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Abstract

We classify the possible behaviors of a class of one-dimensional stochastic recurrent growth models.
In our main result, we obtain nearly optimal bounds for the tail of hitting times of some compact sets. If
the process is an aperiodic irreducible Markov chain, we determine whether it is null recurrent or positive
recurrent and in the latter case, we obtain a subgeometric convergence of its transition kernel to its invariant
measure. We apply our results in particular to state-dependent Galton–Watson processes and we give precise
estimates of the tail of the extinction time.
c⃝ 2017 Published by Elsevier B.V.
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1. Introduction and main result

1.1. Introduction

We consider a stochastic growth model (Xn)n∈N, taking values in X , an unbounded subset of
R+, and satisfying a stochastic difference equation of the form

Xn+1 = Xn + g (Xn)+ ξn, (1)

where g is a given function and (ξn)n∈N is a sequence of random variables such that almost surely,

E
(
ξn
⏐⏐Fn

)
= 0,
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E
(
ξ 2

n

⏐⏐Fn
)

= σ 2 (Xn) < ∞,

for some positive function σ 2(x). The filtration (Fn)n∈N is such that (Xn)n∈N is Fn measurable
for all n ∈ N.

Provided that the following limit exists

θ = lim
x→∞

2xg (x)
σ 2 (x)

,

and belongs to (−∞, 1), Kersting proved in [10] that P({Xn −→
n→∞

∞}) = 0 and said that (Xn)n∈N
is recurrent, adopting the terminology from Markov chain theory, whereas if θ ∈ (1,∞) then
P({Xn −→

n→∞
∞}) > 0. A similar criterion for the multidimensional case was recently given

in [1].
The aim of this article is to determine how quickly the process (Xn)n∈N, started from x > A,

goes into the interval [0, A], where A > 0 is arbitrary. If (Xn)n∈N is an aperiodic irreducible
Markov chain, we deduce therefrom a criterion of positive recurrence and how fast (Xn)n∈N
converges to its invariant measure. Moreover, if we have in mind population models, where a
natural assumption is the dichotomy property, i.e.,

P
({

Xn −→
n→∞

∞

})
+ P ({∃n such that Xn = 0}) = 1,

we obtain precise estimates of the tail of the extinction time.
The first key ingredient of this article is to consider power functions as Lyapunov functions

for growth models. Kersting [10] proved recurrence and transience of growth models by using
the logarithm as a Lyapunov function. However, we cannot get more information on the behavior
of (Xn)n∈N with this function. Considering power functions yields an inequality of the form

E
(
Xα

n+1

⏐⏐Fn
)
− Xα

n ≤ −C Xα−1
n g(Xn) + b1{Xn≤A},

for all n ∈ N, where α ∈ (0, 1), A,C and b some positive constants. From this equation, we
deduce that

E
(

f (Yn+1)
⏐⏐Fn

)
− f (Yn) ≤ −C f ′(Yn) + b1{Yn≤A}, (2)

where Yn is a transform of Xn , f is an increasing differentiable function, and A,C and b are
some positive constants. Inequality (2) enables us to give all possible behaviors of our class of
recurrent growth models. In a series of papers [3–5], Aspandiiarov et al. proved upper and lower
bounds for the tail of hitting-time into compact sets, for processes verifying some conditions,
improving previous results of Lamperti [13]. The second key ingredient, is to apply these results
on a transform Yn = G(Xn) of our process to get an upper bound of hitting-time into compact
sets. If (Xn)n∈N is an aperiodic irreducible Markov chain, we give a criterion for null recurrence
or positive recurrence. Moreover, if (Xn)n∈N is positive recurrent, we obtain from [4] in the
countable state space, from [7] in a general state space, subgeometric rate of convergence to its
invariant probability measure. Thus, we give a complete classification of behaviors of stochastic
recurrent growth processes of the form (1). By applying our results, we deduce nearly optimal
upper and lower bounds of the tail of the extinction time of state-dependent Galton–Watson
processes that seem to have never been studied before, to the best of our knowledge. We also
recover a weaker version of results of Zubkov [16] on the return time to zero of critical Galton–
Watson process with immigration, but without using probability generating functions.

The article is organized as follows. In the next subsection, our main results Theorems 1.1
and 1.2 are stated. Then, in Section 2 we state and prove a series of lemmas needed for the proof
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of Theorems 1.1 and 1.2. Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we
consider that (Xn)n∈N is an aperiodic irreducible Markov chain and we prove Theorem 1.2. In
Section 5, we give various examples, in particular extinction time of state-dependent Galton–
Watson processes. In the last section, we prove a key lemma for the lower bound of Theorem 1.1
and we recall some results from [4] that we use throughout this article.

1.2. Main results

We list the assumptions we need to formulate our main results.

Assumptions.
(A1) The function g is positive, regular varying with index 1 − λ with λ > 0 and ultimately
monotone.
(A2) There exists θ ∈ (0, 1) such that

lim
x→∞

2xg (x)
σ 2 (x)

= θ.

(A3)There exists δ > 0 such that for all n ∈ N, E
(
|ξn|

2+δ
⏐⏐Fn

)
≤ Cσ 2+δ (Xn).

Let us comment on these assumptions.
In assumption (A1), since λ > 0 we have that g(x) = o(x) and this precludes Xn from growing

geometrically. Assumption (A3) is usual : in [10], Kersting needs the existence of 2+δ-moments,
to prove the recurrence of Xn .

Before stating the theorem, we introduce two transforms. Let

G (x) =

∫ x

1

dy
g (y)

,

and for α > 0, let

ℓα =
(
G−1 (x)

)α
,

where G−1 is the inverse of G i.e. G(G−1(x)) = x .
Since 1

g is regular varying with index λ− 1, by Proposition 1.5.8 in [6] function G is regular
varying with index λ and ℓα with index α

λ
.

Theorem 1.1. Assume that (A1), (A2) and (A3) hold. Then there exists A > 0 such that for all
x0 ∈ X ∩ (A,∞), for all α and β such that 0 < α < 1 − θ < β, there exist two constants Cα

and Cβ such that for all n ∈ N,

Cβ

ℓβ (n)
≤ Px0 (τA > n) ≤

Cα

ℓα (n)
, (3)

with τA = inf {n ∈ N : Xn ≤ A}.

