, integrable, with f K(u)du = 1 and
/ K% (u)du < o0, f (K"} (u)du < +oo. (23)

The risk of ff) is slightly different than the risk of f;fl) of Section 2.

Proposition 5. Consider estimator ]?,1(4) given by (22) under (H1) and (23). Assume moreover
that o%(x) < 012, Vx € R. Then
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2
Kl 4

E( Y = 17 <20 = ful® + - + cof

, 1
Vi IK"|1? —— (24)

T2hS
where c is a numerical constant.

The discussion of Corollary 1 can be done here. Consider that f belongs to the Nikol’ski
class N(8, L) and that the kernel has order £ = |B] with f Ix|P|K (x)|dx < +oo. If we
impose that h o« N~V/2+D  we get a rate proportional to N~2/CA+D plus a term of order
NY/CEED 72 1 T2 > NCAH)/CAHD then N3/CB+D )72 < N—28/CB+D This constraint
holds for any nonnegative 8 if T > N>/2. Note that this constraint is weaker than that for f}fl)
and the result holds under weaker assumptions for the model.

3.2. Fixed step strategy using increments

The method using increments with a sampling interval A is possible here. Using (3)
yields,

y Xj(t) = Xj(t-1) =[5 b(X(s)ds
Jk =

Ik — Tk—1

1 g
= ¢j+—/ o (X;(s)dW;(s)

Ik — k=1 Jyy_y
where ty = kA, k=1,...,K,T = KA. Let:
~ 1 m . A N K W2t 20w e
G (x) = — o iux oYk o242 fi o (Xj)ds 4 -
9w =5 /_ - >y

NT j=1k=l

Note that, in the above formula, we use a “stochastic deconvolution” to build the estimator. The

following risk decomposition holds.

Proposition 6. Consider estimator ﬁ,(f) given above under (H1). Assume moreover that o%(x) <
012, Vx € R. Then

N A e o o m
E S _ £112y < _ 2 / u Ul/Ad )
WS’ = FID) =W = fmll” + —NT 7ﬂm€ U+

The same discussion as after Proposition 2 can be done here. As above, we can define
another class of estimators depending on a cutoff parameter t and build an adaptive choice of it.
Let

JT

. ﬁ i N . u? T
o o [ L i,
7T - .
j=1

_ Xj(0) = X;(0) — [7 b(X;(s))ds

Zir =
it T
We define
- . 20— L 3 Vk
Fe= max (I fine = Al —pen(k)) with pen(k) = & log(N) . (25)
1<k<N2 + N
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Let

T =arg min {f} +§€fl(r)} . (26)

1<t<N2

Theorem 2. Assume (H1) and T(N) = N2. Assume moreover that c%(x) < 012, Vx € R. Then
there exists a numerical constant k such that:

/

- — C
E(|f; — fIH <C inf (|Ifr — fII* +pen(x)) + —, 27)
l<t<N2 N

where C is a numerical constant and C' is a constant.

The additional factor log(N) in the penalty pen is due to the fact that o (x) is not constant.
It implies a logarithmic loss in the rate. More precisely, if f € C(a, L), the infimum on the
right-hand-side of (27) is of order (N/ log(N))~24/(2¢+1) instead of N—24/2a+1),

If o (x) is constant, this factor log(N) in the penalty is not needed.

Remark 1. The study of Section 3 can be done under weaker assumptions on ¢ including the
case where a random effect is present in the diffusion coefficient too, say o (x, ) provided that
sup,~o Eo?(X (1), ¥j) = 0f < +o0.

4. Discretizations

In practice, only discrete time observations of (X (¢)) are available. We investigate now this
context and assume that for a small sampling interval §, the observations are (X (k8))1<k<n.
with 7 = né. In estimators of Sections 2 and 3, we replace all ordinary and stochastic integrals
based on the continuous time observations by their usual discrete approximations using the
discrete data. This procedure is classical. To avoid unnecessary repetitions, we only deal with
the estimators built in Section 3.

We replace the Z; 7’s by the usual approximation:

A

] n
Zir=5 (Xj(T) —X;(0) — a;b(xj«k — 1)6))) :
and define the estimator based on discrete observations:

fie = Z Ki(x=2ir).
Analogously, for T < T, set:

Zjr=

| =

[z/8]
(X,/((S[T/(S]) — X;(0) =8> b(X;((k— 1)5))> ,

k=1

~ [t/8]

N
frs(x) = L/«/? —iur 1 E uZj, uz ilr 802 (X (h=Dd) 4
T, T N 2 .

The following proposition holds.
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Proposition 7. Assume (H1). Assume moreover that E((i)]z) < 400,0%(x) < 0’12 for all x and
sup,»o E[b* (X ()] < +o0.
(1) Let the kernel satisfy (7) and (23). Then,

IK|* 1
E(lfis = F17) < 20F = full® + S + e of 1K P s + c 2 SIKE@8)
where c, C are constants not depending on T, h, 6.
) For0<é<1<r,

- 1
E(l fr.s — fI*) < c(nﬁ —fI|2+~/?(ﬁ+8>>, (29)

where C is a constant not depending on t, 4.

