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Abstract

The inference procedure for the mean of a stationary time series is usually quite different under various
model assumptions because the partial sum process behaves differently depending on whether the time
series is short or long-range dependent, or whether it has a light or heavy-tailed marginal distribution. In
the current paper, we develop an asymptotic theory for the self-normalized block sampling, and prove that
the corresponding block sampling method can provide a unified inference approach for the aforementioned
different situations in the sense that it does not require the a priori estimation of auxiliary parameters. Monte
Carlo simulations are presented to illustrate its finite-sample performance. The R function implementing the
method is available from the authors.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Given samples X1, ..., X, from a stationary process {X;};cz with mean u = E(Xy), the
sample average X, = n~! > ' 1 X; serves as a natural estimator for the population mean .
To conduct statistical inference on the mean p such as hypothesis testing or the construction of
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confidence intervals, one needs an asymptotic theory on the sample average for dependent data.
The development of such a theory has been an active area of research. Consider first the classical
case, where by assuming certain short-range dependence conditions, one obtains the usual central
limit theorem, that is,

22X, — )% N, o2, (1)

where 4 denotes the convergence in distribution, and o2 is the long-run variance which
typically is the sum of autocovariances of all orders. The short-range dependence conditions
mentioned above include, but are not limited to, the m-dependence condition of Hoeffding and
Robbins [34], the strong mixing condition of Rosenblatt [64] and its variants, and the p-stability
condition based on functional dependence measures of Wu [84]; see also [36,57,49,13,87] and
references therein. Once one has (1), an asymptotic 100(1 — &) % confidence interval of @ can be
constructed as

(X, —n"20q1-ap, Xo+n""20q1_ap] )

where g1_q/2 is the (1 — o/2)-th quantile of the standard normal distribution. However, the
implementation of (2) requires the estimation of a nuisance parameter o, which can itself be
a challenging problem and often relies on techniques including tapering and thresholding to
achieve consistency; see for example [53,25,59,90] among others.

If the process (X;);cz is heavy-tailed (distributional tail behaving like x™* with o € (1, 2))
so that the variance is infinite, one typically has

nl_l/aﬁ(n)_l()_(n _M)_d)Sa(G’ﬁ’O)’ (3)

where £(n) is a slowly varying function satisfying lim,,_, o, £(an)/€(n) = 1 for any a > 0, and
S« (0, B, 0) is the centered «-stable random variable with scale parameter ¢ > 0 and skewness
parameter 8 € [—1, 1]. We refer the reader to the monographs by Samorodnitsky and Taqqu [65],
Nolan [54] and Resnick [62] for an introduction. See also [2] for examples of heavy tails from
finance, signal processing, networks, etc. Here the use of (3) for constructing confidence interval
as in (2) becomes more difficult due to additional unknown parameters o, o and 8, as well as the
unknown £(n).

There has been a considerable amount of research focusing on the situation where the
short-range dependence condition fails, and processes with long-range dependence (also called
“long memory” or “‘strong dependence”) has attracted a lot of attention in various fields including
econometrics, finance, hydrology and telecommunication among others; see for example [48,20,
45,8]. We also refer the reader to the monographs by Doukhan et al. [23], Giraitis et al. [26] and
Beran et al. [10] for an introduction. For long-range dependent processes, it may be established
that

W Hem) T (X, — ) Sy, 4)

where H € (1/2, 1) is the Hurst index (or the long memory index), £(n) is a slowly varying
function, and Y is typically a random variable which can be expressed by a multiple Wiener—Itd
integral and is not necessarily Gaussian. The large sample theory of the form (4) has been stud-
ied by Davydov [17], Taqqu [75], Dobrushin and Major [21], Avram and Taqqu [4], Ho and
Hsing [32], Wu [85] and Bai and Taqqu [6] among others. Therefore, the asymptotic behavior of
the sample average and thus the inference procedure can become very different for long-range
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dependent processes, and the convergence rate in (4) depends critically on the Hurst index H
which characterizes the dependence strength. Hence, in order to apply (4) for inference, unlike
the case with short-range dependence and light tail, one needs to estimate in addition the Hurst in-
dex H and possibly the slowly varying function £(n), which can be quite nontrivial. Furthermore,
the distribution of a non-Gaussian Y (which also depends on H) has not been numerically evalu-
ated in general. For the special case of the Rosenblatt distribution where it is evaluated, see [82].

There has recently been a surge of attention in using some random normalizers to avoid, or
reduce the number of nuisance parameters that need to be estimated for statistical inference.
For example, McElroy and Politis [50] considered using the sample standard deviation as the
normalizer for inference on the mean of heavy-tailed linear processes that satisfy the strong
mixing condition; see also [63] for the use of a similar normalizer for independent observations.
Lobato [46], Shao [68], Zhou and Shao [91] and Huang et al. [35] used a normalization of the

type
1/2

S(Eu-tEe)
D, =4n" Xi—— Xi 5)
=1 \i=1 s

for finite-variance short-range dependent time series. Fan [24] used the normalizer D, for
long-range dependent time series with finite variances. Results have also been obtained by
McElroy and Politis [52] using a lag-window normalizer instead of D, in (5). McElroy and
Politis [51], moreover, considered the following non-centered stochastic volatility model X; =
w+o;Z;,i > 1, where {0;} and {Z;} are independent, {o;} is i.i.d. heavy-tailed and {Z;} is a
Gaussian process. They proposed to use a random normalizer involving two terms that account
for heavy-tailedness and long memory respectively. The term in their normalizer which accounts
for long memory requires the choice of an additional tuning parameter. Therefore, it seems that
the specific form of the normalization depends critically on the particular time series that is being
considered, and different normalizers have been used in the literature to account for the heavy-tail
and/or long-range dependent characteristics of the time series.

The current paper aims to provide a unified inference procedure by adopting the normalizer
D, in (5) and developing an asymptotic theory using self-normalized block sums. As observed
by Shao [69], self-normalization itself is not able to fully avoid the problem of estimating the
nuisance parameters, as the asymptotic distribution at least depends on the unknown Hurst index
H for long-range dependent processes. In order to provide a unified approach that does not rely
on the estimation of any nuisance parameter to determine the strength of dependence or heavy-
tailedness, certain nonparametric techniques such as the block sampling” must be utilized to
obtain the asymptotic quantiles. However, this requires developing an asymptotic theory on the
self-normalized block sums for a general class of processes. This task may be nontrivial if we
want it to include processes with long-range dependence and/or heavy-tails. Block sampling has
been mainly studied in the literature in the non-self-normalized setting, where the normalizer
converges in probability to a nonzero constant, thus simplifying the proof; see for example [29]
for nonlinear transforms of Gaussian processes, Nordman and Lahiri [55] for linear processes,
and Zhang et al. [89] for nonlinear transforms of linear processes. Jach et al. [37] applied
block sampling to the model X; = w + 0;Z;, i > 1, considered by McElroy and Politis [51]

2 The following terms are used interchangeably in the literature: block sampling, subsampling, sampling window
method.
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but with Z; replaced by g(Z;) where g is a possibly nonlinear function with Hermite rank
one. For more information on block sampling, see [71,43]. Betken and Wendler [11] recently
obtained interesting results in the context of long-range dependence. They are briefly discussed
in Section 3.2 (see (58)).

The current paper considers self-normalized block sums using D, in (5) as normalizer. As
observed by Fan [24], the development of an asymptotic theory in this case can be very nontrivial
even for Gaussian processes. Developing a rigorous proof is stated as an open problem. The goal
of this paper is to develop such a proof for nonlinear functions of Gaussian processes with either
short or long-range dependence, and including heavy-tails.

The remaining of the paper is organized as follows. Section 2 introduces the self-normalized
block sampling (SNBS) method, whose asymptotic theory is established in Section 3. Section 4
contains examples. Monte Carlo simulations are carried out in Section 5 to examine the finite-
sample performance of the method.

2. Self-normalized block sampling

Let X1, ..., X, be observations from a stationary process (X;);cz with mean u = E(Xp),
and denote by S = Zf‘: j XiyJ = k, its partial sums from j to k. Of particular interest is
Si,n = Y_r_ Xi. We propose using the self-normalized quantity

Stn—np

T, = D— (6)
n

for making statistical inference on the mean u, where D,,, defined in (5), can now be written

n X 2 1/2
D, = [nl 3 (sl,k - ;sl,,,) } , )
k=1

In order to make inference on 1, we need to know the distribution P (7" < x).
A first idea is to use the asymptotic distribution of (6). This would require knowing the weak
limit of the normalized partial sum process, namely,

= em) N (S —np), 0<t <1} = (Y(@), 0<1<1)}, ®)

where ¢t € [0, 1], [nt] denotes the largest integer not exceeding nt, and = denotes weak
convergence in Skorokhod space with suitable topology. By Lamperti [44], if (8) holds, then
the process Y (¢) is self-similar with stationary increments, with Hurst index® 0 < H < 1(H-
sssi), and with £(-) a slowly varying function. Recall that a process Y (¢) is said to be self-
similar with Hurst index H if {Y (ct), t > 0} has the same finite-dimensional distributions as
{cHY(t), t >0}, for any ¢ > 0.

