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Abstract

We show the convergence of finite state symmetric N -player differential games, where players control
their transition rates from state to state, to a limiting dynamics given by a finite state Mean Field Game
system made of two coupled forward–backward ODEs. We exploit the so-called Master Equation, which
in this finite-dimensional framework is a first order PDE in the simplex of probability measures, obtaining
the convergence of the feedback Nash equilibria, the value functions and the optimal trajectories. The
convergence argument requires only the regularity of a solution to the Master Equation. Moreover, we
employ the convergence results to prove a Central Limit Theorem and a Large Deviation Principle for the
evolution of the N -player empirical measures. The well-posedness and regularity of solution to the Master
Equation are also studied, under monotonicity assumptions.
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1. Introduction

Mean Field Games were introduced independently by Lasry and Lions [29] and by Huang
et al. [26] as limit models for symmetric non-zero-sum non-cooperative N -player dynamic
games when the number N of players tends to infinity. For an introduction to the topic see for
instance [5,7] or [3], where the latter two deal also with mean-field type optimal control. While
a wide range of different classes of Mean Field Games has been considered up to now, here
we focus on finite time horizon problems with continuous time dynamics under fully symmetric
cost structure and complete information, where the position of each agent belongs to a finite state
space. In this setting, Mean Field Games were first analyzed in [20] in discrete time, and then
in [21] in continuous time.

The relation between the N -player game and its limit can be studied in two opposite
directions: approximation and convergence. The approximation argument consists in proving
that the solutions to the Mean Field Game allow to construct approximate Nash equilibria
for the prelimit game, where the error in the approximation tends to zero as N goes to
infinity. Convergence goes in the opposite direction: are Nash equilibria for the N -player game
converging to solutions of the Mean Field Game when the number of players tends to infinity?

Results in the first direction are much more common and easier to obtain: for the diffusive
case without jumps see for instance [7,8,26] and [4]. In the finite state space setting, this was
achieved in [1] studying the infinitesimal generator, while in [10] an approximation result was
found through a fully probabilistic approach, which allowed for less restrictive assumptions on
the dynamics and the optimization costs. On the other hand, results on convergence are fewer and
even more recent: while the limits of N -player Nash equilibria in stochastic open-loop strategies
can be completely characterized (see [28] and [18] for the diffusion case), the convergence
problem for Nash equilibria in feedback form with full information is more difficult. A result
in this direction is given by [21] in our finite state setting, via the infinitesimal generator, but
only if the time horizon is small.

A breakthrough was achieved by Cardaliaguet et al. [6] through the use of the so-called
Master Equation, again in the diffusion case and also in the presence of a common noise. Their
convergence argument relies on having a regular solution to the Master Equation, which in the
diffusion case – as originally remarked by Lions in [31] – is a kind of infinite dimensional
transport equation on the space of probability measures. Its solution yields a solution of the
Mean Field Game system for any initial time and initial distribution. Moreover, such system can
be seen as the characteristics curves for the Master Equation; we will return to this shortly. If
the Master Equation admits a unique regular solution, then this solution can be used to prove
the convergence. The crucial ingredient in the proof consists in a coupling argument, in a similar
fashion to the propagation of chaos property for uncontrolled systems (see [35]). Such coupling,
in which independent copies of the limit process are compared to their prelimit counterparts,
ultimately allows to get the desired convergence of the value functions of the N -player game to
the solution to the Master Equation, as well as a form of convergence for the associated optimal
feedback strategies and a propagation of chaos result for the corresponding optimal trajectories.

In this paper, we focus on the convergence of feedback Nash equilibria in the finite state
space scenario. We follow the approach of [6], showing the convergence of the value functions
of the N -player game to the solution to the Master Equation. The argument provides also
the convergence of the feedback Nash equilibria and a propagation of chaos property for the
associated optimal trajectories. The coupling technique necessary for the proof is the main
motivation for writing the dynamics of the N players as stochastic differential equations driven
by Poisson Random measures, as in [10].



4512 A. Cecchin and G. Pelino / Stochastic Processes and their Applications 129 (2019) 4510–4555

In order to motivate the present work, let us introduce the equations in play at a formal level.
The dynamics of the N -player game are given by the system of controlled SDEs:

X i (t) = Z i +

∫ t

0

∫
Ξ

f (X i (s−), ξ, αi (s, X s− ))Ni (ds, dξ ), (1)

for i = 1, . . . , N , where each X i (t) is a process taking values in the finite space Σ = {1, . . . , d}

and we denote by X t := (X1(t), . . . , X N (t)) the vector of the N processes; Ni are N i.i.d. Poisson
measures on [0, T ]×Ξ , with Ξ ⊂ Rd , and the controls αi

∈ A ⊂ Rd are only in feedback form.
The function f is crucial for the definition of the dynamics (1): it models the possible jumps of
the Markov chain, while the Poisson measures prescribe their random occurrences. Following
an idea of [24], we define the function f so that the control αi

y(t, x, xN ,i
t ) represents the rate at

which player i decides to go from state x to state y, when x ̸= y, xN ,i
t being the states of the

other N − 1 players at time t ; c.f. (2) and (18) below. Let us remark that, while Cardaliaguet
et al. study the convergence problem also in the presence of a noise (Brownian motion) common
to all the players, which makes things even more difficult, we do not consider here any common
noise. In the discrete setting, this would result in considering dynamics with simultaneous jumps,
which can be realized by adding another Poisson measure in (1), common to all the players.

In our framework, we show that there exists a unique feedback Nash equilibrium for the
N -player game. It is provided by the Hamilton–Jacobi–Bellman system of Nd N coupled ODE’s⎧⎪⎪⎨⎪⎪⎩

−
∂v

∂t

N ,i

(t, x) −

N∑
j=1, j ̸=i

α∗(x j ,∆
jvN , j ) · ∆ jvN ,i

+ H (xi ,∆
ivN ,i ) = F N ,i (x),

vN ,i (T, x) = G N ,i (x).

(HJB)

In the above equation, F N ,i and G N ,i are respectively the running and terminal costs, H is the
Hamiltonian and α∗ its unique maximizer, and

∆ j g(x) :=
(
g(x1, . . . , y, . . . , xN ) − g(x1, . . . , x j , . . . , xN )

)
y=1,...,d ∈ Rd

denotes the finite difference of a function g(x) = g(x1, . . . , xN ) with respect to its j th entry.
The study of convergence consists in finding a limit for the (HJB) system as N tends to

infinity. To this end, we assume symmetric properties of the game. Namely, the costs F N ,i

and G N ,i satisfy the mean field assumptions, i.e. there exist two functions F and G such that
F N ,i (x) = F(xi , m N ,i

x ) and G N ,i (x) = G(xi , m N ,i
x ), where m N ,i

x denotes the empirical measure
of all the players except for the i th, which belongs to P(Σ ), the space of probability measures on
Σ . Thanks to these mean field assumptions, we shall say that the solution vN ,i of the (HJB)
system can be found in the form vN ,i (t, x) = V N (t, xi , m N ,i

x ), for a suitable function V N

of time, space and measure; this makes the convergence problem more tractable. At a formal
level, we can introduce the limiting equation assuming the existence of a function U such that
V N (t, xi , m N ,i

x ) ∼ U (t, xi , m N ,i
x ) for large N . Then, let us analyze the different components of

the HJB system and which should be their corresponding limits in terms of U . First, the i th
difference of vN ,i should converge to

∆ivN ,i (t, x) =
(
vN ,i (t, y, m N ,i

x
)
− vN ,i (t, xi , m N ,i

x
))

y=1,...,d

→ (U (t, y, m) − U (t, xi , m))y=1,...,d = ∆xU (t, xi , m).
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For j ̸= i we should instead get

∆ jvN ,i (t, x) =

⎛⎝vN ,i

⎛⎝t, xi ,
1

N − 1

∑
k ̸= j,i

δxk +
1

N − 1
δy

⎞⎠
−vN ,i

⎛⎝t, xi ,
1

N − 1

∑
k ̸=i

δxk

⎞⎠⎞⎠
y=1,...,d

∼
1

N − 1
DmU (t, xi , m N ,i

x , x j ),

modulo terms of order O(1/N 2), where a precise definition of DmU , the derivative with respect
to a probability measure, will be given in the next section. Then, H (xi ,∆

ivN ,i ) → H (xi ,∆
xU ),

and we should obtain
N∑

j=1, j ̸=i

α∗(x j ,∆
jvN , j ) · ∆ jvN ,i

∼
1

N − 1

N∑
j=1, j ̸=i

α∗(x j ,∆
xU (t, x j , m N ,i

x ))

· DmU (t, xi , m N ,i
x , x j )

∼

∫
Σ

α∗(y,∆yU (t, y, m N ,i
x )) · DmU (t, xi , m N ,i

x , y)dm N ,i
x (y)

→

∫
Σ

DmU (t, x, m, y) · α∗(y,∆yU (t, y, m))dm(y).

Thus, we are able to introduce the Master Equation, that is the equation to which we would like
to prove convergence⎧⎨⎩ −

∂U
∂t

+ H (x,∆xU ) −

∫
Σ

DmU (t, x, m, y) · α∗(y,∆yU (t, y, m))dm(y) = F(x, m),

U (T, x, m) = G(x, m), (x, m) ∈ Σ × P(Σ ), t ∈ [0, T ].

(M)

It is a first order PDE in P(Σ ), the simplex of probability measures in Rd . We solve it
using the strategy developed in [6], which relies on the method of characteristics. Indeed, as
remarked above, the classical Mean Field Game system can be seen as the characteristic curves
of (M). In our finite space setting, the Mean Field Game system consists of two coupled ODEs:
a Hamilton–Jacobi–Bellman equation giving the value function of the limiting control problem
and a Kolmogorov–Fokker–Planck describing the evolution of the limiting deterministic flow
of probability measures. We solve the Mean Field Game system for any initial time and initial
distribution: this defines a candidate solution to (M) and, in order to prove that it is differentiable
with respect to the initial condition, we introduce and analyze a linearized Mean Field Game
system. To prove the well posedness of (M) for any time horizon, the sufficient hypotheses we
make are the monotonicity assumptions of Lasry and Lions. However, we stress again that these
assumptions play no role in the convergence argument, as it requires only the existence of a
regular solution to (M).

Let us mention that finite space Mean Field Games have been studied by several authors in the
last years. An equation similar to (M), but holding in the whole space Rd , was studied in [31],
proving the well-posedness and regularity under stronger assumptions. The well posedness of
the Mean Field Game system was discussed in [20] - in the discrete time framework -, in [21]
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and in [25], the latter with applications on graphs. The works [17] and [21] deal also with the
problem of convergence, as T tends to infinity, to the stationary Mean Field Game. The Master
Equation was discussed – but only at a formal level – in [22,23] and again in [21], in the first
two with a particular focus on the two state problem. A new class of Mean Field Games with
major and minor agents was analyzed in [9], showing the relation with the N -player game in the
approximation direction.

Here, we also study the empirical measure process of the N -player optimal trajectories.
Indeed, the convergence obtained allows to get a Central Limit Theorem and a Large Deviation
Principle for the asymptotic behavior, as N tends to infinity, of such process. These results are,
to the best of our knowledge, new in Mean Field Game theory and allow to better understand
the convergence of the empirical distribution of the players to the limit measure. Both Central
Limit Theorems and Large Deviation Principles have been investigated for classical finite state
mean field interacting particle systems, i.e. where the prelimit jump rates are the same for any
individual. The fluctuations are derived e.g. in [11], via the martingale problem, and in [12], by
analyzing the infinitesimal generator. The large deviation properties are found e.g. in [30,33,34],
and, more recently, in [16].

The key point for proving these results is to compare the prelimit optimal trajectories with the
ones in which each player chooses the control induced by the Master Equation. The fluctuations
are then found by analyzing the associated infinitesimal generator, while the Large Deviation
properties are derived using a result in [16]. It is worth saying that the limit processes involve the
solution to the Master Equation. Let us mention that such properties, enriched by a concentration
of measure result, are now (after the revision of this paper) established also in the diffusion case,
via the Master Equation approach, by Delarue, Lacker and Ramanan [13,14].

Finally, we mention a very recent preprint [2], which appeared some days after submission
of this paper. In this work, independently, the authors again use the Master Equation approach
to find the same convergence result we prove here. They still rely on the idea developed in [6],
but consider a probabilistic representation of the dynamics different from ours. Moreover, they
also obtain a Central Limit Theorem for the fluctuations of the empirical measure processes.
However, they prove it in a different way, that is, via a martingale Central Limit Theorem.

Structure of the paper. The rest of the paper is organized as follows. In Section 2, we start
with the notation and the definition of derivatives in the simplex. So we present the two sets of
assumptions we make use of: one for the convergence, the fluctuations and the large deviation
results, while the other, stronger, for the well posedness of the Master Equation; we also show an
example in which the assumptions are satisfied. Then we give a detailed description of both the
N -player game and the limit model. Section 3 contains the convergence results and their proofs,
while in Section 4 we employ the convergence argument to derive the asymptotic behavior of the
empirical measure process, that is, the Large Deviation Principle and the Central Limit Theorem.
Section 5 analyzes the well-posedness and regularity of the solution to the Master Equation. We
conclude with Section 6 by summarizing all the main results.

2. Model and assumptions

2.1. Notation

Here we briefly clarify the notations used throughout the paper. First of all, we are considering
Σ = {1, . . . , d} to be the finite state space of any player. Let T be the finite time horizon and
A := [κ, M]d , for κ, M > 0, be the compact space of control values. Denote by

P(Σ ) :=
{
m ∈ Rd

: m j ≥ 0, m1 + · · · + md = 1
}
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the space of probability measures on Σ . Besides the euclidean distance in Rd , denoted with | · |,
we may interchangeably use the Wasserstein metric d1 on P(Σ ) since all metrics are equivalent.
We observe that the simplex P(Σ ) is a compact and convex subset of Rd .

Let Ξ := [0, M]d . In the dynamics given by (1), the function f : Σ ×Ξ × A → {−d, . . . , d}

modeling the jumps has to be a measurable function such that f (x, ξ, a) ∈ {1 − x, . . . , d − x}.
Specifically, throughout the paper we set, for x ∈ Σ , ξ = (ξy)y∈Σ and a = (ay)y∈Σ ,

f (x, ξ, a) :=

∑
y∈Σ

(y − x)1]0,ay [(ξy). (2)

The measures Ni appearing in (1) are N i.i.d. stationary Poisson random measures on [0, T ]×Ξ ,
with intensity measure ν on Ξ given by

ν(E) :=

d∑
j=1

ℓ(E ∩ Ξ j ), (3)

for any E in the Borel σ -algebra B(Ξ ) of Ξ , where Ξ j := {u ∈ Ξ : ui = 0 ∀ i ̸= j} is viewed
as a subset of R, and ℓ is the Lebesgue measure on R. We fix a probability space (Ω ,F ,P) and
denote by F = (Ft )t∈[0,T ] the filtration generated by the Poisson measures. These definitions of
f and ν ensure that the control is exactly the transition rate of the Markov chain; see (18) below.

The initial datum of the N -player game is represented by N i.i.d. random variables
Z1, . . . , Z N with values in Σ and distributed as m0 ∈ P(Σ ). The vector Z = (Z1, . . . , Z N ) is in
particular exchangeable, in the sense that the joint distribution is invariant under permutations,
and is assumed to be F0-measurable, i.e. independent of the noise.