Let us give some comments on the assumption sup,. E[b2(X ()] < +oo. It holds
obviously if the drift b is bounded. Otherwise, it may be linked with the existence of a stationary
distribution for model (3), but it will be checked directly in the examples below. Repeating all
steps of Theorem 2, we can define a data-driven choice 75 of 7 and prove that the corresponding
estimator ffa,(; satisfies an inequality analogous to (27).

5. Numerical simulation results

In this section, we consider three models of multiplicative or additive form.

Model (1). Geometric Brownian motion:
dXi(t) =X;(t)(¢p;dt +odW;(1)), X;0) = x/ > 0. (30)

Then, X (t) = exp(Y;(¢)) withdY;(t) = (¢; — o?/2)dt + adW;(t).

For this model, we use exact simulations for N = 50 and T = 300 or N = 200 and T = 300,
with o = 1, x/ = 1. The distributions of the random effects are: Gamma I"(3, 0.1), where 3 is
the shape parameter and 0.1 the scale parameter, mixed gamma 0.3 I'(3, 0.1) 4+ 0.7 I'(15, 0.1),
and Gaussian N (1, 0.22).

The computation of the kernel estimator is fast as we only need the terminal variable U;(T),
which has an explicit form for model (1). The bandwidth is selected by the R-function density,
with a Gaussian kernel. The bandwidth £ is selected by cross-validation. The deconvolution-type
estimator ff is computed, with constant « calibrated through preliminary simulations to k = 150.
Results are illustrated in Fig. 1 which represents variability bands for the two estimators. The
first column gives 25 estimated densities with N = 50, T = 300 for the kernel estimator.
In the last two columns, we have N = 200, T = 300, for the kernel (column 2) and the
deconvolution (last column) estimators. Clearly, increasing N improves the result as expected.
Note that the methods work well even for 7/N not very large. Looking at the last two columns,
we see that the deconvolution method seems less biased but with a greater variability than the
kernel method. Especially, for a bimodal distribution, the deconvolution methods work well, even
better than when the individual parameter ¢; is directly observed (dotted line). Nevertheless,
the deconvolution method is more time consuming as we need to compute all the U;(t) for
1<t<T.

Model (2). Ornstein—Uhlenbeck process with multiplicative random effect:

dX (1) = ¢; X ()dt +odW;(t),  X;(0) =x/. 31)
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Kernel estimator Deconvolution estimator
(1) f.
In f#
N =50, T =300 N =200, T = 300 N =200, T =300

00 05 10 15 20 25 3.0 35
00 05 10 15 20 25 3.0 35
00 05 10 15 20 25 30 35

Fig. 1. Model (1), Geometric Brownian Motion with distribution of the random effects: Gamma (first line), mixed gamma
(second line), and Gaussian (third line). Estimated density for 25 independent samples in thin green: kernel estimator
(first two columns) and deconvolution estimator (last column). True density in bold black. Estimated density for one
sample of (¢;)’s directly observed with standard kernel density estimator in bold dotted red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

This model satisfies (H1)—(H2) but not (H4). Nevertheless, it is a classical model. We use the
explicit solution:

t
X = x/edi! +Je¢ft/ €_¢jdej(S).
0

We use exact simulations of the X ;(kd) with § = 0.01, for N = 200 and T" = 400, with o =1
and x/ = 0. The distributions of the opposite of the random effect —¢ ; are: log-normal from
normal distribution A(1,0.1%), mixed gamma 0.3 I'(3,0.08) + 0.7 I'(15,0.07), and mixed
Gaussian 0.5 A/(0.5, 0.25%) + 0.5 A/(1.8, 0.252).

To compute the kernel estimator f,fl), we replace U;(T) and V;(T) by their usual discrete
approximations using discrete data X ; (kd). The method works well as illustrated by Fig. 2 where
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log-normal mixed gamma mixed Gaussian

40 35 80 25 20 -5 25 20 15 10 05 00 25 20 -15 -10 -05 00

Fig. 2. Model (2), multiplicative Ornstein—Uhlenbeck process with distribution of the random effects: log-normal (first
column), mixed gamma (second column), and mixed Gaussian (third column). Kernel density estimators ( f}fl)) for 25
independent samples in thin green. True density in bold black. Estimated density for one sample of (¢;)’s directly
observed with standard kernel density estimator in bold dotted red. N = 200, 7 = 400. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

log-normal mixed gamma mixed Gaussian

00 02 04 06 08 10 12 14

00 02 04 06 08 10 12 14

15 20 25 3.0 3.5 4.0

Fig. 3. Model (3), additive Ornstein—Uhlenbeck process with distribution of the random effects: log-normal (first
column), mixed gamma (second column), and mixed Gaussian (third column). Estimated density for 25 independent
samples in thin green: kernel estimator ( ffg , first line) and deconvolution estimator ( ff& 5, second line). True density in
bold black. Estimated density for one sample of (¢;)’s directly observed with standard kernel density estimator in bold
dotted red. N =200, T = 400. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