The most important example of (8) is when (X;); ¢z is short-range dependent and admits finite
variance, in which case one expects

(02 (Spe) — ), 0 <1 < 1) = (0B(). 0<1 <1}, ©

where B(-) is the standard Brownian motion, and o2 > 0is the long-run variance; see for
example, the invariance principle of Herrndorf [31] under strong mixing, and also the strong

3 We exclude the degenerate case H = 1.
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invariance principle of Wu [86]. When {X;} is short-range dependent but has infinite variance
with distributional tail regularly varying of order —« where o € (1, 2), one has typically

(V)" Sy —np), 0<t <1} = {Laopt), 0 <t <1}, (10)

where Ly 5 p(t) is a centered a-stable Lévy process with scale parameter 0 > 0 and
skewness parameter 8 € [—1, 1]. See, for example, [73,5,80,81,9] for the specification of the
corresponding Skorohod topology.

Under long-range dependence, the limit in (8) can be quite complicated. A typical class of
convergence in this case is

™ o) (S —nw), 0<t <1} = {cZupu(t), 0<t <1}, (11)

where 1/2 < H < 1, Zy, g (-) is the mth order Hermite process which can be expressed by a
multiple Wiener—It6 integral (see, e.g., [21,76]), and c is a constant depending on H, m and £(n).
A Hermite process Z,, g(-) with m > 2 is non-Gaussian, and when m = 1 it is the Gaussian
process called fractional Brownian motion, also denoted by By (-). One can also consider the
anti-persistent case H < 1/2, where the limit can be more complicated than Z,, #(-) (see [47]).

Applying the same normalization n~ £(n)~! to both the numerator and denominator of T} in
(6), one can establish as in [46], via (8) and the Continuous Mapping Theorem that as n — oo,

—H —1 _
T = n ) (St = np) e Lr= %, (12)
n=Hgn)-! {nl > (S1k— 551,11)2}
k=1
with
| 1/2
D= [f {Y(S)—sY(l)}zds] . (13)
0

Note that D > 0 almost surely. Indeed, if P(D = 0) > 0, then with positive probability
Y(s) = sY (1), which has locally bounded variation. This cannot happen by Theorem 3.3 of
Vervaat [83], since we assume H < 1.

In particular, in the short-range dependent case (9), one gets
T4 B)
1 1/
[fo {B(s) — sB(l)}2ds]

bl

where the limit does not depend on any nuisance parameter. However, this nice property no
longer holds in the other cases (10) and (11), since Y (¢) in either case involves additional pa-
rameters. Therefore, except for short-range dependent light-tailed processes, self-normalization
itself is usually not able to fully avoid the problem of estimating the nuisance parameters, and
we shall follow here Hall et al. [29] and consider a block sampling approach. See also Chapter 5
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of Politis et al. [60]. Let
Siitby—1 — buit

Iy
o . i+by,—1 . .
\/bn Y (Sik—by k—i4+1)Siiyh,—1)?
k=i

= Subot Tty (14)
D p,
which is the block version of 7,* in (6) for the subsample X;, ..., X;4p,—1, Where b, denotes
the block size. Observe that there is a considerable overlap between successive blocks, since as i
increases to i 4 1, the subsample becomes X; 11, ..., X;4p,, and thus includes many of the same
observations.

We consider using the empirical distribution function

1 n—bp+1

> KT, <), (15)

i=1

F:’b"(x) - n—>b,+1
n

where I(-) is the indicator function, to approximate the distribution P(7," < x) of T, in (6). In
practice, the mean p in (14) is unknown and we shall replace it by the average X, of the whole

sample, which turns (14) into

Sl.,l.+bn*1 - ann

Tip, = , (16)
i B .
by Y (Sik—by (k—i+41)Siivp,~1)?
k=i
whose empirical distribution function is given by
. n—bp+1
Fu, (@) = -7 Y Ty, < ). (17)

i=1
The asterisk in Ti*bn indicates that the centering involves the unknown population mean pu, in

contrast to 7; 5, , where the centering involves instead the sample average X,,. We call the above
inference procedure involving using I?n b, (x) in (17) to approximate the distribution of 7,* in (6),
the self-normalized block sampling (SNBS) method. One can then construct confidence intervals
or test hypotheses for the unknown population mean p. For instance, to construct a one-sided
100(1 — )% confidence interval for u, one gets first the «-th quantile g, of the empirical
distribution F,, , (x) in (17). Since

Sl,n —nu

1—wP<T:zqa>=P< o

Z%x) = P(M =< Xn —ann/}’l),
where D, is defined in (7), then the 100(1 — «)% confidence interval is constructed as
(—o00, X» — quDn/n]. (18)

The idea of using block sampling to approximate distributions of self-normalized quantities
is not new, and it has been applied by Fan [24] and McElroy and Politis [52] to long-range
dependent processes with finite variances. However, the aforementioned papers did not provide
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a full theoretical justification for their inference procedure based on block sampling, and as
commented by Fan [24] such a task can be very nontrivial even for Gaussian processes and
has been stated as an open problem. In addition, the aforementioned papers only considered the
situation with finite variances, and therefore it has not been known whether one could unify the
inference procedure for processes with long-range dependence and/or heavy-tails.

Recently, Jach et al. [37] considered this problem in the setting of stochastic volatility models
where the error term can be nicely decomposed into two independent factors, with one being a
function of long-range dependent Gaussian processes while the other being i.i.d. heavy-tailed.*
But in their paper, the nonlinear function is restricted to have Hermite rank one and the choice
of slowly varying functions is also greatly limited as neither logn nor loglogn are allowed.
In addition, their random normalizer is specifically tailored to the aforementioned stochastic
volatility model, and involves two different terms to account for the long-range dependent and
heavy-tailed characteristics of the time series. Furthermore, the term in their normalizer that
accounts for long-range dependence also requires the choice of an additional tuning parameter as
in the estimation of the long-run variance for short-range dependent processes. We also mention
that the proof of Jach et al. [37], which relies on the #-weak dependence, does not seem to
be applicable in the current setting, since using our random normalizer D,, in the denominator
makes the self-normalized quantity a non-Lipschitz function of the data.

The current paper proposes to consider the use of (17) to provide a unified inference procedure
without the estimation of a nuisance parameter for a wide class of processes, where the limit of
the partial sum process can be a Brownian motion, an a-stable Lévy process, a Hermite process
or other processes. In Section 3, we develop an asymptotic theory for the self-normalized block
sums and establish the theoretical consistency of the aforementioned method, namely,

| P, (x) — P(T¥ < x)| = 0 (19)

in probability as n — oo.
3. Asymptotic theory

We establish the asymptotic consistency of self-normalized block sampling for the following
two classes of stationary processes: (a) nonlinear transforms of Gaussian stationary processes
(called Gaussian subordination), and (b) those satisfying strong mixing conditions. The first
allows for long-range dependence and non-central limits, while the second involves short-range
dependent processes. Both classes allow for heavy-tails with infinite variance.

Let DJO, 1] be the space of cadlag (right continuous with left limits) functions defined on
[0, 1], endowed with Skorokhod’s M; topology. The M, topology is weaker than the other
topologies proposed by Skorokhod [72], in particular, weaker than the most commonly used J;
topology. A sequence of function x,(t) € D[0, 1] converges to x(¢) € DI[0, 1] in M topology
as n — oo, if and only if lim, sup; <,,, Xx(t) = sup; <, x(¢) and lim, infy, <, <1, Xx (1) =
inf;, <;<4, x(¢) for any #1, 1, at continuity points of x(¢) (see Statement 2.2.10 of Skorokhod [72]).

We consider the M» topology instead of J; since there are known examples in the heavy tailed
case where convergence fails under J; but holds under M5 (see [5,81,9]). To apply the continuous
mapping argument, we need the following lemma.

4 As noted in Section 4, we can recover the consistency result of Jach et al. [37] by replacing our normalization D, by
the one found in that paper.
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Lemma 3.1. Integration on [0, 1] is a continuous functional for D0, 1] under the My topology.

