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c Université Paris 10, Modal’X, batiment G, 200 avenue de la République, 92000 Nanterre, France
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Abstract

We consider a real Gaussian process X with unknown smoothness r0 ∈ N0 where the mean square
derivative X (r0) is supposed to be Hölder continuous in quadratic mean. First, from selected sampled
observations, we study the reconstruction of X (t), t ∈ [0, 1], with X̃r (t) a piecewise polynomial
interpolation of degree r ≥ 1. We show that the mean square error of the interpolation is a decreasing
function of r but becomes stable as soon as r ≥ r0. Next, from an interpolation-based empirical criterion
and n sampled observations of X , we derive an estimator r̂n of r0 and prove its strong consistency by giving
an exponential inequality for P(̂rn 6= r0). Finally, we establish the strong consistency of X̃max(̂rn ,1)(t) with
an almost optimal rate.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let X = {X (t), t ∈ [0, 1]} be a real Gaussian process whose r0-th (r0 ∈ N0) derivative
satisfies a Hölder condition in quadratic mean with exponent β0 ∈ [0, 1[. In several topics
of approximation, integration, prediction and estimation, processes of interest are supposed to

∗ Corresponding author. Tel.: +33 1 44 27 33 53; fax: +33 1 44 27 33 42.
E-mail addresses: dblanke@ccr.jussieu.fr (D. Blanke), celine.vial@univ-rennes1.fr (C. Vial).

0304-4149/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2007.10.011

http://www.elsevier.com/locate/spa
mailto:dblanke@ccr.jussieu.fr
mailto:celine.vial@univ-rennes1.fr
http://dx.doi.org/10.1016/j.spa.2007.10.011


D. Blanke, C. Vial / Stochastic Processes and their Applications 118 (2008) 1852–1869 1853

belong to some regularity class depending on r0. More precisely concerning prediction, one may
refer to works of [6,13,4], while for statistical inference, related information could be required in
e.g. the works of [11,2,24,3,7]. In this paper, we suppose that r0 and β0 are both unknown and that
X is observed over [0, 1] from a regular sequence of sampling times denoted by u0,n, . . . , un,n .
Basing considerations on properties of interpolation, we propose and study an estimator of the
regularity r0.

Numerous methods had been proposed and studied for reconstruction of a sample path
from discrete observations. For processes satisfying the so-called Sacks and Ylvisaker (SY)
conditions, recent works include: ([14], orthogonal projection, optimal designs), ([15], linear
interpolation, optimal designs), ([16], linear interpolation, adaptive designs). Under Hölder type
conditions, one may cite e.g. works ([21], linear interpolation), ([22], Hermite interpolation
splines, optimal designs), ([23], best approximation order). Note that a more detailed survey
may be found in the book [19]. As in [17,18], we consider piecewise Lagrange polynomial
interpolation for general classes of processes, but observed on some regular sequence of times.
Namely if X̃r (t) denotes a piecewise polynomial interpolation with degree r (r ≥ 1), it may be
noticed that the quadratic mean error of interpolation is a decreasing function of r that stabilizes
as soon as r exceeds r0. This key point allows us to estimate r0 with the help of an empirical
criterion based on interpolation. For this purpose, sampling times ui,n are divided into knots used
for computing the interpolation while the remaining ones evaluate the quality of approximations
obtained.

Main assumptions on X are given and discussed in the Section 2: in particular, SY conditions
of order r0 are included in the proposed examples. Choices of knots and their basic properties
are also presented in this section. In Section 3, we derive an estimator for r0, denoted by r̂n . We
show that r̂n is strongly consistent and give an exponential bound for P(̂rn 6= r0). Finally, we
establish the strong consistency of X̃max(̂rn ,1)(t) with an almost optimal rate. All the proofs are
postponed to the final section.

2. The general framework

2.1. Assumptions

Let X = {X (t), t ∈ [0, 1]} be a real measurable Gaussian process, defined on the probability
space (Ω ,A,P). We will say that X ∈ H(r0, β0) if it fulfills the following assumptions.

Assumption 2.1. (A2.1)

(i) X has continuous derivatives in quadratic mean up to order r0, r0 ∈ N0, denoted by
X (0), . . . , X (r0).

(ii) E
(
X (r0)(s)− X (r0)(t)

)2
≤ A2

1 |s − t |2β0 , (s, t) ∈ [0, 1]
2, with β0 ∈ [0, 1[, r0 + β0 > 0

and A1 > 0.
(iii) On [0, 1]

2
\ {s = t}, K (r0+1,r0+1)(s, t) exists and satisfies for some A2 > 0,∣∣K (r0+1,r0+1)(s, t)

∣∣ ≤ A2 |s − t |−(2−2β0).