Remark 1.1. We prove the upper bound in (3) by showing that Ex0 (ℓα(τA)) < ∞ for all
0 < α < 1 − θ and x0 ∈ X . An easy consequence of this lower bound is that Ex0 (ℓβ(τA)) = ∞

for all β > 1 − θ and x0 ∈ X ∩ (A,∞). We cannot determine if Ex0 (ℓ1−θ (τA)) is finite or not.

Remark 1.2. In the proof of the theorem, we get explicit constants Cα and Cβ and in particular,
the dependence of these constants on x0.
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If (Xn)n∈N is an aperiodic irreducible Markov chain, we determine when it is positive recurrent
and the rate of convergence to the invariant probability measure. We denote by P (., .) the
transition kernel of the Markov chain (Xn)n∈N. We deal with both countable state space and
general state space.

Assumptions.
(A4) (Xn)n∈N is an aperiodic irreducible Markov chain taking values in a countable set X ⊂ R+,
such that for all A > 0, [0, A] ∩ X is finite.
(A4’) (Xn)n∈N is an aperiodic ψ-irreducible Markov chain taking values in a general state space
X ⊂ R+ and sets [0, A] ∩ X are small sets for all A > 0.

We recall the definition of ψ-irreducibility (see [15, p. 84]):
We say that a Markov chain (Xn)n∈N is ψ-irreducible if there exists a non trivial measure ψ

such that for all set K ⊂ X ,

ψ (K ) > 0 ⇒ Px (∃n such that Xn ∈ K ) > 0, (4)

and for all measures ϕ satisfying (4), ϕ is absolutely continuous with respect to ψ .

Theorem 1.2. Assume that (A1), (A2), (A3) and (A4) or (A4’) hold.
Then (Xn)n∈N is Harris-recurrent. Moreover

(i) If λ > 1 − θ , then (Xn)n∈N is null recurrent.
(ii) If λ < 1 − θ , then (Xn)n∈N is positive recurrent. Denote by π its invariant probability
measure. Then for all α ∈ (λ, 1 − θ ) and if (A4) holds then for all probability measures ν on X
such that

Eν(ℓ′

α(τA)) < ∞,

we have

lim
n→∞

ℓ′

α(n)
νPn

− π


TV = 0, (5)

and if (A4’) holds then for all x ∈ X

lim
n→∞

ℓ′

α(n)
Pn (x, .)− π (.)


TV = 0 (6)

where ℓ′
α is the derivative of ℓα .

Remark 1.3. If λ = 1−θ then (Xn) could be either null recurrent or positive recurrent. We refer
to [14] for examples when g(x) =

c
x .

Example 1.1. We consider a stochastic growth model defined by the stochastic difference
equation (1)

Xn+1 = Xn + cXγ
n + ξn

with γ ∈ (−1, 1), c > 0 and σ 2(Xn) = E(ξ 2
n

⏐⏐Fn) = d X1+γ
n with d > 0. Then

• θ =
2c
d

• λ = 1 − γ

• G(x) ∝ x1−γ

• ℓα(x) ∝ x
α

1−γ .
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By Theorem 1.1, for all β < 1 − θ < α, there exists A > 0 such that for all x0 > A, there exist
Cβ > 0 and Cα > 0 such that

Cα

n
α

1−γ

≤ Px0 (τA > n) ≤
Cβ

n
β

1−γ

.

If γ > θ and (Xn) is a Markov chain satisfying the assumptions of Theorem 1.2, then (Xn) is
positive recurrent and for all α < 1 − θ , for all x ∈ X ⊂ R+,

lim
n→∞

n
α

1−γ
−1

∥Pn(x, .) − π (.)∥TV = 0,

where π is the invariant probability measure of (Xn)n∈N.
If c and d are fixed, then by increasing γ , we make (Xn)n∈N positive recurrent. Actually, the

parameter γ is related to both the drift g(x) and the variance σ 2(x), by increasing γ we increase
both of them but we can see that its effect on the variance is more important.

2. Preliminary results

We state and prove here some important lemmas which will be useful for the proofs of
Theorems 1.1 and 1.2. In the first lemma, we prove that

(
Xα

n∧τA

)
n∈N is a supermartingale if

α ∈ (0, 1 − θ ), and a submartingale if α ∈ (1 − θ, 1).

Lemma 2.1. Assume that (A1), (A2) and (A3) hold.
(i) If α ∈ (0, 1 − θ), then there exist A > 0, C > 0 and b > 0 such that for all n ∈ N,

E
(
Xα

n+1

⏐⏐Fn
)

≤ Xα
n − Cg (Xn) Xα−1

n + b1{Xn≤A} a.s. (7)

(ii) If α ∈ (1 − θ, 1), then there exist B > 0 and b1 > 0 such that for all n ∈ N

E
(
Xα

n+1

⏐⏐Fn
)

≥ Xα
n − b11{Xn≤B} a.s. (8)

Proof. For D > 0 large enough, we have by Taylor’s expansion

(1 + u)α ≤ 1 + αu +
α(α − 1)

2
u2

+ D|u|
2+δ, (9)

for all u ∈ (−1,+∞), with δ as in (A3). We obtain, for all n ∈ N, if Xn > 0,

E
(
Xα

n+1

⏐⏐Fn
)

≤ E
(

Xα
n

(
1 +

g(Xn) + ξn

Xn

)α⏐⏐⏐Fn

)
≤ E

(
Xα

n

(
1 + α

(
g(Xn) + ξn

Xn

)
+
α(α − 1)

2

(
g(Xn) + ξn

Xn

)2
) ⏐⏐⏐Fn

)

+ E

(
Xα

n

(
D
⏐⏐⏐⏐g(Xn) + ξn

Xn

⏐⏐⏐⏐2+δ
) ⏐⏐⏐Fn

)

≤ Xα
n + α

(
g (Xn) Xα−1

n −
1 − α

2
σ 2 (Xn) Xα−2

n

)
+ Rn,

with

Rn =
α(α − 1)

2
g(Xn)2 Xα−2

n + DE
(
|g(Xn) + ξn|

2+δXα−3
n

⏐⏐Fn
)
.
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By Hölder’s inequality and (A3),

Rn ≤
α(α − 1)

2
g(Xn)2 Xα−2

n + D′
|g(Xn)|2+δXα−2−δ

n + D′′σ 2+δ(Xn)Xα−2−δ
n .

