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Abstract

It is possible to construct Lévy white noises as generalized random processes in the sense of Gel’fand
nd Vilenkin, or as an independently scattered random measures introduced by Rajput and Rosinski.
n this article, we unify those two approaches by extending the Lévy white noise Ẋ , defined as a
eneralized random process, to an independently scattered random measure. We are then able to give
eneral integrability conditions for Lévy white noises, thereby maximally enlarging their domain of
efinition. Based on this connection, we provide new criteria for the practical determination of the domain
f definition, including specific results for the subfamilies of Gaussian, symmetric-α-stable, generalized
aplace, and compound Poisson white noises. We also apply our results to formulate a general criterion

or the existence of generalized solutions of linear stochastic partial differential equations driven by a
évy white noise.
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1. Introduction

1.1. Two constructions for the Lévy white noise

This paper is dedicated to the study of d-dimensional Lévy white noises. These entities have
een defined in at least two ways and are available in the literature as follows.

The Lévy white noise as a generalized random process: A generalized random process can
e a priori observed though test functions ϕ living in the space D(Rd ) of compactly supported
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and smooth functions. The construction of Lévy white noises as generalized random processes
s established by I.M. Gel’fand and N.Y. Vilenkin in [37, Chapter III]. There, the Lévy white
oise Ẋ is defined as a collection of random variables ⟨Ẋ , ϕ⟩ with ϕ ∈ D(Rd ), as presented in
ection 2.

The distributional point of view of Gel’fand and Vilenkin offers the advantage of defining
Lévy white noise as a random generalized function. It can then be used as the driving term

f a linear stochastic partial differential equation of the form Ls = Ẋ , hence benefiting from
he theory of generalized functions.

The Lévy white noise as an independently scattered random measure: In this framework, the
évy white noise is specified as a random measure; that is, a collection of random variables
Ẋ ,1A⟩ indexed by Borelian subsets A ⊂ Rd with finite Lebesgue measure. Independently

scattered random measures are investigated by B.S. Rajput and J. Rosinski in [55]. We provide
a recap in Section 3. Note that Rajput and Rosinski do not explicitly consider Lévy white
noises, which are specific independently scattered random measure with additional stationarity
properties.

It can be argued that the specification of the Lévy white noise as an independently scattered
random measure is more informative than its description as a generalized random process.
Indeed, random measures are random generalized functions, while the converse is in general
not true. However, the framework of generalized random processes is especially adapted for
the study of linear stochastic partial differential equation (SPDE). In particular, the (weak)
derivative together with the integration (when it is well-defined) of a generalized random
process is still a generalized random process, but this is false in general for independently
scattered random measures.

Beyond their differences, these two constructions are deeply connected and implicitly
specify the same mathematical object, although describing it from different perspectives.
They range from more to less general, in the sense that measures generalize functions, and
generalized functions generalize measures [60, Chapter 1]. This remains valid for random
functions, measures, and generalized functions. Each approach brings its own advantages, and
it is therefore interesting to precisely connect them in order to benefit from their strengths when
applied to different contexts.

1.2. The domain of definition of the Lévy white noise

Since we are interested in the study of linear SPDE driven by a Lévy white noise, we start
from a Lévy white noise defined as a generalized random process. Any Lévy white noise Ẋ
can a priori be observed through a test function ϕ living in the space of compactly supported
and smooth functions. However, it is often desirable in practice to extend the definition of
the family of random variables ⟨Ẋ , f ⟩ to functions f that are possibly neither smooth nor
compactly supported. Hereafter, we provide some motivations in that direction.

• Expansion of Lévy white noises into orthonormal bases: Consider an orthonormal basis
( fn) of L2(Rd ) and a Lévy white noise Ẋ . We would like to characterize when it is
reasonable to consider the family of coefficients ⟨Ẋ , fn⟩. As a motivational example, we
mention our recent works [6,29] where we use the Daubechies wavelets coefficients of a
Lévy white noise to accurately estimate its regularity. Daubechies wavelets are compactly
supported, but have a limited smoothness [26]. We shall see that the expansion on any
Daubechies wavelet basis is possible for any Lévy white noise. More generally, we
are interested in considering bases whose elements are neither compactly supported nor

smooth.
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• Localizing the probability law of the Lévy white noise: The domain of definition of the
Lévy white noise coincides with the domain of continuity of its characteristic functional.
There are strong connections between the continuity properties of the characteristic
functional and the localization of the process in appropriate function spaces [32,39,43].
The more we extend the domain of definition, the more we can learn about the regularity
of the Lévy white noise.

• Construction of generalized solutions of linear SPDEs driven by Lévy white noise: By
extending the domain of definition of the Lévy white noise, one weakens the conditions
on a differential operator L such that the stochastic differential equation Ls = Ẋ admits
a solution s as a generalized random process in D′(Rd ). Indeed, we have formally that,
for ϕ ∈ D(Rd ),

⟨s, ϕ⟩ = ⟨L−1 Ẋ , ϕ⟩ = ⟨Ẋ , (L−1)∗{ϕ}⟩, (1)

where (L−1)∗ is the adjoint of L−1. We therefore see that (L−1)∗{ϕ} must belong to the
domain of definition of Ẋ in order to give a meaning to (1).

• From Lévy white noises to Lévy processes and Lévy fields: A Lévy process X is a solution
of the stochastic differential equation DX = Ẋ with boundary condition X (0) = 0. Here,
D is the derivative operator and Ẋ is a Lévy white noise in ambient dimension d = 1.
It is well known that, contrary to the Lévy white noise, the Lévy process is well-defined
pointwise, with càdlàg1 trajectories [9]. Formally, a Lévy process satisfies the relation
X (t) = ⟨Ẋ ,1[0,t]⟩. In particular, we expect to be able to define rigorously ⟨Ẋ , f ⟩ for
test functions of the form f = 1[0,t]. This question was addressed in [46] and will also
be deduced from our results. Identical considerations can be made for the d-dimensional
Lévy sheet X = (X t )t∈Rd that generalizes Lévy processes in higher dimensions [3,23,25]
and is solution of the stochastic differential equation Ẋ =

∂d

∂1···∂d
X .

The previous examples show some benefits of extending the domain of definition of the Lévy
hite noise. We also want to go further and identify the broadest set of test functions such that

he random variable ⟨Ẋ , f ⟩ is well-defined. It turns out that the framework of independently
cattered random measures developed by Rajput and Rosinski [55] is especially relevant to
chieving this goal.

.3. Contributions and outline

The primary contributions of this paper are as follows. We connect the definition of a
évy white noise as a generalized random process in D′(Rd ) with the theory of independently
cattered random measures investigated by B.S. Rajput and J. Rosinski [55]. We rely on the
ork of those authors to identify in full generality the domain of definition of the Lévy white
oise, along with the domain of definition with finite pth moment (Section 3).

. Lévy white noises as generalized random processes

The theory of generalized random processes was initiated in the 50’s independently by
.M. Gel’fand [36] and K. Itô [42]. It has the advantage of allowing the construction of a
road class of random processes, including many instances that do not admit a pointwise
epresentation. Being the probabilistic adaptation of the theory of generalized functions of L.

1 Cadlag is the acronym (derived from French) for right continuous functions with left limit at each point.
` `
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Schwartz, generalized random processes are very flexible, and many finite-dimensional results
of probability theory have natural extension to this infinite-dimensional setting [10,19,34,43].
Generalized random processes have been used as a natural framework for CARMA random
processes [17] and CARMA random fields [7,8], for the scaling limits of statistical models in
quantum field theory [1,2,61], where the continuous-domain limit fields are often too irregular
to admit a pointwise representation [18,20,35].

The framework also lends itself to the construction of the d-dimensional Gaussian white
oise, as is exploited in white noise analysis [38,39], whose goal is to provide an infinite
imensional stochastic calculus. The extension of white noise analysis from Gaussian to Lévy
hite noises have been investigated deeply [49], in particular to solve SPDEs [47] driven by
évy white noise. However, these works mostly deal with second-order Lévy white noises (or
ven Lévy white noises with finite exponential moments), a restriction that we want to avoid.
ore generally, one can describe d-dimensional Lévy white noises – including Gaussian ones
as random elements in the space of generalized functions [37]. We can then study linear

tochastic partial differential equations driven by a Lévy white noise, whose solutions are
efined as generalized random processes [6,23,24,33,40,41]. This framework has also been
pplied in signal processing in order to specify stochastic models for sparse signals [15,64]
nd images [14,22,28].

.1. Generalized random processes

We denote by D(Rd ) the space of infinitely differentiable and compactly supported func-
tions, associated with its usual nuclear topology [62]. In particular, ϕn → ϕ in D(Rd ) as

→ ∞ if there exists a compact K ⊂ Rd that contains the support of all the ϕn and if
∥Dα

{ϕn − ϕ}∥∞ → ∞ for every multi-index α ∈ Nd . The topological dual of D(Rd ) is the
pace of generalized functions D′(Rd ) (often called distributions). We define a structure of
easurability on D′(Rd ) by considering the cylindrical σ -field C; that is, the σ -field generated

y the cylinders {u ∈ D′(Rd ), (⟨u, ϕ1⟩, . . . , ⟨u, ϕN ⟩) ∈ B} with N ≥ 1, ϕ1, . . . , ϕN ∈ D(Rd ),
nd B a Borel measurable set of RN .

Let (Ω ,F ,P) be a complete probability space. A random variable is a measurable function
rom Ω to R. The space of random variables, L0(Ω ), is a Fréchet space when endowed with
he convergence in probability. We also define L p(Ω ), the space of random variables with finite
pth-moment, for 0 < p < ∞. The space L p(Ω ) is a quasi-Banach space when 0 < p < 1,
nd a Banach space for p ≥ 1.

efinition 2.1. A generalized random process is a linear and continuous function s from D(Rd )
o L0(Ω ). The linearity means that, for every ϕ1, ϕ2 ∈ D(Rd ) and λ ∈ R,

s(ϕ1 + λϕ2) = s(ϕ1) + λs(ϕ2) almost surely.

he continuity means that if ϕn → ϕ in D(Rd ), then s(ϕn)n∈N converges to s(ϕ) in probability.