Proof. Suppose that x,,(f) — x(¢) in the M, topology. For any partition 7 = {0 = 7y <

H < - < tf—1 < t = 1}, define m;, = inf;, | <i<; x, (1), Mip = SUpP;, | <<y, X, (1),
m; =inf;, | <;<, x(¢t) and M; = SUp;, | <<y, x(),i =1,..., k. Note that
k 1 k
D min(ti —tioy) S/ X (dt < Mt — ti1),
i=1 0 i=1
k 1 k
> omiti — i) E/O x(dt < Mt — 1) (20)

i=1 i=1

The function x(¢) is Riemann integrable since, as an element in D0, 1], it is a.e. continuous and

bounded on [0, 1]. Riemann integrability implies that for any € > 0, one can choose a partition
7T so that

k k
OSZMi(li —fi—l)—zmi(ti —ti—1) <e. 2n
i=1 i=1
Modify the partition, if necessary, so that all the #;’s are at continuity points of x(z), without
changing (21). This is possible since x(#) has at most countable discontinuity points and is
bounded. By the characterization of convergence in D[0, 1] with M» topology, we have

k k
lilgnzmi,n(fi —ti) =Y mi(ti —ti-1),

i=1 i=1
k k

“,1“2 M, (ti —ti—1) = Z M; (@t — ti-1). (22)
i=1 i=1

Combining (20)~(22) concludes that limsup,, | i x,(1)dt — [y x(t)dt| <e. O
3.1. Results in the Gaussian subordination case
Let
{Z; = (Zir,....Ziy), i €7} (23)
be an R’ -valued Gaussian stationary process satisfying EZ;, j = 0forany i, j. Define
2, =(Zp,.... 7). 24

We shall view Z?, as a vector of dimension J x (¢ — p + 1) involving observations from time
p to time g. The covariance matrix of Z" will be written for convenience as a four-dimensional
array involving iy, i, jo, jo:

= (Vinializ = 10) = EZiyj Zis 1, (25)

I<iyiz<m 1<, p<)
We assume throughout that %, is non-singular for every m € Z.. The cross-block covariance

matrix between Z' and Zii’l" is

Sem = (Vinp G2+ k= i0) =EZiy js Zipi ) (26)

1<iy,iz<m,1<j1, jp<J
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Let p(-, -) denote the canonical correlation (maximum correlation coefficient) between LZ(£2)
random vectors U = (Uy, ..., Up) and V = (Vq, ..., V). Let (-, -) denote the inner product in
an Euclidean space of a suitable dimension. Then

p(U, V)= sup
xeR?,yeRY?

Corr((x, U, (y, V))‘ . 27)
Let pr,, be the between-block canonical correlation:

pem = p (20 2. (28)

We now introduce the assumptions for the self-normalized block sampling procedure. {X;} is
the stationary process (time series) we observe.

Al. X; = GZ;,...,Z;—) = G(Zf_l) with mean u© = EX;, where {Z;} is a vector-valued
stationary Gaussian process as in (23), and / is a fixed non-negative integer.

A2. We have weak convergence in D[0, 1] endowed with the M, topology for the partial sum:

1
(S —np), 0=t <1y = {¥Y(), 0=t =<1},
{an(n)( lnt) — NI } Y@ }
for some nonzero H-sssi process Y (¢), where 0 < H < 1 and £(-) is a slowly varying
function.

A3. As n — o0, the block size b,, — o0, b, = 0(n), and satisfies

> Pkitn, = o), (29)

k=0
where pi , is the between-block canonical correlation defined in (28).

Remark 3.1. The data-generating specification in A1l allows us to get a variety of limits in A2,
covering short-range dependence, long-range dependence, and heavy tails. When the covariance
function of X (n) is absolutely summable (short-range dependence), one typically gets in A2
convergence to Brownian motion (see, e.g., [14,33,16]). When the covariance of X (n) is regularly
varying of order between —1 and O (long-range dependence), one may get in A2 convergence to
the Hermite-type processes (see, e.g., [75,21,76,3]).

Moreover, as shown in [74] in the case J = 1, when G(-) is chosen such that X (n) is
short-range dependent and heavy-tailed, so that X (n) has infinite variance but finite mean, one
can obtain in A2, convergence to an infinite-variance «-stable Lévy process; if X (n) is long-range
dependent and heavy-tailed, then the limit may be a finite-variance Hermite process, even though
X (n) may have infinite variance. All these situations are allowed under Assumptions A1-A3.

For sufficient conditions for Assumption A3 to hold, see Proposition 3.1 and Section 3.2.

Since the denominators in (12) are nonzero almost surely, Assumption A2, Lemma 3.1 and
the Continuous Mapping Theorem imply the following (see [40, Corollary 4.5]):

Lemma 3.2. Ti”“hn in (14) converges in distribution to T in (12).

The following result allows us to relate the correlation of nonlinear functions to the correlation
of linear functions.
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Lemma 3.3. Let (Z;);c7z be a centered RY -valued Gaussian stationary process as in (23), and let
Z?, be defined as in (24). Let F,, be the set of all functions F on R'™ satisfying IEF(Z’I")2 < 0.
Then for k > m, one has

sup  [Core(F @), GEE)| = 0 (20 Z17) = pkm. (30)
F,.GeFm

Proof. The equality is the well-known Gaussian maximal correlation equality. See,
e.g., Theorem 1 of Kolmogorov and Rozanov [41] or Theorem 10.11 of Janson [38]. [

Our goal is to show that (19) holds, namely, n,b, 1S @ consistent estimator of P(7," < x).
This will be a consequence of the following theorem.

Theorem 3.1. Assume that Assumptions A1-A3 hold. Let F(x) be the CDF (cumulative
distribution function) of T in (12), and let F, p, (x) be as in (17). As n — oo, we have

Fup, (x) > F(x), x€C(F), 31)

where C (F) denotes the set of continuity points of F(x). If F(x) is continuous, then (31) can be
strengthened to

sup |i*:n,b,1 (x) — F(x)| — 0 in probability. 32)
X

Proof. Step 1. Let I?: by (x) be as in (15). To prove (31), we first show that

Ff, )5 Fx), xeC(p), (33)

where we have replaced Fn b, (X) by b (x). A bias—variance decomposition yields:

E ([Fb (x) — F(x)]2> [BFy, () = ERF () By, (0]
+ F(x)? +E[F}, (0)°] - [EF;, (1))
= [EF,, 0~ F@] + [BIF, 0 - BF, o]
=[P(T}, <x)—P(T < x)] + Var[F,jbn @®].

By Lemma 3.2, the squared bias [P(Ti”"bn <x)— P(T <x)? converges to zero for x € C(F)

as b, — o0o. We thus need to show that Var[l’/*:;lk by (x)] = 0. By the stationarity of {X;}, which
implies the stationarity of {Titkhn} viewed as a process indexed by 7, one has

bp+1
Var[F*b (x)] = Var e Z T < x)
n—b,+1 Lon =

i=1
1 n—bp+1

= _(n — bn + 1)2 iJX::I COV I:I{ i,b, — X} I{ b < x}]
<2 Z |Cov [I{T}", < x}, I{T < x}]| (34)
Tn—by+14& Lby = X5 i kep1,p, = X11
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since for any covariance function y (-) of a stationary sequence, we have

P P
Doy =Nl Y (p—lkDly@®I<2p ) ly®l.
k=0

i,j=1 lkl<p

In view of Assumption Al, X; depends on Z;,...,Z;_;. By (14), Ti’fhn is a function of
Xi,..., Xitp,—1. Hence Tl"jbn depends not only on Zy, ..., Z;,, but alsoon Z1_y, . .., Zy, and
Tk*+l,bn depends on Z41—, ..., Zgyp,. We shall now apply Lemma 3.3 with the same k and
m =1 + b,. Then when k > [ + b, one has

1 1
|C0V[I{T1>fbn <x}, I{Tk*-i-l,bn =< x}]| =< Z |C01T[I{T1fbn <x}, I{Tk*+1,bn =< x}]| = Zpk,anrl

(35)
where we have used the following fact®: if 0 < X < 1, then Var[X] < 1/4. We have
—~ 1 n
Var[F¥, x)] < ———m8M8 ™ —— , 36
[Fy b, ()] = P TCE ];,Ok,b,ﬂrl (36)

which converges to zero because of Assumption A3. Hence I?;‘ by (x) 2 F (x) for x € C(F).
Step 1 of the proof is now complete.