(iv) E
(
X (t)− Xa,b(t)

)2
≥ A2

3

(
(b−t)(t−a)

b−a

)2(r0+β0)

, t ∈]a, b[, 0 ≤ a < b ≤ 1, where

Xa,b(t) = E (X (t)/X (s), s ∈ [0, a] ∪ [b, 1]) and A3 > 0 does not depend on the values a
and b.
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Let us give some precision concerning Assumption 2.1. Under A2.1(i), (ii), the process is said
to satisfy a mean square Hölder condition of order (r0, β0); this allows us to give upper bounds
for approximation. Recall that A2.1(i) implies in particular that the covariance kernel K (s, t) =

Cov (X (s), X (t)) is also continuously differentiable with K (r,r)(s, t) = Cov (X (r)(s), X (r)(t)),
r = 0, . . . , r0. Using A2.1(i), (ii), one obtains also that the mean function µ(t) := E X (t) is r0-
times continuously differentiable with E X (r)(t) = µ(r)(t) and that µ(r0)(t) is Hölder continuous
with order β0 and constant A1. A2.1(iii) is due to [9] (with r0 = 0); let us notice that existence of
K (r0+1,r0+1)(s, s) is not required, and in fact it is not wanted since then the process would have
(r0 + 1) derivatives in quadratic mean. A2.1(iv) was introduced by Plaskota et al. [17] with a
large variety of examples that we present and develop below. This technical condition is involved
in lower bounds of approximation.

Finally, our aim is to estimate the maximal r (denoted by r0) such that one has X ∈ H(r, β0).
That’s why we have excluded, in condition A2.1(ii), the case β0 = 1 to avoid any possible
problem of identifiability.

Example 1 (r0-Fold-Integrated Fractional Brownian Motion). Let us define X by

X (t) =

∫ t

0

∫ sr0

0

∫ sr0−1

0
· · ·

∫ s2

0
Wβ0(s1) ds1 ds2 · · · dsr0 ,

so that X (r0) = Wβ0 , 0 < β0 < 1, where (Wβ0(t), t ∈ R+) is a fractional standard
Brownian motion. X is a zero-mean Gaussian process with covariance function K (r0,r0)(s, t) =
1
2 (s

2β0 + t2β0 − |s − t |2β0). It is shown in [17] that X fulfills conditions A2.1(ii), (iv). Moreover,
since one has E (X (r0)(t + τ)− X (r0)(t))2 = |τ |2β0 , condition A2.1(iii) is also satisfied (see [9]).
Finally note that β0 = 1/2 yields the r0-fold-integrated standard Brownian motion and, in this
case, one gets [17] that A2

3 = 1/((2r0 + 1)(r0!)
2).

Example 2 (Sacks–Ylvisaker (SY) Conditions). We take SY conditions of order r0 as stated
in [19, p. 68] in the case of a zero-mean process (excluding in particular stationary processes for
r0 ≥ 1). Assumptions A2.1 are then satisfied with β0 = 1/2 and A2

3 = (2r0 +1)−1((1+c)r0!)
−2

where c is a positive constant depending only on the covariance kernel K . We refer the reader
to [17] and results of [20] for details.

Example 3 (Stationary Processes with Spectral Density ϕ). Suppose that ϕ satisfies both for u
large enough, ϕ(u) ≤ c1 |u|

−2γ with c1 > 0, γ > 1/2, and for every real u, ϕ(u) ≥ c0(1+u2)−γ

with c0 > 0; then results of [17] imply that for γ −
1
2 6∈ N the conditions A2.1(ii), (iv) are

fulfilled with r0 =

[
γ −

1
2

]
and β0 = γ −

1
2 − r0. Next, we strengthen the first condition via∣∣ϕ(u)− c1 |u|

−2γ
∣∣ ≤ c2 |u|

−2(γ+1) with c2 > 0, γ > 1/2 and u large enough. In this case, from
K (r0,r0)(s, t) =

∫
∞

−∞
u2r0 eı(s−t)uϕ(u) du and by adapting the proof of [9] to the case r0 ≥ 1, we

obtain the required condition A2.1(iii). For instance, one has K (s, t) = (2θ)−1 exp(−θ |s − t |)
and ϕ(u) = (2π)−1(θ2

+ u2)−1 for an Ornstein–Uhlenbeck (OU) process, which implies in turn
that γ = 1, r0 = 0 and β0 = 1/2.