Due to the nuclear structure on D(Rd ), a generalized random process has a version that is
measurable function from (Ω ,F) to (D′(Rd ), C) (see [68, Corollary 4.2]). In other words, a

eneralized random process is a random generalized function. We therefore write s(ϕ) = ⟨s, ϕ⟩

here s is a generalized random process and ϕ ∈ D(Rd ) a test function.
78
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Definition 2.2. Let s be a generalized random process. The probability law of s is the
robability measure on D′(Rd ) defined by

Ps(B) = P({s ∈ B}) = P({ω ∈ Ω , ⟨s, ·⟩ (ω) ∈ B})

or B in the cylindrical σ -field C. The characteristic functional of s is the Fourier transform
f its probability law; that is, the functional P̂s : D(Rd ) → C defined by

P̂s(ϕ) =

∫
D′(Rd )

ei⟨u,ϕ⟩dPs(u) = E
[
ei⟨s,ϕ⟩

]
.

emarks. Note that {s ∈ B} ⊂ Ω is measurable because s : Ω → R is measurable by
efinition. The characteristic functional characterizes the law of s in the sense that two random

processes are equal in law if and only if they have the same characteristic functional.

2.2. Lévy white noises, characteristic exponents, and Lévy triplets

One of the advantages of the theory of generalized random processes is that it allows to
properly define random processes which do not admit a pointwise representation. The typical
example is the Gaussian white noise. Following [37], we define the Lévy white noise from its
haracteristic functional.

A random variable Y is said to be infinitely divisible if it can be decomposed as Y =

Y1 + · · · + YN , with (Y1, . . . , YN ) an i.i.d. random vector for every N . The characteristic
unction of an infinitely divisible random variable cannot vanish and there exists a unique
ontinuous function ψ such that P̂Y (ξ ) = exp(ψ(ξ )) (see [58, Theorem 8.1]). The log-
haracteristic function ψ of an infinitely divisible random variable is called its characteristic
xponent. The complete family of characteristic exponents is specified by the Lévy–Khintchine
ecomposition. According to [58, Theorem 8.1], a function ψ : R → C is a characteristic

exponent if and only if it can be written as

ψ(ξ ) = iγ ξ −
σ 2ξ 2

2
+

∫
R

(
eixξ

− 1 − ixξ1|x |≤1
)
ν(dx), (2)

or every ξ ∈ R, with γ ∈ R, σ 2
≥ 0, and ν a Lévy measure, that is a measure on R with

R inf(1, x2)ν(dx) < ∞ and ν({0}) = 0. The triplet (γ, σ 2, ν) is uniquely determined and called
he Lévy triplet associated to ψ .

efinition 2.3. A Lévy white noise Ẋ is a generalized random process with characteristic
unctional of the form

P̂Ẋ (ϕ) = exp
(∫

Rd
ψ(ϕ(t))dt

)
or every ϕ ∈ D(Rd ), where ψ is a characteristic exponent.

The existence of a Lévy white noises as generalized random processes is proved in [37]
see also [27, Theorem 2]). A Lévy white noise Ẋ is stationary, meaning that Ẋ (· − t0) and Ẋ
as the same law for every t0 ∈ Rd . Moreover, Ẋ is independent at every point in the sense
hat ⟨Ẋ , ϕ1⟩ and ⟨Ẋ , ϕ2⟩ are independent when ϕ1 and ϕ2 have disjoint supports.

The random variable ⟨Ẋ , ϕ⟩ is a priori well-defined for ϕ ∈ D(Rd ). Its characteristic
unction Φ⟨s,ϕ⟩ : R → C is given, for every ξ ∈ R, by

Φ⟨s,ϕ⟩(ξ ) = E
[
eiξ⟨Ẋ ,ϕ⟩

]
= exp

(∫
ψ(ξϕ(t))dt

)
. (3)
Rd
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However, we can reasonably extend the domain of definition of the noise to broader classes of
functions. We illustrate this idea on the Gaussian white noise ẊGauss. Its characteristic functional
s P̂ẊGauss

(ϕ) = exp(−σ 2
∥ϕ∥

2
2/2) (see [37]). For each ϕ ∈ D(Rd ), ⟨ẊGauss, ϕ⟩ is therefore a

entered normal random variable with variance σ 2
∥ϕ∥

2
2. One sees easily that ⟨ẊGauss, f ⟩ can

e extended to every function f ∈ L2(Rd ). To do so, consider a sequence (ϕn)n∈N of functions
n D(Rd ) converging to f ∈ L2(Rd ) for the usual Hilbert topology of L2(Rd ). Then, for every
,m ∈ N, we have

E[(⟨ẊGauss, ϕn⟩ − ⟨ẊGauss, ϕm⟩)2] = E[⟨ẊGauss, ϕn − ϕm⟩
2] = σ 2

∥ϕn − ϕm∥
2
2. (4)

he sequence (ϕn)n∈N being convergent, it is a Cauchy sequence of L2(Rd ). Then, (4) implies
hat (⟨ẊGauss, ϕn⟩) is itself a Cauchy sequence in the complete space L2(Ω ), and hence is
onvergent in this space. One readily shows that the limit does not depend on the sequence
ϕn)n∈N and we denote it by ⟨ẊGauss, f ⟩. Then, as will be made more rigorous in the sequel,
he linear and continuous functional ẊGauss initially defined from D(Rd ) to L0(Ω ) is actually
linear and continuous functional from L2(Rd ) to L2(Ω ).
Defining a Gaussian white noise only for smooth and rapidly decaying test functions appears

ighly conservative. As we shall see, this occurs for any Lévy white noise. The goal of this
aper is precisely to identify the domain of definition for general Lévy white noise; that is,
he largest possible space of test functions which can be applied to the white noise. The
dentification of the domain has already been done in [55] in the context of independently
cattered random measures, and the unification of Lévy white noise with this notion in
ection 3.1 allows us to rely on this work. Moreover, we are aiming at practical criteria to

dentify this domain of definition for specific Lévy white noises.

. Integrability conditions with respect to Lévy white noises

In this section, a Lévy white noise is understood as a generalized random process in the sense
f Gel’fand and Vilenkin. In Section 3.1, we connect this construction with the framework of
ndependently scattered random measures of Rajput and Rosinski [55]. Then, in Section 3.2
e use this connection and the results of [55] to extend the domain of definition of Lévy white
oises.

.1. Lévy white noises as independently scattered random measures

A random measure is a random process whose test functions are indicator functions.
his concept is very popular for stochastic integration, the integral being defined for simple

unctions (i.e., linear combinations of indicator functions), and then extended by a limit
rgument. Essentially, a random measure is independently scattered when two indicator func-
ions with disjoint supports define independent random variables. For a proper definition, see
55, Section 1].

We show in this section that a Lévy white noise is an example of independently scattered
andom measures. We achieve this goal by defining the random variables ⟨Ẋ , 1A⟩ for any
orelian set A whose support has finite Lebesgue measure as limits in probability of random
ariables ⟨Ẋ , ϕ⟩ with ϕ ∈ D(Rd ).

The set of Borel measurable subsets of Rd is B(Rd ). We denote by Bb(Rd ) the set of bounded
orel measurable sets and by B f (Rd ) the set of Borel measurable sets A with finite Borel
easures Lebd (A) < ∞. We clearly have the strict inclusions Bb(Rd ) ⊂ B f (Rd ) ⊂ B(Rd ). A

unction θ ∈ D(Rd ) is a mollifier if θ ≥ 0 and
∫
Rd θ (t)dt = 1. We then set θn(t) = ndθ (nt),

he sequence (θn)n≥1 being an approximation of the Dirac impulse δ.
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Proposition 3.1. Let Ẋ be a Lévy white noise, A ∈ Bb(Rd ), and B ∈ B f (Rd ). Then

• Let θ ∈ D(Rd ) be a mollifier. Then, the sequence (⟨Ẋ , θn∗1A⟩)n≥1 converges in probability
to a random variable ⟨Ẋ ,1A⟩ that does not depend on the choice of the mollifier θ .

• Let (Kn)n≥1, be a increasing sequence of compact sets such that ∪n≥1 Kn = Rd . Then,
the sequence (⟨Ẋ , 1B∩Kn ⟩)n≥1 converges in probability to a random variable ⟨Ẋ , 1B⟩ that
does not depend on the choice of (Kn)n≥1.

n addition, the characteristic function of
⟨
Ẋ ,1B

⟩
is given by

Φ⟨Ẋ ,1B⟩(ξ ) = exp(Lebd (B) ψ(ξ )) (5)

or all ξ ∈ R, where ψ is the characteristic exponent of Ẋ .

emark. Note that θn ∗ 1A ∈ D(Rd ) and B ∩ Kn ∈ Bb(Rd ), hence the random variables
Ẋ , θn ∗1A⟩ and ⟨Ẋ ,1B∩Kn ⟩ are well-defined, the first one because Ẋ is a generalized random
rocess in D′(Rd ), and the second due to the first point of Proposition 3.1.

roof. The limit of (⟨Ẋ , θn ∗ 1A⟩)n≥1. For n ≥ 1, we set Yn =
⟨
Ẋ , θn ∗ 1A

⟩
. The goal is to

how that the sequence (Yn)n≥1 is Cauchy in probability; that is, P(|Yn − Ym | > ϵ) → 0 when
,m → ∞ for any ϵ > 0. The convergence in probability to a constant is equivalent to the
onvergence in law to the same constant [11, p. 27]. Applying this fact to (Yn − Ym)n,m≥1, we
educe that it suffices to show that logE[ei(Yn−Ym )ξ ] → 0 when n,m → ∞ for any ξ ∈ R.
ccording to (3), we have that

logE
[
ei(Yn−Ym )ξ ]

=

∫
Rd
ψ

(
ξ ((θn − θm) ∗ 1A) (t)

)
dt (6)

here ψ can be decomposed, thanks to (2), as

ψ(ξ ) =

(
iγ ξ −

σ 2ξ 2

2

)
+

∫
|x |⩽1

(
eiξ x

− 1 − iξ x
)
ν(dx) +

∫
|x |>1

(
eiξ x

− 1
)
ν(dx)

= ψ1(ξ ) + ψ2(ξ ) + ψ3(ξ ).

e treat each of the three terms of the characteristic exponent separately. The support of f ∗g is
ncluded in the sum of the supports of f and g, A is bounded, and all the θn have their supports
ncluded in a common compact set. Hence, there is a compact K such that supp (θn ∗ A) ⊂ K .
hen, ⏐⏐⏐⏐∫

Rd
ψ1

(
ξ ((θn − θm) ∗ 1A) (t)

)
dt

⏐⏐⏐⏐
≤ |γ ξ |∥(θn − θm) ∗ 1A∥L1(K ) +

σ 2ξ 2

2
∥(θn − θm) ∗ 1A∥

2
L2(K ).

(7)

It is well known that for p ⩾ 1 and f ∈ L p(K ), (θn − θm) ∗ f → 0 in L p(K ) as
n,m → ∞. Therefore, the right term in (7) goes to 0 when n,m → ∞. Then, using that⏐⏐eiξ x