Step 2. We now show that
Fop, ()5 F(x) forx e C(F),

that is, we go from (33) to (31). To do so, we follow the proof of Theorem 11.3.1 of Politis
et al. [60], and express (17) as

1 n—bp+1

> T, < x+by(Xy — 1)/ Dip,), 37)
i=1

F, =—
n,b, (x) n—by+1

where D; p, is as in (14). The goal is to show that b, ()_(,, — w)/D; p, is negligible. For € > 0,
define

n—b,+1

1 -
Ri(©) = ~——7 ; I{b(Xy — 1)/ Dip, < €}
1 n—b,+1 _
=7 2 NGB ™ Dip, = 7K — by b)) (38)

i=1

Since Ry (€) is an average of indicators, we have R, (€¢) < 1. Our goal is to show that R, (¢) 2.
Note that as n — o0,

Dy 1 i+by—1 5 172
L,0n —1 -1 .
= b Sik — by (k=i — 1)Siisp,—
BIE(by) — B EGy) ( D (Sik = by 'k =i = DSpis, 1)>

converges in distribution to D in (13) by Assumption A2 and continuous mapping. Moreover,
since b, = o(n), H < 1 and n(X, — /L)n_HE(n)_l converges in distribution to Y (1) by

SIF0 < X < 1, then o = EX € [0, 1], EX? < u and Var[X] < 1 — u2 is maximized at & = 1/2, so that
Var[X] < 1/4 (for more general results, see [19, Lemma 2.2]).
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Assumption A2, we have
H—1
L
1 nH 1 n) p 0
by~ L(by)

Hence for any § > 0, with probability tending to 1 as n — oo, one has

by (X — )G eb) ™ = n(X, — wnem)~

1 n—b,+1 ~ B
1> Ry(e) > —————— Y B b)) "' Din, = 8¢}, (39)
n—>b,+1 =
Since as Tif‘bn in Step 1, D;p, is also a function of X;, ..., X;1p,—1, we can follow a same

argument as in Step 1, replacing Tl.’fbn by (bf K(bn))’lD,‘,bn to obtain a similar result as in (33),
namely that the empirical distribution of (bf 2(bp)) ! D; p, converges in probability to that of D
at all points of continuity of the distribution of D. Therefore

1 n—>b,+1
Y HBeba) " Dip, = 867} D P(D = 5e7) (40)

n—>b,+1 =

for 8¢ ~! at continuity point of the CDF of D. Since P(D > 0) = 1, we can choose § small
enough to make P(D > Se—1) as close to 1 as desired. In view of (39) and (40), we conclude
that as n — oo,

Ru(e) 21 1)
for any € > 0. Now notice that each summand in the sum (37) satisfies
T, <x+by(X, —pn)/Dip,}
= [T, = ¥+ bu(Re — )/ Di, )]
x [Wba (R = 10/ D, < €} + Ubn(Xa = W)/ Din, > €}

<x+eh+ by (X, — )/ Dip, > €}, (42)

<X iikbn
so that by plugging these inequalities in (37) and using (38), we get
Fup,(x) < Ff) (x+€) + 1 — Ru(e).

But by (41), R, (¢) 2 1. So for any y > 0, one has
Fup,(x) < Ffp (x+€) +y

with probability tending to 1 as n — oo. We can now use (33) to replace f: by (x+€) by F(x+e),

so that for arbitrary ' > y, and for any x + € € C(F), one has i:n,bn (x) < F(x +¢€) + y' with
probability tending to 1 as n — oco. Now letting € | O through x + ¢ € C(F) and using the
continuity of F(-) at x, one gets with probability tending to 1 that

Fup,(x) < F(x)+y", xeC(F), (43)

forany y” > y/'.
A similar argument, which replaces (42) by

UTip, < x} = UT, <x—e}—bu(Xy — )/ Dip, < —€},
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will show that for any y” > 0, with probability tending to 1,

Fop, () 2 Fx) = 9", x € C(F). (44)
Combining (43) and (44), one gets

P(\Fup, (¥) = FOOI £ y") > 1

as n — o0, and thus (31) holds.

§Zep 3. We now show (32). If F(x) is continuous, then by the already established (31), we have
Fu.p,(x) — F(x) in probability for any x € R. Let n; be an arbitrar/y\ subsequence, one can
then choose a further subsequence of n;, still denoted as n;, so that F,,(x) — F(x) almost
surely for all rational x by a diagonal subsequence argument. Then by Lemma A9.2 (ii) of
Gut [28], sup, g |E,i (x) — F(x)| — 0 almost surely, and therefore sup, . |fn x)—Fx)|—0
in probability. Hence (32) is proved. [

Consistency (19) is a simple corollary of Theorem 3.1.

Corollary 3.1. Assume that Assumptions A1-A3 hold. Then as n — oo,

|Fpp, (x) — P(T* < x)| = O in probability (45)

for x € C(F). If F(x) is continuous, then the preceding convergence can be strengthened to
sup |Fy.p, (x) — P(T < x)| = O in probability. (46)
xeR

Proof. The first result (45) follows directly from the triangle inequality
| Fnb, () = P} < )| < [Fup, (¥) — FQ)| + [P(T;; < x) — F(x),

where x € C(F) and F(x) = P(T < x), by combining Theorem 3.2 or 3.1 with (12). For the
second result (46), one uses also the fact that (12) implies sup, g |P(7,) < x) — F(x)| = O as
n — oo if F(x) is continuous (see again Lemma A9.2 (ii) of Gut [28]). U

Bai and Taqqu [7] recently proved the following proposition, showing that the bound (29)
holds for a large class of models with long-range dependence. Thus, for these models, one has
the freedom to choose any b,, = o(n), irrespective of the long-range dependence parameter H.

Proposition 3.1 ([7, Theorems 2.2 and 2.3]). Consider the case J = 1. Suppose that the spectral
density of the underlying Gaussian {Z;} is given by
FQ) = fa@) fod),

where fy (L) = |1—e*| 720+ 1/2 < H < 1, and fo()) is a spectral density which corresponds
to a covariance function (or Fourier coefficient) yp(n) = ffﬂ fo()u)el”}‘d)\. Assume that the
following hold:

(a) There exists co > 0 such that fo(A) > co forall A € (—m, w];
(b) Y02 o ()| < oo;
(©) yo(n) = o(n™).

Then the condition (29) in Assumption A3 holds if b, = o(n). The result extends to the case
where the underlying Gaussian {Z;} is J-dimensional with independent components.
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In Proposition 3.1, fg(X) is the spectral density of a FARIMA(O, d,0) sequence with
d=H —1/2,and fy(}) is the spectral density of a sequence with short-range dependence.

Under the assumptions in Proposition 3.1, the spectral density f(A) cannot have a slowly
varying factor which diverges to infinity or converges to zero at A = 0, because fo(}) is bounded
away from infinity and zero. For H € (1/2, 1), the FARIMA(p, d, ¢) model withd = H — 1/2
and the fractional Gaussian noise model satisfy the assumptions of Proposition 3.1. See Examples
2.1 and 2.2 of Bai and Taqqu [7].

We thus have the following result which we formulate for simplicity in the univariate case
J=1

Corollary 3.2. Assume that Assumptions A1-A2 hold with J = 1, and the underlying Gaussian
{Z;} satisfies the assumptions in Proposition 3.1. If b, — oo and b, = o(n), then the
conclusions of Theorem 3.1 and Corollary 3.1 hold.

3.2. Further analysis of Assumption A3

In this section, we discuss the critical Assumption A3, which involves the covariance structure
of the underlying Gaussian {Z;}. In particular, we shall give the general bound (49) for the
canonical correlation pg , in (28), and discuss how it relates to Assumption A3. As noted in
Proposition 3.1, however, this bound, in the long memory case, can be improved substantially so
as to provide more flexibility on the choice of the block size b,,.

To state this general bound, define

M, (k) = i , 47
y (k) Tf?lgﬂl,a}fgwﬁ*-’z(”” 47)

and
Am = the minimum eigenvalue of 2. (48)

Note that A,, > 0 since X, is assumed to be positive definite.