Example 4 (r0-Fold-Integrated Stationary Processes). Let Y = {Yt , t ∈ [0, 1]} be a zero-
mean stationary Gaussian process with covariance ρ0(|t − s|). Lasinger [12] establishes that
stationarity should be preserved under r0-fold integration of Y , if ρ0 is either linear: ρ0(t) =

1 − λ |t | (0 < λ < 2) or exponential: ρ0(t) = (2θ)−1 exp(−θ |t |) (θ > 0). Then, the same
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methodology as in Example 2 (using Lemma IV.4 of [19, p. 73]) yields that X (with X (r0) = Y )
satisfies condition A2.1(iv) with β0 = 1/2 in both cases. Note that conditions A2.1(ii), (iii) are
stated on K (r0,r0)(s, t) = ρ0(|s − t |) and consequently are easily checked. Finally, the linear case
occurs for example when X (r0)(t) = W (t + 1)− W (t) whereas the exponential one corresponds
to the OU process (see Example 3).

Example 5 (Non-Centered Case). Suppose that the zero-mean process X satisfies Assumptions
A2.1; this is also clearly the case for the non-centered process Z(t) = X (t) + µ(t) as soon as
µ(r0) is well defined and Hölder continuous with order β0.

2.2. The sampling scheme

We consider a regular sequence design, which means that we suppose that X is observed at
instants 0 = u0,n < u1,n < · · · < un,n = 1 satisfying∫ ui,n

0
ψ(t) dt =

i

n

for a positive and continuous density function ψ on [0, 1]. Clearly, one gets the equidistant
scheme with the choice ψ ≡ 1 but also points might be irregularly located. From a practical
point of view, this flexibility may allow us to recognize inhomogeneities in the process (e.g. the
presence of peaks in environmental pollution monitoring; see [8] and references therein) or else
to describe situations where data are collected at equidistant times but become irregularly spaced
after some screening (see for example the Wolfcamp aquifer data in [5]).

For j > i , one easily gets that

m1
j − i

n
≤ u j,n − ui,n ≤ m2

j − i

n
(2.1)

where m1 = (supt∈[0,1] ψ(t))
−1 and m2 = (inft∈[0,1] ψ(t))−1 are constants independent of i , j

and n.
Half of the knots (denoted by t j,n) will be used for the interpolation problem while the

remaining ones will be reserved for the estimation problem (namely to evaluate the quality of

the approximations performed). More precisely, we set pn =
[
loga(n)

]
:=

ln ln · · · ln︸ ︷︷ ︸ n
a times

 (for

some a ≥ 2 such that pn ≥ 1) and for each r = 1, . . . , pn , we consider

ñr =

[ n

2r

]
(2.2)

piecewise polynomials of degree (at most) r , where [x] denotes the integer part of x . Next, we
set

t j,n = u2 j,n, j = 0, . . . , r ñr (2.3)

and

t̄ j,n = u2 j+1,n, j = 0, . . . , r ñr − 1. (2.4)

Remark that (2.1)–(2.4) induce the straightforward properties

2m1( j − i)

n
≤ t j,n − ti,n ≤

2m2( j − i)

n
(2.5)
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for j > i , and t̄ j,n ∈]t j,n, t j+1,n[⊂

[
t
[

j
r ]r,n, t

([
j
r ]+1)r,n

]
with

max(t j+1,n − t̄ j,n, t̄ j,n − t j,n) ≤
m2
n (2.6)

min(t j+1,n − t̄ j,n, t̄ j,n − t j,n) ≥
m1
n . (2.7)

3. Main results

For all s ∈ [0, 1] and each r ∈ {1, . . . , pn}, there exist k = 0, . . . , ñr − 1 such that
s ∈ Ik := [tkr,n, t(k+1)r,n]. One may approximate X (s) by X̃r (s), the unique polynomial of
degree (at most) r which interpolates X (s) at the (r +1) knots: tkr+i,n , i = 0, . . . , r , and defined
by

X̃r (s) =

r∑
i=0

L i,k,r (s)X (tkr+i,n),

where L i,k,r (s) is the Lagrange interpolator polynomial given by

L i,k,r (s) =

r∏
j=0
j 6=i

(s − tkr+ j,n)

(tkr+i,n − tkr+ j,n)
.

These polynomials present several advantages: they are easy to build and to implement, they
give sharp upper bounds for approximation (see Proposition 3.1 and the following remarks).
Moreover conversely to Hermite polynomials, they do not require observation of derivatives of
the process X .

3.1. Upper and lower bounds for the error of interpolation

Using properties of reproducing kernel Hilbert spaces, Plaskota et al. [17] give error estimates
for piecewise Lagrange interpolation of order r ≥ r0 for equidistant knots. Concerning the
regular case, we obtain the following result.

Proposition 3.1. Under conditions A2.1(i), (ii), we obtain

sup
s∈[0,1]

E
(
X (s)− X̃r (s)

)2
≤ C2

1(r, β0) n−2(r∗
+β∗), (3.1)

with r∗
= min(r, r0), β∗

=

{
1 if r = 1, . . . , r0 − 1
β0 if r = r0, r0 + 1, and C1(r, β0) is a positive constant.