25 estimated densities are plotted. Indeed, the graphs are comparable to those obtained from a
sample of directly observed ¢; (bold dotted curves). Again, T /N needs not be very large.
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Model (3): Ornstein—-Uhlenbeck process with additive random effect:

dX (1) = (p; — X,;(0)dt + 0dW; (1),  X;(0) =x7. (32)

The solution is:
t
X = xle ! 4+ ¢;(1— e +oe! / edWi(s).
0

Hence,

0,2
2t
Provided that ]Eq‘)jz < 400, E(X?(t)) <3((xH)? + E(ﬁjz. + 0'2). All assumptions of Section 3 are
satisfied. For this model, we use exact simulations of the X ;(kd) with 6 = 1 for N = 200
and T = 400, with ¢ = 1 and x/ = 0. The distributions of the random effects are: log-
normal log A/(1, 0.12), mixed gamma 0.4 I'(3, 0.08) 4+ 0.6 I'(30, 0.035), and mixed Gaussian
0.5 N(0.5,0.25%) + 0.5 N'(1.8,0.25%).

The computation of the kernel estimator fh(45) only requires the discretized terminal variable

E(X3(0)l¢) = ¢) <3(/)° +¢* +

Z j,7 While the deconvolution-type estimator ffé’ s reqliires all the variables Z jeforl<t <N 2,

see Proposition 7. The deconvolution-type estimator f, s is computed with constant k calibrated
through preliminary simulation experiments to ¥ = 10.

Fig. 3 (25 estimated densities) illustrates the kernel method (first line) and the deconvolution
method (second line). The deconvolution method has a great variability but captures well the two
modes of the bimodal distributions. On the contrary, the variability band for the kernel estimators
is thinner but seems to miss the height of the two modes.

6. Model properties

In this section, we detail some properties of model (1), give some interpretations of our
assumptions and look at links between models (2) and (3).

6.1. Existence and uniqueness of strong solutions

We consider N real valued stochastic processes (X (¢),t > 0), j =1, ..., N, with dynamics
ruled by (1) where ¢; are R¢-valued. Consider the following assumptions.
(A) The functions (x, ¢) — b(x, ¢) and (x, ¢) — o (x, ¢) are C' on R x R?, and such that:
3K > 0,V(x,9) e RxRY b, ¢)| + o (x, )| < K(1+|x] + |
(B) The functions (x, ¢) — b(x, ¢) and (x, ¢) — o (x, ¢) are C! on R x R?, and such that:
by (x, )|+ oy (x, @) < Lg), by (x, @) + o, (x, 9)| < L(p)(1 + |x]),
with ¢ — L(¢) continuous.

Under (A) or (B), for all ¢, and all x/ € R, the stochastic differential equation
d X0 (1) = bx? (). p)dt + 0 (X0 (). ) dW; (). X0 (0) = 33)

admits a unique strong solution process (X f’x'/ (t),t = 0) adapted to the filtration (F;, t > 0).
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Let C(RT,R) be the space of continuous functions on R*, endowed with the Borel o-
field associated with the topology of uniform convergence on compact sets. The distribution

of X f’x'/ (+) is uniquely defined on this space. Now, we can state the following.

Proposition 8. e Under (A) or (B), for j =1, ..., N, Eq. (1) admits a unique solution process
(X;(),t = 0), adapted to the filtration (F; = o(¢p;, Wi(s),s <t,j=1,...,N),t > 0)
such that the joint process (X(t),¢;),t > 0) is Markov and there exists a measurable
functional

(¢, x,w) € (RY xR x CRT,R)) - F (¢, x,w) € CR",R) (34)
such that X ;(-) = F(¢;, x/, W;()).
Given that ¢; = ¢, the conditional distribution of (X;(t),t > 0) is identical to the

distribution of the process (Xj?’xj (t),t >0).
The processes (X (t),t > 0), j =1,..., N are independent.

o Under (A), if moreover, for k > 1, E(|¢;|**) < oo, then, for all T > 0, sup, ;o 71 E[X; (1)]*
< 00.

6.2. Assumption (H4)

Let us discuss some implications of Assumption (H4). Under (H4), the function b /o2 is non
null. If we combine (H4) with the assumption that 0 < 002 < az(x) < 012, Vx € R, then, we can

assume that both b and o are positive and satisfy:
(HS) ()0 <cop <b(x)/o(x) <c1,({1))0 <o0p <o(x) <o1,Vx € R.

Proposition 9. Let X; be given by (2), X;(0) = xj, j = 1,..., N under (H5). Then, the
process X j is transient in the sense that:

P( lim X;() =+00) =P(¢; > 0),  P(lim X;(1) =—00) =P(¢; <0).

6.3. Links between the multiplicative and the additive model

In some cases, the multiplicative model can be transformed into an additive model by a change
of function.