The state of player i at time t is denoted by X i (t), with X t := (X1(t), . . . , X N (t)). The
trajectories of each X i are in D([0, T ],Σ ), the space of càdlàg functions from [0, T ] to Σ
endowed with the Skorokhod metric. For x = (x1, . . . , xN ) ∈ Σ N , denote the empirical measures

m N
x :=

1
N

N∑
j=1

δx j m N ,i
x :=

1
N − 1

N∑
j=1, j ̸=i

δx j .

Thus, m N
X (t) := m N

X t
is the empirical measure of the N players and m N ,i

X (t) := m N ,i
X t

is the
empirical measure of all the players except the i th. Clearly, they are P(Σ )-valued stochastic
processes. In the limiting dynamics, the empirical measure is replaced by a deterministic flow of
probability measures m : [0, T ] → P(Σ ).

In choosing his/her strategy, each player minimizes the sum of three costs: a Lagrangian
L : Σ × A −→ R, a running cost F : Σ × P(Σ ) −→ R and a final cost G : Σ × P(Σ ) −→ R
(see next section for the precise definition of the N -player game). The Hamiltonian H is defined
as the Legendre transform of L:

H (x, p) := sup
α∈A

{−α · p − L(x, α)} , (4)

for x ∈ Σ and p ∈ Rd .
Given a function g : Σ → R we denote its first finite difference ∆g(x) ∈ Rd by

∆g(x) :=

⎛⎜⎜⎜⎜⎝
g(1) − g(x)

·

·

·

g(d) − g(x)

⎞⎟⎟⎟⎟⎠ .
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When we have a function g : Σ N
→ R, we denote with ∆ j g(x) ∈ Rd the first finite difference

with respect to the j th coordinate, namely

∆ j g(x) :=

⎛⎜⎜⎜⎜⎝
g(x1, . . . , x j−1, 1, x j+1, . . . , xN ) − g(x)

·

·

·

g(x1, . . . , x j−1, d, x j+1, . . . , xN ) − g(x)

⎞⎟⎟⎟⎟⎠ .

For future use, let us observe that, for g : Σ → R,

|∆g(x)| ≤ max
y

[∆g(x)]y ≤ 2 max
x

|g(x)| ≤ C |g|. (5)

For a function u : [t0, T ] × Σ −→ R, we denote

∥u∥ := sup
t∈[t0,T ]

max
x∈Σ

|u(t, x)|. (6)

We also use the notation u(t) := (u1(t), . . . , ud (t)) = (u(t, 1), . . . , u(t, d)). When considering a
function u with values in Rd , its norm is defined as in (6), but where | · | denotes the euclidean
norm in Rd .

We now introduce the concept of variation with respect to a probability measure m of a
function U : P(Σ ) → R. Let us remark that the usual notion of gradient cannot be defined
for such a function: since the domain is P(Σ ) we are not allowed to define e.g. the directional
derivative ∂

∂m1
, as we would have to extend the definition of U outside the simplex.

Definition 1. We say that a function U : P(Σ ) → R is differentiable if there exists a function
DmU : P(Σ ) × Σ → Rd given by

[DmU (m, y)]z := lim
s→0+

U (m + s(δz − δy)) − U (m)
s

. (7)

for z = 1, . . . , d. Moreover, we say that U is C1 if the function DmU is continuous in m.

Morally, we can think of [DmU (m, y)]z as the (right) directional derivative of U with respect
to m along the direction δz − δy . We also observe that m + s(δz − δy) might be outside the
probability simplex (e.g. when we are at the boundary), in which case we consider the limit only
across admissible directions. However, note that, for our purposes, this is not really a problem:
since in the limit m(t) will be the distribution of the reference player, the bound from below for
the control ensures that the boundary of the simplex will never be touched.

Together with the definition, we state an identity which will come useful in the following
sections:

[DmU (m, y)]z = [DmU (m, x)]z + [DmU (m, y)]x , (8)

for any x, y, z ∈ Σ . Its derivation is an immediate consequence of the linearity of the directional
derivative.

We can easily extend the above definition to the case of derivative with respect to a direction
µ ∈ P0(Σ ), with

P0(Σ ) :=
{
µ ∈ Rd

: µ1 + · · · + µd = 0
}
.
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Indeed, an element µ = (µ1, . . . , µd ) =
∑

z∈Σ µz ∈ P0(Σ ) can be rewritten as a linear
combination of δz − δy as follows

µ =

∑
z ̸=y

µz(δz − δy),

for each y ∈ Σ , since
∑

z ̸=y µz(δz − δy) =
∑

z ̸=y µzδz −

(∑
z ̸=y µz

)
δy , and

∑
z ̸=y µz = −µy .

This remark allows us to define the derivative of U (m) along the direction µ ∈ P0(Σ ) as a
map ∂

∂µ
U : P(Σ ) × Σ → R, defined for each y ∈ Σ by

∂

∂µ
U (m, y) :=

d∑
z ̸=y

µz
[
DmU (m, y)

]
z = µ · DmU (m, y), (9)

where the last equality comes from the fact that [DmU (m, y)]y = 0.
We also note that the definition of ∂

∂µ
U (m, y) does not actually depend on y, i.e.

∂

∂µ
U (m, y) =

∂

∂µ
U (m, 1) (10)

for every y ∈ Σ and for this reason we will fix y = 1 when needed in the equations. Indeed, by
means of identity (8) and the fact that µ ∈ P0(Σ ), for each y ∈ Σ

∂

∂µ
U (m, 1) =

d∑
z=1

µz
[
DmU (m, 1)

]
z = [identity (8)]

=

d∑
z=1

(
[DmU (m, y)]z + [DmU (m, 1)]y

)
µz

=

d∑
z=1

[DmU (m, y)]zµz + [DmU (m, 1)]y

d∑
z=1

µz

=

d∑
z=1

[DmU (m, y)]zµz =
∂

∂µ
U (m, y).

For a function U : Σ × P(Σ ) → R we denote the variation with respect to the first coordinate
in a point (x, m) ∈ Σ × P(Σ ) by ∆xU (x, m). Also, denote by Γ † the transpose of a matrix Γ .

2.2. Assumptions

We now summarize the assumptions we make, which can vary according to the different
results.

Because of the compactness of A, the continuity of L with respect to its second argument is
sufficient for guaranteeing the existence and finiteness of the supremum in (4) for each (x, p).
Moreover, we assume that there exists a unique maximizer α∗(x, p) in the definition of H for
every (x, p):

α∗(x, p) := arg min
α∈A

{L(x, α) + α · p} = arg max
α∈A

{−L(x, α) − α · p} . (11)

With our choices for f in (2) and the intensity measure ν in (3), a sufficient condition for the
above assertion is given by the strict convexity of L in α (see Lemma 3 in [10]). If L is uniformly
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convex, such optimum α∗ is globally Lipschitz in p, and whenever H is differentiable it can be
explicitly expressed as α∗(x, p) = −Dp H (x, p); see Proposition 1 in [21] for the proof.

We will work with two sets of assumptions on H . We first observe that it is enough to give
hypotheses for H (x, ·) on a sufficiently big compact subset of Rd , i.e. for |p| ≤ K , because of
the uniform boundedness of ∆ivN ,i : see next section for details (Remark 1). In what follows, the
constant K is fixed:

(H1) If |p| ≤ K then H and α∗ are Lipschitz continuous in p.

We stress the fact that the above assumptions, together with the existence of a regular solution
to (M), are alone sufficient for proving the convergence of the N -player game to the limiting
mean-field game dynamics.

In order to establish the well-posedness and the needed regularity for the Master Equation we
make use of the following additional assumptions:

(RegH) If |p| ≤ K , H is C2 with respect to p; H , Dp H and D2
pp H are Lipschitz in p and the

second derivative is bounded away from 0, i.e. there exists a constant C such that

D2
pp H (x, p) ≥ C−1

; (12)

(Mon) The cost functions F and G are monotone in m in the Lasry–Lions sense, i.e., for every
m, m ′

∈ P(Σ ),∑
x∈Σ

(F(x, m) − F(x, m ′))(m(x) − m ′(x)) ≥ 0, (13)

and the same holds for G;
(RegFG) The cost functions F and G are C1 with respect to m, with Dm F and Dm G bounded
and Lipschitz continuous. In this case (13) is equivalent to say that∑

x

µx [Dm F(x, m, 1) · µ] ≥ 0 (14)

for any m ∈ P(Σ ) and µ ∈ P0(Σ ).

Observe that the assumptions on H allow for quadratic Hamiltonian. As we will see, the above
assumptions imply both the boundedness and Lipschitz continuity of ∆xU and DmU with respect
to m. We conclude the section with an example for which all the assumptions are satisfied.

Example 1. The easiest example for the costs F and G is F(x, m) = G(x, m) = m(x).
Slightly more in general, one can consider F(x, m) = ∇φ(m)(x), φ being a real convex function
on Rd .

For the choice of the Lagrangian L , a bit of work is needed in order to recover the regularity
for H , since the maximization in the definition (4) of H is performed only on the compact subset
A = [κ, M]d of Rd .

Consider the Lagrangian, not depending on x , defined by

L(α) := b|α − a|
2, (15)

with a :=
(

κ+M
2

)
(1, . . . , 1)† and b a large enough constant to be chosen later. The computation

of H := supα∈[κ,M] {−p · α − L(α)} for such choice of L gives

H (p) =
p2

4b
− a · p, (16)
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for |p| ≤ b(M − κ), while H is linear outside this interval. It is trivial to verify that H is in
C1(Rd ), and thus (H1) is satisfied, while H is not in C2(Rd ) because of the linear components.
Nevertheless, (12) is satisfied whenever |p| ≤ K , with the choice b :=

K
M−κ

. Moreover, the
Lipschitz continuity of Dp H and D2

pp H is trivially holding because of expression (16) for
|p| ≤ K and the linearity outside, and (RegH) follows. Note that p represents the gradient
of the value functions and thus it belongs to a compact [−K , K ], where K is independent of b;
c.f. Remark 1 below.

2.3. N-player game

In this section we describe the N -player game in a general setting. Namely, we suppose
that each individual has complete information on the states of all the other players and we do
not require the players to be symmetric. Then, we show the relation between system (HJB)
and the concept of Nash equilibria for the game through a classical Verification Theorem. We
conclude the section by introducing the mean field assumptions and stating a consequence on the
symmetry of the solution to (HJB). We remark that most of the results of this section were found
also in [21], but in a slightly different framework. Namely, there the authors assumed a priori
that the value functions depend on the empirical measure, assuming hence symmetry. Moreover,
they studied the infinitesimal generator of the processes, while here we employ our probabilistic
representation.

In the prelimit the dynamics are given by the system of N controlled SDEs

X i (t) = Z i +

∫ t

0

∫
Ξ

f (X i (s−), ξ, αi (s, X s− ))Ni (ds, dξ ), (17)

for i = 1, . . . , N , where f is given by (2) and X t = (X1(t), . . . , X N (t)). Each player is allowed
to choose his/her control αi having complete information on the state of the other players. We
consider only controls αN

:= (α1, . . . , αN ) in feedback form, i.e. the controls are deterministic
functions of time and space αi

: [0, T ]×Σ N
−→ A, αi

= αi (t, x). We say that αi
∈ A, for each

i , if it is a measurable function of time. We denote by AN the set of feedback strategy vectors
αN

= (α1, . . . , αN ), each αi belonging to A.
We remark that the dynamics (17) is always well-posed, for any admissible choice of the

control, since the state space is finite and the coefficients are then trivially Lipschitz continuous.
Namely, for any αN

∈ AN there exists a unique strong solution to (17), in the sense that
(X t )t∈[0,T ] is adapted to the filtration F generated by the Poisson random measures.

With the definition of f in (2) and the intensity measure ν in (3), the dynamics of any player
remains in Σ for any time and the feedback controls are exactly the transition rates of the
continuous time Markov chains X i (t). Indeed, one can prove – see [10] – that, for x ̸= y
and xN ,i

∈ Σ N−1,

P
[
X i (t + h) = y

⏐⏐X i (t) = x, X N ,i
t = xN ,i]

= αi
y(t, x, xN ,i )h + o(h). (18)

Since α is the vector of the transition rates of the Markov chain, we set αi
x (x) = −

∑
y ̸=x αi

y(x).
We remark that the boundedness from below of the controls (αi

∈ [κ, M]d , κ > 0) guarantees
that P(X i (t) = x) > 0 for every x in Σ and t > 0, for any player i .

Next, we define the object of the minimization. Let αN
= (α1, . . . , αN ) ∈ AN be a strategy

vector and X = (X1, . . . , X N ) the corresponding solution to (17). For i = 1, . . . , N and given
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functions F N ,i , G N ,i
: Σ N

−→ R, we associate to the i th player the cost functional

J N
i (αN ) := E

[∫ T

0

[
L(X i (t), αi (t, X t )) + F N ,i (X t )

]
dt + G N ,i (XT )

]
. (19)

The optimality condition for the N -player game is given by the usual concept of Nash equilibria.
For a strategy vector αN

= (α1, . . . , αN ) ∈ AN and β ∈ A, denote by [αN ,−i
; β] the perturbed

strategy vector given by

[αN ,−i
; β] j

:=

{
α j , j ̸= i
β, j = i.

Then, we can introduce the following

Definition 2. A strategy vector αN is said to be a Nash equilibrium for the N -player game if for
each i = 1, . . . , N

J N
i (αN ) = inf

β∈A
J N

i ([αN ,−i
; β]).

Let us now introduce the functional

J N
i (t, x, αN ) := E

[∫ T

t
[L(X t,x

i (s), αi (s, X t,x
s )) + F N ,i (X t,x

s )]ds + G N ,i (X t,x
T )
]

, (20)

where

X t,x
i (s) = xi +

∫ s

t

∫
Ξ

f (X t,x
i (r−), ξ, αi (r, X t,x

r− ))Ni (dr, dξ ) s ∈ [t, T ].

We work under hypotheses that guarantee the existence of a unique maximizer α∗(x, p) defined
in (11). With this notation, the Hamilton–Jacobi–Bellman system associated to the above
differential game is given by the system (HJB) presented in the Introduction:⎧⎪⎪⎨⎪⎪⎩

−
∂v

∂t

N ,i

(t, x) −

N∑
j=1, j ̸=i

α∗(x j ,∆
jvN , j ) · ∆ jvN ,i

+ H (xi ,∆
ivN ,i ) = F N ,i (x),

vN ,i (T, x) = G N ,i (x).

This is a system of Nd N coupled ODE’s, whose well-posedness for all T > 0 can be proved
through standard ODEs techniques, because of the Lipschitz continuity of the vector fields
involved in the equations.