Remark 3.1. (1) Since our upper bounds only involve the covariance kernel of the process X ,
they hold also for non-Gaussian processes satisfying conditions A2.1(i), (ii). As a by-product,
one has also

sup
s∈[0,1]

∣∣E (
X (s)− X̃r (s)

)∣∣ ≤ C1(r, β0) n−(r∗
+β∗). (3.2)

(2) For r ≥ r0, the rate of L2-approximation is of order n−(r0+β0). This rate appears to be optimal
in some sense for the Hölder classH(r0, β0); see [23].

Now, let us turn to a lower bound of approximation at points t̄k,n ; see (2.4).
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Proposition 3.2. Let us assume condition A2.1(iv). Then for r = 1, . . . , r0 + 1 and k =

0, . . . , r ñr − 1 we have

E
(
X (t̄k,n)− X̃r (t̄k,n)

)2
≥ C2

2(r0, β0) n−2(r0+β0),

where C2(r0, β0) is a positive constant.

Note that a similar result for
∫ 1

0 E (X (s)−AX (s))2 ds is obtained in [17] for any algorithm
A using n knots.

3.2. Estimation of the parameter r0

Proposition 3.1 underlines that the error of interpolation decreases as the degree r of Lagrange
polynomials increases, but stabilizes as soon as r exceeds r0. Taking into account this property,
we define

r̂n = min

{
r ∈ {1, . . . , pn} :

1
r ñr

r ñr −1∑
k=0

(
X (t̄k,n)− X̃r (t̄k,n)

)2
≥ n−2r hn

}
− 1

where ñr is given by (2.2). If the above set is empty, we fix r̂n = l0 for an arbitrary value
l0 6∈ N0. Here, the threshold hn → ∞ is supposed to satisfy both conditions n2β0−2hn → 0
and n2β0 hn → ∞, for all β0 ∈ [0, 1[. For example, an omnibus choice is given by hn = ln n.
Furthermore, note that if an upper bound B is known for r0, one can choose pn = B + 1 in the
definition of r̂n .

We now present the main result of our paper, namely an exponential upper bound for the
probability of the event {̂rn 6= r0}.

Theorem 3.1. Let us assume Hypotheses A2.1. Then

P(̂rn 6= r0) = O (exp (−C3(r0, β0) ϕn(β0)))

for some positive constant C3(r0, β0) and where

ϕn(β0) = n

(
I[0,1/2[(β0)+

1
ln n

I{1/2}(β0)+ n1−2β0I]1/2,1[(β0)

)
. (3.3)

Remark 3.2. (1) Note that a more explicit bound is established during the proof; see relations
(4.10) and (4.19). Furthermore, under the more restrictive Baxter’s condition [1]: on [0, 1]

2
\

{s = t}, K (r0+1,r0+1)(s, t) exists and it is bounded (e.g. processes satisfying SY conditions of
order r0), the special case β0 = 1/2 disappears: ϕn(β0) = n I[0,1/2](β0)+n2−2β0 I]1/2,1[(β0).

(2) The rate of convergence is exponential but it is a decreasing function of β0: as expected, the
case β0 = 1 turns out to be degenerate.

Finally, Theorem 3.1 allows us to study the pointwise almost sure convergence of X̃max(̂rn ,1)(s)
toward X (s).

Theorem 3.2. Under Assumptions A2.1, we obtain the following results:

(i) r̂n = r0 almost surely for n large enough;
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(ii) for all s ∈ [0, 1], one gets that almost surely,

lim sup
n→∞

n(r0+β0)

√
ln n

∣∣X (s)− X̃max(̂rn ,1)(s)
∣∣ < +∞.

Regarding this last result, the rate of convergence is, up to a logarithmic term, the same as
the one obtained in the case ‘r0 known’; see Proposition 3.1. Finally note that the asymptotic
constant is also of the same order since an examination of the proof gives the constant√

2 C1(max(1, r0), β0), with C1(r, β0) introduced in Proposition 3.1.

4. Auxiliary results and proofs

4.1. Auxiliary results

For further results, we express the function

Cr (s1, s2) := Cov
(
X (s1)− X̃r (s1), X (s2)− X̃r (s2)

)
(4.1)

with r ≥ 1, in terms of the covariance K (s1, s2) and its partial derivatives for (s1, s2) ∈ Ik × I`
for some (k, `) ∈ {0, . . . , ñr − 1}

2. Throughout the section, we abbreviate the notation t j,n to t j
for the sake of simplicity.

Lemma 4.1. Suppose that condition A2.1(i) holds and let r∗
= min(r0, r) be such that r∗

≥ 1.
Then for (s1, s2) ∈ Ik × I` one has

Cr (s1, s2) =

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)