Proposition 10. Assume that the drift function in model (2) is C' and satisfies, for some
positive constant by, b(x) > bgy for all x, and set F(x) = fox du/b(u). Then the process
Yi(t) = F(X(t)) satisfies

1o Fl(Y;t)) ,

100 F(Xj®) o iy, oo F~'(¥;(1)
R F—l(Yj(t))U F~ (Y (t))) dt +

The result follows from a standard application of the 1t6 formula. Consequently, (2) can be
treated as (3) after the change of function when b(-) is lower bounded by a positive constant.
7. Concluding remarks

In this paper, we consider N i.i.d. processes (X;(¢),t € [0,T]), j = 1,..., N, where the
dynamics of X ; is described by a SDE including a random effect ¢ ;. The nonparametric density
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estimation of ¢; is investigated in two specific models ((2)—(3)) where the diffusion coefficient
does not contain the random effect. The drift term is either multiplicative (b(x, ¢) = ¢b(x)) or
additive (b(x, ¢) = ¢ + b(x)). We build kernel and adaptive deconvolution-type estimators and
study their L2-risk as both N and T = T (N) tend to infinity. Under the theoretical condition that
T(N)/N tends to infinity rather fast, the estimators attain the usual optimal rates. Nevertheless,
numerical simulation results on several models show that, in practice, 7 (N)/N needs not be very
large. Extensions of the present work to models with a more general drift are ongoing work. In
particular, models with b(x, ¢) = ¢1b1(x) + ¢2b2(x) would be worth being studied from both
theoretical and application points of view.

8. Proofs
8.1. Proof of Proposition 1
Classically,
E(f = £015 = 1f =BG +EA LD - EGDIP
<20 f = ful* + 215 —EGIP +EAAY —EGEDIPD. 39

The last term is the usual variance term and is bounded by

2

~ o 1 K
E(" ~EGDIP = & / Var(Kp(x — App)dx < L (36)

Nh '
The first term is a usual bias term. The specific term is the middle one. We note that fj,(x) =
E(Kj(x — ¢1)) and we apply the Taylor formula with integral remainder:

Kp(x — Ar) — Kp(x — 1) = %%T) /01 K’ (lll(x —¢1 +uldr — A1,T))) du
which yields
i = EGIP = / (E(Kn(x — A7) — Kn(x — ¢1))) dx
< /IE [(Kh(x —Arg) — Kn(x — ¢1))2] dx
—E U (Kn(x — A11) — Kn(x — ¢1))2dx:|

1
<o / (K'2(0dyEl( — A1 1))

1 o M(D)?
— s [ (y)dyE(( vm))

L f Ky L
h3 Tcg

IA

since under (H4),

Mi(T))? 1 1¢?
E<( (1) )5 CE[M(T)?] < 2

i
(Vi(T))? T2c; g
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8.2. Proof of Proposition 2

Since E(f(z)) = fm, we have

E(f — £205 = I1f — ful® +E S — £2P1P. 37)

As || fin— (2) I?=Q2n)~ 1||f* (f(2)) |2, and the random vectors (Uj,x)1<k<k are independent
and identlcally distributed for j =1, ..., N (see (11)), we get

E(l f — £21%)

2

L L ANl i/ 22) U i /2)
— iuUj g u _ iulj i u
=5 o N—KZ:Z(e Ike E(e'""ike ) du
j=1k=1
1 [ 1 & >
=— Var —Ze”U”‘ /A ) qu
27N J_m K~
K
= ;/ﬂm Z cov(e"”Ul"‘,ei“ULk’)e“z/Adu. (38)
2rNK2 J_,. ol
Looking at (11), we can see that, for k = k/,
cov(eUn eitUiiy — | — |f*(u)|2e—u2/A
and for k # k’,
COV(eiuUl’k, ei“Ul,k’) — (1 _ |f*(u)|2)e—uz/ﬂ'
Plugging this in (38) yields
Am) m
E P22y < n 39
N fm — S II)_NK+N (39)

where

1 Tm /A
A(m) = Z/ e du.

aTm

Plugging (39) into (37) gives (13).
We now bound A(m). First

/A am/~ A /A am/~ A
A(m) = — / eV dv < (e +/ dv ).
0 1

E2
Integrating by parts and using that v — eV’ /v? is nondecreasing for v > 1 imply

am/~ A ) ev2 wm/vA 1 am/~ A »dv
/ eV'dv=|— + —/ e’ —
1 2v 1 2 1 U2

@enzmQ/A _¢
5

mm
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Therefore we get

A(m) < @ (@eﬂzmz/A + g) .

T wm

As fo = [ VYmams If = full* = @7 [|12m | F* @) [*du, which ends the proof of (13)
and thus of Proposmon 2. O

8.3. Proof of Proposition 3

The proof is close to the one of Proposition 2 and simpler. The following decomposition holds:
I fe = 17 = 1fe = fel® + 1Lfe = f11%
Then,
. 1 VT .
E(”f‘[ _ f‘[”z) — _/ Var (elMA],reuz/(ZT)) du7
2N J_ 2
where
Var(eAtey = 1 — | £*u)|2e™ /7.