We are now able to relate system (HJB) to the Nash equilibria for the N -player game through
the following

Proposition 1 (Verification Theorem). Let vN ,i , i = 1, . . . , N be a classical solution to system
(HJB). Then the feedback strategy vector αN∗

= (α1,∗, . . . , αN ,∗) defined by

αi,∗(t, x) := α∗(xi ,∆
ivN ,i (t, x)) i = 1, . . . , N , (21)

is the unique Nash equilibrium for the N-player game and the vN ,i ’s are the value functions of
the game, i.e.

vN ,i (t, x) = J N
i (t, x, αN∗) = inf

β∈A
J N

i (t, x, [αN∗,−i
; β]). (22)
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Proof. Let β ∈ A be any feedback and X t,x the corresponding solution to (17), given the
strategy vector [αN∗−i

; β]; denote for simplicity X = X t,x . Fixing i ∈ {1, . . . , N }, because of
the uniqueness of the maximizer in (11), we have

∂v

∂t

N ,i

+

∑
j ̸=i

d∑
y=1

α∗

y(t, x j ,∆
jvN , j )[∆ jvN ,i (t, x)]y + β(t, x) · ∆ivN ,i (t, x)

+ L(xi , β(t, x)) + F N ,i (x) ≥ 0

for any t, x. Applying first Itô formula (Theorem II.5.1 in [27], p. 66) and then Lemma 3 in [10]
and the above inequality, we obtain

vN ,i (t, x) = E
[
vN ,i (T, XT ) −

∫ T

t

∂v

∂t

N ,i

(s, X s)ds
]

−

N∑
j=1

E
[∫ T

t

∫
Ξ

[
vN ,i(X1(s), . . . , X j (s) + f (X j (s), ξ,

× [αN∗,−i
; β](s, X s)), . . . , X N (s)

)
−vN ,i (X s)

]
ν(dξ )ds

]

= E

⎡⎣vN ,i (T, XT )

−

∫ T

t

⎛⎝∂v

∂t

N ,i

(s, X s) +

∑
j ̸=i

α j,∗(s, X s) · ∆ jvN ,i (s, X s)

+β(t, X s) · ∆ivN ,i (t, X s)

⎞⎠ ds

⎤⎦
≤ E

[
G N ,i (T, XT ) +

∫ T

t

(
L(X i (s), β(s, X s)) + F N ,i (X s)

)
ds
]

=: J N
i (t, x, [αN∗,−i

; β]).

Replacing β by αi∗ the inequalities become equalities. □

Remark 1. It is important to observe that the solution vN ,i to (HJB) is uniformly bounded
with respect to N . Namely, there exists a constant K > 0 such that supx∈ΣN |vN ,i (t, x)| ≤ K ,
where the constant K is independent of N , i and t . This and (5) immediately imply an analogous
bound for |∆ivN ,i (t, x)|: it is for this reason that the only local regularity (assumptions (H1)
and (RegH)) for H (x, p) with respect to p is enough for getting the convergence and the
well-posedness results.

We are interested in studying the limit of the (HJB) system as N → ∞ under symmetric
properties for the N -player game. Namely, we assume that the players are all identical and
indistinguishable. In practice, this symmetry is expressed through the following mean-field
assumptions on the costs:

F N ,i (x) = F(xi , m N ,i
x ),
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G N ,i (x) = G(xi , m N ,i
x ), (M-F)

for some F and G : Σ × P(Σ ) → R. An easy but crucial consequence of assumptions (M-F)
and the uniqueness of solution to system (HJB) is that the solution vN ,i of such system enjoys
symmetric properties:

Proposition 2. Under the mean-field assumptions (M-F), there exists vN
: [0, T ] × Σ N

→ Rd

such that the solutions vN ,i to system (HJB) satisfy, for i = 1, . . . , N,

vN ,i (t, x) = vN (t, xi , (x1, . . . , xi−1, xi+1, . . . , xN )), (23)

for any (t, x) ∈ [0, T ] × Σ , and the function

Σ N−1
∋ (y1, . . . , yN−1) → vN (t, x, (y1, . . . , yN−1))

is invariant under permutations of (y1, . . . , yN−1).

Proof. Let x̃ be defined from x after exchanging xk with x j , for j ̸= k ̸= i . Because of (M-F),
we have that F N ,i (x) = F N ,i (x̃) and G N ,i (x) = G N ,i (x̃) and thus, by the uniqueness of solution
to (HJB) we conclude vN ,i (t, x) = vN ,i (t, x̃). □

The above proposition motivates the study of a possible convergence of system (HJB) to a
limiting system, by analyzing directly the limit of the functions vN .

2.4. Mean field game and Master equation

The limit as N → ∞ would expectedly be characterized by a continuum of players in which
the representative agent evolves according to the dynamics

X (t) = Z +

∫ t

0

∫
Ξ

f (X (s−), ξ, α(s, X (s−)))N (ds, dξ ), t ∈ [0, T ], (24)

where the law of the initial condition Z is m0 and N is a Poisson Random measure with intensity
measure ν defined in (3). The controls are feedback in A, which denotes the space of measurable
functions α : [0, T ] × Σ −→ A. The empirical measure of the N players is replaced by a
deterministic flow of probability measures m : [0, T ] → P(Σ ). The associated cost is

J (α, m) := E
[∫ T

0
[L(X (t), α(t, X (t))) + F(X (t), m(t))] dt + G(X (T ), m(T ))

]
. (25)

In literature, such limiting dynamics are described by the celebrated Mean Field Game
system, whose unknowns are two functions (u, m). The equation in u describes the dynamics of
the value function of the reference player, which optimizes his/her payoff under the influence
of the collective behavior of the others, while the equation in m describes the evolution of
the distribution of the players. In our discrete setting the Mean Field Game system takes the
following form of a strongly coupled system of ODEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

u(t, x) + H (x,∆x u(t, x)) = F(x, m(t)),
d
dt

mx (t) =

∑
y

m y(t)α∗

x (y,∆yu(t, y)),

u(T, x) = G(x, m(T )),
mx (t0) = mx,0,

(MFG)
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with α∗(x, p) defined in (11) and u, m : [0, T ] × Σ −→ R. From a probabilistic point of view
the solution (u, m) can be seen as a fixed point: starting with a flow m solve the first equation,
the backward Hamilton–Jacobi–Bellman (HJB) equation for u, which yields a unique optimal
feedback control α for m; then, impose that the flow of the corresponding solution X to (24) is
exactly m, giving thus the second equation, the forward Kolmogorov–Fokker–Planck (KFP) for
m. Hence, given a solution (u, m) to (MFG), we have J (α, m) ≤ J (β, m) for any β ∈ A, where
α(t, x) = α∗(x,∆x u(t, x)), and Law(X (t)) = m(t) for any t ∈ [0, T ].

As already mentioned, recently in [6] a new technique involving the use of the so-called Mas-
ter Equation was introduced to get the exact relation between symmetric N -Player Differential
Games and Mean Field Games. Generally speaking, the Master Equation summarizes all the
information needed to get solutions to the Mean Field Game: namely, one can prove that the
system (MFG) provides the characteristic curves for (M). Indeed, U (t0, x, m0) := u(t0, x) solves
(M), (u, m) being the solution to the Mean Field Game system (MFG) starting at time t0 up to
time T , with m(t0) = m0. Moreover, in the Introduction we already motivated heuristically the
convergence result of system (HJB) to the Master Equation (M). As it will be clear from the
convergence argument, all that is needed is the existence of a regular solution to (M).

To be specific on the needed regularity, we conclude this section with the definition of regular
solution to (M).

Definition 3. A function U : [0, T ]×Σ×P(Σ ) → R is said to be a classical solution to (M) if it
is continuous in all its arguments, C1 in t and C1 in m and, for any (t, x, m) ∈ [0, T ]×Σ × P(Σ )
we have⎧⎨⎩ −

∂U
∂t

+ H (x,∆xU ) −

∫
Σ

DmU (t, x, m, y) · α∗(y,∆yU (t, y, m))dm(y) = F(x, m),

U (T, x, m) = G(x, m), (x, m) ∈ Σ × P(Σ ).

In particular then ∆xU (t, x, ·) : P(Σ ) → Rd is bounded and Lipschitz continuous and
DmU (t, x, ·) : P(Σ ) → Rd×d is bounded.

Moreover, we say that U is a regular solution to (M) if it is a classical solution and
DmU (t, x, ·) is also Lipschitz continuous in m, uniformly in (t, x).

Let us observe that in the Master Equation we could replace DmU (t, x, m, y) by DmU
(t, x, m, 1), thanks to property (8) of the derivative. Under sufficient conditions, we will prove in
Section 5 the existence and uniqueness of a regular solution to (M).

3. The convergence argument

In this section we take for granted the well-posedness of the Master Equation (M) and focus
on the study of the convergence. We give the precise statement of the convergence in terms of
two theorems: the first one describes the convergence in average of the value functions, while the
second one is a propagation of chaos for the optimal trajectories.

For any i ∈ {1, . . . , N } and x ∈ Σ , set

wN ,i (t0, x, m0) :=

d∑
x1=1

· · ·

d∑
xi−1=1

d∑
xi+1=1

· · ·

d∑
xN =1

vN ,i (t0, x)
∏
j ̸=i

m0(x j ),

where x = (x1, . . . , xN ), and

∥wN ,i (t0, ·, m0) − U (t0, ·, m0)∥L1(m0) :=

d∑
x=1

|wN ,i (t0, x, m0) − U (t0, x, m0)|m0(x).



4524 A. Cecchin and G. Pelino / Stochastic Processes and their Applications 129 (2019) 4510–4555

The main result is given by the following

Theorem 1. Assume (H1) and that (M) admits a unique regular solution U in the sense of
Definition 3. Fix N ≥ 1, (t0, m0) ∈ [0, T ] × P(Σ ), x ∈ Σ N and let (vN ,i ) be the solution to
(HJB). Then

1
N

N∑
i=1

|vN ,i (t0, x) − U (t0, xi , m N
x )| ≤

C
N

(26)

∥wN ,i (t0, ·, m0) − U (t0, ·, m0)∥L1(m0) ≤
C

√
N

. (27)

In (26) and (27), the constant C does not depend on i , t0, m0, x nor N.

As stated above, the convergence can be studied also in terms of the optimal trajectories.
Consider the optimal process Y t = (Y1(t), . . . , YN (t))t∈[0,T ] for the N -player game:

Yi (t) = Z i +

∫ t

0

∫
Ξ

∑
y∈Σ

(y − Yi (s−))1]0,αi
y (s,Y s− )[(ξy)Ni (ds, dξ ), t ∈ [0, T ] (28)

where αi
y(t, Y t ) is the optimal feedback, i.e. αi

y(t, y) := [α∗(yi ,∆
ivN ,i (t, y))]y . Moreover, let

X̃ t = (X̃1(t), . . . , X̃ N (t))t∈[0,T ] be the i.i.d. process solution to

X̃ i,t = Z i +

∫ t

0

∫
Ξ

∑
y∈Σ

(y − X̃ i (s−))1]0,α̃i
y (s,X̃s− )[(ξy)Ni (ds, dξ ), t ∈ [0, T ] (29)

with α̃i
y(t, X̃ t ) := [α∗

(
X̃ i (t),∆xU (t, X̃ i (t), Law(X̃ i (t)))

)
]y . We remark that Law(X̃ i (t)) =

m(t) with m the solution to the Mean Field Game.

Theorem 2. Under the same assumptions of Theorem 1, for any N ≥ 1 and any i ∈ {1, . . . , N },
we have

E

[
sup

t∈[0,T ]

⏐⏐⏐Yi (t) − X̃ i (t)
⏐⏐⏐] ≤ C N−

1
9 (30)

for some constant C > 0 independent of m0 and N. In particular we obtain the Law of Large
Numbers

E

[
sup

t∈[0,T ]

⏐⏐m N
Y (t) − m(t)

⏐⏐] ≤ C N−
1
9 . (31)

Notice that the supremum is taken inside the mean, giving the convergence in the space of
trajectories. For this reason, we have a slow convergence of order N−1/9, coming from a result
in [32] about the convergence of the empirical measures of a decoupled system (c.f. Lemma 1
below). Instead, if the supremum were taken outside the mean, the convergence would be of
order N−1/2, thanks to a result in [19].

3.1. Approximating the optimal trajectories

The first step in the proof of these results is to show that the projection of U onto empirical
measures

uN ,i (t, x) := U (t, xi , m N ,i
x ) (32)
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satisfies the system (HJB) up to a term of order O( 1
N ). The following proposition makes rigorous

the intuition we already used in the heuristic derivation of the Master Equation (M). In what
follows, C will denote any constant independent of i, N , m0, x which is allowed to change from
line to line.

Proposition 3. Let U be a regular solution to the Master Equation and uN ,i (t, x) be defined as
in (32). Then, for j ̸= i ,

∆ j uN ,i (t, x) =
1

N − 1
DmU (t, xi , m N ,i

x , x j ) + τ N ,i, j (t, x), (33)

where τ N ,i, j
∈ C0([0, T ] × Σ N

;Rd ), ∥τ N ,i, j
∥ ≤

C
(N−1)2 .

Proof. Observe first that [∆ j uN ,i (t, x)]x j = 0 = [DmU (t, xi , m N ,i
x , x j )]x j by definition, so we

set [τ N ,i, j (t, x)]x j = 0. Consider then h ̸= x j : [∆ j uN ,i (t, x)]h = U (t, xi ,
1

N−1

∑
k ̸=i, j δxk +

1
N−1δh) − U (t, xi , m N ,i

x ) by definition. By standard computations we get

U

⎛⎝t, xi ,
1

N − 1

∑
k ̸=i, j

δxk +
1

N − 1
δh

⎞⎠− U (t, xi , m N ,i
x )

= U
(

t, xi , m N ,i
x +

1
N − 1

(δh − δx j )
)

− U (t, xi , m N ,i
x )

=

∫ 1
N−1

0

[
DmU (m N ,i

x + s(δh − δx j ), x j )
]

h
ds

=

∫ 1
N−1

0

([
DmU (m N ,i

x + s(δh − δx j ), x j )
]

h
+
[
DmU (m N ,i

x , x j )
]

h

−
[
DmU (m N ,i

x , x j )
]

h

)
ds

=
1

N − 1

[
DmU (m N ,i

x , x j )
]

h +

∫ 1
N−1

0

([
DmU (m N ,i

x + s(δh − δx j ), x j )
]

h

−
[
DmU (m N ,i

x , x j )
]

h

)
ds

=
1

N − 1

[
DmU (t, xi , m N ,i

x , x j )
]

h + O
(

1
(N − 1)2

)
,

where the last equality is derived by exploiting the Lipschitz continuity in m of DmU⏐⏐⏐⏐ ∫ 1
N−1

0

([
DmU (m N ,i

x + s(δh − δx j ), x j )
]

h
−
[
DmU (m N ,i

x , x j )
]

h

)
ds
⏐⏐⏐⏐

≤ C
∫ 1

N−1

0

⏐⏐s(δh − δx j )
⏐⏐ ds = O

(
1

(N − 1)2

)
.

For every component h of DmU we have found the thesis, and thus the same holds for the whole
vector. □
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In the next proposition we show that the uN ,i ’s almost solve the system (HJB):

Proposition 4. Under the assumptions of Theorem 1, the functions (uN ,i )i=1,...,N solve⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

∂uN ,i

∂t
(t, x) −

N∑
j=1, j ̸=i

α∗(x j ,∆
j uN , j ) · ∆ j uN ,i

+ H (xi ,∆
i uN ,i )

= F N ,i (x) + r N ,i (t, x)
uN ,i (T, x) = G(xi , m N ,i

x ),

(34)

with r N ,i
∈ C0([0, T ] × Σ N ), ∥r N ,i

∥ ≤
C
N .

Proof. We know that U solves

−∂tU + H (x,∆xU ) −

∫
Σ

DmU (t, x, m, y) · α∗(y,∆yU (t, y, m))dm(y) = F(x, m),

and U (T, x, m) = G(x, m).
Computing the equation in (t, xi , m N ,i

x ) we get (we omit the ∗ in α∗ for simplicity)

−∂tU (t, xi , m N ,i
x ) + H (xi ,∆

xU (t, xi , m N ,i
x ))

−

∫
Σ

DmU (t, xi , m N ,i
x , y) · α(y,∆xU (t, y, m N ,i

x ))dm N ,i
x (y)

= F(xi , m N ,i
x ),

with the correct final condition uN ,i (t, x) = U (T, xi , m N ,i
x ) = G(xi , m N ,i

x ). By definition of
empirical measure we can rewrite

−∂tU (t, xi , m N ,i
x ) + H (xi ,∆

xU (t, xi , m N ,i
x ))

−
1

N − 1

N∑
j=1, j ̸=i

DmU (t, xi , m N ,i
x , x j ) · α(x j ,∆

xU (t, x j , m N ,i
x ))

= F N ,i (x).