− 1 − iξ x
⏐⏐ ⩽ 1

2 |ξ x |
2 (see for instance [44, Lemma 5.14]), we deduce that⏐⏐⏐⏐∫

Rd
ψ2

(
ξ ((θn − θm) ∗ 1A) (t)

)
dt

⏐⏐⏐⏐ ≤
ξ 2

2

(∫
|x |≤1

x2ν( dx)
)

∥(θn − θm) ∗ 1A∥
2
L2(K ), (8)

hich also vanishes when n,m → ∞. The last term represents the compound Poisson part
f the Lévy–Itô decomposition of the Lévy white noise. It corresponds to the characteristic
81
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function of the random variable Mn,m :=
∫
Rd

∫
R x((θn − θm) ∗ 1A)(t)J (dt, dx) where J is a

oisson random measure on Rd
× R with intensity measure dt1|x |>1ν(dx), and we know that

Mn,m =

∑
i⩾1

Z i ((θn − θm) ∗ 1A)(Ti ) ,

or some random space–time points (Z i , Ti )i⩾1, and the sum above has finitely many terms
independently of m, n) almost surely due to the existence of the compact K introduced above.
ndeed, we have

E [J (K × R)] =

∫
K×R

dt1|x |>1ν(dx) = Lebd (K )
∫

|x |>1
ν(dx) < ∞ ,

nd J (K × R) is the random variable that counts the number of points Ti that fall in K . By
ebesgue’s differentiation theorem (see [69, Chapter 7, Exercise 2]), (θn − θm) ∗1A(t) → 0 as
,m → ∞ for all t ∈ K\H , where H is a subset of Rd such that Lebd (H) = 0. The random

imes Ti have an absolutely continuous law. Indeed, for any Borel set B ⊂ Rd ,

P(Ti ∈ B) ⩽ P(J (B × R) ⩾ 1) ⩽ Lebd (B)
∫

|z|>1
ν(dz) .

herefore, for all i ⩾ 1, P(Ti ∈ H ) = 0 and Mn,m → 0 as n,m → ∞ almost surely, hence
lso in law, which implies that

∫
Rd ψ3

(
ξ ((θn − θm) ∗ 1A) (t)

)
dt → 0 when n,m → 0. Finally,

e have shown that logE
[
ei(Yn−Ym )ξ

]
→ 0 for any ξ when n,m → ∞ and (Yn)n≥1 converges

n probability to some random variable Y =
⟨
Ẋ , θn ∗ 1A

⟩
. By observing the convergence of

ach term of the decomposition of the characteristic exponent, it is moreover easy to see that
or all ξ ∈ R,∫

Rd
ψ (ξ (θn ∗ 1A)(t)) dt →

∫
Rd
ψ (ξ1A(t)) dt = Lebd (A) ψ(ξ ) , as n → ∞ , (9)

ence E
[
eiξY

]
= exp (Lebd (A) ψ(ξ )). If θ̃ is another mollifier, and (Ỹn)n≥1 and Ỹ are the

ssociated sequence and limit, it is easy to see by linearity of Ẋ that Yn −Ỹn → 0 in probability
s n → ∞, hence the limit Y = Ỹ does not depend on the choice of θ .

The limit of (⟨Ẋ ,1B∩Kn ⟩)n≥1. Applying the same principle as above, it is easy to show
hat (⟨Ẋ ,1B∩Kn ⟩)n≥1 is Cauchy in probability, and therefore admits a limit that we denote by
Ẋ ,1B

⟩
. Again, one show that the limit does not depend on the choice of the compact sets Kn

y showing that Zn − Z̃n → 0 in probability as n → ∞, where Z̃n is associated to a second
equence of increasing compact sets K̃n . Finally, as we did for A ∈ B f (Rd ) in (9), one proves
hat the characteristic function of

⟨
Ẋ ,1B

⟩
has the expected form for B ∈ B f (Rd ) by a limiting

rgument. □

The set B f (Rd ) of Borelian sets of finite Lebesgue measure is a δ-ring2 Since
⋃

n∈N[−n, n]d

Rd , condition (1.4) of [55] is satisfied. By Proposition 3.1, we have defined the random set
unction as an extension of the Lévy white noise Ẋ on B f (Rd ). We still refer to this set function
s a Lévy white noise.

heorem 3.2. The extension of the Lévy white noise Ẋ is an independently scattered random
easure in the sense of [55].

2 A δ-ring is a collection of sets that is closed under finite union, countable intersection, and relative
complementation [13, Definition 1.2.13]. It appears in measure theory, especially when one wants to avoid sets
with infinite measure.
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Proof. Let A, B ∈ B f (Rd ) be two disjoint sets, so that 1A +1B = 1A∪B . Then, the generalized
andom process Ẋ satisfies, any n ≥ 1,

⟨
Ẋ , θn ∗ 1A∪B

⟩
=

⟨
Ẋ , θn ∗ 1A

⟩
+

⟨
Ẋ , θn ∗ 1B

⟩
, where

θ = ndθ (n·) for some mollifier θ . Due to the convergence in the first part of Proposition 3.1,
we deduce that

⟨
Ẋ ,1A∪B

⟩
=

⟨
Ẋ ,1A

⟩
+

⟨
Ẋ ,1B

⟩
. The same conclusions hold more generally

when summing finitely many random variables coming from disjoint sets in B f (Rd ).
For the definition of a scattered random measure, we refer to [55, p. 455]. Let (An)n∈N

e a sequence of disjoint sets in B f (Rd ). Let k ∈ N and i1 < · · · < ik ∈ N. We show
hat the random variables

⟨
Ẋ ,1Ai j

⟩
, 1 ⩽ j ⩽ k are independent. By linearity of the noise,

this fact is an immediate consequence of (5) and the σ -additivity of Lebesgue measure. This
proves that

⟨
Ẋ ,1An

⟩
, n ∈ N is a sequence of independent random variables. If in addition∑

n∈N Lebd (An) < ∞, then
⋃

n∈N An ∈ B f (Rd ) and we need to show that⟨
Ẋ ,1⋃

n∈N An

⟩
=

∑
n∈N

⟨
Ẋ ,1An

⟩
,

here the series converges almost surely. As we have seen, we have for any k ∈ N,⟨
Ẋ ,1⋃k

n=1 An

⟩
=

k∑
n=1

⟨
Ẋ ,1An

⟩
. (10)

rom the expression of the characteristic function of the left-hand side of (10) and by linearity,
e see that

⟨
Ẋ ,1⋃k

n=1 An

⟩
→

⟨
Ẋ ,1⋃

n∈N An

⟩
in probability as k → ∞. Therefore the right-hand

ide of (10) is a sum of independent random variables that converges in probability. By [21,
heorem 5.3.4], the sum converges almost surely, which concludes the proof. □

.2. Extension of the domain of definition of the Lévy white noise

Having connected Lévy white noises in D′(Rd ) with independently scattered random
easures, it is then possible to construct a stochastic integral of non-random functions. This is

one in [55] and we simply restate the main definitions and theorems for the convenience of
he reader. For any simple function f =

∑n
i=1 ai1Ai where Lebd (Ai ) < ∞ for any 1 ⩽ i ⩽ n,

e can define for any Borel set A,⟨
Ẋ , f 1A

⟩
:=

n∑
i=1

ai
⟨
Ẋ ,1Ai ∩A

⟩
.

efinition 3.3. We say that a Borel-measurable function f : Rd
→ R is Ẋ -integrable if

there exists a sequence of simple function ( fn)n∈N such that fn → f almost everywhere for
he Lebesgue measure as n → ∞, and for any Borel set A, the sequence

(⟨
Ẋ , fn1A

⟩)
n∈N

onverges in probability as n → ∞. In this case we define for any Borel set A,⟨
Ẋ , f 1A

⟩
:= lim

n→∞

⟨
Ẋ , fn1A

⟩
.

We denote by L0(Ẋ ) the set of all Ẋ -integrable functions. For p > 0, we also define the space
of Ẋ -integrable functions that have a finite pth moment; that is,

L p(Ẋ ) = { f ∈ L0(Ẋ ), E[|⟨Ẋ , f ⟩|
p] < ∞} ⊂ L0(Ẋ ).
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Definition 3.3 identifies the class of measurable test functions f such that ⟨Ẋ , f ⟩ is well-
efined and the class of measurable test functions f such that E[|⟨Ẋ , f ⟩|

p] < ∞. For p ≥ 0,
e define the pth-order Rajput–Rosinski exponent

Ψp(ξ ) =

⏐⏐⏐γ ξ +

∫
R

xξ
(
1|xξ |≤1 − 1|x |≤1

)
ν(dx)

⏐⏐⏐ + σ 2ξ 2
+

∫
|xξ |≤1

|x |
p
|ξ |pν(dx)

+

∫
|xξ |>1

x2ξ 2ν(dx).
(11)

or p = 0, we may use the notation Ψp = Ψ , that we simply call the Rajput–Rosinski
xponent of Ẋ . The Rajput–Rosinski exponent allows us to reformulate the main results of [55]
n Proposition 3.4.

roposition 3.4. Let 0 ≤ p < ∞ and Ẋ be a Lévy white noise with pth order Rajput–Rosinski
xponent Ψp. Then f ∈ L p(Ẋ ) if and only if Ψ ( f ) :=

∫
Rd Ψ ( f (t))dt < ∞.

The case p = 0 is covered in [55, Theorem 2.7], while the case p > 0 is a direct
onsequence of [55, Theorem 3.3]. It turns out that the spaces L p(Ẋ ) have a rich structure
f generalized Orlicz spaces. The definition and first properties of those spaces are recalled in
ppendix. We refer to [56] for an in-depth exposition, with a special emphasis on the Chapter
.

roposition 3.5. Let 0 ≤ p < ∞. The pth-order Rajput–Rosinski exponent Ψp of a Lévy white
oise Ẋ is a ∆2-regular ϕ-function in the sense of Definition A.1 (see Appendix). Therefore,

L p(Ẋ ) = LΨp (Rd ) is a generalized Orlicz space. It is therefore a complete linear metric space
quipped with the F-norm

∥ f ∥Ψp := inf{λ > 0,Ψp( f/λ) ≤ λ}.

he space D(Rd ) is dense in L p(Ẋ ) and the convergence of a sequence of functions fk in
L p(Ẋ ) to 0 is equivalent to Ψp( fn) → 0 as n → ∞.

roof. Rajput and Rosinski have shown that Ψp is a ϕ-function in [55, Lemma 3.1].
y definition, L p(Ẋ ) = LΨp (Rd ) is therefore a generalized Orlicz space in the sense of
efinition A.2. Except for the density, the properties of the space L p(Ẋ ) are then derived

rom Proposition A.3. For the density, Proposition A.3 implies that simple functions are dense
n L p(Ẋ ). It suffices therefore to remark that a simple function can be easily approximated by

a function in D(Rd ) in the topology of L p(Ẋ ) by taking a regularized version of the simple
unction. □

The connection between Lévy white noises in D′(Rd ) and independently scattered random
measures established in Theorem 3.2 allows us to apply [55, Theorem 3.3] to the Lévy white
noise and leads to the following result.