((r∗ − 1)!)2
(tkr+i − tkr )

r∗

(t`r+ j − t`r )
r∗

×

∫∫
[0,1]2

((1 − v)(1 − w))r
∗
−1R(v,w) dv dw

where

R(v,w) = K (r∗,r∗)(tkr + (s1 − tkr )v, t`r + (s2 − t`r )w)

− K (r∗,r∗)(tkr + (s1 − tkr )v, t`r + (t`r+ j − t`r )w)

− K (r∗,r∗)(tkr + (tkr+i − tkr )v, t`r + (s2 − t`r )w)

+ K (r∗,r∗)(tkr + (tkr+i − tkr )v, t`r + (t`r+ j − t`r )w). (4.2)

In addition,

E
(
X (s1)− X̃r (s1)

)
=

r∑
i=0

L i,k,r (s1)

(r∗ − 1)!
(tkr+i − tkr )

r∗

×

∫
[0,1]

(1 − v)r
∗
−1
(
µ(r

∗)(tkr + (s1 − tkr )v)− µ(r
∗)(tkr + (tkr+i − tkr )v)

)
dv.

Remark 4.1. In the case r0 = 0 and r ≥ 1, one easily obtains

Cr (s1, s2) =

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)×
{

K (s1, s2)− K (s1, t`r+ j )
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−K (tkr+i , s2)+ K (tkr+i , t`r+ j )
}
, (4.3)

E
(
X (s1)− X̃r (s1)

)
=

r∑
i=0

L i,k,r (s1) (µ(s1)− µ(tkr+i )) (4.4)

using uniqueness of Lagrange polynomials which implies
∑r

i=0 L i,k,r (s1) =
∑r

j=0 L j,`,r
(s2) = 1.

Proof of Lemma 4.1. Since the second result follows directly using similar arguments, we
only prove the expansion of the covariance function. Recall that condition A2.1(i) holds iff
K ∈ Cr0,r0([0, 1]

2); in other words, K has continuous partial derivatives K (p,m) on [0, 1]
2 for

all integers p,m ≤ r0. From (4.3), we apply a Taylor series expansion (with integral remainder)
of order r∗

= min(r, r0):

K (s1, s2) =

r∗
−1∑

p=0

(s1 − tkr )
p

p!
K (p,0)(tkr , s2)

+

∫ 1

0

(s1 − tkr )
r∗

(r∗ − 1)!
(1 − v)r

∗
−1 K (r∗,0)(tkr + (s1 − tkr )v, s2) dv,

but one has also

K (p,0)(tkr , s2) =

r∗
−1∑

m=0

(s2 − t`r )m

m!
K (p,m)(tkr , t`r )

+

∫ 1

0

(s2 − t`r )r
∗

(r∗ − 1)!
(1 − w)r

∗
−1 K (p,r∗)(tkr , t`r + (s2 − t`r )w) dw

and

K (r∗,0)(tkr + (s1 − tkr )v, s2) =

r∗
−1∑

m=0

(s2 − t`r )m

m!
K (r∗,m)(tkr + (s1 − tkr )v, t`r )

+

∫ 1

0

(s2 − t`r )r
∗

(r∗ − 1)!
(1 − w)r

∗
−1 K (r∗,r∗)(tkr + (s1 − tkr )v, t`r + (s2 − t`r )w) dw.

Now similar expansions hold for K (s1, t`r+ j ), K (tkr+i , s2) and K (tkr+i , t`r+ j ). This yields:
Cr (s1, s2) = T1 + T2 + T3 + T4 with the Ti respectively defined by

T1 =

r∗
−1∑

p,m=0

K (p,m)(tkr , t`r )

p!m!

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)
{
(s1 − tkr )

p(s2 − t`r )
m

− (s1 − tkr )
p(t`r+ j − t`r )

m
− (tkr+i − tkr )

p(s2 − t`r )
m

+ (tkr+i − tkr )
p(t`r+ j − t`r )

m} ,
T2 =

r∗
−1∑

p=0

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)

(r∗ − 1)!p!

{
(s1 − tkr )

p
− (tkr+i − tkr )

p}
×

∫ 1

0
(1 − w)r

∗
−1
{
(s2 − t`r )

r∗

K (p,r∗)(tkr , t`r + (s2 − t`r )w)

− (t`r+ j − t`r )
r∗

K (p,r∗)(tkr , t`r + (t`r+ j − t`r )w)
}

dw,
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T3 =

r∗
−1∑

m=0

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)

(r∗ − 1)!m!