Lemma 3.4. Let oy ;, be as in (28), My, (k) be as in (47) and Ay be as in (48). We have the

bound
. Mk —m)
Pkm <minyJm——, 1. 49)
A‘I’ﬂ
Proof. Let x and y be (column) vectors in R’™. Note that each 7V = (Zy,...,Z,) and
Zﬁ’ln = (Zg+1, - - - Li+m) are Jm-dimensional Gaussian vectors translated by k units in the
time index. Therefore by (27),
m k+m
Pk,m = P Z] ’ Zk+l = Ssup 1/2 1/2
xR (Varl(x, Z0)1)  (Varly, ZE17)1)
T
by
— sup X' Zk,my (50)

x,yeR/™m +/ x! LimXy/ yl' Zny ’
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where X, is as in (25), Xk, is as in (26). By relations 6.58(a) and 6.62(a) in [66], one has

) sup X" S my| sup 1 |x" 5, mY| 1 o
k,m = Thenen - Ok,m>,
" e VXTI T Iy waen XYL A

where A, is the smallest eigenvalue of X, and oy ;, is the maximum singular value® of Dkom-
By Seber [66, 4.66(b) and 4.67(b)], o, is bounded by the linear size of the matrix Y , times
the maximum absolute value of all the elements of the matrix. Since the matrix Yj ,, has linear
size Jm, we have

(S

Okm < Jm max max |yj1,j2(i2+k—i1)|
I<iy,ip<m 1<ji,jp<

< Jm max max |y,~1,,-2(n)| =JmM,(k —m).
n>k—m 1<ji,jp<J 7"

The bound (49) is then obtained by noting that o ,, < 1 in view of (30). U

Example 3.1. Consider the important scalar case J = 1, where Z; = Z;. Denote the covariance
function of {Z;} by y(n) and its spectral density by f(w). In this case, it is known that %, is
non-singular for any m if lim,,_, o, ¥ (n) = O (see Proposition 5.1.1 of Brockwell and Davis [15]),
and that the minimum eigenvalue 1, satisfies

Am = 2messinf, f(w), and lim A, = 2m essinf, f(w), 52)
m— o0

where “ess inf” denotes the essential infimum with respect to Lebesgue measure on [—m, )
(see [27, Chapter 5.2]). If J = 1, M,, (k) also reduces to

M, (k) = max |y (n)|. (53)

n>k
Remark 3.2. Consider the vector case but suppose that {Z;},...,...,{Z; s} are mutually
independent, ie., v; j,(n) = v p,@Hj1 = j2}. Let Iy ; = (yj,j(h _iz))1<i1,i2<m'
In this case, we have a block-diagonal X, = diag(Lu1,..., ms). Let Tkm; =
(yj’j(iz +k — il))l<i|,i2<m' We also have a block-diagonal X ,, = diag(Lk m.15---> Lk,m.7)-

Let pox,m,;j be the between-block canonical correlation p(Z}' j ZZf j) in component j, j =
1,..., J. The block-diagonal structure implies that

Pk,m = max{pgm j, j=1,...,J}

Proposition 3.2. Assumption A3 holds if b,, = o(n) and

> min | 22

Proof. In view of Lemma 3.4, we have

M, (k), 1} = o(n). (54)

n noo Mk — b, — 1)
Zpk,bnﬂ <b,+D+ Z min {an)L—H, 1} =o(n)
k=0 k=bp+I bu+l

since b, = o(n). Hence Assumption A3 holds. [J

6 Note that Yk, m is not a symmetric matrix. The square of its singular values are the eigenvalues of EkTm 2k, m» which
is symmetric and non-negative definite.
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Implications of Proposition 3.2.

We discuss here the implications of Condition (54) in various specific situations. This
discussion is restricted to the case J = 1 which is of most interest. This discussion can be
easily extended to the case of independent components via the observation made in Remark 3.2.
Let ¢, C > 0 be generic constants whose value can change from expression to expression. The
notation @ < b means cb < a < Cb for some 0 < ¢ < C. Assume throughout that the
covariance y (n) — 0 and b, = o(n) as n — oo. We distinguish two cases: ess inf,, f (w) > 0
and ess inf,, f (w) = 0.

1. Assume first ess inf,, f (w) > 0.

In view of (52), the minimum eigenvalue A, is bounded below away from zero, and hence
Condition (54) holds if

by Y My (k) = o(n), (55)

k=0

where M, (k) is expressed as (53). Consider the case Y ;- M, (k) < oo, which implies the
typical short-range dependence condition: > ¢ | |y (k)| < > 72, M, (k) < oo. Then (55)
reduces to b, = o(n). We get in particular:

Corollary 3.3. Suppose that essinf, f (w) > 0, and |y (n)| < d,, where d, is non-increasing
and summable (typically, d, = cn™P for some constant ¢ > 0 and B > 1). If b, = o(n), then
Assumption A3 holds.

Proof. |y (k)| < dj implies M, (k) < dy, and hence Z/fio M, (k) <oo. O

Consider now the situation relevant to long-range dependence:
y(k) =k*12Lk), 1/2<H <1, (56)

where L(k) is a slowly varying function at infinity. By Theorem 1.5.3 of Bingham et al. [12],
Condition (56) implies that M, (k) ~ k*#=2L(k), which entails that Y j_o M, (k) <
en*" =11 (n). Thus (55) holds if

by = om* M L)~ "). (57

So, the larger the H, the smaller the block size b,,.

Corollary 3.4. Suppose that essinf,, f (w) > 0, and |y (n)| < n*=2L(n), where 1)2 < H < 1
and L is slowly varying. If b, = o(n®> 2" L(n)™"), then Assumption A3 holds.

The case |y (k)| < K _2L(k) also encompasses the seasonal long memory situations (see,
e.g., [30]), where y (k) oscillates within a power-law envelope.

In the long-range dependent case, Betken and Wendler [1 1] obtained recently a bound for oy,
in (28) using a result of Adenstedt [1] under some additional assumptions. Their bound allows
(29) to hold under the block size condition

by, = o(n*?~H=¢) (58)

with arbitrarily small € > 0. The condition (58) is better than (57) for each H, and b, = on'/?%
is always allowed.

Please cite this article in press as: S. Bai, etal., A unified approach to self-normalized block sampling, Stochastic
Processes and their Applications (2016), http://dx.doi.org/10.1016/j.spa.2016.02.007




S. Bai et al. / Stochastic Processes and their Applications 1 (1111) II1-111 17

We have also seen that if the model satisfies the assumptions of Proposition 3.1, one can
choose

bn = 0(”)7
irrespective of the value of H € (1/2, 1).
2. Assume now ess inf,, f(w) = 0.

As mentioned in (52), the smallest covariance eigenvalue A,, converges to essinf,, f(w) = 0
as m — oo. The rate of convergence has been investigated by a number of authors. See,
e.g., [39,61,67,77,56]. It involves the order of the zeros of f(w). We say f(w) has a zero of
order v > 0 at w = wy if f(w) < |w — wp|”. Roughly speaking, the rate at which A, converges
to zero follows the highest order of the zeros of f(w), and the rate of convergence to zero cannot
be faster than exponential:

Am > e " (59)

for some ¢ > 0 (see [61,77]). Let us focus on the situation where f(w) has a finite number of
zeros of polynomial orders. Specifically, suppose that f (w) has zeros of order vy, ..., v, at p dis-
tinct points wy, ..., w)p, and f(w) stays positive outside arbitrary neighborhoods of w1, ..., @,.
Then by Theorem 2.2 of Novosel’tsev and Simonenko [56], one has A,, =< m™" where

v =max(vi, ..., Vp).
Therefore,
Ayt X (bn + nH7V = b;v
and since M), (k) is non-increasing, we have

Zmin { bn M, (k), 1}
k=0

Aby+1

Pn n
<M1+ Y M sc (p,, +nb M, (pn)> . (60)
k=0 k=pp+1

To satisfy (54), we need the last expression in (60) to be of order o(n). This will be so if as
n — 0o, p, = o(n), and

by = o (1M, (P17 +7). (61)
To get the weakest restriction on b,, let in addition p, grow fast enough so that n/p, = o(n®)
for any § > 0 (e.g., choose n/p, < logn). We have the following two typical cases:

e M, (k) = O(e™*) decays exponentially. In this case, [M, (p,)]~"/1+") = O(eP/(*), 50
the condition (61) is certainly satisfied when b, = o(n). Hence Assumption A3 holds with
by = o(n);

o M, (k)= O(k=#), B > 0. In this case, (54) holds when

by = o(nP/1 V=€) (62)

for arbitrarily small € > 0. So the worst case is when S is close to 0 and v is large.
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A nice example involving both v and 8 is when Z(n) is anti-persistent (also called negative
memory), e.g., the fractional Gaussian noise (the increments of fractional Brownian motion)
with H < 1/2, and FARIMA(p, d, q) withd = H —1/2 sothat —1/2 < d < 0. In this case,
we have § =2 —2H and v = 1 — 2H in (62), and hence (54) holds with b, = o(nl=e).
Therefore:

Corollary 3.5. Suppose that {Z,} is fractional Gaussian noise with H < 1/2 or
FARIMA(p, d, q) with —1/2 < d < 0. If b, = o(n'~€) for € > 0 arbitrarily small, then
Assumption A3 holds.

Remark 3.3. We also mention that in [89] which studies non-self-normalized block sampling
for sample mean, the condition b, = o(n!~¢) for arbitrarily small € > 0 is shown to suffice for
consistency. The framework in their paper assumes {X;} to be a univariate nonlinear transform of
linear non-Gaussian processes. But it is not clear how to adapt their proof to a setting involving
the self-normalization considered here.