Theorem 3.6. Let Ẋ be a Lévy white noise and 0 ≤ p < ∞. Then, the functional

Ẋ : L p(Ẋ ) → L p(Ω )

f ↦→ ⟨Ẋ , f ⟩

is linear and continuous. In other words, Ẋ is a random linear functional on L0(Ẋ ) and an
p p ˙
L (Ω )-valued random linear functional on L (X ) when p > 0.
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Theorem 3.6 gives general conditions on test functions for integrability with respect to a
iven Lévy white noise. It therefore specifies the domain of definition of Ẋ ; that is, the broadest

class of test functions on which Ẋ is a random linear functional. Moreover, the space L p(Ẋ ) is
the largest space of test functions such that ⟨Ẋ , f ⟩ is well-defined and has a finite pth-moment.
Once the random variable ⟨Ẋ , f ⟩ is well-defined, it is important to identify its characteristic
function, as was done by Rajput and Rosinski in [55, Theorem 2.7]. More generally, one
uses the previous results to extend the domain of continuity and positive-definiteness of the
characteristic functional of a Lévy white noise.

Proposition 3.7. For any Lévy white noise Ẋ , the characteristic functional P̂Ẋ is well-defined,
continuous, and positive-definite over L0(Ẋ ), and is given by

P̂Ẋ ( f ) = exp
(∫

Rd
ψ( f (t))dt

)
. (12)

Proof. The characteristic functional ϕ ↦→ P̂Ẋ (ϕ) = E[ei⟨Ẋ ,ϕ⟩] is continuous over D(Rd ). For
any f ∈ L0(Ẋ ), we know that ⟨Ẋ , f ⟩ is a well-defined random variable. According to the last
part of [55, Theorem 2.7], its characteristic function is ξ ↦→ E[eiξ⟨Ẋ , f ⟩] = exp

(∫
Rd ψ(ξ f (t))dt

)
.

We can therefore extend P̂Ẋ to L0(Ẋ ) by setting

P̂Ẋ ( f ) = E[ei⟨Ẋ , f ⟩] = exp
(∫

Rd
ψ( f (t))dt

)
.

Positive-definiteness. Let N ≥ 1, an ∈ C, fn ∈ L0(Ẋ ), n = 1, . . . , N . The space D(Rd ) is
dense in L0(Ẋ ) (Proposition 3.5), hence there exists for N sequences (ϕn

k )k∈N such that ϕn
k → fn

in L0(Ẋ ) for n = 1, ·, N . From Theorem 3.6, we know that f ↦→ ⟨Ẋ , f ⟩ is continuous from
L0(Ẋ ) to L0(Ω ). In particular, we have P̂Ẋ (ϕi

k − ϕ
j
k ) = E[ei⟨Ẋ ,ϕi

k−ϕ
j
k ⟩]−→E[ei⟨Ẋ , fi − f j ⟩] =

˙̂X ( fi − f j ) for every 1 ≤ i, j ≤ N when k → ∞. Finally, we have that∑
1≤i, j≤N

ai ā jP̂Ẋ ( fi − f j ) = lim
k→∞

∑
1≤i, j≤N

ai ā jP̂Ẋ (ϕi
k − ϕ

j
k ) ≥ 0

ince P̂Ẋ is positive-definite over D(Rd ).
Continuity. Using the Lévy–Khintchine representation (2) of ψ with Lévy triplet (γ, σ 2, ν),

e have

|ψ(ξ )|

=

⏐⏐⏐iγ ξ + i
∫
R

xξ
(
1|xξ |≤1 − 1|x |≤1

)
ν(dx) + σ 2ξ 2

+

∫
R

(eixξ
− 1 − ixξ1|xξ |≤1)ν(dx)

⏐⏐⏐
≤

⏐⏐⏐γ ξ +

∫
R

xξ
(
1|xξ |≤1 − 1|x |≤1

)
ν(dx)

⏐⏐⏐ + σ 2ξ 2
+ 2

∫
R

(1 ∧ (x2ξ 2))ν(dx) ≤ 2Ψ (ξ ),

(13)

here we used the triangular inequality and the relation |eiy
−1− iy1|y|≤1| ≤ 2(1∧ y2) applied

o y = xξ . Applying (13) to ξ = f (t) and integrating over Rd , we have for every f ∈ L0(Ẋ ),

|log P̂Ẋ ( f )| ≤

∫
Rd

|ψ( f (t))|dt ≤ 2∥ f ∥Ψ .

ence P̂Ẋ is continuous at 0. The functional P̂Ẋ is positive-definite and continuous at 0, and
herefore continuous [67, Section IV.1.2, Proposition 1.1]. □
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4. Practical determination of the domain of definition

We provide here several criteria for the practical identification of the domain of definition
f a Lévy white noise. We apply our result to the Gaussian, SαS, compound Poisson, and
eneralized Laplace noises. The results presented here are new for the two latter classes of
oise to the best of our knowledge. Similar considerations are given for the domain of finite

pth moments for 0 < p ≤ 2. In the rest of the paper, we shall consider the spaces L p(Ẋ ) for
≤ p ≤ 2, with the convention that L0(Ẋ ) = L0(Ẋ ) is the domain of definition of the Lévy
hite noise Ẋ .

.1. Basic properties

roposition 4.1. Let Ẋ be a Lévy white noise and p ≥ 0.

• Linearity: for f, g ∈ L p(Ẋ ) and λ ∈ R, f + λg ∈ L p(Ẋ ).
• Invariances: for f ∈ L p(Ẋ ) and H : Rd

→ Rd , a C1-diffeomorphism, we have
t ↦→ f (H (t)) ∈ L p(Ẋ ). In particular, the translations f (· − t0), rescalings f (b·), and
rotations f (R·) of f , with t0 ∈ Rd , b ̸= 0, and R ∈ SO(d) a rotation matrix, are in
L p(Ẋ ).

roof. The linearity is already known since L p(Ẋ ) is a vector space by Proposition 3.5. For
he invariance, we simply remark that, by the substitution u = H (t),∫

Rd
Ψp( f (H (t)))dt =

∫
Rd

|det JH−1 (u)|Ψp( f (u))du

ith JH the invertible Jacobian matrix of H . By assumption on H , |det JH−1 (u)| is bounded
bove and below by finite strictly positive constants, implying the result. □

For a Lévy white noise Ẋ , the rescaling Ẋ (·/b) of a factor b ̸= 0 is the generalized random
rocess defined by ⟨Ẋ (·/b), ϕ⟩ = ⟨Ẋ , bdϕ(b·)⟩, for ϕ ∈ D(Rd ). We see easily that Ẋ (·/b) is
tself a Lévy white noise. Similarly, for a ̸= 0, the generalized random process a Ẋ is still a
évy white noise. We say that two generalized random processes s1 and s2 are independent if

heir finite-dimensional marginals are independent. By linearity, this is equivalent to the relation

P̂s1+s2 (ϕ) = P̂s1 (ϕ)P̂s2 (ϕ), for all ϕ ∈ D(Rd ).

f Ẋ1 and Ẋ2 are two independent Lévy white noises, then Ẋ1 + Ẋ2 is also a Lévy white noise.

roposition 4.2. Let Ẋ be a Lévy white noise and p ≥ 0. Then we have, for a and b nonzero,
nd t0 ∈ Rd ,

L p(Ẋ ) = L p(a Ẋ ) = L p(Ẋ (·/b)) = L p(Ẋ (· − t0))

f Ẋ1 and Ẋ2 are two independent Lévy white noises, then

L p(Ẋ1) ∩ L p(Ẋ2) ⊆ L p(Ẋ1 + Ẋ2). (14)

oreover, if at least one of the two Lévy white noises is symmetric, then (14) is an equality.

roof. We have ⟨Ẋ (·/b), f ⟩ = ⟨Ẋ , bd f (b·)⟩, so that f ∈ L p(Ẋ (·/b)) if and only if bd f (b·) ∈

L p(Ẋ ). Then, L p(Ẋ ) being a linear space that is invariant by rescaling (Proposition 4.1), the
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latter condition is equivalent to f ∈ L p(Ẋ ), hence L p(Ẋ (·/b)) = L p(Ẋ ). We proceed similarly
or L p(a Ẋ ) and L p(Ẋ (· − t0)).

For i = 1, 2, the Lévy triplet of Ẋ i (Ẋ ), respectively) is denoted by (γi , σ
2
i , νi ) ((γ, σ 2, ν),

respectively), and the corresponding exponent is Ψp,i (Ψp, respectively). If Ẋ1 and Ẋ2 are
ndependent, we have the relations

γ = γ1 + γ2, σ
2

= σ 2
1 + σ 2

2 , ν = ν1 + ν2.

Therefore, by the triangular inequality, we have

Ψp(ξ ) =

⏐⏐⏐(γ1 + γ2)ξ +

∫
R

xξ
(
1|xξ |≤1 − 1|x |≤1

)
(ν1 + ν2)(dx)

⏐⏐⏐ + (σ 2
1 + σ 2

2 )ξ 2

+

∫
R

(|ξ x |
p
∧ |ξ x |

2)(ν1 + ν2)(dx)

≤ Ψp,1(ξ ) + Ψp,2(ξ ),

hich proves (14). When one of the noise is symmetric, for instance Ẋ1, the latter inequality
s an equality since γ1ξ +

∫
R xξ

(
1|xξ |≤1 − 1|x |≤1

)
ν1(dx) = 0 and (14) is an equality. □

In general, (14) is only an inclusion. Consider for instance the case where Ẋ1 and Ẋ2 have
évy triplet (1, 1, 0) and (−1, 0, 0) respectively, meaning that Ẋ1 is a Gaussian white noise
ith drift γ = 1 and Ẋ2 a pure drift γ = −1. Then, Ẋ1 and Ẋ2 are clearly independent,

nd Ẋ1 + Ẋ2 is a Gaussian white noise with no drift. Therefore, L p(Ẋ1 + Ẋ2) = L2(Rd ) but
L p(Ẋ1) ∩ L p(Ẋ2) = L2(Rd ) ∩ L1(Rd ) (see Section 4.4.1 for more details on the determination
f those domains).