Hence,

. 1 VT 1
B( e~ D) = 5 / K @) e e T du < % fo Pdv. (40)

8.4. Proof of Theorem 1

We have the successive decompositions

Ife = FI? <3031f; = ferel® + 1 fone — 0P+ 1 fe = £

and
I1fz = fonel®> = 1Fe = felPLes,
= ( /e = fel? = pen(®) Leor + pen()Lezr
< I + pen(?)
I fene = FelI? = I1fe = FrlPLi<e
= (Ifs = feI? = pen(®) Lece + pen(e) L
f + pen(7).
This yields

I fz — f1* < 3 + pen(?) + I'; + pen(z) + | fr — fI1
< 6(I'; +pen(v)) + 3| fr — fII*.
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Then, for k > t:
I fe — Fell® <31 fe — Fel® + 1 — fil® + 1 fe — £l

Note that

1 1
_ 2 R 2 = * 2
I /i — Szl o I/ = f7 1 o ﬁslulsJE|f (w)|"du

=

7 |f*@)Pdu= | f — fol*
T Jul=T

Moreover, as the Fourier transforms of ff — fr and f — f; have disjoint supports,
Ife = FIP = 1fe = fel® + 1L fe = I

It follows that, for k > t:
i = feI? < 301k = fel® + 1Lfe = 1P,

which in turn implies that

e =3 max (1fc = full* = penk)/3) + 31 fe = f1*

Therefore, gathering inequalities, we get

Ife = £I7 =18 max (Ife = fill® = pen(6)/3) + 211 fr = fII* + 6pen(r)

and
N2
E(lf; = fI?) < 18 Y E(llfx — fill* — pen(k)/3) + 21E(|| fr — fII*) + 6pen(r)
k=t
N2
< 18 "E(llfi — fill> — pen(k)/3) + 2101 fr — f1
k=t
1 2
oot AT + 6pen(t).
T N
Consequently

21 [ e dv
E(lfz — fI% <21l fr — fI>+6 (1 + g°—> pen(7)
TK

NZ
+18) E (ufk — Sl - M) .

k=t 3

Now, we use the Talagrand Inequality to prove the lemma.

Lemma 1. Under the assumptions of Theorem 1
N2

f, C
D Edlfi = fill> = pen(k)/3) < "
k=t

This and Proposition 3 give the result of Theorem 1. [
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Proof of Lemma 1. We have that || fx — fi|> = SUPres o lrl=1 lun(@)|* where S, = {t €
L2, supp(t*) = [—m, m]} and

1
() = 5%, i = ) anZ / (=) (@415 ).
Note that:

VN () = = Z(W:(A/k) E(:(Ajx)))

J 1
1 vk i 2
with 9 (x) = — / r*(—uye" e /P du.
2 J_Jk

The class of functions {y;,t € S v Izl = 1} is uniformly bounded as follows.

N/ 1/2
Villoo = \/—||f|| (/ "2/de> <JVe/mk'* =M

By inequality (40), we get that:

E ( sup |vN<t)|2) =E(lf — fill®>) < cvVk/N = H?,

teS g litl=1
. 2 .
with ¢ = fol eV dv/m. At last, let us determine the bound v.

4r? sup Var (A 1)

IGS\/E,HIH=1

< sup E <// t*(u)t*(—v)ei(““)Af'v"e(”2+“2)/(2k)dudv>
tESﬁ,HtH:]

< sup <// )t (—v) fF(u — v)e(“2+”2+(”_v)2)/(2k)dudv)
teS s llzll=1

IA

VE vk 1/2
/ / | f*(u — v)|2e3(“2+”2)/kdudv
—Vk J =k

2Vk 172
< (2ﬁe6/2 | f* (z)lzdz>

<2JmekMA f|| = 4n? v,

Thus applying the Talagrand Inequality yields with €2 = 1/2 that:

k174 k12
E( s )P —4H <C1( e O e VN )
1€ . llrl=1 N N

where C1, Cy, C3 are positive constants. Thus for pen(k)/3 = 4H?, we get
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N2 N2
S B fe — Kl? —pen(t)/3) = Y ( sup v ()] - sz)
k=t

= \reSplill=1

C f:(kl/zt —C2k1/4+ —C3k1/4) < Cq
v e e —.
N = - N

We can choose the constant ¢ such that « > 12¢. O
8.5. Proof of Proposition 4
We have

E(IAS = fIP) = EWLYD —EED) + EED) = fn + fu — FIP)
= ||fm FIPHIEED) = ful> +EA LD —EEDI.

The term || fn — fI? = - | £*(u)|?du is the usual bias term. The additional bias term
IEAS) = full? is bounded by

Tm N . :
[ i -z
. 2
f ‘( mAl’T o elu(ﬁl))’ du

By the Taylor formula,

SUALT _ gludt _ jiug) (iuMl(T)equj,T>.
Vi(T)

. o My(T)\?
By fu2< 2 1
1B = ful™ < o | u E(( wn) )d”'

Then, under (H4),

. ((M,(T))2

2

IEGA) — ful® = du

[\®] [\®]
=l|~ :l|*

Thus

1 . 5 1 c]2
<vj<r>>2> =g I =7

‘We obtain
3 2 ¢
IECS) = full® < —3 L

Using the Parseval equality, the variance term can be bounded as follows

2

Z( luAIT E(eluAjT)) dl/l

j=1

1 Tm N
=5 Var Z iudjr
n —

E(IfD —EGD)D) = —E /nm

2m —m

z.| =

—TTm
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Finally, we obtain the bound (20).