3.3. Strong mixing case

Given a stationary process {X;}, let .7-"5 be the o-field generated by X,, ..., X;, where
—00 < a < b < 4o00. Recall that the strong mixing (or ¢-mixing) coefficient is defined as

o:(k):sup{|P(A)P(B)—P(AﬂB)|, Aef?oo,BeJ-‘,fO}. 63)
Note that 0 < (k) < 1. The process {X;} is said to be strong mixing if
lim o«(k) =0.
k—+o00

We refer the reader to Bradley [13] for more details. We shall use the following inequality which
can be found in Lemma A.0.2 of Politis et al. [60].

Lemma3.5. If U € ]—’900 and 'V € .7-',‘:0, and 0 < U,V < 1 almost surely, then
[Cov(U, V)| < a(k) < 1.

‘We shall assume:

B1. {X;} is a strong mixing stationary process with mean u = EX;.

B2. We have the weak convergence in D[0, 1] endowed with M, topology of the partial sum:

1
——— (S|t — , 0=t <1t ={¥Y@, 0=<r=<1},
{an(n)( lr] —hp), 0 <t < } Y@ }
for some nonzero H-sssi process Y (t), where 0 < H < 1 and £(-) is a slowly varying
function.

B3. The block size b;, — oo and b,, = o(n) as n — oo.

The following theorem establishes the consistency of the self-normalized block sampling
under the strong mixing framework.
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Theorem 3.2. The conclusions of Theorem 3.1 and of Corollary 3.1 hold under
Assumptions B1-B3 .

Proof. The structure of the proof and many details are similar to those of Theorem 3.1. We only
highlight the key differences. See also [60] or [71].

In Step 1, we again need to show (33). The term [P(Tij"bn < x)— P(T < x)]* — 0as before.
We need to establish Var[lff:,f by (x)] — 0. We still have the bound (34).

In view of Lemma 3.5, one has that,

1 if k < by,

* *
’COV[I{Tl,hn =xh HT 0, = x}]’ = {a(k by 1), ifk > by

where «(+) is the mixing coefficient in (63). Hence from (34), we have

b,—1
Y 2 n
Var[Fyp, (0] < ————— | > |Cov[[T},, < x} HTE,,,, < x|
n n— bn + 1 = n n

n
+ |COV[I{Tffbn < xhL KT, < x}]|)
k=b,

2 n
= m |:bn +k§1a(k—bn+1):|

2% o) n—bp+1
n

= 4
P —— ’; a(k), (64)

which converges to zero as n — oo, because b, = o(n) by Assumption B3, and «(k) — 0 as
k — oo by Assumption B1 and by applying a Cesaro summation. Hence (33) is proved.

Step 2 and 3 proceed exactly as the proof of Theorem 3.1. The argument in the proof of
Corollary 3.1 shows that the conclusion of that corollary continues to hold under Assumptions
B1-B3. O

Remark 3.4. In view of Shao [68], the self-normalized block sampling method considered in
this paper may be extended to more general statistics beyond the sample mean. There are
two aspects to consider, self-normalization and block sampling. For the self-normalization
aspect to work, the general statistics needs to be approximately linear, namely, it admits a
functional Taylor expansion in the sense of (2) in [68]. In this case, Assumption A2 or B2
needs to be replaced by a modified version of Assumption 1 of Shao [68]. Furthermore, the
remainder term in the aforementioned functional Taylor expansion has to satisfy a negligibility
condition (see Assumption 2 of Shao [68] or Assumption II of Shao [70]). Validating these
conditions for particular statistics (e.g., sample quantiles) and particular models (e.g., the
Gaussian subordination model in Assumption A1) may be considered in future work. The block
sampling aspect is likely to continue to be valid, since as shown in the proofs of Theorems 3.1
and 3.2, the key is to have a bound on the between-block correlation, as the one in Proposition 3.1
in the long-memory Gaussian subordination framework, or as in Lemma 3.5 in the strong mixing
framework.
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4. Examples

The first two examples of models concern Assumptions A1-A3. They both involve a phase
transition.

Example 4.1. Suppose that
Xi=G(Z) =2},

where {Z;} is a standardized stationary Gaussian process with covariance y (n) = n2?~'L(n),
with d € (0,1/2), and L(n) is a positive slowly varying function. Then Assumption Al is
satisfied. Moreover, by Taqqu [75] in the case d < 1/4 and Breuer and Major [14] and Chambers
and Slud [16] in the case d > 1/4, Assumption A2 holds with the following dichotomy:

H=1/2, t)=1, Y(t) = o B(t) ifd < 1/4;
H=2d, () =Ln), Y(t) =cuZouy(t) ifd> 1/4,

where 02 = >, Cov[X(n), X(0)], cy is a positive constant, B(f) is the standard Brownian
motion and Z» g is the standard Rosenblatt process (second-order Hermite process). Assume in
addition that the assumptions for {Z;} in Proposition 3.1 hold. Then one can choose a block size
b, = o(n) to satisfy Assumption A3. Hence Theorem 3.1 and Corollary 3.1 hold. Without the
additional assumptions in Proposition 3.1, Assumption A3 is guaranteed at least by the choice
by =o'~ L(n)"Y) in view of (57).

Example 4.2. Let F,, be the cdf of ¢, distribution with 1 < @ < 2, so that it has finite mean but
infinite variance. Let @ be the cdf of a standard normal. Suppose that

X: = F, ' (9(2))),

where {Z;} is a standardized stationary Gaussian process with covariance y (n) = n2=11(n),
d € (0,1/2), and L(n) is a positive slowly varying function. The marginal distribution of {X;}
is a #,. Then Assumption Al is satisfied. By Sly and Heyde [74], Assumption A2 holds with the
following dichotomy (for0 <d < 1/2,1 < o < 2):

H=1/a, £(n) =1, Y(t) =c1Ly(t) ifd+1/2 < 1/a;
H=d+1/2, £(n)=Ln), Y(t) =coBg() ifd+1/2>1/a,

where c¢; and ¢ are positive constants, L, (#) is a symmetric «-stable Lévy process, and
By (t) is a standard fractional Brownian motion. Assume in addition that the assumptions for
{Z;} in Proposition 3.1 hold. This will be the case if {Z;} is fractional Gaussian noise or
FARIMA(p, d, q). Then b, = o(n) implies (29). Hence Theorem 3.1 and Corollary 3.1 hold.
Without the additional assumptions in Proposition 3.1, Assumption A3 is guaranteed at least by
the choice b, = o(n'=>L(n)~") in view of (57).

Example 4.3. Consider the following long-memory stochastic duration (LMSD) model (for
modeling inter-trade duration, see [18]):
Xi = §i exp(Z)),

where {&;} are i.i.d. positive random variables satisfying P(&§; > x) ~ Ax % asx — 00, A > 0,
@ € (1,2), Z; is a Gaussian linear process Z; = > 52, j*7'I(j)ei—; with d € (0,1/2), 1(j)
a positive and slowly varying function, {¢;} i.i.d. centered Gaussian, and {¢;} is independent of
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{&;}. Note that © = EX; > 0. The model has the interesting feature that although EX 12 = 00, it
has the following finite covariance for 4 # 0, namely,

Cov[Xi. Xin] = Covlexp(Zo), exp(Zn)lug ~ ch*~' 1> (h),

as h — oo, where ugs = E&;, and we have used the fact that the exponential function has Hermite
rank 1 (see [75]). To satisfy Assumption A1, one can rewrite the model as

Xi = g(Z))exp(Zy),

where {Zlf} are i.i.d. standard Gaussian with g chosen such that g(Z; ) is equal in distribution
to &;. This makes the model satisfy Assumption Al with J = 2,1 = 0, Z; = (Zlf, Z;) and
G(x1,x2) = g(x1)exp(x2). By (4.100) and (4.101) of Beran et al. [10], Assumption A2 holds
with the following dichotomy:

H=1/a, t(n)=1, Y() =cuLy1.10) ifd+1/2 < 1/a;
H=d+1/2, t(n) = 1’(n), Y(t) = cqBy(t) ifd+ 1/2 > 1/a,

where ¢y, ¢4 are positive constants, Ly 1,1(¢) is an a-stable Lévy process with skewness § = 1
(see (10)), and By (¢) is the standard fractional Brownian motion. If in addition, the assumptions
for {Z;} in Proposition 3.1 hold, then Assumption A3 is satisfied if b, = o(n). Hence
Theorem 3.1 and Corollary 3.1 hold. Without the additional assumptions in Proposition 3.1,
Assumption A3 is at least satisfied if b, = o(n'=%1(n)~?) (see (57) and Remark 3.2).