For γ ∈ R and ν a Lévy measure, we set

mγ,ν(ξ ) =

⏐⏐⏐⏐γ ξ +

∫
R

xξ
(
1|xξ |≤1 − 1|x |≤1

)
ν(dx)

⏐⏐⏐⏐ .
he next result is taken from [55].

roposition 4.3 (Reduction to the Symmetric Case Without Gaussian Part). Let (γ, σ 2, ν) be
Lévy triplet. We also denote by νsym the symmetrization of ν. Thereafter, Ẋ , Ẋ2, and Ẋsym

re Lévy white noises with respective Lévy triplets (γ, σ 2, ν), (γ, 0, ν), and (0, σ 2, νsym). Then,
e have the following relations for p ≥ 0:

• If σ 2
̸= 0, then

L p(Ẋ ) = L2(Rd ) ∩ L p(Ẋ2). (15)

• In any case,

L p(Ẋ ) = L p(Ẋsym) ∩ { f ∈ L0(Ẋ ),
∫
Rd

mγ,ν( f (t))dt < ∞}. (16)

roof. We can decompose Ẋ = Ẋ2 + ẊGauss, where Ẋ2 and ẊGauss are independent with
espective Lévy triplets (γ, 0, ν) and (0, σ 2, 0). Then, ẊGauss is a Gaussian white noise, for
hich L p(ẊGauss) = L2(Rd ). We apply (14) with equality (ẊGauss being symmetric) to obtain

15). Finally, (16) is a reformulation of [55, Proposition 2.9]. □

Based on Proposition 4.3, we restrict our attention to symmetric Lévy white noises without
2
aussian part. We first reduce to the case σ = 0 thanks to (15). The only remaining part to
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deduce the general case from the symmetric one is the identification of functions f satisfying

Rd mγ,ν( f (t))dt < ∞. Primarily, for non-symmetric noise, this usually relies on L1-type
onditions, but we leave this topic open for further investigations.

.2. The spaces L p0,p∞ (Rd )

We introduce the family of function spaces that generalize the L p-spaces for 0 < p < ∞.
hey will be identified later on as the domain of definition of important classes of Lévy white
oises. We first give some notations. For 0 ≤ p0, p∞ < ∞, we set

ρp0,p∞
(ξ ) := |ξ |p01|ξ |>1 + |ξ |p∞1|ξ |≤1,

ρlog,p∞
(ξ ) := (1 + log|ξ |)1|ξ |>1 + |ξ |p∞1|ξ |≤1.

with the convention that 00
= 0.

Definition 4.4. For 0 ≤ p0, p∞ < ∞, we define

L p0,p∞ (Rd ) =

{
f measurable, ρp0,p∞

( f ) :=

∫
Rd
ρp0,p∞

( f (t))dt < ∞

}
,

L log,p∞ (Rd ) =

{
f measurable, ρlog,p∞

( f ) :=

∫
Rd
ρlog,p∞

( f (t))dt < ∞

}
.

For p > 0, we have L p,p(Rd ) = L p(Rd ). Roughly speaking, p0 measures the local
ntegrability of a function, while p∞ indicates the asymptotic one. This is illustrated by the
ollowing example. For α, β > 0, the function f (t) = |t |−α 1|t |<1 + |t |−β 1|t |≥1 is such that

ρp0,p∞
( f ) =

∫
Rd

(
| f (t)|p01| f (t)|>1 + | f (t)|p∞1| f (t)|≤1

)
dt

=

∫
|t |<1

|t |−p0α dt +

∫
|t |≥1

|t |−p∞β dt.

herefore, f is in L p0,p∞ (Rd ) if and only if

α <
d
p0

and β >
d

p∞

.

he first inequality effectively refers to the integrability of f at the origin (or local integrabil-
ty), while the second covers its asymptotic integrability.

As we did in Section 3.2 with the spaces L0(Ẋ ) and L p(Ẋ ), we rely on generalized Orlicz
paces [56, Chapter X] to identify the structure of the spaces L p0,p∞ (Rd ).

roposition 4.5. We fix p0 ≥ 0 and p∞ > 0. The functions ρp0,p∞
and ρlog,p∞

are ∆2-regular
-functions.

roof. To simplify the notation, we write ρ = ρp0,p∞
in this proof. The function ρ is

ontinuous, non-decreasing, symmetric, and vanishes at the origin (since p∞ ̸= 0). It is
herefore a ϕ-function.

Then, we have the following decomposition
p0 | |

p0 p0 | |
p0 p∞ | |

p∞
ρ(2ξ ) = 2 ξ 1|ξ |>1 + 2 ξ 11/2<|ξ |≤1 + 2 ξ 1|ξ |≤1/2.
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For 1/2 ≤ |ξ | ≤ 1, we have that |ξ |p0−p∞ ≤ max(2p∞−p0 , 1). Therefore, we have that

ρ(2ξ ) ≤ 2p0 |ξ |p0 1|ξ |>1 + 2p0 max(2p∞,p0 , 1) |ξ |p∞ 11/2<|ξ |≤1 + 2p∞ |ξ |p∞ 1|ξ |≤1/2

≤ max(2p0 , 2p∞ )ρ(ξ ).

Therefore, ρ is ∆2-regular. The proof for ρlog,p∞
is very similar. □

Proposition 4.5 coupled with Proposition A.3 allow us to identify the structure of the spaces
L p0,p∞ (Rd ) and L log,p∞ (Rd )

Proposition 4.6. We fix p0 ≥ 0 and p∞ > 0. Then, L p0,p∞ (Rd ) = Lρp0,p∞ (Rd ) is a
eneralized Orlicz space associated to the ϕ-function ρp0,p∞

. It is in particular a complete
inear metric space for the F-norm

∥ f ∥ρp0,p∞
:= inf{λ > 0, ρp0,p∞

( f/λ) ≤ λ}.

inally, simple functions are dense in L p0,p∞ (Rd ). The same conclusions occur for L log,p∞ (Rd ).

The following embeddings are easily deduced by bounding the F-norm of the considered
unction spaces.

roposition 4.7. We fix p0 ≥ 0 and p∞ > 0.

1. If 0 ≤ p1 ≤ p2 < ∞, we have the embedding L p2,p∞ (Rd ) ⊆ L p1,p∞ (Rd ).
2. If 0 < p1 ≤ p2 < ∞, we have the embedding L p0,p1 (Rd ) ⊆ L p0,p2 (Rd ).
3. Conditions 1. and 2. remain true by changing p0 to log and we have the embeddings,

for any 0 < p0 ≤ 2 and 0 ≤ p∞ ≤ 2, L p0,p∞ (Rd ) ⊆ L log,p∞ (Rd ) ⊆ L0,p∞ (Rd ).

In Propositions 4.6 and 4.7, we restricted ourselves to the case when p∞ ̸= 0. The reason is
hat ρp0,0(0) ̸= 0, so that ρp0,0 is not a ϕ-function. Therefore, we do not define a generalized
rlicz space in the sense of Rao and Ren [56]. The space L p0,0(Rd ) can be described as follows:

t is the space of functions in L p0 (Rd ) whose support has a finite Lebesgue measure. We do not
pecify any topological structure on those spaces, since they will not appear as the domain of
efinition of any Lévy white noise. However, the space L2,0(Rd ) will play a role as a common
ubspace to all the domains of definition of the Lévy white noises (see Proposition 4.10).

.3. Criteria for the determination of the domain of definition

In this section, we consider a symmetric white noise Ẋ without Gaussian part and with
ymmetric Lévy measure ν. In particular, for p ≥ 0, the pth-order Rajput–Rosinski exponent
n (11) simply becomes

Ψp(ξ ) = |ξ |2
∫

|x |≤1/|ξ |
|x |

2ν(dx) + |ξ |p
∫

|x |>1/|ξ |
|x |

pν(dx). (17)

he first criterion is applicable as soon as we are able to estimate the behavior of the function
p at the origin and/or at infinity.

roposition 4.8 (Criteria for the Determination of the Domain of Definition). Let Ẋ be a
ymmetric Levy white noise without Gaussian part and 0 ≤ p ≤ 2.
´
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1. Assume that Ψp(ξ ) ≤ Cρp0,p∞
(ξ ) for some constant C > 0 and every ξ , then we have

the embedding

L p0,p∞ (Rd ) ⊆ L p(Ẋ ). (18)

2. Assume that ρp0,p∞
(ξ ) ≤ CΨp(ξ ) for some constant C > 0 and every ξ , then we have

the embedding

L p(Ẋ ) ⊆ L p0,p∞ (Rd ). (19)

3. Assume that Ψp(ξ ) ∼
0

A|ξ |p∞ and Ψp(ξ ) ∼
∞

B|ξ |p0 , then

L p(Ẋ ) = L p0,p∞ (Rd ). (20)

4. The same holds with L log,p∞ (Rd ) instead of L p0,p∞ (Rd ) if we replace |ξ |p0 by log|ξ |.

roof. The condition Ψp(ξ ) ≤ Cρp0,p∞
(ξ ) implies that, for any function f ∈ L p0,p∞ (Rd ), we

ave

∥ f ∥Ψp =

∫
Rd

Ψp( f (t))dt ≤ C
∫
Rd
ρp0,p∞

( f (t))dt = C∥ f ∥p0,p∞
.

herefore, the identity map is continuous from L p0,p∞ (Rd ) to L p(Ẋ ) proving (18). The proof
f (19) is very similar. For the last point, we remark that the two functions Ψp and ρp0,p∞

do
ot vanish for ξ ̸= 0, are continuous, and are equivalent at 0 and infinity. Hence, there exist
wo constants such that

C1ρp0,p∞
(ξ ) ≤ Ψp(ξ ) ≤ C2ρp0,p∞

(ξ ).

e then apply (18) and (19) to obtain (20) □

Note that the local integrability of test functions (parameter p0) is linked with the asymptotic
ehavior of Ψp, while the asymptotic integrability (parameter p∞) is linked to the behavior of
p at 0.
If we know that the Lévy measure has some finite moments, then we obtain new information

n the domain of definition of the Lévy white noise. For p, q ≥ 0, we set

m p,q (ν) :=

∫
R
ρp,q (x)ν(dx) =

∫
|x |>1

|x |
p ν(dx) +

∫
|x |≤1

|x |
q ν(dx), (21)

alled the generalized moments of ν. Then, ν being a Lévy measure, we have that m0,2(ν) < ∞.
Consider the Lévy process X , together with its corresponding Lévy white noise Ẋ ,

ith Lévy triplet (0, 0, ν). Then, Ẋ has finite pth moments if and only if m p,2(ν) < ∞

58, Theorem 25.3]. The quantity

β0 := sup{0 ≤ p ≤ 2, m p,2(ν) < ∞}

s called the Pruitt index and was introduced in [52] to study the asymptotic behavior of Lévy
rocesses. It measures the growth rate of X at infinity [16, Section 5.3] and is therefore strongly
elated with the required rate of decay for the control of the Besov regularity of the Lévy white
oise Ẋ [29, Theorem 3].