Thanks to Proposition 3, we have

1
N − 1

N∑
j=1, j ̸=i

DmU (t, xi , m N ,i
x , x j ) · α(x j ,∆

xU (t, x j , m N ,i
x ))

=

N∑
j=1, j ̸=i

∆ j uN ,i (t, x) · α(x j ,∆
xU (t, x j , m N ,i

x ))

−

N∑
j=1, j ̸=i

τ N ,i, j (t, x) · α(x j ,∆
xU (t, x j , m N ,i

x ))

=: (1) + (2).

For the first term we add and subtract the quantity α(x j ,∆
xU (t, x j , m N , j

x )):

(1) =

∑
j ̸=i

∆ j uN ,i (t, x) · α(x j ,∆
xU (t, x j , m N ,i

x )) − α(x j ,∆
xU (t, x j , m N , j

x ))

+

∑
j ̸=i

∆ j uN ,i (t, x) · α(x j ,∆
xU (t, x j , m N , j

x ))

= (A) + (B).
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For (A) we have, using first the Lipschitz continuity of α with respect to the second variable and
then the Lipschitz continuity of ∆xU with respect to m:

(A) ≤

∑
j ̸=i

∆ j uN ,i (t, x) · (∆xU (t, x j , m N ,i
x ) − ∆xU (t, x j , m N , j

x ))

≤ C
∑
j ̸=i

∥∆ j uN ,i
∥ · |m N ,i

x − m N , j
x |

≤
C

N − 1

∑
j ̸=i

∥∆ j uN ,i
∥ ≤

C
N

,

where the last inequality is a consequence of (33) and the uniform bound on ∥DmU∥ for the
solution to (M). Part (B) of (1) is instead what we want to obtain in the equation for uN ,i , so we
leave it as it is.

For the term (2), we simply note that α is bounded from above by definition, and thus the
whole term (2) is also of order O

( 1
N

)
. □

The central part of the proof of the convergence is based on comparing the optimal trajectories
associated to vN ,i with the ones associated to uN ,i . Hence, consider the processes

X i (t) = Z i +

∫ t

0

∫
Ξ

∑
y∈Σ

(y − X i (s−))1]0,α̃i
y (s,Xs− )[(ξy)Ni (ds, dξ ), t ∈ [0, T ] (35)

where α̃i
y(t, X t ) := [α∗(X i (t),∆i uN ,i (t, X t ))]y . Observe that the processes X and Y are

exchangeable. For future use, let us also recall the inequalities

⏐⏐m N
x − m N

y
⏐⏐ ≤ Cd1(m N

x , m N
y ) ≤

C
N

N∑
i=1

|xi − yi | (36)

for every x, y ∈ Σ N , where the first inequality comes from the equivalence of all the metrics in
P(Σ ) and the second is well-known for the Wasserstein distance d1. The result needed to prove
the main theorems is the following

Theorem 3. With the notation introduced above, under the assumptions of Theorem 1, we
have

E

[
sup

t∈[0,T ]
|Yi (t) − X i (t)|

]
≤

C
N

, (37)

E

[
sup

t∈[0,T ]
|m N

Y (t) − m N
X (t)|

]
≤

C
N

, (38)

E

[
sup

t∈[0,T ]
|uN ,i (t, Y t ) − vN ,i (t, Y t )|

2
+

∫ T

0

⏐⏐∆i uN ,i (t, Y t ) − ∆ivN ,i (t, Y t )
⏐⏐2 dt

]
≤

C
N 2 ,

(39)

1
N

N∑
i=1

|vN ,i (0, Z) − uN ,i (0, Z)| ≤
C
N

P-a.s. (40)
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Proof. In order to prove (39), we apply Itô Formula to the function Ψ (t, Y t ) = (uN ,i (t, Y t ) −

vN ,i (t, Y t ))2,

dΨ (t, Y t ) =
∂Ψ (t, Y t )

∂t
+

N∑
j=1

∫
Ξ

[Ψ (t, Ỹ
j
t− ) − Ψ (t, Y t−)]N j (dt, dξ ),

Ỹ
j
t =

⎛⎝Y1,t , . . . , Y j−1,t , Y j,t +

∑
y∈Σ

(y − Y j,t )1]0,α
j
y [(ξy), Y j+1,t , . . . , YN ,t

⎞⎠ ,

and, as above,

α j
y (t, Y t ) =

[
α∗(Y j,t ,∆

jvN , j (t, Y t ))
]

y .

It follows that

dΨ (t, Y t ) = 2(uN ,i (t, Y t ) − vN ,i (t, Y t ))(∂t uN ,i
− ∂tv

N ,i )

+

N∑
j=1

∫
Ξ

[(uN ,i (t, Ỹ
j
t− ) − vN ,i (t, Ỹ

j
t− ))2

− (uN ,i (t, Y t− ) − vN ,i (t, Y t− ))2]

N j (dt, dξ ).

Now, integrating on the time interval [t, T ] we get:

[uN ,i (T, Y T ) − vN ,i (T, Y T )]2

= [uN ,i (t, Y t ) − vN ,i (t, Y t )]2
+ 2

∫ T

t
(uN ,i (s, Y s) − vN ,i (s, Y s))

(∂t uN ,i (s, Y s) − ∂tv
N ,i (s, Y s))ds

+

N∑
j=1

∫ T

t

∫
Ξ

[(uN ,i (s, Ỹ
j
s− ) − vN ,i (s, Ỹ

j
s− ))2

− (uN ,i (s, Y s− ) − vN ,i (s, Y s− ))2]

N j (ds, dξ ).

For brevity, in the remaining part of the proof we set ui
t := uN ,i (t, Y t ) and vi

t := vN ,i (t, Y t ).
Next, we take the conditional expectation on the initial data Z, i.e. EZ

= E[ · |Y t = Z]; notice
that we are allowed to condition on such event since it has positive probability, thanks to the
bound from below on the jump rates. Applying again Lemma 3 of [10], we obtain

EZ[(ui
T − vi

T )2] = EZ[(ui
t − vi

t )
2] + 2EZ

[∫ T

t
(ui

s − vi
s)(∂t ui

s − ∂tv
i
s)ds

]
+

N∑
j=1

EZ
[∫ T

t
α j (s, Y s) · ∆ j [(ui

s − vi
s)2]ds

]
.

Let us first study the term EZ
[∫ T

t (ui
s − vi

s)(∂t ui
s − ∂tv

i
s)ds

]
. Applying Eqs. (34) and (HJB) we

get

EZ
[∫ T

t
(ui

s − vi
s)(∂t ui

s − ∂tv
i
s)ds

]
= EZ

[ ∫ T

t
(ui

s − vi
s)
{ N∑

j=1, j ̸=i

(
−α j (Y j,s,∆

j u j
s ) · ∆ j ui

s
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+ α j (Y j,s,∆
jv j

s ) · ∆ jvi
s + α j

· ∆ j ui
s

−α j
· ∆ j ui

s

)
− H (Yi,s,∆

ivi
s) + H (Yi,s,∆

i ui
s) − r N ,i (s, Y s)

}
ds
]
.

Recall that α j (∆ j u j
s ) =: α̃ j . Note that we also added and subtracted α j

· ∆ j ui
s in the last line

so that we can use the Lipschitz properties of H , α∗ and the bound on r N ,i to get the correct
estimates. Specifically, we can rewrite

EZ
[∫ T

t
(ui

s − vi
s)(∂t ui

s − ∂tv
i
s)ds

]
= EZ

[∫ T

t
(ui

s − vi
s)
{ N∑

j=1, j ̸=i

(
(α j

− α̃ j ) · ∆ j ui
s − α j

· (∆ j ui
s − ∆ jvi

s)
)

− H (Yi,s,∆
ivi

s) + H (Yi,s,∆
i ui

s) − r N ,i (s, Y s)
}

ds
]
.

Putting things together,

EZ[(ui
T − vi

T )2]

= EZ[(ui
t − vi

t )
2] + 2EZ

[∫ T

t
(ui

s − vi
s)(∂t ui

s − ∂tv
i
s)ds

]
+

N∑
j=1

EZ
[∫ T

t
α j (s, Y s) · ∆ j [(ui

s − vi
s)2]ds

]

= EZ[(ui
t − vi

t )
2] + 2EZ

[ ∫ T

t
(ui

s − vi
s)
{ N∑

j ̸=i

(
(α j

− α̃ j ) · ∆ j ui
s − α j

· (∆ j ui
s − ∆ jvi

s)
)

− H (Yi,s,∆
ivi

s) + H (Yi,s,∆
i ui

s) − r N ,i (s, Y s)
}

ds
]

+ EZ
[∫ T

t
αi (s, Y s) · ∆i [(ui

s − vi
s)2]ds

]
+

N∑
j ̸=i

EZ
[∫ T

t
α j (s, Y s) · ∆ j [(ui

s − vi
s)2]ds

]

= EZ[(ui
t − vi

t )
2] + 2EZ

⎡⎣∫ T

t
(ui

s − vi
s)

⎧⎨⎩
N∑

j ̸=i

(
(α j

− α̃ j ) · ∆ j ui
s − α j

·(∆ j ui
s − ∆ jvi

s)
)⎫⎬⎭ ds

+

∫ T

t

N∑
j ̸=i

1
2
α j

· ∆ j [(ui
s − vi

s)2]ds +

∫ T

t
(ui

s − vi
s)(−H (Yi,s,∆

ivi
s)

+H (Yi,s,∆
i ui

s) − r N ,i (s, Y s))ds
]

+ EZ
[∫ T

t
αi (s, Y s) · ∆i [(ui

s − vi
s)2]ds

]
.
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On the other hand, observing that ∆ j [(ui
− vi )2] = ∆ j (ui

− vi ) × (∆ j (ui
− vi ) + 2(1(ui

− vi ))),
× being the element by element product between vectors and 1 = (1, . . . , 1)†, the expression

EZ

⎡⎣∫ T

t
(ui

s − vi
s)

⎧⎨⎩
N∑

j=1, j ̸=i

(
−2α j

· (∆ j ui
s − ∆ jvi

s)
)⎫⎬⎭ ds

+

∫ T

t

N∑
j=1, j ̸=i

(
α j

· ∆ j [(ui
s − vi

s)2]
)

ds

⎤⎦
can be simplified as follows

EZ

⎡⎣∫ T

t
(ui

s − vi
s)

⎧⎨⎩
N∑

j=1, j ̸=i

(
−2α j

· (∆ j ui
s − ∆ jvi

s)
)⎫⎬⎭ ds

+

∫ T

t

N∑
j=1, j ̸=i

(
α j

· ∆ j [(ui
s − vi

s)2]
)

ds

⎤⎦
=

N∑
j=1, j ̸=i

EZ
[ ∫ T

t

{
−2α j

· (ui
s − vi

s)(∆ j ui
s − ∆ jvi

s)

+α j
· (∆ j (ui

s − vi
s) × (∆ j (ui

s − vi
s) + 2(1(ui

s − vi
s))))

}
ds
]

=

N∑
j=1, j ̸=i

EZ
[∫ T

t
α j

· (∆ j (ui
s − vi

s))2ds
]

.

Thus, we have found

0 =EZ[(ui
T − vi

T )2]

= EZ[(ui
t − vi

t )
2] + 2EZ

[∫ T

t
(ui

s − vi
s)
{ N∑

j=1, j ̸=i

(
(α j

− α̃ j ) · ∆ j ui
s

)
− H (Yi,s,∆

ivi
s) + H (Yi,s,∆

i ui
s) − r N ,i (s, Y s)

}
ds
]

+ EZ
[∫ T

t
αi (s, Y s) · ∆i [(ui

s − vi
s)2]ds

]
+

N∑
j=1, j ̸=i

EZ
[∫ T

t
α j

· (∆ j (ui
s − vi

s))2ds
]

.

Now, using again the expression for ∆i ((ui
s − vi

s)2),

EZ
[∫ T

t
αi (s, Y s) · ∆i [(ui

s − vi
s)2]ds

]
= EZ

[∫ T

t
αi (s, Y s) · (∆i (ui

s − vi
s))2ds

]
+ EZ

[∫ T

t
αi (s, Y s) · (∆i (ui

s − vi
s) × 2(1(ui

s − vi
s)))ds

]
,
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so that we can rewrite the previous as

EZ[(ui
t − ui

t )
2] +

N∑
j=1

EZ
[∫ T

t
α j

· (∆ j (ui
s − vi

s))2ds
]

= −2EZ

⎡⎣∫ T

t
(ui

s − vi
s)

⎧⎨⎩
N∑

j=1, j ̸=i

(
(α j

− α̃ j ) · ∆ j ui
s

)
− H (Yi,s,∆

ivi
s)

+H (Yi,s,∆
i ui

s) − r N ,i (s, Y s)

⎫⎬⎭ ds

⎤⎦
− EZ

[∫ T

t
αi (s, Y s) · (∆i (ui

s − vi
s) × 2(1(ui

s − vi
s)))ds

]
.

Recalling that α j
≥ 0 (since it is a vector of transition rates), we can estimate

EZ[(ui
t − vi

t )
2] +

N∑
j=1

EZ
[∫ T

t
α j

· (∆ j (ui
s − vi

s))2ds
]

≤ 2EZ

⎡⎣∫ T

t

⏐⏐ui
s − vi

s

⏐⏐⎧⎨⎩
N∑

j ̸=i

⏐⏐(α j
− α̃ j ) · ∆ j ui

s

⏐⏐+ ⏐⏐H (Yi,s,∆
ivi

s) − H (Yi,s,∆
i ui

s)
⏐⏐

+
⏐⏐r N ,i (s, Y s)

⏐⏐⎫⎬⎭ ds

⎤⎦
+ 2EZ

[∫ T

t

⏐⏐ui
s − vi

s

⏐⏐ · ⏐⏐αi (s, Y s) · ∆i (ui
s − vi

s)
⏐⏐ ds

]
.

This also implies, erasing the terms with j ̸= i in the left hand side,

EZ[(ui
t − vi

t )
2] + EZ

[∫ T

t
αi

· (∆i (ui
t − vi

t ))
2ds

]

≤ 2EZ

⎡⎣∫ T

t

⏐⏐ui
s − vi

s

⏐⏐⎧⎨⎩
N∑

j ̸=i

⏐⏐(α j
− α̃ j ) · ∆ j ui

s

⏐⏐+ ⏐⏐H (Yi,s,∆
ivi

s) − H (Yi,s,∆
i ui

s)
⏐⏐

+
⏐⏐r N ,i (s, Y s)

⏐⏐⎫⎬⎭ ds

⎤⎦
+ 2EZ

[∫ T

t

⏐⏐ui
s − vi

s

⏐⏐ ⏐⏐αi (s, Y s) · ∆i (ui
s − vi

s)
⏐⏐ ds

]
.

For the boundedness of αi from below and above (recall that the admissible controls α are such
that α ∈ A = [κ, M]d ), we get

EZ[(ui
t − vi

t )
2] + κEZ

[∫ T

t

⏐⏐∆i (ui
s − vi

s)
⏐⏐2 ds

]

≤ 2EZ

⎡⎣∫ T

t

⏐⏐ui
s − vi

s

⏐⏐⎧⎨⎩
N∑

j ̸=i

⏐⏐(α j
− α̃ j ) · ∆ j ui

s

⏐⏐+ ⏐⏐H (Yi,s,∆
ivi

s) − H (Yi,s,∆
i ui

s)
⏐⏐
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+
⏐⏐r N ,i (s, Y s)

⏐⏐⎫⎬⎭ ds

⎤⎦
+ 2CEZ

[∫ T

t

⏐⏐ui
s − vi

s

⏐⏐ ⏐⏐∆i (ui
s − vi

s)
⏐⏐ ds

]
.