{
(s2 − t`r )

m
− (t`r+ j − t`r )

m}
×

∫ 1

0
(1 − v)r

∗
−1
{
(s1 − tkr )

r∗

K (r∗,m)(tkr + (s1 − tkr )v, t`r )

− (tkr+i − tkr )
r∗

K (r∗,m)(tkr + (tkr+i − tkr )v, t`r )
}

dv,

T4 =

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)

(r∗ − 1)!2
×

∫∫
[0,1]2

(1 − v)r
∗
−1(1 − w)r

∗
−1

×

{
(s1 − tkr )

r∗

(s2 − t`r )
r∗

K (r∗,r∗)(tkr + (s1 − tkr )v, t`r + (s2 − t`r )w)

− (s1 − tkr )
r∗

(t`r+ j − t`r )
r∗

K (r∗,r∗)(tkr + (s1 − tkr )v, t`r + (t`r+ j − t`r )w)

− (tkr+i − tkr )
r∗

(s2 − t`r )
r∗

K (r∗,r∗)(tkr + (tkr+i − tkr )v, t`r + (s2 − t`r )w)

+ (tkr+i − tkr )
r∗

(t`r+ j − t`r )
r∗

K (r∗,r∗)(tkr + (tkr+i − tkr )v, t`r

+ (t`r+ j − t`r )w)
}

dv dw.

Now, one may easily obtain T1 = T2 = T3 = 0. Let us consider for example the term∑r
i=0 L i,k,r (s1)(tkr+i − tkr )

p in T1 (with p = 0, . . . , r∗
− 1 ≤ r − 1); it corresponds to the

unique polynomial of degree at most r which interpolates a function taking values (tkr+i − tkr )
p

at points tkr+i for i = 0, . . . , r . A candidate is the polynomial (x − tkr )
p, so by uniqueness,∑r

i=0 L i,k,r (s1)(tkr+i − tkr )
p

= (s1 − tkr )
p. In the same way,

∑r
j=0 L j,`,r (s2)(t`r+ j − t`r )m =

(s2 − t`r )m .
Still using the Lagrange polynomial properties, one may write T4 as

T4 =

r∑
i, j=0

L i,k,r (s1)L j,`,r (s2)(tkr+i − tkr )
r∗

(t`r+ j − t`r )r
∗

r2r∗
(r∗ − 1)!2

×

∫∫
[0,1]2

((1 − v)(1 − w))r
∗
−1R(v,w) dv dw

withR given by (4.2). �

To establish Theorem 3.1, we need also the following proposition concerning C(·, ·) defined
in (4.1).

Proposition 4.1. Let us assume conditions A2.1(i)–(iii); for some positive constant C4(r, β0)

and any r ∈ {1, . . . , r0 + 1}, one obtains that

max
0≤k≤r ñr −1

r ñr −1∑
`=0

∣∣Cr (t̄k,n, t̄`,n)
∣∣

≤ C4(r, β0)


n−(2r+1) if r = 1, . . . , r0 − 1,
n−2(r0+β0) if r = r0, r0 + 1 and 0 ≤ β0 < 1/2,
n−(2r0+1) ln(n) if r = r0, r0 + 1 and β0 = 1/2,
n−(2r0+1) if r = r0, r0 + 1 and 1/2 < β0 < 1.

(4.5)

Remark 4.2. 1. Let us notice that, if r0 = 0 (resp. r0 = 1) only the three last cases subsist for
r = 1 (resp. r = 1, 2).
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2. Under Baxter’s condition, see Remark 3.2(1), one obtains a similar bound but without the
logarithmic term in the case β0 = 1/2.

Proof of Proposition 4.1. (a) Case where r = r0 (r0 ≥ 1) or r = r0 + 1.
Setting s1 = t̄k,n and s2 = t̄`,n in Eq. (4.1), so that (s1, s2) ∈ Ip1 × Ip2 with p1 = [k/r ] and

p2 = [`/r ], we write

max
0≤k≤r ñr −1

r ñr −1∑
`=0

∣∣Cr (t̄k,n, t̄`,n)
∣∣ = max

0≤k≤r ñr −1


r ñr −1∑
`=0

|p2−p1|≥2

+

r ñr −1∑
`=0

|p2−p1|≤1

∣∣Cr (t̄k,n, t̄`,n)
∣∣ ,

and in fact such decomposition is compulsory as condition A2.1(iii) cannot be used on the
diagonal of [0, 1]

2. Let us first consider the case |p2 − p1| ≥ 2: using Lemma 4.1, one arrives at

Cr (t̄k,n, t̄`,n) =

r∑
i=0

r∑
j=0

L i,p1,r (t̄k,n)L j,p2,r (t̄`,n)

((r0 − 1)!)2
(tp1r+i − tp1r )

r0(tp2r+ j − tp2r )
r0

×

∫ 1

0

∫ 1

0
(1 − v)r0−1(1 − w)r0−1R(v,w) dv dw (4.6)

with

R(v,w) = K (r0,r0)
(
tp1r + (t̄k,n − tp1r )v, tp2r + (t̄`,n − tp2r )w

)
− K (r0,r0)

(
tp1r + (t̄k,n − tp1r )v, tp2r + (tp2r+ j − tp2r )w

)
− K (r0,r0)

(
tp1r + (tp1r+i − tp1r )v, tp2r + (t̄`,n − tp2r )w

)
+ K (r0,r0)

(
tp1r + (tp1r+i − tp1r )v, tp2r + (tp2r+ j − tp2r )w

)
(4.7)

which can be rewritten as

R(v,w) =

∫ tp2r +(t̄`,n−tp2r )w

tp2r +(tp2r+ j −tp2r )w

(∫ tp1r +(t̄k,n−tp1r )v

tp1r +(tp1r+i −tp1r )v

K (r0+1,r0+1)(u1, u2)du1

)
du2.