In contrast, the Blumenthal–Getoor index, defined as

β := inf{0 ≤ q ≤ 2, m (ν) < ∞},
∞ 0,q
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relies on the local regularity of X and Ẋ . This can be formulated in terms of the strong
ariation of X [16, Section 5.4] or the local Besov regularity of X (see [59]) and of Ẋ (see
29, Corollary 3]).

In accordance with the previous remarks, the generalized moments of a Lévy measure ν
ave important interpretations for the local and asymptotic behaviors of the Lévy white noise
nd the corresponding Lévy process.

roposition 4.9. Let Ẋ be a symmetric Lévy white noise with Lévy measure ν and without
aussian part.

• We assume that m p,2(ν) < ∞ for some 0 ≤ p ≤ 2. Then, we have, for any ξ ∈ R, that

m p,2(ν)ρp,2(ξ ) ≤ Ψp(ξ ) ≤ m p,2(ν)ρ2,p(ξ ). (22)

• We assume that m p,2(ν) < ∞ for some p ≥ 2. Then, we have, for any ξ ∈ R, that

m p,2(ν)ρ2,p(ξ ) ≤ Ψp(ξ ) ≤ m p,2(ν)ρp,2(ξ ). (23)

• If m p∞,p0 (ν) < ∞ for some 0 ≤ p0 ≤ 2, 0 < p∞ < ∞ and if p ≤ p0, p∞, then

Ψp(ξ ) ≤ mmin(p∞,2),p0 (ν)ρp0,min(p∞,2)(ξ ). (24)

roof. All the inequalities will be obtained by exploiting the position of |x |, |ξ |, or |xξ | with
espect to 1. The proofs for the upper and lower bounds in (22) and (23) and the upper bound
n (24) are very similar, we therefore focus on the last one. We first assume that |ξ | ≤ 1. Then,
sing (17), we decompose Ψp as

Ψp(ξ ) =

∫
|x |≤1

|xξ |2ν(dx) +

∫
1<|x |≤

1
|ξ |

|xξ |2ν(dx) +

∫
|x |> 1

|ξ |

|xξ |pν(dx). (25)

pplying this relation to p ≤ p∞ ≤ 2, we deduce that

Ψp(ξ ) ≤

∫
|x |≤1

|x |
2
|ξ |p∞ν(dx) +

∫
1<|x |≤

1
|ξ |

|xξ |p∞ν(dx) +

∫
|x |> 1

|ξ |

|xξ |p∞ν(dx)

= m p∞,2(ν) |ξ |p .

f now p∞ > 2, we have, still for |ξ | ≤ 1, that

Ψp(ξ ) ≤

∫
|x |≤1

|x |
2
|ξ |2ν(dx) +

∫
1<|x |≤

1
|ξ |

|x |
p∞ |ξ |2 ν(dx) +

∫
|x |> 1

|ξ |

|ξ |2 ν(dx)

= m2,2(ν) |ξ |2 .

e deduce that Ψp(ξ ) ≤ mmin(p∞,2),2(ν) |ξ |min(p∞,2).
Assume now that |ξ | > 1. Then, we use the decomposition

Ψp(ξ ) =

∫
|x |≤

1
|ξ |

|xξ |2ν(dx) +

∫
1
|ξ |
<|x |≤1

|xξ |pν(dx) +

∫
|x |>1

|xξ |pν(dx). (26)

hen, p ≤ p0 ≤ 2 and p < p∞, we therefore have that

Ψp(ξ ) ≤

∫
|x |≤

1
|ξ |

|xξ |p0 ν(dx) +

∫
1
|ξ |
<|x |≤1

|xξ |p0 ν(dx) +

∫
|x |>1

|x |
min(p∞,2)

|ξ |p0 ν(dx)

p0
= mmin(p∞,2),p0 (ν) |ξ | .
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Remarking that mmin(p∞,2),2(ν) ≤ mmin(p∞,2),p0 (ν) and combining the bounds for |ξ | ≤ 1 and
|ξ | > 1, we deduce (24). □

Proposition 4.10. Let Ẋ be a Lévy white noise with Lévy measure ν and p > 0. Then, the
following statements hold.

• In the general case, we have

L2,0(Rd ) ⊆ L0(Ẋ ) ⊆ L0,2(Rd ), (27)

• If 0 < p ≤ 2 and Ẋ is symmetric such that m p,2(ν) < ∞, then

L2,p(Rd ) ⊆ L p(Ẋ ) ⊆ L p,2(Rd ). (28)

• If p ≥ 2 and Ẋ is symmetric such that m p,2(ν) < ∞, then

L p,2(Rd ) ⊆ L p(Ẋ ) ⊆ L2,p(Rd ). (29)

In particular, for any symmetric finite-variance Lévy white noise L2(Ẋ ) = L2(Rd ).
• If Ẋ is symmetric without Gaussian part and such that m p∞,p0 (ν) < ∞ with 0 ≤ p ≤

p0, p∞ ≤ 2, then

L p0,p∞ (Rd ) ⊆ L p(Ẋ ). (30)

roof. When Ẋ is symmetric without Gaussian part, (27) and (28) are directly deduced from
22) by taking p = 0 and p general, respectively. Adding a Gaussian part does not change the
onclusions since L2,p(Rd ) ⊆ L p(ẊGauss) = L2(Rd ) ⊆ L p,2(Rd ) for all 0 ≤ p ≤ 2 and thanks
o (15).

We now consider a general Lévy white noise Ẋ with Lévy triplet (γ, σ 2, ν) and wsym its
ymmetric version with triplet (0, σ 2, νsym). We already know that L2,0(Rd ) ⊆ L0(Ẋsym) ⊆

L0,2(Rd ). Moreover, from (16), we know that

L0(Ẋ ) = L0(Ẋsym) ∩

{
f ∈ L0(Ẋ ),

∫
Rd

mγ,ν( f (t))dt < ∞

}
. (31)

irst, we have that L0(Ẋ ) ⊆ L0(Ẋsym) ⊆ L0,2(Rd ). Second, due to (31), it is sufficient to prove
hat

L2,0(Rd ) ⊆ { f ∈ L0(Ẋ ),
∫
Rd

mγ,ν( f (t))dt < ∞}

o deduce that L2,0(Rd ) ⊆ L0(Ẋ ). We remark that, for |ξ | ≤ 1,

mγ,ν(ξ ) =

⏐⏐⏐⏐⏐γ ξ +

∫
1≤|x |≤

1
|ξ |

ξ xν(dx)

⏐⏐⏐⏐⏐ ≤ |γ ξ | +

∫
1≤|x |≤

1
|ξ |

ν(dx) ≤ |γ | +

∫
1≤|x |

ν(dx),

nd that, for |ξ | > 1,

mγ,ν(ξ ) =

⏐⏐⏐⏐⏐γ ξ +

∫
1
|ξ |

≤|x |≤1
ξ xν(dx)

⏐⏐⏐⏐⏐ ≤ |γ ξ | +

∫
1
|ξ |

≤|x |≤1
|ξ x |

2ν(dx)

≤

(
|γ |+

∫
|x |≤1

x2ν(dx)
)
ξ 2.

herefore, we have mγ,ν(ξ ) ≤ Cρ2,0(ξ ) for some constant C , which implies that L2,0(Rd )
s included into { f ∈ L0(Ẋ ),

∫
Rd mγ,ν( f (t))dt < ∞}, as expected. Finally, (30) is a direct

onsequence of (24). □
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Remarks.

(i) The embeddings (27) inform on the extreme cases. In particular, a function in L2,0(Rd )
– the space of functions in L2(Rd ) whose support has a finite Lebesgue measure – can
be applied to any Lévy white noise. This includes the indicator functions 1B with B
a Borel set with finite Lebesgue measure or the Daubechies wavelets that are compactly
supported and in L2(Rd ). We shall see that finite-variance compound Poisson noises reach
the largest possible domain of definition L0,2(Rd ) (see Section 4.4.4).
The embeddings (28) and (29) complement the general statement (27). It implies in
particular that ⟨Ẋ , f ⟩ has a finite pth-moment as soon as Ẋ has.

(ii) The relation (30) provides general sufficient conditions ensuring the finiteness of moments
of ⟨Ẋ , f ⟩. It will play an important role when identifying compatibility condition between
a whitening operator and a Lévy white noise in Section 5.

4.4. Examples

In this section, we consider subfamilies of infinitely divisible laws that define important
classes of Lévy white noises. For these different classes, we specify the domain of definition
L0(Ẋ ) and the domains L p(Ẋ ) of the considered Lévy white noises.

The function 1[0,1]d ∈ L2,0(Rd ) is in the domain of definition of every Lévy white noise.
oreover, according to (12), a Lévy white noise with characteristic exponent ψ is such that

Φ⟨Ẋ ,1[0,1]d ⟩(ξ ) = exp
(∫

Rd
ψ(ξ1[0,1]d (t))dt

)
= exp(ψ(ξ ))

ince ψ(0) = 0. Therefore, the characteristic exponent of the Lévy white noise is also the
haracteristic exponent of the random variable ⟨Ẋ ,1[0,1]d ⟩. We take the convention that the

terminology for the law of this random variable is inherited by the Lévy white noise. For
instance, a white noise is said to be Gaussian if the random variable ⟨Ẋ ,1[0,1]d ⟩ is Gaussian.

We illustrate how to deduce the domain of definitions of Gaussian, SαS, generalized Laplace,
and compound Poisson white noises.

4.4.1. Gaussian white noises and pure drift white noises
The Gaussian white noise of variance σ 2 is characterized by the Lévy triplet (0, σ 2, 0). With

Proposition 3.4, we directly obtain that, for every 0 ≤ p ≤ 2, L p(ẊGauss) = L2(Rd ). Based
n these considerations and Proposition 4.3, we shall consider Lévy triplets with σ 2

= 0 from
ow.

Similarly, the pure drift white noise Ẋdrift with mean γ is defined from its triplet (γ, 0, 0).
e have in that case that Ẋdrift = γ almost surely and Ẋdrift is a constant – therefore non

tochastic – process. Then, we have L p(Ẋdrift) = L1(Rd ) for every 0 ≤ p ≤ 2.
If now Ẋ = ẊGauss + Ẋdrift has Lévy triplet (γ, σ 2, 0) with γ and σ 2

̸= 0, then the domain
s, due to (14) with equality, L p(Ẋ ) = L2(Rd ) ∩ L1(Rd ).