We now use the Lipschitz continuity of H and α∗ (assumption (H1)) and the bounds on
∥r N ,i

∥ ≤
C
N and ∥∆ j ui

∥ ≤
1
N ∥DmU∥ ≤

C
N proved in Propositions 3 and 4 to obtain

EZ[(ui
t − vi

t )
2] + κEZ

[∫ T

t

⏐⏐∆i (ui
s − vi

s)
⏐⏐2 ds

]

≤ 2EZ

⎡⎣∫ T

t

⏐⏐ui
s − vi

s

⏐⏐⎧⎨⎩C
N

N∑
j=1, j ̸=i

⏐⏐∆ j u j
s − ∆ jv j

s

⏐⏐+ C
⏐⏐∆i (vi

s − ui
s)
⏐⏐+ C

N

⎫⎬⎭ ds

⎤⎦
+ 2CEZ

[∫ T

t

⏐⏐ui
s − vi

s

⏐⏐ ⏐⏐∆i (ui
s − vi

s)
⏐⏐ ds

]
≤

C
N
EZ

[∫ T

t
|ui

s − vi
s |ds

]
+

C
N

∑
j ̸=i

EZ
[∫ T

t
|ui

s − vi
s |
⏐⏐∆ j (u j

s − v j
s )
⏐⏐ ds

]

+ CEZ
[∫ T

t
|ui

s − vi
s |
⏐⏐∆i (ui

s − vi
s)
⏐⏐ ds

]
.

By the convexity inequality AB ≤ ϵ A2
+

B2

4ϵ
we can further estimate the right hand side to

get

EZ[(ui
t − vi

t )
2] + κEZ

[∫ T

t

⏐⏐∆i (ui
s − vi

s)
⏐⏐2 ds

]
≤

C
N 2 + CEZ

[∫ T

t
|ui

s − vi
s |

2
ds
]

+ κ
1

2N

N∑
j=1

EZ
[∫ T

t

⏐⏐∆ j (u j
s − v j

s )
⏐⏐2 ds

]
.

By Gronwall’s Lemma, we obtain

sup
t∈[0,T ]

EZ[(ui
t − vi

t )
2] + κEZ

[∫ T

0

⏐⏐∆i (ui
s − vi

s)
⏐⏐2 ds

]
≤

C
N 2 +

κ

2N

N∑
j=1

EZ
[∫ T

0

⏐⏐∆ j (u j
s − v j

s )
⏐⏐2 ds

]
. (41)

Taking the expectation and using the exchangeability of the processes (Y j,t ) j=1,...N we obtain
(39).

In order to derive (40), we consider (41) in t = 0 and average over i = 1, . . . , N , so that we
get

1
N

N∑
i=1

EZ
|uN ,i (0, Z) − vN ,i (0, Z)|

2
≤

C
N 2 ,

which immediately implies (40) almost surely.
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We now estimate the difference X i − Yi . Thanks to Eqs. (28) and (35) and the Lipschitz
continuity in x and α of the dynamics given by f (see Lemma 2 in [10]), we obtain

E

[
sup

s∈[0,t]
|X i,s − Yi,s |

]

≤ CE
[∫ t

0

⏐⏐α∗(X i,s,∆
i uN ,i (X s)) − α∗(Yi,s,∆

ivN ,i (Y s))
⏐⏐ ds

]
+ CE

[∫ t

0

⏐⏐X i,s − Yi,s
⏐⏐ ds

]
≤ CE

[∫ t

0
|X i,s − Yi,s |ds

]
+ CE

[∫ T

0

⏐⏐∆i uN ,i (Y s) − ∆ivN ,i (Y s)
⏐⏐ ds

]
+ CE

[∫ t

0

⏐⏐⏐∆xU
(

s, X i,s, m N ,i
Xs

)
− ∆xU

(
s, Yi,s, m N ,i

Y s

)⏐⏐⏐ ds
]

≤
C
N

+ CE

[∫ t

0
sup

r∈[0,s]
|X i,r − Yi,r |ds

]
+ CE

[∫ t

0
sup

r∈[0,s]

⏐⏐m N
Xr

− m N
Yr

⏐⏐ ds

]
, (42)

where we applied (39) and the Lipschitz continuity in m of ∆xU in the last inequality. Then
inequality (36) and the exchangeability of (X, Y ) yield

E

[
sup

s∈[0,t]
|X i,s − Yi,s |ds

]
≤

C
N

+ CE

[∫ t

0
sup

r∈[0,s]
|X i,r − Yi,r |ds

]
and by Gronwall’s inequality we get (37). Finally (37), applying again (36), gives (38). □

3.2. Proofs of the main results

We are now in the position to prove the main results.

Proof of Theorem 1. For proving (26), we just compute (40) – which can be derived for any
t0 ∈ [0, T ] when considering processes starting from t0 – for Z uniformly distributed on Σ : this
yields

1
N

N∑
i=1

|U (t0, xi , m N ,i
x ) − vN ,i (t0, x)| ≤

C
N

.

Then, we can replace U (t0, xi , m N ,i
x ) with U (t0, xi , m N

x ) using the Lipschitz continuity of U with
respect to m, the additional error term being of order 1/N .

For (27), we compute

∥wN ,i (t0, . . . , m0) − U (t0, . . . , m0)∥L1(m0)

=

d∑
xi =1

|wN ,i (t0, xi , m0) − U (t0, xi , m0)|m0(xi )

=

d∑
xi =1

⏐⏐⏐⏐⏐⏐
d∑

x1,...,xi−1,xi+1,...,xN =1

vN ,i (t, x)
∏
j ̸=i

m0(x j ) − U (t, xi , m0)

⏐⏐⏐⏐⏐⏐m0(xi )
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=

d∑
xi =1

⏐⏐⏐⏐⏐⏐
d∑

x1,...,xi−1,xi+1,...,xN =1

⎧⎨⎩vN ,i (t, x)
∏
j ̸=i

m0(x j ) − uN ,i (t, x)
∏
j ̸=i

m0(x j )

+uN ,i (t, x)
∏
j ̸=i

m0(x j )

⎫⎬⎭− U (t, xi , m0)

⏐⏐⏐⏐⏐⏐m0(xi )

≤ E[|vN ,i (t, Z) − uN ,i (t, Z)|] +

d∑
x1,...,xN =1

|uN ,i (t, x) − U (t, xi , m0)|
N∏

j=1

m0(x j ),

(43)

where in the last inequality the initial data Z = (Z1, . . . , Z N ) are distributed as m0.
By (39), the first term in (43) is of order 1/N . For the second term we further estimate, using

again the Lipschitz continuity of U with respect to m,
d∑

x1,...,xN =1

|uN ,i (t, x) − U (t, xi , m0)|
N∏

j=1

m0(x j )

=

d∑
x1,...,xN =1

|U (t, xi , m N ,i
x ) − U (t, xi , m0)|

N∏
j=1

m0(x j )

≤ CE
[

d1(m N ,i
Z , m0)

]
≤

C
√

N
,

where in the last inequality we used that E
[
d1(m N

Z , m0)
]

≤
C

√
N

, thanks to Theorem 1 of [19],
where Z := (Z1 . . . , Z N ), the Z i ’s are i.i.d. initial data, m0-distributed, d1 is the 1-Wasserstein
distance and m N

Z is the corresponding empirical measure. Overall, we have bounded (43) by a
term of order 1/

√
N , and thus (27) is also proved. □

Finally, we get to the proof of the propagation of chaos (Theorem 2). Recall that the Yi,t ’s are
the optimal processes, i.e. the solutions to system (28), the X i,t ’s are the processes associated
to the functions uN ,i , i.e. they solve system (35), while the X̃ i,t ’s – to which we would like to
prove convergence – are the decoupled limit processes (they solve system (29)). First, we need
the following lemma, whose proof can be found for example in [32]:

Lemma 1. Let X̃ t = (X̃ i,t )i∈1,...,N be N i.i.d. processes with values in R, with Law(X̃ i,t ) = m(t).
Then

E

[
sup

t∈[0,T ]

⏐⏐⏐m N ,i
X̃ t

− m t

⏐⏐⏐] ≤ CE

[
sup

t∈[t0,T ]
d1(m N ,i

X̃ t
, m t )

]
≤ C N−1/9. (44)

Proof of Theorem 2. The assertion of the theorem is proved if we show that

E

[
sup

t∈[0,T ]
|X i,t − X̃ i,t |

]
≤ C N−1/9. (45)

Indeed, by the triangle inequality and (37) in Theorem 3 we can estimate

E

[
sup

t∈[0,T ]
|Yi,t − X̃ i,t |

]
≤ E

[
sup

t∈[0,T ]
|Yi,t − X i,t |

]
+ E

[
sup

t∈[0,T ]
|X i,t − X̃ i,t |

]
≤ C(N−1

+ N−1/9).
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We are then left to prove (45). As in the proof of (37), we have

ρ(t) := E

[
sup

s∈[0,t]
|X i,s − X̃ i,s |

]

≤ E
[∫ t

0

⏐⏐⏐α∗(X i,s,∆
i uN ,i (X s)) − α∗(X̃ i,s,∆

xU (s, X̃ i,s, m(s)))
⏐⏐⏐ ds

+

∫ t

0

⏐⏐⏐X i,s − X̃ i,s

⏐⏐⏐ ds
]

≤ E
[∫ t

0

⏐⏐⏐α∗(X i,s,∆
xU (r, X i,s, m N ,i

Xs
)) − α∗(X i,s,∆

xU (s, X̃ i,s, m N ,i
X̃s

))
⏐⏐⏐ ds

+

∫ t

0

⏐⏐⏐X i,s − X̃ i,s

⏐⏐⏐ ds

+

∫ t

0

⏐⏐⏐α∗(X i,s,∆
xU (s, X̃ i,s, m N ,i

X̃s
)) − α∗(X̃ i,s,∆

xU (s, X̃ i,s, m(s)))
⏐⏐⏐ ds

]
.

By the Lipschitz continuity of the optimal controls, and of ∆xU , we can write

ρ(t) ≤ C
∫ t

0
E
[
|X i,s − X̃ i,s | +

⏐⏐⏐m N ,i
X̃s

− m N ,i
Xs

⏐⏐⏐+ ⏐⏐⏐m N ,i
X̃s

− m(s)
⏐⏐⏐] ds

≤ C
∫ t

0
E

⎡⎣|X i,s − X̃ i,s | +
1

N − 1

∑
j ̸=i

|X j,s − X̃ j,s | +

⏐⏐⏐m N ,i
X̃s

− m(s)
⏐⏐⏐
⎤⎦ ds.

Using (44) of Lemma 1 and the exchangeability of the processes, we obtain

ρ(t) ≤ C
∫ t

0

⎛⎝E

[
sup

r∈[0,s]
|X i,r − X̃ i,r |

]
+

1
N − 1

∑
j ̸=i

E

[
sup

r∈[0,s]
|X j,r − X̃ j,r |

]⎞⎠ ds

+ CE

[
sup

r∈[0,T ]

⏐⏐⏐m N ,i
X̃r

− mr

⏐⏐⏐]

≤ C
∫ t

0
ρ(s)ds + C N−1/9,

which, by Gronwall’s Lemma, concludes the proof of (30). Finally (31) follows from (30) and
(44), using also (36). □

4. Fluctuations and large deviations

The convergence results, Theorems 1 and 2, allow to derive a Central Limit Theorem and
a Large Deviation Principle for the asymptotic behavior of the empirical measure process of
the N -player game optimal trajectories. First of all, we recall from Proposition 2 that, for any
i , the value function vN ,i of player i in the N -player game is invariant under permutations of
(x1, . . . , xi−1, xi+1, . . . , xN ). This is equivalent to say that the value functions can be viewed as
functions of the empirical measure of the system, i.e. there exists a map V N

: [0, T ]×Σ × P(Σ )
such that

vN ,i (t, x) = V N (t, xi , m N ,i
x ) (46)

for any i = 1, . . . , N , t ∈ [0, T ] and x ∈ Σ N .
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4.1. Dynamics of the empirical measure process

We consider the empirical measure process of the optimal evolution Y – defined in (28) – of
the N -player game. If the system is in x at time t , then the rate at which player i goes from xi to
y is given, via the optimal control, by

α∗

y(xi ,∆
i V N (t, xi , m N ,i

x )) =: Γ N
xi ,y(t, m N

x ), (47)

i.e. by a function Γ N which depends only on the empirical measure m N
x and on the number of

players N .
Thus the empirical measure of the system (m N

t )t∈[0,T ], m N
t := m N

Y (t) =
1
N

∑N
i=1 δYi,t , evolves

as a (time-inhomogeneous) Markov process on [0, T ], with values in SN := P(Σ ) ∩
1
N Z

d . The
number of players in state x , when the empirical measure is m, is Nmx . Hence the jump rate
of m N in the direction 1

N (δy − δx ) at time t is NmxΓ
N
x,y(t, m). Therefore the generator of the

time-inhomogeneous Markov process m N is given, at time t , by

LN
t g(m) := N

∑
x,y∈Σ

mxΓ
N
x,y(t, m)

[
g
(

m +
1
N

(δy − δx )
)

− g(m)
]

, (48)

for any g : SN −→ R.
Theorem 2 implies that the empirical measures converge in L1 – on the space of trajectories

D([0, T ], P(Σ )) – to the deterministic flow of measures m which is the unique solution of the
Mean Field Game system, whose dynamics is given by the KFP ODE⎧⎨⎩

d
dt

m(t) = Γ (t, m(t))†m(t)

m(0) = m0,
(49)

where Γ is the matrix defined by

Γx,y(t, m) := α∗

y(x,∆xU (t, x, m)) (50)

and U is the solution to the Master Equation. Viewing m(t) as a Markov process – and so we
will write m t in this section – , its infinitesimal generator is given, at time t , by

Lt g(m) :=

∑
x,y∈Σ

mxΓx,y(t, m)[Dm g(m, x)]y (51)

for any g : P(Σ ) −→ R. Thanks to (8), the generator can be equivalently written as

Lt g(m) :=

∑
x,y∈Σ

mxΓx,y(t, m)[Dm g(m, 1)]y = m†Γ (t, m)Dm g(m, 1). (52)

In order to prove the asymptotic results, we will also consider the empirical measure of the
process X defined in (35), in which each player chooses the same control Γx,y independent of
N . We denote by ηN

t :=
1
N

∑N
i=1 δXi (t) the empirical measure process of X , whose generator is

given, for any g : P(Σ ) −→ R, by

MN
t g(m) := N

∑
x,y∈Σ

mxΓx,y(t, m)
[

g
(

m +
1
N

(δy − δx )
)

− g(m)
]

. (53)

4.2. Central limit theorem

A natural refinement of the Law of Large Numbers (31) consists in studying the fluctuations
around the limit, that is the asymptotic distribution of m N

t − m t .
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This can be done through a functional Central Limit Theorem: we define the fluctuation flow

ρN
t :=

√
N (m N

t − m t ) t ∈ [0, T ] (54)

and study its asymptotic behavior as N tends to infinity. We follow a classical weak convergence
approach based on uniform convergence of the generator of the fluctuation flow (54) to a limiting
generator of a diffusion process to be determined; see e.g. [12] for reference. Before stating the
theorem we observe that the process (54) has values in P0(Σ ), which in the following we treat as
a subset of Rd .