By (A1) and (A2), σ (x) = o(x) when x tends to infinity and then σ 2+δ(x)xα−2−δ
= o

(
g(x)xα−1

)
when x tends to infinity, and then there exist C, B, b > 0 such that

E
(
Xα

n+1

⏐⏐Fn
)

≤ Xα
n − Cg (Xn) Xα−1

n + b1{Xn≤B}.

Since by Taylor’s expansion there exists a positive constant D such that

(1 + u)α ≥ 1 + αu +
α(α − 1)

2
u2

− D|u|
2+δ,

for all u ∈ (−1,+∞), the proof of (8) is similar. □

The first two statements of the next lemma, on the top of the previous one, give us a better
understanding of the criterion of Theorem 1.2, i.e., the comparison between λ and 1 − θ . Some
points of this lemma are stated and proved in [11] with different assumptions. We recall that
a function f is ultimately concave or ultimately convex if there exists x0 > 0 such that the
restriction of f to [x0,∞) is concave or convex respectively.

Lemma 2.2. Assume that (A1) holds.

1. For α ∈ (0, λ), the function ℓα is ultimately concave.
2. For α ∈ (λ,+∞), the function ℓα is ultimately convex.
3. We have

lim
x→∞

x
G (x) g (x)

= λ. (10)

4. For all µ < λ,

g(x) = O(x1−µ), (11)

when x tends to infinity.
5. Let α > 0, for all r ∈ (0,+∞), there exists a positive constant Ar such that for all x ∈ R+,

Arℓα(x) ≥ ℓα(r x). (12)

Proof. We first prove statements 1 and 2. Since g is ultimately monotone, G is either ultimately
concave or convex and so is ℓα . The regular variation of ℓα with index α

λ
implies the two first

statements.
The third statement is a direct consequence of Proposition 1.5.8 of [6, p. 26].
The Potter’s bound (see Theorem 1.5.6 [6, p. 25]) states that

∀M > 0,∀v > M, g(v) ≤

( v
M

)1−λ+ε

g(M), (13)

thus g(x) = O(x1−µ) for all µ < λ.
Finally, we prove the last statement. We know that ℓα is a regular varying function with index

α
λ

, then for all r ∈ (0,+∞)

lim
x→+∞

ℓα(r x)
ℓα(x)

= r1−λ.

Since ℓα ≥ 1, we get the fifth statement. □
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Remark 2.1. Since we further consider ℓα , with α ̸= λ, we know by Theorem 1.8.3 in [6, p. 45],
that there exists a C∞-function ℓ̃α , all of whose derivatives are monotone, with ℓα ∼ ℓ̃α . Since
we always consider asymptotic properties of ℓα , we henceforth consider that ℓα is a C∞-function
with all of whose derivatives are monotone.

3. Polynomial asymptotics of the tail of hitting times

The aim of this section is to prove Theorem 1.1.
We first prove the upper bound of the inequality (3) by using Theorem 2 and Theorem 3 in [4],

which we recall them in the last section. Let A be the set of positive functions f such that there
exists a positive constant A f such that

lim sup
x→∞

f (2x)
f (x)

≤ A f .

For all real valued functions h, let Bh be the set of positive functions f ∈ C2(0,∞) ultimately
concave, such that limx→∞ f (x) = ∞, limx→∞ f ′(x) = 0, and such that the integral∫

∞

1

f ′(x)dx
h ◦ r (x)

converges, (14)

with r (x) = sup{y ≥ A, f ′(x) = h′(y)}.

Proposition 3.1. Assume that (A1), (A2) and (A3) hold. Then there exists A > 0 such that for
all x0 > A, γ and η such that γ < η < 1 − θ , there exists a constant K (γ, η) such that for all
n ∈ N,

Px0 (τA > n) ≤
K (γ, η)xη0
ℓγ (n)

.

Proof. If γ > λ, then ℓγ is ultimately convex. We know by (12) that ℓγ ∈ A and then we apply
Theorem B.1 and get the upper bound by Chebyshev’s inequality.

If η < λ, then ℓη is ultimately concave. To apply Theorem B.2 with f = ℓγ and h = ℓη, we
need also to check that the integral (14) converges. Let r (x) = sup{y ≥ A, ℓ′

γ (x) = ℓ′
η(y)}. We

first prove that for x large enough, we have x ≤ r (x).
We recall that ℓ′

γ (x) = γ g
(
G−1(x)

) (
G−1(x)

)γ−1. Thus,

ℓ′
γ (x)

ℓ′
η(x)

=
γ

η

(
G−1(x)

)γ−η
−→
x→∞

0.

Since G−1(x) increases to infinity, there exists A1 > 0 such that for all x > A1, ℓ′
γ (x) ≤ ℓ′

η(x)
and then, for all x > A1, r (x) ≥ x .

Since ℓη is an increasing function, we obtain by substitution∫
∞ ℓ′

γ (x)dx

ℓη ◦ r (x)
≤

∫
∞ ℓ′

γ (x)dx

ℓη(x)

≤

∫
∞ ℓ′

γ (x)dx

(ℓγ (x))η/γ

≤ C
∫

∞ du
uη/γ

< ∞.

Finally, we obtain the upper bound by Chebyshev’s inequality. □
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Before proving the lower bound of Theorem 1.1, we recall an important lemma from [5]:

Lemma 3.1 ([5], Lemma 2). Let Yn be a Fn-adapted stochastic process taking values in an
unbounded subset of R+ and for A > 0, let τ̃A = inf{n ≥ 0, Yn ≤ A}. Suppose there exist
positive constants A, C and D such that for all n ∈ N, on {τ̃A > n},

E(Yn+1 − Yn
⏐⏐Fn) ≥ −C

and, for some r > 1,

E
(
Y r

n+1 − Y r
n

⏐⏐Fn
)

≤ DY r−1
n .