.4.2. Non-Gaussian SαS white noises
Stable random variables are an important subclass of infinitely divisible random variables.

xtensive details on SαS random variables and random processes can be found in [57].
The extension of the symmetric α-stable noise to an independently scattered random measure

s in fact an α-stable random measure in the sense of [57]. The identification of the space of
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deterministic integrable functions has already been carried out in this context in [57], and we
merely re-state the result and prove it within our framework.

We fix 0 < α < 2. A random variable is symmetric-α-stable (SαS) if its characteristic
function can be written as e−γ |ξ |α for some γ > 0. For simplicity, we should only consider
γ = 1 thereafter, since a different γ will not change the domain of definition according
to Proposition 4.2. A SαS white noise Ẋα is a Lévy white noise such that ⟨Ẋα,1[0,1]d ⟩ is
a SαS random variable. Its characteristic functional is given for ϕ ∈ D(Rd ) by P̂Ẋα (ϕ) =

exp
(
−∥ϕ∥

α
α

)
(see for instance [64, Section 4.2.0]).

Proposition 4.11. Let 0 < α < 2. Then, for every 0 ≤ p < α, we have

L p(Ẋα) = Lα(Rd ).

For p ≥ α, we have L p(Ẋα) = {0}.

Proof. The Lévy measure of Ẋα is ν(dx) =
Cα

|x |α+1 dx with Cα a constant. A non-trivial SαS
andom variable has an infinite pth-moment for p ≥ α, and for every f ∈ L0(Ẋα), ⟨Ẋ , f ⟩

is a SαS random variable. Hence L p(Ẋ ) = {0} for p ≥ α. The case of interest is therefore
0 ≤ p < α. Then, from (17),

Ψp(ξ ) = 2Cα

∫ 1/|ξ |

0

ξ 2

xα+1 dx + 2Cα

∫
1/|ξ |

|ξ |p

xα+1−p
dx

= 2Cα|ξ |
α

(∫ 1

0

dy
yα−1 +

∫
∞

1

dy
yα+1−p

)
=

(
2(2 − p)Cα

(2 − α)(α − p)

)
|ξ |α.

inally, the result follows from Proposition 4.8. □

.4.3. Generalized Laplace white noises
Our goal is to study the Laplace white noise, for which ⟨Ẋ ,1[0,1]d ⟩ follows a Laplace law. It

equires to introduce the family of generalized Laplace laws. We follow here the terminology
f [45, Section 4.1.1] and consider only the symmetric case.

A random variable Y is called a generalized Laplace random variable if its characteristic
unction can be written as

Φ(ξ ) =
1

(1 +
1
2σ

2ξ 2)τ
= exp

(
−τ log(1 +

1
2
σ 2ξ 2)

)
,

ith τ > 0 the shape parameter and σ 2 the scaling parameter. We denote this situation by
Y ∼ GL(σ, τ ). Note that the variance of Y is τσ 2. When τ = 1, we recover the traditional

aplace law. The generalized Laplace laws are infinitely divisible [45, Section 2.4.1] and
ssociated with the Lévy triplet (0, 0, ντ,σ 2 ) with [45, Proposition 2.4.2]

ντ,σ 2 (dx) = τ
1
|x |

e−2|x |/σ 2
dx .

efinition 4.12. We say that a Lévy white noise ẊLaplace is a generalized Laplace white noise
f ⟨ẊLaplace,1[0,1]d ⟩ ∼ GL(σ, τ ) for some τ, σ 2 > 0. We call τ and σ 2 respectively the shape
arameter and the scaling parameter of ẊLaplace. When τ = 1, we simply say that ẊLaplace is a
aplace white noise.
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To the best of our knowledge, general integrability conditions for (generalized) Laplace
oise has not been investigated in the literature. Proposition 4.13 provides such conditions.

roposition 4.13. For every generalized Laplace white noise ẊLaplace, we have

L0(ẊLaplace) = L log,2(Rd ). (32)

oreover, for 0 < p ≤ 2, we have

L p(ẊLaplace) = L p,2(Rd ). (33)

roof. Let 0 ≤ p ≤ 2. We start from (17) and write

Ψp(ξ ) = ξ 2
∫

|x |≤1/|ξ |
x2ντ,σ 2 (dx) + |ξ |p

∫
|x |>1/|ξ |

|x |
pντ,σ 2 (dx) := Ψp,1(ξ ) + Ψp,2(ξ ).

ithout loss of generality, we consider the case σ 2
= 2 and τ = 1, in which case ν1,2(dx) =

e−|x |

|x |
dx . Then, by integration by parts, we have

Ψp,1(ξ ) = 2|ξ |2
∫ 1/|ξ |

0
xe−x dx = 2|ξ |2

(
1 − e−1/|ξ |(1 +

1
|ξ |

)
)

Hence, we have Ψp,1(ξ ) −→
ξ→∞

2 and Ψp,1(ξ ) ∼
ξ→0

2|ξ |2.

For Ψp,2(ξ ) = |ξ |p
∫
|x |>1/|ξ ||x |

pντ,σ 2 (dx), we shall distinguish between p = 0 and p > 0.
For p > 0, the function x p−1e−x is integrable over R, so that Ψp,2(ξ ) ∼

ξ→∞

(∫
R x p−1e−x dx

)
|ξ |p.

or p = 0, the function x−1e−x is not anymore integrable around 0. Using the equivalence
x−1e−x

∼
x→0

x−1, we deduce that

Ψp,2(ξ ) = 2
∫

∞

1
|ξ |

x−1e−x dx ∼
ξ→∞

2
∫ 1

1
|ξ |

x−1e−x dx ∼
ξ→∞

2
∫ 1

1
|ξ |

x−1dx = 2 log |ξ | .

oreover, since p ≤ 2, we have, again by integration by parts,

Ψp,2(ξ ) = 2
∫

x |ξ |>1
(x |ξ |)pe−x dx

x
≤ 2

∫
x |ξ |>1

(x |ξ |)2e−x dx
x

= 2|ξ |(1 + |ξ |)e−1/|ξ |,

mplying that Ψp,2(ξ ) =
ξ→0

o(|ξ |2). By combining the results on Ψp,1 and Ψp,2, we obtain that

• for 0 ≤ p ≤ 2, Ψp(ξ ) ∼
ξ→0

2|ξ |2;

• for 0 < p ≤ 2, Ψp(ξ ) ∼
ξ→∞

(∫
R x p−1e−x dx

)
|ξ |p;

• for p = 0, Ψ0(ξ ) = Ψ (ξ ) ∼
ξ→∞

2 log|ξ |.

e apply now Proposition 4.8 to deduce (32) and (33). □

.4.4. Compound Poisson white noises

efinition 4.14. A Lévy white noise is a compound Poisson noise if its Lévy triplet has the
orm (0, 0, ν) and if its Lévy measure satisfies

λ :=

∫
R
ν(dx) < ∞.

n that case, ν = λP with P a probability measure.
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Table 1
Definition domains of some Lévy White Noises.

White noise Parameters Φ
⟨Ẋ ,1[0,1]⟩

(ξ ) L0(Ẋ ) L p(Ẋ )
0 < p ≤ 2

Gaussian σ 2 > 0 e−σ 2ξ2
L2(Rd ) L2(Rd )

Pure drift γ ∈ R eiγ ξ L1(Rd ) L1(Rd )

SαS 0 < α < 2 e−|ξ |α Lα(Rd )

{
Lα(Rd ) if p < α

{0} if p ≥ α

Generalized σ 2 > 0 1
(1+σ 2ξ/2)τ

L log,2(Rd ) L p,2(Rd )
Laplace τ > 0
Symmetric finite-variance λ > 0 eλ(̂P(ξ )−1) L0,2(Rd ) L p,2(Rd )
Compound Poisson P

One can represent a compound Poisson noise ẊPoisson as [63, Theorem 1]

ẊPoisson =

∑
n≥0

anδ(· − tn)

ith δ the Dirac distribution, (an) i.i.d. random variables with probability law P, and (tn)
independent of (an) such that, for every Borel set B ∈ Rd , the random number of elements tn
in B follows a Poisson law with rate λLeb(B). Then, ẊPoisson has a finite variance if and only
f P has. In that case, it has a zero mean if and only if P has.

The integration with respect to compound Poisson noise is treated for instance in
44, Chapter 12]. However, it relies on L1-type conditions, inherited from the fact that
he stochastic integration follows the Lévy–Itô decomposition. We provide more general
ntegrability conditions in Proposition 4.15, that are not sensitive to L1-type integrability.

roposition 4.15. If ẊPoisson is a symmetric compound Poisson white noise with finite variance,
hen

L p(ẊPoisson) = L p,2(Rd ).

or every 0 ≤ p ≤ 2.

roof. First, L p(ẊPoisson) ⊆ L p,2(Rd ) as for any symmetric Lévy white noise, according to
28). Moreover, for a compound Poisson noise with finite variance, we have for every q ∈ [0, 2]
hat

∫
R|x |

qP(dx) < ∞. Therefore, we have

Ψp(ξ ) = λ

∫
R

(|xξ |p
∧ |xξ |2)P(dx) ≤ λmin

(
|ξ |p

∫
R
|x |

pP(dx), |ξ |2
∫
R
|x |

2P(dx)
)

≤ C(|ξ |p
∧ |ξ |2) = ρp,2(ξ ),

o that ∥ f ∥Ψp ≤ C∥ f ∥p,2. This means that L p,2(Rd ) ⊆ L p(ẊPoisson), finishing the proof. □

We summarize the results of this section in Table 1.

. Application to SPDEs

In this section, we consider stochastic partial differential equations (SPDEs) of the form

˙
Ls = X
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with Ẋ a Lévy white noise and L a differential operator. Considerable attention has been
iven in order to define various classes of random processes and fields depending on the Lévy
oise model and the operator. A vast majority of works deal with the Gaussian case [50,51].
eneralizations include the analysis of SPDEs driven by stable white noise [53,54,57] or Lévy
hite noise [5].
Until now, we restricted ourselves to the study of Lévy white noise. In this section, we see

ow to apply our results to solve linear stochastic differential equations of the form

Ls = Ẋ

ith Ẋ a Lévy white noise and L a differential operator. We give new conditions of
ompatibility between the operator L and the white noise Ẋ such that the process s exists
s a generalized random process. Our results extend the results of previous works [27,64,65].

heorem 5.1. We consider a Lévy white noise Ẋ . We assume that T is a continuous and
linear operator from D(Rd ) to L0(Ẋ ). Then, the mapping

s : D(Rd ) → L0(Ω )
ϕ ↦→ ⟨s, ϕ⟩ := ⟨Ẋ ,T{ϕ}⟩ (34)

pecifies a generalized random process in the sense of Definition 2.1.
If moreover there exists an operator L such that TL∗ϕ = ϕ for every ϕ ∈ D(Rd ) (left-inverse

roperty), then we have that

Ls = Ẋ . (35)

roof. The mapping ϕ ↦→ ⟨Ẋ ,T{ϕ}⟩ is well-defined for any ϕ ∈ D(Rd ) because T{ϕ} ∈ L0(Ẋ )
y assumption. It is actually the composition of the operator T with the random linear functional

Ẋ . These two mappings being linear, the composition is linear. Moreover, T is continuous
rom D(Rd ) to L0(Ẋ ) by assumption and Ẋ is continuous from L0(Ẋ ) to L0(Ω ) according
o Theorem 3.6. Therefore, s is a linear and continuous mapping from D(Rd ) to L0(Ω ) and
herefore a valid generalized random process in D′(Rd ).