Ifb=o,
N 1 mm . 5
BP0 = o [ e we e hau,
21 J_am

The risk of the estimator, using repeatedly the Parseval equality, is

E(f = £21%) = I1f = full® + 1 fm = EEO 2 +EA D = EED)?)

2543

m m
1 Tm 2 m
< Ilf—fm||2+2— |fF@)Ple™ /D —1127du + —
T J am N
<L | f* ) Pdu + /m Wl f* ) Pdu + =, (@a1)
2 lu|=mm 87‘[T2 —Tm N

which gives the second bound of Proposition 4. [

8.6. Proof of Proposition 5

Egs. (35) and (36) hold with ff) instead of fh(l) and Z r instead of A 7. Now we study
Il fn — E( fh(4))||2, still considering that fj,(x) = E(K,(x — ¢1)). We apply the Taylor Formula

with integral remainder:

Kn(x = Z11) — Kn(x —¢1) = %) K A

(61 — Z1.7)* (! "
+h—3./0 (1—wK

1
X <Z(X —¢1 +u(p — Zl,T))> du.

(o1 —Z11) , <x - ¢1)

Recall that ¢ is Fp-measurable, thus E((¢; — ZlgT)K’(%)) = 0, and we obtain, using

successively the Cauchy—Schwarz and the Burkholder—Davis—Gundy inequalities,
ZE(FOY2 = _ _ _ 2
Ifn =B DI = | (BE(Kn(x = Z1.7) — Kn(x — ¢1)))” dx
2
< [E[(Kitx - 20~ Kutr = 9))7]

=E [/ (Kn(x — Z1.7) — Kn(x — ¢>1))2dx}

T 4
1 N2 (fo U(XI(S))dW(s)>
= W/(K )" (y)dyE -
C T 2
< < IK'IPE [( /0 02(x1(s))ds> }
< K" |0},

h3T?
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8.7. Proof of Proposition 6

We know that exp(U; — (U);/2) is a martingale if U is a martingale and E(e{Y)/2) < co. As
o?(x) < o} for all x, this implies that

u kA u2 kA 5
exp <iZ/(k—1) o(X;(s)dW(s) + ZAZf )AU (Xj(s))ds>

has conditional expectation 1 given F_1ya. Since e is F—1)A-measurable, we obtain that

2
E (e"“”./,kezua2 f(ﬁfm o (X; (S))df)
f(k—l)A))
= K" = f*u).

Therefore E( f,; 5 (x)) = fm(x) and we decompose the risk in the two usual terms

_E <eiu¢_,E< P KA A O ENAW () [K4 02X ()ds

ENLD — FIPD = I1f — ful> FEALD — ful®. 42)

Then we have to compute

E(£D = full®
1 am
- K /
2n —m

Then using that the terms under expectation are centered, we compute a variance with indepen-
dent variables with respect to the index j:

E(FD = full®

27rN /
kA

Let us denote M; = f&flm o(X1(s)dW(s) and (M), = h—1)AC 2(X(s))ds. Now, for
k < £, by conditioning as follows:

2

1 MK . W2 kA o

j=1k=1

2
du.

. w2 kA
(emyl,kemz a2y a0>Xi()ds _ f*(u)>

k 1

cov (eiu<¢1+Mk)+u2<M>k/2’ eiu(¢1+Me)+u2(M)z/2)

—F (eiuMk-i-uz(M)k/ZE(eiuM(—i-uz(M)g/Z|f([_1)4)> . |f*(u)|2
we get that

cov <eiu(¢1+Mk)+u2(M)k/2’ eiu(¢1+Me)+u2(M)g/2) — 1= w2

‘We obtain

EQFD — ful?) = — [ i(wﬂk naotENds |f*<u>|2)
" 27N |y K2 —
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+> (- If*(u)lz)] du
k£t
2,2

1 am u al

< A2 d —
= 2NK ) ¢ ”+

Gathering the last inequality and (42) gives the result of Proposition 6. [
8.8. Proof of Theorem 2

The proof follows the steps of Theorem 1. We prove that

- 1 )
E(If — fID) < If — fol? + ﬁ/ Xy
7TN 0

Then we obtain

1 O'ZU
- 1
E(lfz — £1% 521||ff—f||2+6<1 Joe nl )pen(r)

N2 ~
. »  pen(k)
+181;E(||fk—fk|| - )

Then we have to prove

N2

pen(k) C’
ZE<||fk—fk|| 3 ) <<

To this end, we define

k
oy (1) = — Z(WA,@ E((Ajx) with Ajy = <Zj,k,f0 Uz(Xj(S))dS>

J 1

and
1 vk % iux+‘%y
Vi) =g | et e Ly
We find [ [leo < M = /et k!4,

E( sup |17N(t)|2> < &vk/N = H?