Then, for any ν ∈ (0, 1), there exist positive ε and d that do not depend on A such that for any
n ∈ N, on {Yn∧τ̃A > A(1 + d)},

P
(
τ̃A > n + εYn∧τ̃A

⏐⏐Fn
)

≥ 1 − ν.

The next lemma is crucial. We defer its proof, which is rather technical, to Appendix A:

Lemma 3.2. For all n ∈ N, let Yn = G(Xn). Assume that (A1), (A2), (A3) hold. Then (Yn)n∈N
satisfies the assumptions of Lemma 3.1 with r = 2.

Proposition 3.2. Assume that (A1), (A2) and (A3) hold. Let β > 1 − θ . There exists A > 0 such
that for all x0 > A, there exist ε0 > 0 and C > 0 such that for all n ∈ N,

Px0 (τA > n) ≥ C
xβ0 − Aβ

ℓβ(n/ε0)
.

Proof. The proof of the lower bound is as follows: we know by Lemma 3.2 that Yn verifies
the assumptions of Lemma 3.1 and then we follow the proof of Theorem 1 in [3]. We relax the
assumption of bounded jumps of this theorem by using Hölder’s inequality.

Let β > 1 − θ .
By Lemma 3.2, we know that Lemma 3.1 applies to Yn = G(Xn). By Lemmas 3.1 and 3.2,

there exist ε0 > 0 and d > 0 such that for any n :

P
(
τA > n + ε0Yn∧τA

⏐⏐Fn
)

≥ 1 − v on
{
Yn∧τA > G(A)(1 + d)

}
.

This implies that for any stopping time µ we have

P
(
τA > µ+ ε0Yµ∧τA

⏐⏐Fµ) ≥ 1 − v on
{
Yµ∧τA > G(A)(1 + d)

}
∩ {µ < ∞} .

For each S > 0, let

τ̃S = inf {n ≥ 0, Yn ≥ S} .

Let us fix B such that B > G(A)(1 + d).
Then,

P (τA ≥ ε0 B) ≥ P
(
τA > τ̃B + ε0Yτ̃B∧τA , τ̃B < τA

)
= E

(
1{τ̃B<τA}P

(
τA > τ̃B + ε0Yτ̃B∧τA

⏐⏐Fτ̃B

))
≥ (1 − v)P (τ̃B < τA) . (15)

Since (τA ∧ τ̃B) < ∞ and ℓβ
(
Yn∧τA∧τ̃B

)
is a submartingale by Lemma 2.1, we have

xβ0 = ℓβ(Y0) ≤ E
(
ℓβ(YτA∧τ̃B )

)
.
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Since g(x) = o(x), there exists K > 0 such that E
(
ℓ1
(
Yτ̃B−1

)
+ g

(
X τ̃B−1

))
≤ K 1/βE

(
X τ̃B−1

)
and then

E
(
ℓβ
(
Yτ̃B

)
1{τ̃B<τA}

)
≤ E

(
ℓ1
(
Yτ̃B

))βP (τ̃B < τA)

≤ E
(
E
(
ℓ1
(
Yτ̃B

) ⏐⏐Fτ̃B−1
))βP (τ̃B < τA)

≤ E
(
ℓ1
(
Yτ̃B−1

)
+ g

(
X τ̃B−1

))βP (τ̃B < τA)

≤ Kℓβ (B)P (τ̃B < τA) . (16)

Hence,

xβ0 ≤ E
(
ℓβ
(
YτA

)
1{τ̃B>τA}

)
+ E

(
ℓβ
(
Yτ̃B

)
1{τ̃B<τA}

)
≤ ℓβ (G(A))+ Kℓβ (B)P (τ̃B < τA) ,

by (16) and

P (τ̃B < τA) ≥
xβ0 − ℓβ (G(A))

Klβ (B)
.

Then, by (15), for n > ε0G(A) (1 + δ),

P (τA > n) ≥ (1 − v)
xβ0 − Aβ

Kℓβ (n/ε0)
. □ (17)

Proof of Theorem 1.1. The upper bound is a direct consequence of Proposition 3.1. The lower
bound comes from Proposition 3.2 and (12). □

4. The Markov case : subgeometric rate of convergence

In this section, we prove Theorem 1.2, firstly the countable state space case and secondly the
general state space case. We apply some results from [4] that we recall in the last section.

Let G be the set of positive functions f such that there exist a positive function h such
that h(x) → 0 as x → ∞ and a positive constant c such that for any positive m ≥ 1,
x1 ≥ 1, . . . , xm ≥ 1,

f

(
m∑

k=1

xk

)
≤ cemh(m)

m∑
k=1

f (xk).

Let G ′ be the set of non decreasing in a neighborhood of infinity functions f such that ln( f (x))/x
is non increasing in a neighborhood of infinity and tends to zero when x tends to infinity.

Proof of Theorem 1.2 for a countable state space. Let A be defined as in Theorem 1.1. We
know by (A4) that F = [0, A] ∩X is finite. First note that for all z ∈ F , by Markov property we
have

Ez(τF ) = Pz(X1 ∈ F) +

∑
s∈X \F

Pz(X1 = s)Es(τF ). (18)

(i) Let us assume that λ > 1−θ . We prove that for all s ∈ X \F , Es(τF ) = ∞. Let β ∈ (1−θ, λ).
By Theorem 1.1 we know that if

∑
1/ℓβ(n) diverges, then Es(τF ) = ∞, for all s ∈ X \ F . The
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sum
∑

1/ℓβ(n), is of the same nature as the integral
∫

dx/ℓβ(x). By the substitution u = G−1(x),
we obtain∫

∞

.

dx
ℓβ(x)

=

∫
∞

.

du
uβg(u)

= ∞,

since g(u) ≤ K u1−λ+(λ−β)/2.
Since (Xn)n∈N is irreducible, there exists (z0, so) ∈ F × X \ F such that Pz0 (X1 = s0) > 0.