If now TL∗
{ϕ} = ϕ for every ϕ ∈ D(Rd ), then the process Ls, defined as

Ls : ϕ ↦→ ⟨s,L∗ϕ⟩, (36)

atisfies the relation

⟨Ls, ϕ⟩ = ⟨Ẋ ,TL∗ϕ⟩ = ⟨Ẋ , ϕ⟩ (37)

or every ϕ ∈ D(Rd ). Equivalently, we have shown that Ls = Ẋ as elements of D′(Rd ), as
xpected. □

We justify shortly the assumptions of Theorem 5.1. Many differential operators admit a
atural inverse L−1, that is typically defined using the Green’s function of L. A solution of (5)
an therefore be formally written as s = L−1w; that is,

⟨s, ϕ⟩ = ⟨L−1 Ẋ , ϕ⟩ = ⟨Ẋ , (L∗)−1
{ϕ}⟩. (38)

In order to be valid, (38) should at least be meaningful for any ϕ ∈ D(Rd ). It means in particular
that (L∗)−1

{ϕ} should be in the domain of definition of the Lévy white noise Ẋ . However, for
many differential operators, including the derivative, the natural inverse operator to L∗ exists

d
but is not stable in the sense that it is not continuous from D(R ) to any domain of definition

97



J. Fageot and T. Humeau Stochastic Processes and their Applications 135 (2021) 75–102

c
r
c
f

D
a
w

w

P
l
h

T

P

u

p
n

C
o

L0(Ẋ ). In that case, it is required to correct (L∗)−1 in order to make it stable. The role of the
orrected version of (L∗)−1 is played by T. Thanks to (37), we moreover see that we only
equire that T is a left-inverse of L∗. For the specification of stable left-inverses of important
lasses of differential operators, including the derivative of any order, fractional derivatives,
ractional Laplacian, we refer the reader to [64].

efinition 5.2. A generalized random process constructed according to Theorem 5.1 is called
generalized Lévy process (or generalized Lévy field when d ≥ 2). The operator L is the
hitening operator of s and Ẋ the underlying Lévy white noise.

The following result links the stability properties of the corrected left-inverse operator T
ith the finiteness of the generalized moments of the Lévy measure of Ẋ .

roposition 5.3. We consider a symmetric Lévy white noise without Gaussian part Ẋ and a
inear, continuous, and shift-invariant operator L. We assume that, for 0 ≤ p0, p∞ ≤ 2, we
ave

• m p∞,p0 (ν) =
∫
R ρp∞,p0 (t)ν(dt) < ∞, and

• the adjoint operator L∗ admits a left-inverse T that maps continuously D(Rd ) to
L p0,p∞ (Rd ).

hen, there exists a generalized Lévy process s such that Ls = Ẋ .

roof. Applying (30) with p = 0, the condition
∫
R ρp∞,p0 (t)ν(dt) < ∞ ensures that

L p0,p∞ (Rd ) ⊂ L0(Ẋ ). This embedding and the assumption on T imply that T maps contin-
ously D(Rd ) to L0(Ẋ ), and Theorem 5.1 applies. □

We recall that the condition m p∞,p0 (ν) < ∞ introduced in (21) is connected with the local
roperties (parameter p0) and the asymptotic properties (parameter p∞) of the Lévy white
oise.

omparison with previous works. Theorem 5.1 and Proposition 5.3 can be compared with
ther conditions of compatibility between the whitening operator L and the Lévy white noise

Ẋ . The results are reformulated with our notation.

• First of all, we differentiate between two types of solutions of the linear SPDE Ls = w.
We say that s is a generalized solution if Ls = w almost surely. In contrast, a generalized
random process s such that Ls = w in law (that is, PLs = Pw) is called a solution in
law. In recent works [27,64], the solutions of (5) were essentially constructed relying on
the Minlos–Bochner theorem. One important contribution of this paper is to construct
generalized solutions, what requires the identification of the domain of definition of the
Lévy white noise Ẋ to be as general as possible.

• Throughout the paper, we have considered Lévy white noise as random elements in
D′(Rd ). This is in line with the original work of Gel’fand and Vilenkin [37]. It can
be of interest, however, to restrict to the class of tempered Lévy white noise, that is,
to consider Lévy white noise, and by extension generalized Lévy processes, as random
elements in the space S ′(Rd ). The construction of generalized Lévy processes in S ′(Rd )
instead of D′(Rd ) can be found in [64]; see also [10] for a recent exposition of the main
results in this framework. For a comparison between the two constructions, we refer to
[27, Chapter 3].
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Not every Lévy white noise is tempered. Actually, a Lévy white noise is tempered if
and only if it has finite pth moments for some p > 0 (see [23]). The main point is
that the construction is really analogous, since the spaces S(Rd ) and S ′(Rd ) are nuclear.
Among the consequences, we mention that Theorem 5.1 and Proposition 5.3 remain valid
when replacing D(Rd ) by S(Rd ). In that case, the processes Ẋ and s are both located in
S ′(Rd ). In what follows, when comparing these two results with previous contributions,
we consider the version of the result for tempered generalized random processes.

• For 1 ≤ p ≤ 2, the characteristic exponent ψ is p-admissible if |ψ(ξ )| + |ξ |
⏐⏐ψ ′(ξ )

⏐⏐ ≤

C |ξ |p. Note that the derivative ψ ′(ξ ) is well-defined as soon as the first moment of the
underlying infinitely divisible random variable is finite, what we assume now. This notion
was introduced in [64] together with the following compatibility condition: if ψ is p-
admissible and T continuously map S(Rd ) to L p(Rd ), then there exists a solution in law
of Ls = w with characteristic functional

P̂s : ϕ ↦→ P̂Ẋ (T{ϕ}). (39)

A sufficient condition for the p-admissible is that
∫
R |t |p ν(dt) < ∞. Therefore, (39) is

a valid characteristic functional as soon as
∫
R |t |p ν(dt) < ∞ and T maps continuously

S(Rd ) to L p(Rd ) for some 1 ≤ p ≤ 2.
We recover this result by selecting p0 = p∞ = p in Proposition 5.3. Actually,
Proposition 5.3 extends this criterion in three ways. First, we can distinguish between
the behavior of ν around 0 and at ∞. Second, we do not restrict to the case p ≥ 1 (this
second improvement was already achieved in our work [31] thanks to a relaxation of the
p-admissibility). Finally, as we have said already, we specify generalized solutions, and
not only solutions in law, of Ls = Ẋ .

• In the work [27] with A. Amini and M. Unser by the first author, it has shown that the
characteristic functional (39) specifies a generalized Lévy process if

∫
R ρp∞,p0 (t)ν(dt) and

T maps continuously S(Rd ) to L p0,p∞ (Rd ) for 0 < p∞ ≤ p0 ≤ 2 [27, Theorem 5]. When
p∞ ≤ p0, we have that

max(|ξ |p0 , |ξ |p∞ ) ≤ ρp0,p∞
(ξ ) ≤ |ξ |p0 + |ξ |p∞ .

Therefore, L p0,p∞ (Rd ) = L p0 (Rd )∩ L p∞ (Rd ) and we recover our previous result (at least
for symmetric Lévy white noise without Gaussian part). Moreover, Proposition 5.3 is an
improvement, since one can consider p∞ > p0. In that case, L p0,p∞ (Rd ) contains but is
strictly bigger than L p0 (Rd ) ∩ L p∞ (Rd ) and the requirement on T is less restrictive. With
exactly the same idea, one could extend the class (generalized) Lévy processes considered
in [30, Definition 5] by allowing cases when p∞ > p0, and therefore generalizing
Theorem 5 in this paper.

• Combining (30) and Proposition 3.7, we generalize [4, Theorem 2] again by considering
the case p∞ > p0: we are able to specify a larger domain of definition and of continuity
than L p0 (Rd ) ∩ L p∞ (Rd ) in that case.
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Appendix. Generalized Orlicz spaces

Definition A.1. We say that ρ : R → R+ is a ϕ-function if ρ(0) = 0 and ρ is symmetric,
ontinuous, and nondecreasing on R+. The ϕ-function ρ is ∆2-regular if

ρ(2ξ ) ≤ Mρ(ξ )

or some M, ξ0 > 0, and every ξ ≥ ξ0.

efinition A.2. Let ρ be a ϕ-function. For f : Rd
→ R, we set

ρ( f ) :=

∫
Rd
ρ( f (t))dt.

he generalized Orlicz space associated to ρ is

Lρ(Rd ) := { f measurable, ∃λ > 0, ρ( f/λ) < ∞} .

Orlicz spaces were introduced in [12] as natural generalizations of L p-spaces for p ≥ 1. A
systematic study with important extensions was done by J. Musielak [48]. The initial theory
deals with Banach spaces, excluding for instance the L p-spaces with 0 < p < 1. Definition A.2
generalizes the Orlicz spaces in two ways: One does not require that ρ is convex, neither
that ρ(ξ ) → ∞ as ξ → ∞. The need for a non-locally convex framework (related to non-
convex ϕ-function) is notable in stochastic integration. It was initiated by K. Urbanik and W.A.
Woyczyns [66]. It is at the heart of the study of the structure developed by Rajput and Rosinski.
We follow here the exposition of M.M. Rao and Z.D. Ren in [56, Chapter X]. Proposition A.3
summarizes the results on generalized Orlicz spaces.

Proposition A.3. If ρ is a ∆2-regular ϕ-function, then we have

Lρ(Rd ) = { f measurable, ∀λ > 0, ρ( f/λ) < ∞} = { f measurable, ρ( f ) < ∞} .

The space Lρ(Rd ) is a complete linear metric space for the F-norm

∥ f ∥ρ := inf{λ > 0, ρ( f/λ) ≤ λ}

on which simple functions are dense. Moreover, we have the equivalence, for any sequence of
elements fk ∈ Lρ(Rd ),

∥ fk∥ρ −→
k→∞

0 ⇔ ρ( fk) −→
k→∞

0.
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