Theorem 4 (Central Limit Theorem). Let U be a regular solution to the Master Equation and
assume (H1). Then the fluctuation flow ρN

t in (54) converges, as N → ∞, in the sense of weak
convergence of stochastic processes, to a limiting Gaussian process ρt which is the solution of
the linear SDE{

dρt =
(
Γ (t, m t )†ρt + b(t, m t , ρt )

)
dt + σ (t, m t )d Bt ,

ρ0 = ρ̄,
(55)

where ρ̄ is the limit of ρN
0 in distribution, B is a standard d-dimensional Brownian motion, Γ

is the transition rate matrix in (50), b ∈ Rd is linear in µ and defined, for any y ∈ Σ and
µ ∈ P0(Σ ), by

b(t, m, µ)y :=

∑
x∈Σ

mx
[
DmΓx,y(t, m, 1) · µ

]
, (56)

and σ ∈ Rd×d is given by the relations

(σ 2)x,y(t, m) = −(mxΓx,y(t, m) + m yΓy,x (t, m)), for x ̸= y, (57)

(σ 2)x,x (t, m) =

∑
y ̸=x

(m yΓy,x (t, m) + mxΓx,y(t, m)). (58)

In particular the matrix σ 2 is the opposite of the generator of a Markov chain, is symmetric and
positive semidefinite with one null eigenvalue, and the same properties hold for σ , meaning that
ρt ∈ P0(Σ ) for any t.

Proof. The key observation is that we can reduce ourselves to study the asymptotics of the
fluctuation flow

µN
t :=

√
N (ηN

t − m t ), (59)

which is more standard since ηN
t , whose generator M is defined in (53), is the empirical measure

of an uncontrolled system of N mean-field interacting particles. Indeed, by (38) we have that√
N (m N

− ηN ) tends to 0 almost surely as N goes to infinity.
Thus, it remains to prove the convergence in law of (59) to the solution to (55). The

convergence of µN
0 (and ρN

0 ) to the initial condition ρ̄ follows from the Central Limit Theorem
for the i.i.d. sequence of initial conditions Z i in systems (22) and (28). Then, we compute the
generator of (59) for t ≥ 0. We note that µN

t is obtained from ηN
t through a time dependent,

linear invertible transformation Φt : SN → P0(Σ ) ⊂ Rd , defined by

Φt (ϑ) :=
√

N (ϑ − m t ),

with inverse Φ−1
t (µ) := m t +

µ
√

N
. Thus, the generator HN

t of (59) can be written as

HN
t g(µ) = MN

t [g ◦ Φt ](Φ−1
t (µ)) +

∂

∂t
[g ◦ Φt ](Φ−1

t (µ)), (60)
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for any g : P0(Σ ) → R regular and with compact support (we can extend the definition of g to be
a smooth function in the whole space Rd , so that the usual derivatives are well defined). We have

∂

∂t
[g ◦ Φt ](Φ−1

t (µ)) = −
√

N∇µg(µ) ·
d
dt

m t = −
√

N∇µg(µ) ·
(
Γ (t, m t )

† m t
)

= −
√

N
∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t, m t )(m t )x .

where the second equality follows from the KFP equation for m t . For the remaining part in (60),
we have

MN
t [g ◦ Φt ](Φ−1

t (µ)) = N
∑

x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
×

{
[g ◦ Φt ]

(
m t +

µ
√

N
+

1
N

(δy − δx )
)

−[g ◦ Φt ]
(

m t +
µ

√
N

)}
= N

∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
×

{
g
(

µ +
1

√
N

(δy − δx )
)

− g(µ)
}

.

Thus, we have found

HN
t g(µ) = N

∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
×

{
g
(

µ +
1

√
N

(δy − δx )
)

− g(µ)
}

−
√

N
∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t, m t )(m t )x .

In order to perform a Taylor expansion of the generator, we first develop the term

g
(

µ +
1

√
N

(δy − δx )
)

− g(µ)

=
1

√
N

∇µg(µ) · (δy − δx ) +
1

2N
(δy − δx )†D2

µµg(µ)(δy − δx )

+ O
(

1
N 3/2

)
.

Substituting, we get

HN
t g(µ) =

√
N
∑

x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
∇µg(µ) · (δy − δx )

+
1
2

∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
(δy − δx )†D2

µµg(µ)(δy − δx )

−
√

N
∑

x,y∈Σ

∂

∂µy
g(µ)Γx,y(t, m t )(m t )x + O

(
1

√
N

)
.
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Now, we note that∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
∇µg(µ) · (δy − δx )

=

∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
∂

∂µy
g(µ),

since
∑

y Γx,y = 0. This property allows us to rewrite

HN
t g(µ) =

∑
x,y∈Σ

µxΓx,y

(
t, m t +

µ
√

N

)
∂

∂µy
g(µ)

+
√

N
∑

x,y∈Σ

(m t )x
∂

∂µy
g(µ)

[
Γx,y

(
t, m t +

µ
√

N

)
− Γx,y(t, m t )

]
+

1
2

∑
x,y∈Σ

(
m t +

µ
√

N

)
x
Γx,y

(
t, m t +

µ
√

N

)
(δy − δx )†D2

µµg(µ)(δy − δx )

+ O
(

1
√

N

)
.

Then, using the Lipschitz continuity of Γ as we did in Proposition 3, we linearize the term

Γx,y

(
t, m t +

µ
√

N

)
− Γx,y(t, m t ) =

1
√

N
DmΓx,y(t, m t , 1) · µ + O

(
1
N

)
.

We thus deduce that

lim
N→∞

sup
t∈[0,T ]

sup
µ∈P0(Σ )

|HN
t g(µ) − Ht g(µ)| = 0

for any g, the convergence being of order 1
√

N
, where

Ht g(µ) :=

∑
x,y∈Σ

µxΓx,y (t, m t )
∂

∂µy
g(µ)

+

∑
x,y∈Σ

(m t )x
[
DmΓx,y(t, m t , 1) · µ

] ∂

∂µy
g(µ) (61)

+
1
2

∑
x,y∈Σ

(m t )x Γx,y (t, m t ) (δy − δx )†D2
µµg(µ)(δy − δx ).

The proof is then completed if we show that the generator (61) is associated to the SDE (55).
The drift component can be immediately identified, since∑

x,y∈Σ

µxΓx,y (t, m t )
∂

∂µy
g(µ) =

(
Γ (t, m t )†µ

)
· ∇µg(µ),

and ∑
x,y∈Σ

(m t )x
[
DmΓx,y(t, m t , 1) · µ

] ∂

∂µy
g(µ) = b(t, µ) · ∇µg(µ).

For the diffusion component, we first note that, for each x, y ∈ Σ ,

(δy − δx )†D2
µµg(µ)(δy − δx ) =

∂2

∂µyµy
g(µ) +

∂2

∂µxµx
g(µ) −

∂2

∂µxµy
g(µ) −

∂2

∂µyµx
g(µ),
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so that
1
2

∑
x,y∈Σ

(δy − δx )†D2
µµg(µ)(δy − δx )(m t )xΓx,y(t, m t )

=
1
2

∑
x,y∈Σ

[
∂2

∂µyµy
g(µ) +

∂2

∂µxµx
g(µ) −

∂2

∂µxµy
g(µ) −

∂2

∂µyµx
g(µ)

]
(m t )xΓx,y(t, m t ),

which is equal to

1
2

T r (σ 2(t, m t )D2
µµg(µ)) =

1
2

∑
x,y∈Σ

(σ 2(t, m t ))x,y
∂2

∂µxµy
g(µ),

if we define (σ 2)x,y∈Σ by the relations (57) and (58).
Finally, we observe that the limiting process ρt defined in (55) takes values in P0(Σ ), as

required. Indeed, by diagonalizing σ 2 – which is symmetric and such that its rows sum to 0
– we get that all the eigenvectors, besides the constant one relative to the null eigenvalue, have
components which sum to 0 (by orthogonality). The same properties hold for the square root
matrix σ , so that Eq. (55) preserves the space P0(Σ ). □

4.3. Large deviation principle

We state the large deviation result, which is a sample path Large Deviation Principle on
D([0, T ]; P(Σ )). To define the rate function, we first introduce the local rate function λ : R −→

[0, +∞],

λ(r ) :=

⎧⎪⎨⎪⎩
r log r − r + 1 r > 0,

1 r = 0,

+∞ r < 0.

(62)

For t ∈ [0, T ], m ∈ P(Σ ) and µ ∈ P0(Σ ), define

Λ(t, m, µ) := inf

⎧⎨⎩ ∑
x,y∈Σ

mxΓx,y(t, m)λ
(

qx,y

Γx,y(t, m)

)
: qx,y ≥ 0,

∑
x,y∈Σ

qx,y(δy − δx ) = µ ∀x, y

⎫⎬⎭ (63)

and set, for γ : [0, T ] −→ P(Σ ),

I (γ ) :=

⎧⎨⎩
∫ T

0
Λ(t, γ (t), γ̇ (t))dt if γ is absolutely continuous and γ (0) = m0

+∞ otherwise.
(64)

We are now able to state the Large Deviation Principle. We equip D([0, T ]; P(Σ )) with the
Skorokhod J1-topology and denote by B(D([0, T ]; P(Σ ))) the associated Borel σ -algebra.

Theorem 5 (Large Deviation Principle). Let U be a regular solution to the Master Equation
and assume (H1). Also, assume that the initial conditions (m N

0 )N∈N are deterministic and
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limN m N
0 = m0. Then the sequence of empirical measure processes (m N )N∈N satisfies the sample

path Large Deviation Principle on D([0, T ]; P(Σ )) with the (good) rate function I . Specifically,

(i) if E ∈ B(D([0, T ]; P(Σ ))) is closed then

lim sup
N

1
N

logP(m N
∈ E) ≤ − inf

γ∈E
{I (γ )} (65)

(ii) if E ∈ B(D([0, T ]; P(Σ ))) is open then

lim inf
N

1
N

logP(m N
∈ E) ≥ − inf

γ∈E
{I (γ )} (66)

(iii) For any M < +∞ the set

{γ ∈ D([0, T ]; P(Σ )) : I (γ ) ≤ M} (67)

is compact.

We remark that the initial conditions are assumed to be deterministic only for simplicity,
otherwise there would be another term in the rate function I . Before proving Theorem 5, let us
give another characterization of I . For m ∈ P(Σ ) and θ ∈ Rd , define

Ψ (t, m, θ) :=

∑
x,y

mxΓx,y(t, m)
[
eθ ·(δy−δx )

− 1
]

(68)

and let Λ0 be the Legendre transform of Ψ :

Λ0(t, m, µ) = sup
θ∈Rd

[θ · µ − Ψ (t, m, θ)] . (69)

Define I 0 as in (64) but with Λ replaced by Λ0. Via a standard result in convex analysis,
Proposition 6.2 in [16] shows that Λ = Λ0 and then I = I 0.

Several authors studied large deviation properties of mean field interacting processes similar
to ours. However, most of them deal with the case in which the prelimit jump rates, m N

x Γ
N , are

constant and equal to the limiting rates mxΓ ; see e.g. [30,34] and [33]. We mention that in this
latter paper, as in many others, it is also assumed that the jump rates of the prelimit process are
bounded from below and away from 0; this does not apply to our case, since the number of agents
in a state x could be 0, implying that m N

x Γ
N
x,y might also be 0.

To prove the claim, we apply the results in [16]: to our knowledge, it is the first paper which
proves a Large Deviation Principle considering the jump rates of any player depending on N
(and deals also with systems with simultaneous jumps). Theorem 3.4.1 in [36] shows, however,
the exponential equivalence of the processes m N and the processes ηN given by (53) in which
the jump rates of the prelimit system m N

x Γ
N are replaced by mxΓ , which does not depend on

N ; the proof uses a coupling of the two Markov chains. The results in [16] and [36] are derived
assuming the following properties:

(1) the dynamics of any agent is ergodic and the jump rates are uniformly bounded;
(2) for each x, y ∈ Σ , the limiting jump rates Γx,y are Lipschitz continuous in m;
(3) for each x, y ∈ Σ , given any sequence m N

∈ SN such that limN m N
= m,

lim
N

sup
0≤t≤T

|m N
x Γ

N
x,y(t, m N ) − mxΓx,y(t, m)| = 0. (70)

Property (1) holds in our model since the jump rates of any player belong to [κ, M], while (2) is
true because of the regularity of the solution U to the Master Equation.
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Proof of Theorem 5. The fact that I is a good rate function, i.e. condition (iii), is proved for
instance in Theorem 1.1 of [15]. Due to Theorem 3.9 in [16], in order to prove the claims (i)
and (ii), it is enough to show (70). Actually [16] studies time homogeneous Markov processes,
but their results still apply in the non-homogeneous case if one proves the uniform in time
convergence given by (70).

Let x, y ∈ Σ , m N
= m N

x ∈ SN , x = (x1, . . . , xN ) ∈ Σ N and m N
x → m. Then⏐⏐[m N

x ]xΓ
N
x,y(t, m N

x ) − mxΓx,y(t, m)
⏐⏐ ≤

⏐⏐[m N
x ]xΓ

N
x,y(t, m N

x ) − [m N
x ]xΓx,y(t, m N

x )
⏐⏐

+
⏐⏐[m N

x ]xΓx,y(t, m N
x ) − mxΓx,y(t, m)

⏐⏐ =: A + B.

The first term goes to zero, uniformly over time, thanks to (26):

A =

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

1{xi =x}α
∗

y(xi ,∆
i V N (t, xi , m N ,i

x )) −
1
N

N∑
i=1

1{xi =x}α
∗

y(xi ,∆
xU (t, xi , m N

x ))

⏐⏐⏐⏐⏐
≤ C

1
N

N∑
i=1

⏐⏐∆i V N (t, xi , m N ,i
x ) − ∆xU (t, xi , m N

x )
⏐⏐

≤ C sup
x∈ΣN

1
N

N∑
i=1

⏐⏐vN ,i (t, x) − U (t, xi , m N
x )
⏐⏐ ≤

C
N

.

While B converges to 0, uniformly over t , for the regularity of U :

B =
⏐⏐[m N

x ]xα
∗

y(x,∆xU (t, x, m N
x )) − mxα

∗

y(x,∆xU (t, x, m))
⏐⏐

≤ |α∗

y(x,∆xU (t, x, m N
x ))||[m N

x ]x − mx | + C |mx ||∆
xU (t, x, m N

x ) − ∆xU (t, x, m)|

≤ C |m N
x − m|,

which tends to 0 by assumption. □

5. The Master equation: well-posedness and regularity

In this section we study the well-posedness of Eq. (M) under the assumptions of monotonicity
and regularity for F, G, H we already introduced (Mon), (RegFG), (RegH). A preliminary
remark is that, thanks to Proposition 1 in [21], if H is differentiable (and this is indeed the
case of our assumptions) then

α∗

x (y, p) = −
∂

∂px
H (y, p). (71)

For this reason, we will in the following use α∗ interchangeably with −Dp H .

Theorem 6. Assume (Mon), (RegFG) and (RegH). Then there exists a unique classical solution
to (M) in the sense of Definition 3. Moreover it is regular.

The proof exploits the renowned method of characteristics, which consists in proving that

U (t0, x, m0) := u(t0, x) (72)

solves (M), u being the solution of the Mean Field Game system (MFG) with initial time t0 and
initial distribution m0. In order to perform the computations, we have to prove the regularity in
m of the function U (t0, x, m) defined above. In particular, we have to show that DmU exists
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and is bounded. For this, we follow the strategy shown in [6] – which is developed in infinite
dimension – adapting it to our discrete setting. The idea consists in studying the well-posedness
and regularity properties of the linearized version of the system (MFG), whose solution will end
up coinciding with DmU ·µ0, for all possible directions µ0 ∈ P0(Σ ). In the remaining part of this
section, C will denote any constant which does not depend on t0, m0, and is allowed to change
from line to line.