Thus Ez0 (τF ) = ∞ and by Proposition B.1, Ez0 (τ ) = ∞, then (Xn)n∈N is null recurrent.
(ii) Let us assume that λ < 1 − θ . Let η ∈ (λ, 1 − θ ). We first prove that there exists a positive
constant K such that for all s ∈ X \ F , Es(τF ) ≤ K sη. Let γ ∈ (λ, η). By Proposition 3.1, we
know that

Ps(τF > n) ≤
K (γ, η)sη

ℓγ (n)
.

We check that
∑

∞

n=11/ℓγ (n) < ∞. Since ℓη is convex, there exists a constant C such that
∞∑

n=1

1
ℓγ (n)

≤ C
∞∑

n=1

ℓ′
η(n)

ℓγ (n)
.

This series is of the same nature as the integral∫
∞

.

ℓ′
η(x)dx

ℓγ (x)
=

∫
∞

.

ℓ′
η(x)dx

ℓη(x)γ /η
= K

∫
∞

.

du
uγ /η

< ∞.

Thus

Es(τF ) ≤ K sη. (19)

By (19) and (18), we obtain

Ez(τF ) ≤ 1 + KEz(Xη

1 ) < ∞,

thus by Proposition B.1, for any z ∈ F , Ez(τ ) < ∞ so (Xn)n∈N is positive recurrent.
Let α ∈ (λ, 1−θ ) and β ∈ (α, 1−θ ). To apply Theorem B.3 with f = ℓα and φ = ℓβ , we need

to check that ℓα ∈ G and ℓ′
α ∈ G ′. Since ℓα is convex, we have for all m ≥ 1, x1 ≥ 1, . . . , xm ≥ 1

ℓα

(
m∑

k=1

xk

)
≤

1
m

m∑
k=1

ℓα(mxk),

and by 5 of Lemma 2.2,

ℓα

(
m∑

k=1

xk

)
≤

(4m)2α/λ

m

m∑
k=1

ℓα(xk) ≤ 42α/λe(2α/λ−1) ln(m)
m∑

k=1

ℓα(xk),

thus ℓα ∈ G.
We recall that ℓ′

α(x) = αg(G−1(x))(G−1(x))α−1. Since ℓα is regular varying with index α
λ

we
only need to prove that ln(ℓ′

α(x))/x is non increasing in a neighborhood of infinity.
The derivative of ln(ℓ′

α(x))/x is xℓ′′α (x)/ℓ′α (x)−ln(ℓ′α (x))
x2 since we can consider that ℓ′

α is regular
varying with variation α/λ − 1 > 0, xℓ′′

α(x)/ℓ′
α(x) tends to α/λ − 1 but ln(ℓ′

α(x)) tends to
infinity, so ln(ℓ′

α(x))/x is non-increasing in a neighborhood of infinity and so ℓ′
α ∈ G ′. □
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In the general state space case, we use a drift condition which comes from [7]:

Definition 4.1. We say that the condition D (φ, V,Γ ) is verified if there exist a function V , a
concave monotone non-decreasing differentiable function φ : [1,∞] ↦→ (0,∞], a measurable
set Γ and a finite constant b such that for all x ∈ R+

Ex (V (X1))+ φ ◦ V (x) ≤ V (x) + b1{x∈Γ }.

Proposition 4.1 ([7], Proposition 2.5). Let P be a ψ-irreducible and aperiodic kernel. Assume
that D(φ, V,Γ ) holds for a function φ such that lim

t→∞
φ′(t) = 0, a petite set Γ and a function V

such that {V < ∞} ̸= ∅. Then, there exists an invariant probability measure π , and for all x in
the full and absorbing set {V < ∞}, i.e. π ({V < ∞}) = 1,

lim
n→∞

rφ(n)
Pn(x, .) − π (.)


TV = 0,

with rφ (x) = φ ◦ Φ−1 (x) and Φ (x) =
∫ x

1
du
φ(u) .

The proof of Theorem 1.2 in the general state space case consists essentially in checking that
the condition D (φ, V,Γ ) holds.

We also recall that a set C is regular if for all set B such that ψ(B) > 0,

sup
x∈C

Ex (τB) < ∞,

where τB is the first hitting-time of the set B. A Markov chain is called regular if there exists a
countable cover of X by regular sets.

Proof of Theorem 1.2 for a general state space. Since [0, A] ∩ X is petite and since for
all x ∈ X , Px (τA < ∞) = 1, we know from [15, Proposition 9.1.7 p.205] that (Xn)n∈N is
Harris-recurrent.
(i) We assume that λ > 1− θ . By Theorem 1.1, ∀x ∈ (A,∞)∩X , Ex (τA) = ∞. We assume that
(Xn)n∈N is positive recurrent to get a contradiction. By [15, Theorem 11.1.4 p.260], we know
that there exists a decomposition X = S ∪ N with S full and absorbing and (Xn)n∈N restricted
to S is regular. Since S is absorbing, we know that [0, A] ∩ S ̸= ∅ and (A,∞) ∩ S ̸= ∅. Let
C ⊂ S be a regular set of the countable cover of S such that C ∩ (A,∞) ̸= ∅. Then there exists
x ∈ C ∩ (A,∞), and we know that Ex (τA) = ∞ which contradicts the regularity of C . Then
(Xn)n∈N is not positive recurrent but null recurrent.
(ii) We assume that λ < 1 − θ . Let α ∈ (λ, 1 − θ ) and φ(x) = g(x

1
α ) x

α−1
α . Using Lemma 2.1,

Ex
(
Xα

1

)
≤ xα − Cφ (xα)+ b1{x≤A}.

We know that φ is a regular varying function with index (α−λ)/α ∈ (0, 1) then φ is an ultimately
concave non-decreasing function. Thus, the condition D (φ, V,Γ ) holds. By a short computation,
we see that rφ(x) = ℓ′

α(x). Since [0, A]∩X is a petite set by assumption, we apply Proposition 4.1
and there exists an invariant probability measure π such that for all x

lim
n→∞

ℓ′

α(n)
Pn(x, .) − π (.)