€8 g lell=1

with ¢ = fol TV dy /. The difference with the proof of Theorem 1 is that, here, we get nothing

better than # := N H2. This is why we take €? =31og(N)/K in the Talagrand Inequality. Then,
choosing pen(k)/3 > (1 4 2¢%) H? gives the result and the value of the constant . [
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8.9. Proof of Proposition 7

For the first point, the proof is very close to the one of Proposition 5. The only difference
is that the bias term includes an additional term due to the approximation of Z; 7 by Z; 7. We
have:

A

Zit—Zjr

) A N
o / K’ (x_Zj’T—i_ul’(le’T_Zj'T))du.
0

Using the Cauchy—Schwarz inequality, we get:

Kn(x —Zj1)— Kn(x — Zj1) =

, 2 E(Zjr—Zj1)?
[ ax (B = 230 = Kt = 2,n) " = SEELZETE [y,

It remains to study
R 1 n ké
Zitr—Zjr =3 Z/ (b(Xj(s)) = b(X((k — 1)8)))ds.
T = Ja—1s

Using again the Cauchy—Schwarz inequality and the fact that b is Lipschitz, say with constant L,
yields:

A 12 . (ks
E(Zjr—2j1)° < — Z/ (Xj(s) = X;((k — 1)8))  ds.

k=1 (k=13
As
X;(5) = X;(tk — 1)8) = /(:_m (& +bOX @) du + /(X_ ()W )
we obtain:
E (X;(s) — X;j((k — 1)8)) < 462(Ep? + sup E[b*(X,;(5))]) + 2807

s>0

Thus, E(Z; 17 — 2]-,7)2 < C§ for some constant C which depends neither on 7 nor on §.
Second, we have:

E(l frs — fI*) < 2E(| fr.s — feII®) 4+ 2B fr — £17).

Thus, we only deal with the additional term:

.5 2 )
R S 502 (X ((k—1)8))

. ~ 1 VT
B fos — fol?) < 2—/ E
T

i W T2 2
_ eluZu—i—zrz Jo o2 (X1 (s))ds du.

For § < 1 < 1, we can prove as above:

[2/5] . 2
E(Zie = 211) + E (Z 80 (X1 ((k = 1)8)) — f aQ(Xl(s»ds) <Cs
k=1 0



FE. Comte et al. / Stochastic Processes and their Applications 123 (2013) 2522-2551
for some constant C which depends neither on t nor on §. Therefore,

N 2 2 2
E |42t 5 Y 02 (X (k=1)8) SOt JT 02X\ (s)ds

4
<C$ euzalz/t + u_62u2012/t
- 472 ’
which, integrating with respect to u, gives the result. [
8.10. Proof of Proposition 8

Consider the two-dimensional SDE:

dXj(t) =b(X (1), j@)dt + o (X;(1), $;(®)dW;(1), X;(0) =x7,
dgj(1) =0, $i(0) = ¢;.

2547

This clarifies the Markov property of the joint process (X (), ¢;) once we have proved existence
and unicity of a strong solution. Moreover, the random effect ¢; thus appears as an unobserved

initial condition.

e Assumption (A) standardly implies that the above two-dimensional SDE admits a unique
strong solution and that there exists a functional F such that X ;(-) = F.(¢;, x/, W;(-)) where
F.:R? xR x C(Rt,R) - C(R*, R) is measurable (see e.g. [13, p. 310]).

The joint process (X (1), ¢;(t) = ¢;),t > 0) is Markov. By the Markov property, for all
@, x/, the conditional distribution of (X (), ¢;), (t > 0) given ¢; = ¢ is the distribution of

X8 () = Fg.x) W),

As (¢j, W;()) are independent, the processes (X;(-)) are independent. As (¢;, x7) is the
initial condition, the moment result follows.

Assumption (A) does not cover the case of (2). This is why we also consider (B). Under
(B), we proceed in several steps which are classically used to prove regularity w.r.t. an initial
condition.

Under (B), for all ¢, Eq. (33) admits a unique strong solution. Therefore, there exists a
measurable functional

(x,w) eRx CRT,R) - F(p,x,w) e C(RT,R) (43)

such that Xf’xj (-)' = F(p,x/, W;) is the unique strong solution of (33). Moreover, as the
initial condition x/ is deterministic, it holds that, for all integers k > 1 and all T > O,
E sup (Xj""’ )% < +oo.
1€[0,T]
We now prove that (43) is measurable as a function of (¢, x, w.).