Remark 4.1. Consider the non-centered stochastic volatility model X; = o0;¢(Z;) + w in [37],
where o; and g(Z;) are independent, o; is i.i.d. with heavy tails and {Z;} is Gaussian with
long-range dependence and g has Hermite rank one. This model can be similarly embedded into
Assumption A1. However, as far as we know, the functional convergence’ needed in Assumption
A2 has not been established (only the marginal convergence was established in [37]). Assumption
A2 for this model is, nevertheless, expected to hold in view of its similarity8 to the model treated
in [42, Theorem 4.1] (see also Theorem 4.19 of Beran et al. [10]). Checking Assumption A2 in
details is outside the scope of the current paper. Assumption A3 is dealt with as in Example 4.3.

Nevertheless, the consistency of the self-normalized block sampling in [37] can be shown
to hold under our Al and A3 framework. This is done by adopting the normalization of Jach
et al. [37], with A2 replaced by marginal convergence involving partial sums and sample
covariances,” and to ensure A3, by assuming b, = o(n) and that {Z;} is a long-range dependent
sequence satisfying the assumptions of Proposition 3.1.

We now give two examples with strong mixing. The first involves a nonlinear time series and
the second involves heavy tails.

Example 4.4. Suppose that
Xi=plXi-1l+e, O0<p<l, (65)

7 The weak convergence assumed in Assumption A2 allowed us to take advantage of Lemma 3.1 in order to establish
Lemma 3.2.

8 Both Jach et al. [37] and Kulik and Soulier [42] treated stochastic volatility models of the form X; = L; H; (for limit
theorems it does not matter whether a level is added or not), where L; has finite variance and is long-range dependent,
while H; has infinite variance and is i.i.d. The difference between the two papers is that in [37] L; is centered and H; is
not, while in [42] H; is centered and L; is not.

9 More precisely, convergence in distribution of a 3-dimensional vector specified in Theorem 3 of Jach et al. [37].

Please cite this article in press as: S. Bai, etal., A unified approach to self-normalized block sampling, Stochastic
Processes and their Applications (2016), http://dx.doi.org/10.1016/j.spa.2016.02.007




22 S. Bai et al. / Stochastic Processes and their Applications 1 (1111) II1-111

where €;’s are i.i.d. standard Gaussian. Thus {X;} follows a threshold autoregressive model [78].
The Markov process {X;} is strong mixing because it is ergodic'® (see [58, Theorem 2.1],
or [22, p.103]), and hence Condition B1 holds. The conditions of Theorem 3(ii) of Wu [84]
are satisfied'! and therefore Condition B2 holds with H = 1 /2,€(n) = 1land Y(¢t) = o B(?),
where 02 = >, v(n) > 0and B(z) is standard Brownian motion. Condition B3 holds for any
block size b, = o(n). Therefore, Theorem 3.2 holds.

In the following example, both Assumptions A1-A3 and B1-B3 hold.

Example 4.5. Consider the MA(1) model
Xi =€ +aei_,

where a > 0 and {¢;} are i.i.d. Assume that E¢; = O, Eeiz = 00, and ¢; is in the domain
of attraction of a stable distribution with an index o € (1,2). Let b, = o(n). By choosing
appropriate transforms, we can express ¢; as function of Gaussian. Therefore Assumption
A1l holds. Assumption B1 holds because {X;} is 2-dependent. By Theorem 2’ of Avram and
Taqqu [5], Assumption A2 and B2 hold with H = 1/«, some slowly varying function £(n),
and Y (¢) is an «-stable Lévy process. Also A3 holds with any b, = o(n) since pi,» = 0 when
k > m + 2. Therefore, both assumptions A1-A3 and B1-B3 hold in this case.

5. Monte Carlo simulations

We shall carry out here Monte Carlo simulations to examine the finite-sample performance of
the self-normalized block sampling (SNBS) method and make a comparison with the recent
result of Zhang et al. [89]. Instead of resorting to self-normalization, the method of Zhang
et al. [89] exploits the regularly varying property of the asymptotic variance to avoid the problem
of estimating the nuisance Hurst index. We first consider the case with Gaussian subordination.
For this, let

o0
XiZK(Zi), Zizzajéi,j, i=1,...,n, (66)
Jj=0

where K () is a possibly nonlinear transformation and {€;} are i.i.d. standard normal random
variables.'> We consider the following configurations for (66):

(@ K(x) =xanda; = (1+ /)41, j>0;
(b) K(x) =x>and a; = (1 + j)¢~', j > 0;
© K(x) = & [onv{(X50ah) " 2x}land a; = (14 j)*7', j = 0,

where @y is the CDF of the standard normal and &; is the CDF of the Student’s ¢-distribution
with degree of freedom 1.5, whose tail probability decays like |x|~3/2 as |x| — oo so that it has
infinite variance but finite mean.

10 Tt is, the Markov chain is irreducible aperiodic and positive recurrent (see [79]).
1y the terminology of Wu [84], R(x,€) = pl|x| + €, Le = p, dp(n) = O(n") for some 0 < r < 1, so that
Yool o ndp(n) < oo, implying Theorem 3(ii).
3/2_
12 generate the process, we use the approximation Z; ~ 25":0 =ty j€i—j in our simulation, and the fast Fourier

transform (FFT) as mentioned in [88] is implemented to facilitate the computation. Note that the cutoff 73/2 is much

greater than the sample size n.

Please cite this article in press as: S. Bai, etal., A unified approach to self-normalized block sampling, Stochastic
Processes and their Applications (2016), http://dx.doi.org/10.1016/j.spa.2016.02.007




S. Bai et al. / Stochastic Processes and their Applications 1 (1111) II1-111 23

Model (a) Model (b) Model (c)

< < -

«© 4

o
g o | a &
o o o o
© ® T
ks] o 8
a <« a o
g e & b

N

o

<4

o

T T T T T T T
-60 -40 -20 0O 20 40 60 -40 -20 0 20 -40 -20 0 20
Self-normalized block sums Self-normalized block sums Self-normalized block sums

Fig. 1. Examples of realized I:“,,’bn for models (a)-(c) with n = 500, ¢ = 1 and different choices of d. The x-axis
represents the self-normalized block sums, which have been appropriately centered and scaled.

Case (a) represents the Gaussian linear process which has been extensively used in the
literature for modeling time series data. It has long-range dependence if 0 < d < 1/2. We
let d € {0.25, —1}. The choice d = 0.25 corresponds to long-range dependence (LRD) and the
choice d = —1 corresponds to short-range dependence (SRD).

Case (b) involves an additional nonlinear transformation and now {X;} is LRD if 0.25 < d <
0.5. Weletd € {0.4,0.2, —1}. When d = 0.4, both {Z;} and {X;} have LRD (the limit for {X;}
is the Rosenblatt process); when d = 0.2, {Z;} has LRD and {X;} has SRD (the limit for {X;} is
Brownian motion); when d = —1, both {Z;} and {X;} have SRD (the limit for {X;} is Brownian
motion). See for example [85,89].

Case (c) corresponds to a process {X;} with marginal distribution ¢ with 1.5 degrees of
freedom and hence with infinite variance. We letd € {0.4,0.2, —1}. Whend = 0.4 andd = 0.2,
both {Z;} and {X;} have LRD (the limit for {X;} is the fractional Brownian motion); when d =
—1, both {Z;} and {X;} have SRD (the limit for {X;} is symmetric (3/2)-stable Lévy motion).
See [74] for the boundary between SRD and LRD in the heavy tail case. We also consider the
situation with a non-constant slowly varying function, where we leta; = (1+ j Y4 log(1 + j),
J = 0, and denote the corresponding cases by (a*), (b*) and (c*), respectively.