TV = 0. □

5. Examples and applications

We now illustrate our results by applying Theorems 1.1 and 1.2 to several models.
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5.1. Bessel-like walks

A Bessel-like walk is a random walk on N, reflecting at 0, with steps ±1 and transition
probabilities of the form

P(Xn+1 = x + 1
⏐⏐Xn = x) = px =

1
2

(
1 −

δ

2x
+ o

(
1
x

))
and

P(Xn+1 = x − 1
⏐⏐Xn = x) = 1 − px

where x ≥ 1, δ ∈ R and the o(1/x) holds for x tending to infinity. A Bessel-like walk is recurrent
if δ > −1, positive recurrent if δ > 1 and transient if δ < −1.

We assume here that δ ∈ (−1, 0). There exists A > 0 such that we obtain an estimation of the
tail of the hitting-time of the compact set [0, A].

Proposition 5.1. For all α, β such that α < 1 + δ < β, there exists A > 0 such that for all
x0 > A, there exist two positive constants Cα and Cβ such that

Cβ

nβ/2
≤ Px0 (τA > n) ≤

Cα

nα/2
.

In this example, g(x) =
−δ
2x , θ = −δ, λ = 2, G(x) =

x2
−1

−δ
, ℓα(x) = O(x

α
2 ). For more

precise results on Bessel-like walks and in particular asymptotic behaviors of Px (τ0 > n) and
Px (τ0 = n), we refer to [2].

5.2. Critical Galton–Watson process with immigration

We consider a critical Galton–Watson process with immigration (Xn)n∈N defined by

Xn+1 =

Xn∑
k=1

ξk,n + In,

where
(
ξk,n

)
k,n∈N are i.i.d. integer-valued random variables such that E(ξ1,1) = 1, Var(ξ1,1) =

d > 0 and E(ξ 2+δ
1,1 ) < ∞ for some δ > 0 and i.i.d. integer-valued random variables (In)n∈N such

that E(I1) = c > 0, E(I 2+δ
1 ) < ∞ and the variables (ξk,n)k,n∈N and (In)n∈N are independent.

Zubkov proved in [16] that the Markov chain (Xn)n∈N is recurrent if θ =
2c
d < 1 and gave the

asymptotic behavior of the tail of the return-time to zero T0 = inf{n ≥ 1 such that Xn = 0}:

P0(T0 > n) ∼ L(n)nθ−1,

with L a slowly varying function. He also needed weaker moments assumptions.
We get here a weaker version of his result but without using neither the branching property

nor probability generating functions.

Proposition 5.2. There exists A > 0, such that for all x0 > A, α, β such that α < 1 − θ < β,
there exist some positive constants Cα and Cβ such that for all n ∈ N

Cβ

nβ
≤ Px0 (τA > n) ≤

Cα

nα
.
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In this example, Xn+1 =
∑Xn

k=1ξk,n + In = Xn + c + (
∑Xn

k=1(ξk,n − 1) + In − c, so
ξn = (

∑Xn
k=1(ξk,n − 1) + In − c, g(x) = c, θ =

2c
d , λ = 1, G = O(x), ℓα = O(xα).

5.3. Extinction time of state-dependent Galton–Watson process

State-dependent Galton–Watson processes were introduced by Klebaner in [12] and Höpfner
in [8]. They both gave condition for extinction and gamma-type limiting distribution for the
process. However, to the best of our knowledge, extinction times of state-dependent Galton–
Watson processes were never investigated.

Let (Xn)n∈N be state-dependent Galton–Watson process defined as follows :

Xn+1 =

Xn∑
k=1

Ak,n(Xn),

where E(Ak,n(Xn)
⏐⏐Xn = x) = 1 +

c
x and Var (Ak,n(Xn)

⏐⏐Xn = x) = σ 2
+ o(1) with c > 0 and

σ 2 > 0. We assume that 0 is an absorbing state and that for all A > 0 and all n ∈ N, there exist
ε > 0 and kA ∈ N∗,

P(Xn+kA = 0
⏐⏐Xn ≤ A) ≥ ε. (20)

This assumption implies the dichotomy property (see Theorem 3.1 in [9]), that is to say,

P ({∃n such that Xn = 0})+ P
({

Xn −→
n→∞

∞

})
= 1.

We denote the extinction time by τ0 = inf{n ∈ N such that Xn = 0}.

Theorem 5.1. Let θ =
2c
σ 2 and assume that θ ∈ (0, 1). Then, for all α < 1 − θ < β, for all

x ∈ N∗, there exist two constants Dα and Dβ such that

Dβ

nβ
≤ Px (τ0 > n) ≤

Dα

nα
.

Proof. Let α and β such that α < 1 − θ < β. We apply Theorem 1.1 and then there exists
A > 0, such that for all x > A, there exist Cα > 0 and Cβ > 0 such that

Cβ

nβ
≤ Px (τA > n) ≤

Cα

nα
.

Since {0} ⊂ [0, A], we obtain Px (τA > n) ≤ Px (τ0 > n) and then
Cβ

nβ
≤ Px (τA > n) ≤ Px (τ0 > n).

Let (Tℓ)ℓ≥0 be a sequence of stopping times defined as below

Tℓ = inf{n ≥ kA + Tℓ−1 such that Xn ∈ [0, A]},

with T0 = 1 and kA is the integer associated to A such that (20) holds. By (20), we get

Px (τ0 > Tℓ) ≤ (1 − ε)l .

For α ∈ (0, 1 − θ), we get

Ex
(
τ α0
)

=

∞∑
ℓ=0

Ex

(
1{Tℓ<τ0≤Tℓ+1}

τ α0

)
≤

∞∑
ℓ=0

Ex

(
1{Tℓ<τ0}T α

ℓ+1

)
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≤

∞∑
ℓ=0

Ex

(
1{Tℓ<τ0}(Tℓ + kA + (Tℓ+1 − kA − Tℓ))α

)

≤

∞∑
ℓ=0

Ex

(
1{Tℓ<τ0}

(
T α
ℓ + kαA + (Tℓ+1 − kA − Tℓ)α

))
.