Step 1
Let H be a compact subset of RY, we prove that for all x/ eRandall T > 0,

sup E(sup (X;”xj w)*) .= C(T, H) < 0. (44)
geH u<T
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By Eq. (33),forallp € Handt < T,

. t . t .
X450 =+ / DXy (5), ¢)ds + f o (XY™ (5), 9)dW; (5)
0 0
By (B), we have, for all ¢, x and k > 1,
b (x, 9) + 07 (x, ) < Lk, ) (1 +x7),
where ¢ — L(k, ¢) is continuous. To ease notations, let us set, X (f) = X (), x = x/.
We proceed as in [12, Theorem 2.4, p. 163]. Using the Holder inequality, the Burkholder—

Davis—Gundy inequality, we get
t

Esup(X @)* < Ck)x* + Lk, ¢) | (1 +Esup(X @))*)ds,
0

u<t U=s

where C (k) is a constant and ¢ — L7 (k, ¢) is continuous. We conclude by the Gronwall
lemma that, forallr < T,

Esup(X (u))* < Cr(k, ),

u<t
where ¢ — Cr(k, ¢) is continuous. Thus, we get (44).

Step 2
We prove that

o — X0 (43)

is continuous as a function RY — C(Rt, R).
Let H be a compact convex subset of R4 and set, for 0, ¢ € H,

j ;o 2k
Si(9. @) = Esup (X0 @) = X0 @)
u<t J J
We have:

J ! i d x/ ' xd /
X070 = x40 = /0 (bX0 (), 9) = b (5), 1)) ds

! j ' x
+ /O (X )0 = o (X (5).6)) dW; ).
By (B), we have fors < T,

X (5).9) = bXY Y (5). @) 4 10 (X9 (5), 9) — 0 (X9 (). )]
< Lig) <|X‘ﬁ”” ) = X7 @1+ 1o = 9101+ sup X7 <u>|>) .

Now, we proceed as in Step 1. We use the Holder inequality, the Burkholder—Davis—Gundy
inequality, the result (44) of Step 1 and finally the Gronwall lemma to obtain that, for all
t<T,

Si(e, @) < lp — ¢'1*Cr(k, H),

for (another) constant Ct (k, H). Now, choosing 2k > d, we can conclude by the Kolmogorov
continuity of sample paths theorems (see e.g. [21, Theorem 2.1, p. 25]), that
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@.x) o' xJ
or@® = sup  suplx¥ @) - X7 )
p.9'eH, lp—¢'|<61=<T
tends to 0 a.s. as § tends to 0. This gives (45).

Step 3
As (43) is measurable for all ¢, Step 2 standardly implies that

(@, x,w) e R xR x C(RT,R) — F(p,x,w) e CRT,R)

is measurable.
The conclusion of Proposition 8 follows. [J

8.11. Proof of Proposition 9

For the proof, we omit the index j in the notations. Consider a fixed value ¢ > 0 and introduce
the process Yy (?) given by:

dYy(t) = popcodt + o (Yo(1))dW (1), Yo(0) = x.

As ¢ > 0, pb(x) = @opco for all x. By the comparison theorem for one-dimensional SDEs (see
e.g. [12, p. 352]), it holds that X#-*(¢) > Yy(¢) for all > 0. Thus,

@,x t
X0 S X oo+ - / o (Yo(s)dW (s)
t t t Jo
Jo 0 (Yo(s)dW (s) [y o2(Yo(s))ds
Jo o2(Yo(s))ds t ’

As [y o2 (Yo(s))ds = oit, [i7° o?(Yo(s))ds = +oo, so

Jo 0 (Yo(s)dW (s) o
Jo 02(Yo(s))ds

As O M < 012, we deduce that, a.s., liminf;_ 4
lim; s 400 X9* (7)) = +o00.

Analogously, for ¢ < 0, P(lim;_, ;oo X¥*(f) = —00) = 1. For ¢ = 0, X%*(.) is a martingale
such that (X%%) oo = [0 (XO¥(s))ds = 400 as. Hence, P(liminf,_, 100 XX (1) =

—oo, limsup, , , X%¥(r) = 400) = 1. Noting that

X
= 7 T ¢ooco +

@,xX
X z(t) > @opco, hence

P( lim X(r) = +ool¢ = ¢) =P( lim X? (1) = 400) = 1(p>0).
we get that

]P’(t_l)i?ooX(t) = +o0) =P(¢ > 0).
The other property follows analogously. [

8.12. Talagrand Inequality

The following result follows from the Talagrand concentration inequality given in [14] and
arguments in [2] (see the proof of their Corollary 2 p. 354).
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Lemma 2 (Talagrand Inequality). Let Yi,...,Y, be independent random variables, let
vy (W) = (1/n) 37 [ (Y) —E( (Yi)] and let F be a countable class of uniformly bounded
measurable functions. Then for € > 0

E[ sup v,y () =201 +26HH?]

veF
2 €2)e n
< i BE—KKZ# + 98M e_%ﬁh, ,
T Ki\n K1n2C2(€?)
with C(€?) =1+ €2 — 1, K| = 1/6, and
1 n

sup [lloo < M, E[sup oy (I < H, sup =" Var(y(¥) < v.
veF veF veF " 3

By standard density arguments, this result can be extended to the case where JF is a unit ball of
a linear normed space, after checking that f — v, (¥) is continuous and J contains a countable
dense family.
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