5.1. Estimates on the mean field game system

We start by proving the well-posedness of the system (MFG)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

u(t, x) + H (x,∆x u(t, x)) = F(x, m(t)),

d
dt

mx (t) =

∑
y

m y(t)α∗

x (y,∆yu(t, y)),

u(T, x) = G(x, m(T )),
mx (t0) = mx,0,

and a useful a priori estimate on its solution (u, m). The existence of solutions follows from a
standard fixed point argument: see Proposition 4 of [21]. Let us remark that any flow of measures
m lies in the space{

m ∈ C0 ([t0, T ], P(Σ )) : |m(t) − m(s)| ≤ 2ν(Ξ )
√

d|t − s|
}

,

which is a compact and convex subset of the space of continuous functions, endowed with the
uniform norm (Lemma 4 of [10]). On the other hand the uniqueness of solution, under our
assumptions, is a consequence of the following a priori estimates. Before stating the proposition,
we recall the notation ∥u∥ := supt∈[t0,T ] maxx∈Σ |u(t, x)|.

Proposition 5. Assume (Mon), (RegFG) and (RegH). Let (u1, m1) and (u2, m2) be two solutions
to (MFG) with initial conditions m1(t0) = m1

0 and m2(t0) = m2
0. Then

∥u1 − u2∥ ≤ C |m1
0 − m2

0|, (73)

∥m1 − m2∥ ≤ C |m1
0 − m2

0|. (74)

Proof. Without loss of generality, let us set t0 = 0. Let u := u1 − u2 and m := m1 − m2. The
proof is carried out in three steps.

Step 1. Use of Monotonicity. The couple (u, m) solves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

u(t, x) + H (x,∆x u1(t, x)) − H (x,∆x u2(t, x)) = F(x, m1(t)) − F(x, m2(t))

d
dt

m(t, x) =

∑
y

[
m1(t, y)α∗

x (y,∆yu1(t, y)) − m2(t, y)α∗

x (y,∆yu2(t, y))
]

u(T, x) = G(x, m1(T )) − G(x, m2(T ))
m(0, x) = m1

0 − m2
0.

(75)
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Since d
dt

∑
x m(x)u(x) =

∑
x m(x) du

dt (x) +
∑

x
dm
dt (x)u(x), integrating over [0, T ] we have∑

x

[m(T, x)u(T, x) − m(0, x)u(0, x)]

=

∫ T

0

∑
x

[
H (x,∆x u1) − H (x,∆x u2) − F(x, m1) + F(x, m2)

]
(m1(x) − m2(x))dt

+

∫ T

0

∑
x

∑
y

[
m1(y)α∗

x (y,∆yu1) − m2(y)α∗

x (y,∆yu2)
]

(u1(x) − u2(x))dt.

Using the fact that
∑

x α∗
x (y) = 0 and the initial–final data, we can rewrite∑

x

[G(x, m1) − G(x, m2)](m1(x) − m2(x))

+

∫ T

0

∑
x

[F(x, m1) − F(x, m2)] (m1(x) − m2(x))dt

=

∑
x

(m1
0(x) − m2

0(x))(u1(0, x) − u2(0, x))

+

∫ T

0

∑
x

{
[H (x,∆x u1) − H (x,∆x u2)](m1(x) − m2(x))

+∆x u ·
[
m1(x)α∗(x,∆x u1) − m2(x)α∗(x,∆x u2)

]}
dt.

We now apply the monotonicity of F and G in the first line and the uniform convexity of H in
the last two lines. In fact, recalling that α∗

y(x, p) = −
∂

∂py
H (x, p), by (RegH) we have that, for

each x ,

H (x,∆x u1) − H (x,∆x u2) − ∆x u ·
∂

∂p
H (x,∆x u1) ≤ −C−1

|∆x u|
2

H (x,∆x u2) − H (x,∆x u1) + ∆x u ·
∂

∂p
H (x,∆x u2) ≤ −C−1

|∆x u|
2
.

Hence we obtain∫ T

0

∑
x

|∆x u(x)|2(m1(x) + m2(x))dt ≤ C(m1
0 − m2

0) · (u1(0) − u2(0)) (76)

Step 2. Estimate on Kolmogorov–Fokker–Planck equation. Integrating the second equation in
(75) over [0, t], we get

m(t, x) = m(0, x) +

∫ t

0

∑
y

[
m1(s, y)α∗

x (y,∆yu1(s, y)) − m2(s, y)α∗

x (y,∆yu2(s, y))
]

ds.

The boundedness and Lipschitz continuity of the rates give

max
x

|m(t, x)| ≤ C |m1
0 − m2

0| + C
∫ t

0
max

x
|m(s, x)|ds + C

∫ t

0

∑
x

|∆x u(s, x)|m1(s, x)ds

and hence, by Gronwall’s Lemma,

∥m∥ ≤ C |m1
0 − m2

0| + C
∫ T

0

√∑
x

|∆x u(t, x)|2m1(x)dt. (77)
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This, together with inequality (76), yields

∥m∥ ≤ C(|m1
0 − m2

0| + |m1
0 − m2

0|
1/2

∥u∥
1/2). (78)

Step 3. Estimate on Hamilton–Jacobi–Bellman equation. Integrating the first equation in (75)
over [t, T ], we get

u(t, x) = G(x, m1(T )) − G(x, m2(T ))

+

∫ T

t

[
F(x, m1) − F(x, m2) + H (x,∆x u2) − H (x,∆x u1)

]
ds.

Using the Lipschitz continuity of F, G, H and the bound maxx |∆x u(x)| ≤ C maxx |u(x)| we
obtain

max
x

|u(t, x)| ≤ C |m1(T ) − m2(T )| + C
∫ T

t
|m1(s) − m2(s)|ds + C

∫ T

t
max

x
|u(s, x)|ds

and then Gronwall’s Lemma gives

∥u∥ ≤ C∥m∥. (79)

This bound (79) and estimate (78) yield claim (74), using the convexity inequality AB ≤

εA2
+

1
4ε

B2 for A, B > 0. Again (79) finally proves claim (73). □

5.2. Linearized MFG system

For proving Theorem 6, we introduce the linearized version of system (MFG) around its
solutions and then prove that it provides the derivative of u(t0, x) with respect to the initial
condition m0.

As a preliminary step, we study a related linear system of ODE’s, which will come useful
several times.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

z(t, x) − α∗(x,∆x u) · ∆x z(t, x) = Dm F(x, m(t), 1) · ρ(t) + b(t, x)

d
dt

ρ(t, x) =

∑
y

ρyα
∗

x (y,∆yu) +

∑
y

m y(t)Dpα
∗

x (y,∆x u) · ∆yz + c(t, x)

z(T, x) = Dm G(x, m(T ), 1) · ρ(T ) + zT (x)
ρ(t0, ·) = ρ0,

(80)

The unknowns are z and ρ, while b, c, zT , ρ0 are given measurable functions, with c(t) ∈ P0(Σ ),
and (u, m) is the solution to (MFG). We state an immediate but useful estimate regarding the first
of the two equations in (80).

Lemma 2. If (RegFG) holds then the equation⎧⎨⎩−
d
dt

z(t, x) − α∗(x,∆x u) · ∆x z(t, x) = Dm F(x, m(t), 1) · ρ(t) + b(t, x)

z(T, x) = Dm G(x, m(T ), 1) · ρ(T ) + zT (x)
(81)

has a unique solution for each final condition zT (x) and satisfies

∥z∥ ≤ C
[
max

x
|zT (x)| + ∥ρ∥ + ∥b∥

]
. (82)
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Proof. The well-posedness of the equation is immediate from classical ODE’s theory. Integrating
over the time interval [t, T ] and using that

α∗(x,∆x u) · ∆x z(t, x) =

∑
y

α∗

y(x,∆x u)zy(t),

we find

z(t, x) − z(T, x) −

∫ T

t

∑
y

α∗

y(x,∆x u)zy(s)ds =

∫ T

t
Dm F · ρ(s)ds +

∫ T

t
b(s, x)ds.

Substituting the expression for z(T, x), and using the bound on the control and on the derivatives
of F and G we can estimate

max
x

|z(t, x)| ≤ max
x

|zT (x)| + C max
x

|ρ(T, x)|

+ C
∫ T

t
max

x
|z(s, x)|ds + C

∫ T

t
max

x
|ρ(s, x)|ds +

∫ T

t
max

x
|b(s, x)|ds

and thus, applying Gronwall’s Lemma and taking the supremum on t , we get (82). □

In the next result we prove the well-posedness of system (80) together with useful a priori
estimates on its solution.

Proposition 6. Assume (RegH), (Mon) and (RegFG). Then for any (measurable) b, c, zT , the
linear system (80) has a unique solution (z, ρ) ∈ C1([0, T ];Rd

× P0(Σ )). Moreover it satisfies

∥z∥ ≤ C(|zT | + ∥b∥ + ∥c∥ + |ρ0|) (83)

∥ρ∥ ≤ C(|zT | + ∥b∥ + ∥c∥ + |ρ0|). (84)

Proof. Without loss of generality we assume t0 = 0. We use a fixed-point argument to prove
the existence of a solution to (80). Uniqueness will be then implied by estimates (83) and (84),
thanks to the linearity of the system.

We define the map Φ : C0 ([0, T ]; P0(Σ )) → C0 ([0, T ]; P0(Σ )) as follows: for a fixed
ρ ∈ C0 ([0, T ]; P0(Σ )) we consider the solution z = z(ρ) to Eq. (81), and define Φ(ρ) to be
the solution of the second equation in (80) with z = z(ρ). In order to prove the existence of
a fixed point of Φ, which is clearly a solution to (80), we apply Leray–Schauder Fixed Point
Theorem. We remark the fact that more standard fixed point theorems are not applicable to this
situation since we cannot assume that ρ belongs to a compact subspace of C0 ([0, T ]; P0(Σ )),
since P0(Σ ) is not compact. First of all, we note that C0 ([0, T ]; P0(Σ )) is convex and that
the map Φ is trivially continuous, because of the linearity of the system. Moreover, using the
equation for ρ in system (80), it is easy to see that Φ is a compact map, i.e. it sends bounded sets
of C0 ([0, T ]; P0(Σ )) into bounded sets of C1 ([0, T ]; P0(Σ )). Thus, to apply Leray–Schauder
Theorem it remains to prove that the set {ρ : ρ = λΦ(ρ) for some λ ∈ [0, 1]} is bounded in
C0 ([0, T ]; P0(Σ )).

Let us fix a ρ such that ρ = λΦ(ρ). Then the couple (z, ρ) solves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

z(t, x) − α∗(x,∆x u) · ∆x z(t, x) = λ
(
Dm F(x, m(t), 1) · ρ(t) + b(t, x)

)
d
dt

ρ(t, x) =

∑
y

ρyα
∗

x (y,∆yu) + λ

(∑
y

m y(t)Dpα
∗

x (y,∆x u) · ∆yz + c(t, x)

)
z(T, x) = λ (Dm G(x, m(T ), 1) · ρ(T ) + zT (x))
ρ(t0, ·) = λρ0.
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First, we note that we can restrict to λ > 0, since otherwise ρ = 0. Therefore, we can use the
equations (for brevity we omit the dependence of α∗ on the second variable) to get

d
dt

∑
x

z(t, x)ρx (t) = − λ
∑

x

ρ(t, x)[Dm F(x, m(t), 1) · ρ(t) + b(t, x)]

−

∑
x,y

ρx (t)α∗

y(x)[z(t, y) − z(t, x)] +

∑
x,y

ρy(t)α∗

x (y)z(t, x)

+ λ
∑
x,y

m yz(t, x)Dpα
∗

x (y) · ∆yz + λ
∑

x

c(t, x)z(t, x).

The second line is 0, using the fact that
∑

x ρx (t) = 0 and changing x and y in the second double
sum. Integrating over [0, T ] and using the expression for z(T, x) we obtain

λ
∑

x

ρx (T )
[
Dm G(x, m(T ), 1) · ρ(T ) + zT (x)

]
− λz(0) · ρ0

= − λ

∫ T

0

∑
x

ρx (t)[Dm F(x, m(t), 1) · ρ(t) + b(t, x)]dt

+ λ

∫ T

0

∑
x,y

m y Dpα
∗

x (y) · ∆yz(z(t, x) − z(t, y))dt

+ λ

∫ T

0

∑
x

c(t, x)z(t, x)dt − λ

∫ T

0
ρ(t, x)Dm G(x, m(T ), 1) · ρ(T )dt,

where in the second term of the sum we have also used that
∑

x,y[m y Dpα
∗
x (y) ·∆yz]z(t, y) = 0.

Dividing by λ > 0 and bringing the terms with F and G on the left hand side, together with
the term in m and Dpα

∗, we can rewrite

−

∫ T

0

∑
x,y

m y∆
yzDpα

∗

x (y) · ∆yzdt +

∫ T

0

∑
x

ρ(t, x)[Dm F(x, m(t), 1) · ρ(t)]dt

+

∑
x

ρ(T, x)Dm G(x, m(T ), 1) · ρ(T )

= −

∑
x

zT (x)ρ(T, x) +

∑
x

z(0, x)ρ0(x) −

∫ T

0

∑
x

ρ(t, x)b(t, x)dt

+

∫ T

0

∑
x

c(t, x)z(t, x)dt.

We observe that, by (Mon) and (RegFG), we have∑
x

ρ(t, x)[Dm F(x, m(t), 1) · ρ(t)] ≥ 0, (85)∑
x

ρ(T, x)[Dm G(x, m(T ), 1) · ρ(T )] ≥ 0. (86)

Furthermore assumption (12) yields

−

∫ T

0

∑
x,y

m y∆
yzDpα

∗

x (y) · ∆yzdt ≥ C−1
∫ T

0

∑
x

mx |∆
x z|2dt,
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so that we can estimate the previous equality by

C−1
∫ T

0

∑
x

mx |∆
x z|2dt ≤ |zT · ρ(T )| + |z(0) · ρ0|

+

∫ T

0
|c(t) · z(t)| dt +

∫ T

0
|ρ(t) · b(t)| dt

≤ |zT ||ρ(T )| + |z(0)||ρ0| +

∫ T

0
|c(t)||z(t)|dt +

∫ T

0
|ρ(t)||b(t)|dt (87)

On the other hand, by the equation for ρ we have

ρ(t, x) = ρ0(x) +

∫ t

0

∑
y

ρ(s, y)α∗

x (y)ds +

∫ t

0

[∑
y

m y Dpα
∗

x (y) · ∆yz + c(x)

]
ds,

and thus

|ρ(t, x)| ≤ |ρ0(x)| + M
∫ t

0

∑
y

|ρy |ds + C
∫ t

0

[∑
y

m y |∆
yz| + |c(x)|

]
ds,

so that, by Gronwall’s Lemma and taking the sum for x ∈ Σ and the sup over t ∈ [0, T ],

∥ρ∥ ≤ C |ρ0| + C
∫ T

0

∑
x

√
mx

√
mx |∆

x z|dt + C∥c∥

≤ C |ρ0| + C
∫ T

0

√∑
x

(√
mx
)2
√∑

x

mx |∆x z|2dt + C∥c∥

= C |ρ0| + C
∫ T

0

√∑
x

mx |∆x z|2dt + C∥c∥

≤ C |ρ0| + C

√∫ T

0

∑
x

mx |∆x z|2dt + C∥c∥.