Let τA,kA = inf{n ≥ kA such that Xn ∈ [0, A]}.
Since (Tℓ+1 − kA − Tℓ)α ≤ EXTℓ+kA

(
τ αA
)
, then by induction we obtain

Ex
(
τ α0
)

≤

∞∑
ℓ=0

Ex

(
1{Tℓ<τ0}

(
T α

0 + ℓkαA +

ℓ∑
i=0

EXTi+kA

(
τ αA
)))

≤ Ex
(
T α

0

)
+

∞∑
ℓ=0

(1 − ε)ℓℓkα + Ex

(
∞∑
ℓ=0

1{Tℓ<τ0}

ℓ∑
i=0

EXTi+kA

(
τ αA
))

≤ Ex
(
T α

0

)
+

∞∑
ℓ=0

(1 − ε)ℓℓkαA +

∞∑
ℓ=0

(1 − ε)ℓ sup
y∈[0,A]

Ey
(
τ αA,kA

)
< ∞.

We obtain the expected upper bound for Px (τ0 > n) by Chebyshev’s inequality. □

In this example, g(x) = c, θ =
2c
σ 2 , λ = 1,G = O(x), ℓα = O(xα).

5.4. A non-markovian example

Let (Xn)n∈N be a process defined by

Xn+1 = Xn + 1 + K εn

√
Rn

where (εn)n∈N is a sequence of i.i.d. random variables such that for all n ∈ N, P(εn = −1) =

P(εn = 1) =
1
2 , K > 2 and Rn defined as follows :

• Let (Nn)n∈N be a sequence of independent integer-valued random variables such that
∀i ∈ {0, . . . , n}, P(Nn = i) =

1
n+1 .

• Let (Un)n∈N be a sequence of i.i.d. integer-valued random variables such that P(Un = 0) =

P(Un = 1) =
1
2 .

We also assume that the random sequences (Nn)n∈N, (Un)n∈N and (εn)n∈N are independent.
Let

Rn = Un
X2

n

Xn + X Nn

+ (1 − Un)
Xn X Nn

Xn + X Nn

.

If there exists n ∈ N such that Xn ≤ 0, then for all k ∈ N, Xn+k = 0.
By construction, (Xn)n∈N is not a Markov chain of any order. Let us check that (Xn)n∈N

satisfies the stochastic difference equation Xn+1 = Xn + g(Xn) + ξn with E
(
ξn
⏐⏐Fn

)
= 0 and

E
(
ξ 2

n

⏐⏐Fn
)
= σ 2 (Xn). Let ξn = εn K

√
Rn . By independence, one has immediately E

(
ξn
⏐⏐Fn

)
= 0.
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A short computation gives

E
(
ξ 2

n

⏐⏐Fn
)

=
K 2

2(n + 1)

n∑
k=0

X2
n + Xn Xk

Xn + Xk

=
K 2

2
Xn.

Thus, θ =
4

K 2 . If K > 2, then we know that P({Xn −→
n→∞

∞}) = 0 and we can apply Theorem 1.1
and get lower and upper bounds of tail of the hitting-time of Xn in a compact set [0, A].

Proposition 5.3. Assume that K > 2. For all α and β such that α < 1 − 4/K 2 < β, there exists
A > 0 such that for all x > A there exist Cα > 0 and Cβ > 0 such that

Cα

nα
≤ Px (τA > n) ≤

Cβ

nβ
.

In this example, g(x) = 1, θ =
4

K 2 , λ = 1,G(x) = O(x), ℓα(x) = O(x).
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Appendix A. Proof of Lemma 3.2

In this section, we turn to the proof of our key result, Lemma 3.2.

Proof of Lemma 3.2. We first verify that (Yn)n∈N satisfies the first inequality of Lemma 3.1.
Since {Yn ≥ A} = {Xn ≥ ℓ1(A)} and lim

x→+∞
ℓ1(x) = +∞, then Yn large implies Xn large too. Let

n ∈ N, then on τ̃A > n

E
(
Yn+1 − Yn

⏐⏐Fn
)

= E
(
(Yn+1 − Yn)

(
1{ξn≤−g(Xn)−εXn} + 1{ξn>−g(Xn)−εXn}

) ⏐⏐Fn
)

≥ −YnP
(
ξn ≤ −g (Xn)− εXn

⏐⏐Fn
)

+ E
(
(Yn+1 − Yn)1{ξn>−g(Xn)−εXn}

⏐⏐Fn
)
.

We first give a lower bound of the first term. We know that P
(
ξn ≤ −g (Xn)− εXn

⏐⏐Fn
)

≤

P
(
ξ 2

n ≥ (−g (Xn)− εXn)2
⏐⏐Fn

)
≤

E(ξ2
n |Fn )

(g(Xn )+εXn )2 ≤
C1σ

2(Xn)

X2
n

by Chebyshev’s inequality. By (10)
and (A2), we obtain that

− YnP
(
ξn ≤ −g (Xn)− εXn

⏐⏐Fn
)

≥ −C2.

We now give a bound of the second term. If ξn + g(Xn) > −εXn , then Xn+1 > (1 − ε)Xn .
Moreover, only the case Xn+1 ≤ Xn must be considered otherwise Yn+1 − Yn ≥ 0 since G is
an increasing function. For Yn > A and large enough A, Xn is large too and then by regular
variation and Potter’s bound, there exists K > 0 such that

g(x) ≤ K −1g(Xn)
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for x ∈ [Xn+1, Xn] and thus

E((Yn+1 − Yn)10>ξn+g(Xn )>−εXn

⏐⏐Fn)

= E
(∫ Xn+1

Xn

dx
g(x)

10>ξn+g(Xn )>−εXn

⏐⏐Fn

)
≥

K
g(Xn)

E((Xn+1 − Xn)10>ξn+g(Xn )>−εXn

⏐⏐Fn)

≥
K

g(Xn)
E(ξn10>ξn+g(Xn )>−εXn

⏐⏐Fn)

≥ −C
E(ξ 2

n

⏐⏐Fn)
Xng(Xn)

= −C
σ 2(Xn)

Xng(Xn)
≥ −C3 by (A2).

Thus, (Yn)n∈N verifies the first inequality of Lemma 3.1.
We now check that there exists D > 0 such that for all n ∈ N

E
(
Y 2

n+1 − Y 2
n

⏐⏐Fn
)

≤ DYn.