Next for all (v,w) ∈ [0, 1]
2 and (i, j) ∈ {0, . . . , r}

2, one gets the following bound:

|R(v,w)| ≤ A2

∫
Ip2

∫
Ip1

|u1 − u2|
−2(1−β0) du1du2

as soon as condition A2.1(iii) is satisfied since |p2 − p1| ≥ 2 implies that Ip1 × Ip2 does not
contain the diagonal. From the lower bound of (2.5), one has

|u1 − u2| ≥ 2m1 (|p2 − p1| − 1) n−1

so that

|R(v,w)| ≤ c (|p2 − p1| − 1)−2(1−β0) n−2β0

where, here and throughout the following, c denotes a generic positive constant (independent
of n, p1, p2) whose value may vary from line to line. Now, one may bound L i,p1,r (s1)

independently from i, p1, s1 and n:

∣∣L i,p1,r (s1)
∣∣ =

r∏
j=0
j 6=i

∣∣∣∣ (s1 − tp1r+ j )

(tp1r+i − tp1r+ j )

∣∣∣∣ ≤

 t(p1+1)r − tp1r

min
i=0,...,r−1

(tp1r+i+1 − tp1r+i )

r

≤ c rr (4.8)
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where c only depends on m1, m2 by relation (2.5). This yields

max
0≤k≤r ñr −1

r ñr −1∑
`=0

|p2−p1|≥2

∣∣Cr (t̄k,n, t̄`,n)
∣∣

≤ c n−2(r0+β0) max
p1=0,...,̃nr −1

ñr −1∑
p2=0

|p2−p1|≥2

(|p2 − p1| − 1)−2(1−β0)

≤ c n−2(r0+β0)
ñr∑

i=1

i−2(1−β0)

which implies in turn the successive bounds n−2(r0+β0) if 0 ≤ β0 < 1/2, n−(2r0+1) ln(n) if
β0 = 1/2 and n−(2r0+1) if 1/2 < β0 < 1.

Consider now the case p2 ∈ {p1 − 1, p1, p1 + 1}. For each of the four terms of (4.7), we add
and remove additional terms of the form µ(r0)(xi ), K (r0,r0)(xi , xi ) (with adequate xi ) so that we
can use condition A2.1(ii) rewritten as∣∣∣L(r0,r0)(x1, x1)+ L(r0,r0)(x2, x2)− 2 L(r0,r0)(x1, x2)

∣∣∣ ≤ A2
1 |x2 − x1|

2β0 , (4.9)

where L(r0,r0)(x1, x2) := K (r0,r0)(x1, x2)+ µ(r0)(x1)µ
(r0)(x2), together with∣∣∣µ(r0)(x2)− µ(r0)(x1)

∣∣∣ =

∣∣∣E X (r0)(x2)− E X (r0)(x1)

∣∣∣ ≤ A1 |x2 − x1|
β0 .

Next, L i,p1,r (·) is bounded by c rr , see Eq. (4.8), so one gets

max
0≤k≤r ñr −1

r ñr −1∑
`=0

|p2−p1|≤1

∣∣Cr (t̄k,n, t̄`,n)
∣∣ ≤ c n−2r0

(
2A2

1 max
(∣∣t(p1+1)r − tp2r

∣∣2β0 ,

∣∣t(p2+1)r − tp1r
∣∣2β0

)
+ A2

1

∣∣t(p2+1)r − tp2r
∣∣β0
∣∣t(p1+1)r − tp1r

∣∣β0
)
.

From (2.5), it is easy to see that this last term is at most of the same order, i.e. c n−2(r0+β0), as
the previous one.

(b) Case r = 1, . . . , r0 − 1 (r0 ≥ 2).
Using the relations (4.6) and (4.7) with r0 replaced by r , one may proceed as in the case

|p2 − p1| ≥ 2 since under condition A2.1(i), K (r+1,r+1) exists on [0, 1]
2 and is a continuous

and bounded function, so one may work with the special value β0 = 1. In this way, we obtain
easily the bound c n−(2r+1).