Now, we use estimate (87) on
∫ T

0

∑
x mx |∆

x z|2 that we found above to get

∥ρ∥ ≤ C∥c∥ + C |ρ0| + C
(

|ρ0| |z(0)| + |zT ||ρ(T )| +

∫ T

0
|c(t)||z(t)|

+

∫ T

0
|ρ(t)||b(t)|

) 1
2

≤ C∥c∥ + C |ρ0| + C
(
|z(0)|1/2

|ρ0|
1/2

+ |zT |
1/2

|ρ(T )|1/2
+ ∥c∥1/2

∥z∥1/2

+∥ρ∥
1/2

∥b∥
1/2) .

We further estimate the right hand side using bound (82):

∥ρ∥ ≤ C(∥c∥ + |ρ0|)

+ C
[
|zT |

1/2
|ρ(T )|1/2

+ (∥c∥1/2
+ |ρ0|

1/2)(|zT |
1/2

+ ∥ρ∥
1/2

+ ∥b∥
1/2)

+∥ρ∥
1/2

∥b∥
1/2] .
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Using the inequality AB ≤ εA2
+

1
4ε

B2 for A, B > 0, we obtain

∥ρ∥ ≤ C(∥c∥ + |zT | + ∥b∥ + |ρ0|) +
1
2
∥ρ∥,

which implies (84). Then (83) follows from (82). □

Given the solution (u, m) to system (MFG), with initial condition m0 for m and final condition
G for u, we introduce the linearized system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

v(t, x) − α∗(x,∆x u(t, x)) · ∆xv(t, x) = Dm F(x, m(t), 1) · µ(t)
d
dt

µx (t) =

∑
y

µy(t)α∗

x (y,∆yu(t, y)) +

∑
y

m y Dpα
∗

x (y,∆yu) · ∆yv(t, x)

v(T, x) = Dm G(x, m(T ), 1) · µ(T )
µ(t0) = µ0 ∈ P0(Σ ).

(LIN)

Note that on the right hand side of the first equation Dm F(x, m(t), 1) ·µ(t) = Dm F(x, m(t), y) ·

µ(t) for every y ∈ Σ , using identity (8) and the fact that µ(t) ∈ P0(Σ ) for every t (i.e. identity
(10)). For this reason we just fixed the choice to Dm F(x, m(t), 1) and Dm G(x, m(T ), 1) in
system (LIN).

The existence and uniqueness of a solution (v, µ) ∈ C1([0, T ];Rd
× P0(Σ )) is ensured by

Proposition 6. The aim is to show that the solution (v, µ) to system (LIN) satisfies

v(t0, x) = DmU (t0, x, m0, 1) · µ0. (88)

This proves that the solution U defined via (72) is differentiable with respect to m0 in any
direction µ0, with derivative given by (88), and also that DmU is continuous in m. Equality
(88) is implied by the following

Theorem 7. Assume (RegH), (Mon) and (RegFG). Let (u, m) and (û, m̂) be the solutions to
(MFG) respectively starting from (t0, m0) and (t0, m̂0). Let (v, µ) be the solution to (LIN) starting
from (t0, µ0), with µ0 := m̂0 − m0. Then

∥û − u − v∥ + ∥m̂ − m − µ∥ ≤ C |m0 − m̂0|
2
. (89)

Proof.
Set z := û − u − v and ρ := m̂ − m − µ, they solve (80)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

z(t, x) − α∗(x,∆x u) · ∆x z(t, x) = Dm F(x, m(t), 1) · ρ(t) + b(t, x)
d
dt

ρ(t, x) =

∑
y

ρyα
∗

x (y,∆yu) +

∑
y

m y(t)Dpα
∗

x (y,∆x u) · ∆yz + c(t, x)

z(T, x) = Dm G(x, m(T ), 1) · ρ(T ) + zT (x)
ρ(t0, ·) = 0,

with

b(t, x) := A(t, x) + B(t, x)

A(t, x) := −

∫ 1

0

[
Dp H (x,∆x u + s(∆x û − ∆x u)) − Dp H (x,∆x u)

]
· (∆x û − ∆x u)ds

B(t, x) :=

∫ 1

0

[
Dm F(x, m + s(m̂ − m), 1) − Dm F(x, m, 1)

]
· (m̂ − m)ds
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c(t, x) :=

∑
y

(m̂ y − m y)Dpα
∗

x (y,∆yu) · (∆y û − ∆yu)

+

∑
y

m̂ y

∫ 1

0

[
Dpα

∗

x (y,∆x u + s(∆x û − ∆x u)) − Dpα
∗

x (y,∆yu)
]

· (∆y û − ∆yu)ds

zT (x) :=

∫ 1

0

[
Dm G(x, m(T ) + s(m̂(T ) − m(T )), 1) − Dm G(x, m(t), 1)

]
· (m̂(T ) − m(T ))ds.

Using the assumptions, namely the Lipschitz continuity of Dp H, D2
pp H, Dm F and Dm G,

and the bound maxx |∆x u| ≤ C |u|, we estimate

∥b∥ ≤ ∥A∥ + ∥B∥

∥A∥ ≤ C∥û − u∥
2

∥B∥ ≤ C∥m̂ − m∥
2

|zT | ≤ C |m̂(T ) − m(T )|2

∥c∥ ≤ C∥m̂ − m∥ · ∥û − u∥ + C∥û − u∥
2.

Applying (83) and (84) to the above system and then (73) and (74), we obtain

∥z∥ + ∥ρ∥ ≤ C(|zT | + ∥b∥ + ∥c∥)

≤ C
(
∥û − u∥

2
+ ∥m̂ − m∥

2
+ ∥m̂ − m∥ · ∥û − u∥

)
≤ C |m0 − m̂0|

2
. □

5.3. Proof of Theorem 6

We are finally in the position to prove the main theorem of this section.

5.3.1. Existence
Let U be the function defined by (72), i.e. U (t0, x, m0) := u(t0, m0). We have shown in the

above Theorem 7 that U is C1 in m, while the fact that it is C1 in t is clear. We compute the limit,
as h tends to 0, of

U (t0 + h, x, m0) − U (t0, x, m0)
h

=
U (t0 + h, x, m0) − U (t0 + h, x, m(t0 + h))

h

+
U (t0 + h, x, m(t0 + h)) − U (t0, x, m0)

h
. (90)

For the first term, we have, for any y ∈ Σ ,

U (t0 + h, x, m(t0 + h)) − U (t0 + h, x, m(t0))

= [ms := m(t0) + s(m(t0 + h) − m(t0))]

=

∫ 1

0

∂

∂(m(t0 + h) − m(t0))
U (t0 + h, x, ms, y)ds
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=

∫ 1

0
DmU (t0 + h, x, ms, y) · (m(t0 + h) − m(t0))ds

=

∫ 1

0
ds
∫ t0+h

t0

DmU (t0 + h, x, ms, y)

·

(
d∑

k=1

mk(t)α∗(k,∆ku(t))

)
dt

=

∫ 1

0
ds
∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, y)

]
z

α∗

z (k,∆ku(t))dt.

Using identity (8), we obtain

U (t0 + h, x, m(t0 + h)) − U (t0 + h, x, m(t0))

=

∫ 1

0
ds
∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, k)

]
z

α∗

z (k,∆ku(t))dt

+

∫ 1

0
ds
∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, y)

]
k

α∗

z (k,∆ku(t))dt

=

∫ 1

0
ds
∫ t0+h

t0

d∑
z=1

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, k)

]
z

α∗

z (k,∆ku(t))dt,

where the last equality follows from

d∑
z=1

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, y)

]
k α∗

z (k,∆ku(t))

=

d∑
k=1

mk(t)
[
DmU (t0 + h, x, ms, y)

]
k

d∑
z=1

α∗

z (k,∆ku(t)) = 0,

since
∑d

z=1 α∗
z = 0, as α∗

k (k) = −
∑

z ̸=k α∗
z (k).

Summarizing, we have found that,

U (t0 + h, x, m(t0 + h)) − U (t0 + h, x, m(t0))

=

∫ 1

0
ds
∫ t0+h

t0

dt
∫
Σ

DmU (t0 + h, x, ms, y)

· α∗(y,∆yu(t))m(t)(dy).

Dividing by h and letting h → 0, we get

lim
h→0

U (t0 + h, x, m(t0 + h)) − U (t0 + h, x, m(t0))
h
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=

∫
Σ

DmU (t0, x, m0, y) · α∗(y,∆yu(t0))dm0(y)

=

∫
Σ

DmU (t0, x, m0, y) · α∗(y,∆xU (t0, y, m0))dm0(y),

using the continuity of DmU in time and dominate convergence to take the limit inside the
integral in ds.

The second term in (90), for h > 0, is instead

U (t0 + h, x, m(t0 + h)) − U (t0, x, m0) = ux (t0 + h) − ux (t0) = h
d
dt

ux (t0) + o(h),

and thus

lim
h→0+

U (t0 + h, x, m(t0 + h)) − U (t0, x, m0)
h

=
d
dt

ux (t0).

Finally, we can rewrite (90), after taking the limit h → 0, to obtain

∂tU (t0, x, m0) = −

∫
Σ

DmU (t0, x, m0, y) · α∗(y,∆xU (t0, y, m0))dm0(y)

+
d
dt

ux (t0) = [using the equation for u]

= −

∫
Σ

DmU (t0, x, m0, y) · α∗(y,∆xU (t0, y, m0))dm0(y)

+ H (x,∆xU (t0, x, m0)) − F(x, m0),

and thus

− ∂tU (t0, x, m0) + H (x,∆xU (t0, x, m0))

−

∫
Σ

DmU (t0, x, m0, y) · α∗(y,∆yU )dm0(y) = F(x, m0),

which is exactly (M) computed in (t0, m0).

5.3.2. Uniqueness
Let us consider another solution V of (M). Since ∥Dm V ∥ ≤ C , we know that V is Lipschitz

with respect to m, and so is ∆x V . From this remark and the Lipschitz continuity of α∗ with
respect to p , it follows that the equation⎧⎪⎨⎪⎩

d
dt

m̃(t) =

∑
y

m̃ y(t)α∗(y,∆y V (t, y, m̃(t)))

m̃(t0) = m0

admits a unique solution in [t0, T ].
If we now set ũ(t, x) := V (t, x, m̃(t)), we can compute (using for e.g. Dm V (·, ·, ·, 1))

d
dt

ũ(t, x) = ∂t V (t, x, m̃(t)) + Dm V (t, x, m̃(t), 1) ·
d
dt

m̃(t)

= [using the equation for m̃]

= ∂t V (t, x, m̃(t)) + Dm V (t, x, m̃(t), 1) ·

(∑
y

m̃ y(t)α∗(y,∆y V (t, y, m̃(t)))

)
= [using identity (8) on Dm V (·, ·, ·, 1)]
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= ∂t V (t, x, m̃(t)) +

∫
Σ

Dm V (t, x, m̃(t), y) · α∗(y,∆y V (t, y, m̃(t)))m̃(t)(dy)

= [using the equation for V ]
= H (x,∆x V (t, x, m̃(t))) − F(x, m̃) = H (x,∆x ũ(t, x)) − F(x, m̃(t)),

and thus the pair (ũ(t), m̃(t)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
d
dt

ũ(t, x) + H (x,∆x ũ(t, x)) = F(x, m̃(t)),
d
dt

m̃x (t) =

∑
j

m̃ y(t)α∗

x (y,∆y ũ(t, y)),

ũ(T, x) = V (T, x, m̃(T )) = G(x, m̃(T )),
m̃(t0) = m0.

Namely, (ũ, m̃) solves the system (MFG), whose solution is unique thanks to Proposition 5, so
that we can conclude V (t0, x, m0) = U (t0, x, m0) for each (t0, x, m0), and thus the uniqueness
of solutions to (M) follows.

5.3.3. Regularity
It remains to prove that the unique classical solution defined via (72) is regular, in the sense

of Definition 3, i.e. that DmU is Lipschitz continuous with respect to m, uniformly in t, x .
So let (u1, m1) and (u2, m2) be two solutions to (MFG) with initial conditions m1(t0) = m1

0
and m2(t0) = m2

0, respectively. Let also (v1, µ1) and (v2, µ2) be the associated solutions to (LIN)
with µ1(t0) = µ2(t0) = µ0. Recall from Eq. (88) that v1(t0, x) = DmU (t0, x, m1

0, 1) · µ0 and
v2(t0, x) = DmU (t0, x, m2

0, 1) · µ0, thus we have to estimate the norm ∥v1 − v2∥.
Set z := v1 − v2 and ρ := µ1 − µ2. They solve the linear system (80) with ρ0 = 0 and

b(t, x) :=
[
Dm F(x, m1, 1) − Dm F(x, m2, 1)

]
· µ2

+
[
α∗(x,∆x u1) − α∗(x,∆x u2)

]
· ∆xv2

c(t, x) :=

∑
y

µ2,y
[
α∗

x (y,∆yu1) − α∗

x (y,∆yu2)
]

+

∑
y

[
m1,y Dpα

∗

x (y,∆yu1) − m2,y Dpα
∗

x (y,∆yu2)
]
· ∆xv2

zT (x) :=
[
Dm G(x, m1(T ), 1) − Dm G(x, m2(t), 1)

]
· µ2.

Using the Lipschitz continuity of Dp H , D2
pp H , Dm F and Dm G, applying the bounds (83) to v2

and (84) to µ2 and also (73) and (74), we estimate

∥b∥ ≤ C∥m1 − m2∥ · ∥µ2∥ + C∥u1 − u2∥ · ∥v2∥ ≤ C |m1
0 − m2

0| · |µ0|

∥c∥ ≤ C∥u1 − u2∥ · ∥µ2∥ + C∥m1 − m2∥ · ∥v2∥ + C∥u1 − u2∥ · ∥v2∥

≤ C |m1
0 − m2

0| · |µ0|

|zT | ≤ C∥m1 − m2∥ · ∥µ2∥ ≤ C |m1
0 − m2

0| · |µ0|.

Then (83) gives

∥z∥ ≤ C(∥b∥ + ∥c∥ + |zT |) ≤ C |m1
0 − m2

0| · |µ0|,

which, since z(t0, x) =
(
DmU (t0, x, m1

0, 1) − DmU (t0, x, m2
0, 1)

)
· µ0, yields

max
x

|DmU (t0,x, m1
0, 1) − DmU (t0, x, m2

0, 1)|
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≤ C max
x

sup
µ0∈P0(Σ )

⏐⏐(DmU (t0, x, m1
0, 1) − DmU (t0, x, m2

0, 1)
)
· µ0

⏐⏐
|µ0|

≤ C |m1
0 − m2

0|.

6. Conclusions

Let us summarize the results we have obtained. The two set of assumptions are given in
Section 2.2 and verified in Example 2.1.

(1) If (H1) holds and there exists a regular solution U to the Master Equation (M), in the sense
of Definition 3, then the value functions of the N -player game converge to U (Theorem 1)
and the optimal trajectories (28) satisfy a propagation of chaos property, i.e. they converge
to the limiting i.i.d solution to (29) (Theorem 2);

(2) Under the assumptions required for convergence, the empirical measures processes (48)
associated with the optimal trajectories satisfy a Central limit Theorem (Theorem 4) and
a Large Deviation Principle with rate function I in (64) (Theorem 5);

(3) Assuming (RegH), (Mon) and (RegFG), there exists a unique classical solution to (M)
and it is also regular in the sense of Definition 3.
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