We consider the problem of constructing the lower and upper one-sided confidence inter-
val where the nominal level is taken as 90%; see also [55,89] for similar performance assess-
ment of this type. Following Zhang et al. [89], we use throughout the block sizes b, = [cn®?],
c € {0.5, 1, 2}. This does not necessarily represent the optimal choice of b, but provides us with
a spectrum of reasonable block sizes in our finite-sample simulations. For each realization we
compute the self-normalized block sums and its empirical distribution function I:"n, b, asin (17).
Examples of realized ﬁn,bn can be found in Fig. 1 for models (a)-(c) with different choices of
d. Let gy (0 = 10%) be the 10%-quantile of I:”,,,;,n, then the lower 90% one-sided confidence
interval can be constructed as

n X 2)1/2
—00, Xn — n_l [n—l Z <Sl,k — ;Sl,n> ] qu
k=1
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Table 1

Empirical coverage probabilities of lower and upper (paired in parentheses) one-
sided 90% confidence intervals with different combinations of the index d, sample
size n and block size b, = |cn®5 | when aj =1+ Hélj=o.

d c n =100 n =500
SNBS ZHWW2013 SNBS ZHWW2013

Model (a)
0.25 0.5 (88.3,91.1) (86.8,90.3) (92.2,92.0) (92.0,91.5)
1 (86.1, 86.6) (85.7, 85.3) (89.6,91.2) (89.3,91.3)
(82.3, 83.7) (81.0, 82.2) (87.5, 87.5) (87.4,87.2)

-1 0.5 (93.5,94.2) (93.0,92.9) (93.2,93.1) (92.9, 93.0)
1 (89.5, 90.7) (89.0, 90.2) (91.4,92.1) (91.1,91.7)
(87.1, 86.3) (86.9, 85.6) (90.0, 89.0) (89.9, 89.5)

Model (b)
04 05 (903,957)  (89.2,95.2) (932,962)  (92.9,95.6)
1 (84.7,93.6)  (83.8,92.7) (88.2,94.8)  (88.4,94.9)
(75.9,91.8)  (75.3,91.4) (84.3,92.8)  (84.0,92.9)

02 05 (94.6,958)  (94.0,94.8) (957,96.0)  (95.8,95.6)
1 (88.8,93.6)  (88.2,93.3) (93.8,93.6)  (93.7,93.9)
(81.4,91.5)  (80.3,90.8) (89.4,92.0)  (89.3,91.9)

-1 0.5 (97.6,86.3)  (97.5,85.5) (97.0,86.0)  (97.0,86.1)
1 (94.1,842)  (93.5,83.3) (94.5,86.5)  (94.3,86.5)
(87.2,84.0)  (86.7, 83.6) (91.3,86.6)  (91.2,86.7)

Model (c)
04 0.5 (74.8, 84.4) (72.5, 82.9) (82.2,78.0) (81.8,77.1)
1 (78.0, 76.9) (76.5,75.8) (77.7,79.3) (76.9, 78.9)
(75.5,73.4) (74.8,72.2) (74.6, 78.6) (73.8,78.4)

0.2 0.5 (78.8, 81.4) (76.7,79.0) (80.8, 79.9) (80.0, 79.6)
1 (77.0, 80.6) (75.9,79.6) (79.1, 80.8) (78.7, 80.0)
(77.9,74.8) (76.6, 74.1) (81.1,77.3) (80.9, 76.3)

-1 0.5 (82.3,83.7) (80.9, 82.2) (83.6, 85.3) (83.3,84.2)
1 (84.1, 80.0) (83.2,79.4) (81.6, 86.0) (80.6, 85.5)
2 (87.4,71.2) (86.2,70.3) (82.0, 82.9) (81.7, 82.8)

Similarly, if g1—¢ (1 — o = 90%) denotes the 90%-quantile of I:"n,bn , then the corresponding
upper 90% one-sided confidence interval is

" 1/2

i} | k

Xp=n'in7' Y Stk = =Sia)’t qi—as +00
k=1 n

See (18) for details.

In Tables 1 and 2, we report the empirical coverage probabilities of the constructed confidence
intervals based on 5000 realizations for each scenario.'® For example, Table | displays the
following results of simulation. If d = 0.25, ¢ = 0.5 and n = 100, then the self-normalized block
sampling (SNBS) simulation yielded the following: the lower 90% confidence interval included

13 When evaluating the empirical coverage probability of the constructed confidence interval, we use the averaged mean
of 1000 realizations as an approximation to the true mean.
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Table 2

Empirical coverage probabilities of lower and upper (paired in parentheses) one-
sided 90% confidence intervals with different combinations of the index d, sample
size n and block size b, = [cn® | when aj =1+ N Log(1 + j), j = 0.

d c n =100 n =500
SNBS ZHWW2013 SNBS ZHWW2013

Model (a*)
0.25 0.5 (87.8,87.9) (86.4, 86.5) (91.9,91.6) (92.0,91.6)
1 (84.0, 84.2) (82.7, 83.0) (90.4, 89.4) (90.1, 88.9)
(78.0,79.2) (76.8, 78.6) (84.7,85.1) (84.4, 84.8)

-1 0.5 (93.7,93.6) (93.1, 92.5) (94.0,94.4) (93.6,94.4)
1 (90.9, 89.8) (90.1, 88.6) (93.2,91.9) (92.8, 92.0)
(86.4, 86.4) (85.9,85.4) (90.6, 90.3) (90.2,90.1)

Model (b*)
0.4 0.5 (84.7,95.1) (83.3,94.3) (90.3, 98.0) (90.4,97.7)
1 (80.4, 92.3) (79.4,91.8) (86.2, 96.0) (86.4, 96.0)
(71.7,90.2) (70.5, 89.6) (79.5, 93.6) (79.6, 93.9)

0.2 0.5 (89.3, 96.8) (88.7,96.3) (94.3,97.7) (94.4,97.5)
1 (83.6, 93.9) (83.0,93.3) (90.8, 96.7) (91.1, 96.7)
(77.7,91.2) (76.8, 90.4) (85.1,95.6) (85.1,95.2)

-1 0.5  (98.3,86.3)  (97.9, 85.6) (97.1,87.0)  (97.1,87.1)
1 (93.1,852)  (92.8, 84.6) (95.1,85.6)  (94.7,85.7)
(88.6,84.1)  (87.9, 83.5) (92.2,85.9)  (92.1,85.5)

Model (c*)
0.4 0.5 (86.3, 85.8) (84.6, 83.7) (92.6, 88.0) (92.3, 88.0)
1 (83.4,77.7) (82.3,76.1) (87.3, 83.3) (87.7, 83.5)
(74.9,75.2) (73.2,74.0) (81.1, 81.7) (81.1,81.1)

0.2 0.5 (83.0, 85.2) (80.4, 83.3) (86.6, 84.6) (86.8, 84.9)
1 (80.4, 80.5) (79.5,78.7) (84.4,81.7) (84.5, 80.7)
(717.9,73.5) (76.9, 72.9) (80.4, 78.8) (80.9, 78.3)

-1 0.5 (83.9, 83.1) (82.3,81.7) (88.5, 84.0) (87.5, 83.0)
1 (80.6, 83.1) (80.0, 81.7) (86.8, 83.4) (85.9, 82.8)
2 (83.2,76.7) (82.2,75.8) (85.8, 82.3) (85.4, 81.5)

the unknown mean u, 88.3% of the times and the upper 90% confidence interval included the
unknown mean w, 91.1% of the times. We also report the results of the subsampling method of
Zhang et al. [89] for a comparison in the column ZHWW?2013. Note that the method of Zhang
et al. [89] does not take advantage of the technique of self-normalization and therefore it requires
an additional bandwidth to utilize the regularly varying property of the asymptotic variance.'*

It can be seen from Tables 1 and 2 that the method proposed in this paper performs reasonably
well, as most of the empirical coverage probabilities are reasonably close to their nominal level
of 90%, except for situations with heavy tails where deviations under small sample sizes are
expected. However, the results seem to improve as the sample size increases from n = 100 to
n = 500 and the performance is comparable to the method of Zhang et al. [89]."° Note that the

14 11 Tables 1 and 2, we let the second bandwidth be [, = Ln0'9J when using the method of Zhang et al. [89]. Many
other choices are possible. We also used /,, = |_O.5n0‘9J and obtained similar results.
15 The theoretical assumptions in [89] do not allow for infinite variance.
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Table 3
Empirical coverage probabilities of lower and upper (paired in parentheses)
one-sided 90% confidence intervals with the TAR model (65) for different

combinations of sample size n and block size b, = |_cno'5 ].
c n =100 n = 500
SNBS ZHWW2013 SNBS ZHWW2013
0.5 (92.1,94.3) (91.7,93.7) (93.2, 89.6) (93.0, 89.4)
1 (90.0, 88.9) (88.8, 88.8) (91.0, 88.0) (91.3, 88.5)
(86.9, 84.7) (86.1, 84.0) (89.9, 87.2) (90.1, 87.3)

choice of sample size n = 100 is considered to be challengingly small for inference of long-
range dependent processes. Because of self-normalization, our method has the advantage over
the one by Zhang et al. [89] in not requiring the choice of a second bandwidth.

Finally, consider the strong mixing Example 4.4, where X; = p|X;_1| + €;, following the
threshold autoregressive model [78]. The ¢;’s are i.i.d. Gaussian. The results for p = 0.5 are
summarized in Table 3. Observe that the method works quite well in this case as well.

The R function implementing the method is available from the authors.
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