First, note that we can consider Xn+1 ≥ (1 − ε)Xn :

E
(
Y 2

n+1 − Y 2
n

⏐⏐Fn
)

≤ E
((

Y 2
n+1 − Y 2

n

)
1{ξn+g(Xn)>−εXn}

⏐⏐Fn
)
.

By Potter’s bound, if Xn+1 < Xn then there exists K1 > 0 such that ∀t ∈ [Xn+1, Xn], K1
g(Xn ) ≤

1
g(t) ; if Xn+1 ≥ Xn then there exists K2 > 0 such that ∀t ∈ [Xn, Xn+1], 1

g(t) ≤
K2

g(Xn ) . Thus, we
obtain that

Yn+1 − Yn ≤
K3(Xn+1 − Xn)

g(Xn)
.

Since Yn > A, Xn is large enough and so is Xn+1, then, by (10), there exists C4 > 0 such that
Yn+1 = G(Xn+1) ≤

Xn+1
g(Xn+1) ≤ C5

Xn+1
g(Xn ) .

Then

E
(
Y 2

n+1 − Y 2
n

⏐⏐Fn
)

≤
K3

g(Xn)
E
(
(Xn+1 − Xn)(Yn+1 + Yn)1{ξn+g(Xn)>−εXn}

⏐⏐Fn
)

≤
C6

g(Xn)2 E
(
(Xn+1 − Xn)(Xn+1 + Xn)1{ξn+g(Xn)>−εXn}

⏐⏐Fn
)

≤
C6

g(Xn)2 E
(
(g(Xn) + ξn)(2Xn + g(Xn) + ξn)1{ξn+g(Xn)>−εXn}

⏐⏐Fn
)
.

By (10), there exists C7 > 0 such that Xn
g(Xn ) ≤ C7G(Xn) and by (A2), there exists C8 such that

σ 2(Xn )
g2(Xn )

≤ C8
Xn

g(Xn ) ≤ C7C8G(Xn). We now check that the other terms are negligible.

E(ξn1g(Xn )+ξn>−εXn

⏐⏐Fn) = −E(ξn1g(Xn )+ξn≤−εXn

⏐⏐Fn)

≤
σ 2(Xn)

(εXn + g(Xn))
≤
σ 2(Xn)
εXn

.

Thus by (A2) and (10),
1

g2(Xn)
E(Xnξn1g(Xn )+ξn>−εXn

⏐⏐Fn) ≤ C9G(Xn)

and there exists D such that E
(
Y 2

n+1 − Y 2
n

⏐⏐Fn
)

≤ DYn , then (Yn)n∈N satisfies the assumptions
of Lemma 3.1. □
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Appendix B. Auxiliary results

In this last section, we recall some results from [4] that we applied above.
We recall that A is the set of positive function f such that there exists a positive constant A f

such that

lim sup
x→∞

f (2x)
f (x)

≤ A f .

Theorem B.1 ([4], Theorem 2). Let (Xn)n∈N be an Fn-adapted stochastic process taking values
in an unbounded subset of R+. Let f ∈ A be an ultimately convex function. Suppose there exist
positive constants A0, ε such that ( f (Xn∧τA0

))n∈N is a supermartingale and for any n ∈ N, on
the event {τA0 > n},

E( f (Xn+1) − f (Xn)
⏐⏐Fn) ≤ −ε f ′(Xn).

Then, there exists a positive constant c such that for all x ≥ A0,

Ex ( f (τA0 )) ≤ c f (x).

For all real valued functions h, let Bh be the set of positive functions f ∈ C2(0,∞) ultimately
concave, such that limx→∞ f (x) = ∞, limx→∞ f ′(x) = 0, and such that the integral∫

∞

1

f ′(x)dx
h ◦ r (x)

converges,

with r (x) = sup{y ≥ A, f ′(x) = h′(y)}.

Theorem B.2 ([4], Theorem 3). Let (Xn)n∈N be an Fn-adapted stochastic process taking values
in an unbounded subset of R+. Let h ∈ C1 ([0,∞)) be a real-valued function such that h′

decreases in a neighborhood of ∞ and h′(x) → 0 as x → ∞. Suppose there exist positive
constants A0, ε such that h increases on [A0,∞) and for any n ∈ N, on the event {τA0 > n},

E(h(Xn+1) − h(Xn)) ≤ −εh′(Xn).

Then, for any f ∈ Bh , there exist positive constants c, A ≥ A0 such that for all x ≥ A0,

Ex ( f (τA)) ≤ ch(x).

We now recall a proposition from [4] which gives a link between integrability of hitting times
of a finite set and of first return times to the initial state.

Proposition B.1 (Proposition 1, [4]). Let F be a finite subset of X , τF = inf{n > 0, Xn ∈ F}

the hitting time of F and τ = inf{n > 0, Xn = X0} be the first return time.
(i) If for any z ∈ F,

Ez(τF ) < ∞,

then for any z ∈ F, Ez(τ ) < ∞.
(ii) If for some z0 ∈ F, we have Ez0 (τF ) = ∞, then Ez0 (τ ) = ∞.

The following theorem gives the speed of convergence to the invariant measure of probability
of (Xn)n∈N in the recurrent positive case. We first introduce two sets of positive functions.

Let G be the set of positive functions f such that there exist a positive function h such
that h(x) → 0 as x → ∞ and a positive constant c such that for any positive m ≥ 1,
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x1 ≥ 1, . . . , xm ≥ 1,

f

(
m∑

k=1

xk

)
≤ cemh(m)

m∑
k=1

f (xk).

Let G ′ be the set of non decreasing in a neighborhood of infinity functions f such that ln( f (x))/x
is non increasing in a neighborhood of infinity and tends to zero when x tends to infinity.

Theorem B.3 (Theorem 1, [4]). Let f ∈ G such that f ′
∈ G ′. Suppose there exists a positive

function φ defined on X such that for all s ∈ X \ F,

Es( f (τF )) ≤ φ(s),

and also that for all z ∈ F, Ez(φ(X1)) < ∞. Then, for any initial distribution ν on X such that

Eν( f ′(τF )) < ∞,

we have

lim
n→∞

f ′(n)
∑
i∈X

∑
j∈X

ν(i)|Pn(i, j) − π ( j)| = 0.
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