4.2. Proof of Proposition 3.1

One may write

sup
s∈[0,1]

E
(
X (s)− X̃r (s)

)2
= max

k=0,...,̃nr −1
sup

s∈[tkr ,t(k+1)r ]

(
Cr (s, s)+ (E X (s)− E X̃r (s))

2
)
.

(i) For r0 = 0 and r ≥ 1, the relations (2.5), (4.3), (4.4), (4.8) and (4.9) (s = x1 = x2, k = `)
yield the required result (3.1), namely with r∗

= 0 and β∗
= β0.
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(ii) For r∗
= r0 (r ≥ r0 ≥ 1), we apply results of Lemma 4.1 with the choices s1 = s2 = s and

k = `:

E
(
X (s)− X̃r (s)

)2
=

r∑
i, j=0

L i,k,r (s)L j,k,r (s)

((r0 − 1)!)2
(tkr+i − tkr )

r0(tkr+ j − tkr )
r0

×

∫∫
[0,1]2

((1 − v)(1 − w))r0−1
{
L(r0,r0)(tkr + (s − tkr )v, tkr + (s − tkr )w)

− L(r0,r0)(tkr + (s − tkr )v, tkr + (tkr+ j − tkr )w)

− L(r0,r0)(tkr + (tkr+i − tkr )v, tkr + (s − tkr )w)

+ L(r0,r0)(tkr + (tkr+i − tkr )v, tkr + (tkr+ j − tkr )w)
}

dv dw.

Next, the result follows obviously from (4.9), by adding and removing additional terms of
the form L(r0,r0)(xi , xi ).

(iii) Finally if r∗
= r (1 ≤ r ≤ r0 − 1 and r0 ≥ 2), one may write

E
(
X (s)− X̃r (s)

)2
≤

r∑
i, j=0

L i,k,r (s)L j,k,r (s)

((r − 1)!)2
(tkr+i − tkr )

r (tkr+ j − tkr )
r

×

∫∫
Ik×Ik

∣∣∣L(r+1,r+1)(u1, u2)

∣∣∣ du1du2

where L(r+1,r+1)(·, ·) is a bounded function. Details are left to the reader.

4.3. Proof of Proposition 3.2

Using condition A2.1(iv) with a = tk and b = tk+1, we obtain

E
(
X (t̄k,n)− X̃r (t̄k,n)

)2
≥ E

(
X (t̄k,n)− X tk ,tk+1(t̄k,n)

)2
≥ C2

2(r0, β0)n−2(r0+β0)

with the help of (2.5)–(2.7).

4.4. Proof of Theorem 3.1

We study P(̂rn 6= r0) for n sufficiently large to ensure that r0 ∈ {0, . . . , pn}.
Let us define

Bn(r) =

{
n2r

ñr

ñr−1∑
k=0

(
X (t̄k,n)− X̃r (t̄k,n)

)2
≥ hn

}
.

One gets

(i) if r0 = 0, {̂rn = 0} = Bn(1),
(ii) if r0 ≥ 1, {̂rn = r0} =

⋂r0
r=1 (Bn(r)c) ∩ Bn(r0 + 1)

so that

{̂rn 6= r0} =

{
Bn(1)c if r0 = 0,
Bn(1) ∪ · · · ∪ Bn(r0) ∪ Bn(r0 + 1)c if r0 ≥ 1.
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Next for all r0 ≥ 0,

P(̂rn 6= r0) ≤ T1,n(r0, β0)+ T2,n(r0, β0), (4.10)

where T1,n(r0, β0), T2,n(r0, β0) are defined by T2,n(0, β0) := 0 and

T1,n(r0, β0) := P (Bn(r0 + 1)c) (4.11)

T2,n(r0, β0) :=

r0∑
r=1

P (Bn(r)) , r0 ≥ 1. (4.12)

Finally the result follows immediately from the following lemma (whose proof is given in the
following Section 4.5).

Lemma 4.2. Assume A2.1. In addition if n2β0−2hn → 0 and n2β0 hn → +∞, for all β0 ∈ [0, 1[,
then for n large enough

T1,n(r0, β0)+ T2,n(r0, β0) ≤ C5(r0) exp (−C6(r0, β0)ϕn(β0))

with ϕn(β0) defined in Eq. (3.3) and positive constants C5(r0), C6(r0, β0).

4.5. Proof of Lemma 4.2

Let us introduce the quantity

Zk,r :=
nr

√
r ñr

(
X (t̄k,n)− X̃r (t̄k,n)

)
. (4.13)

(i) Study of the term T1,n(r0, β0).
From (4.11) and setting κ = r0 + 1, one can write

T1,n(r0, β0) = P

(
κ ñκ−1∑

j=0

Z2
j,κ < hn

)
= P

(
E

(
κ ñκ−1∑

j=0

Z2
j,κ

)
−

κ ñκ−1∑
j=0

Z2
j,κ > η1,κ(n)

)
,

where η1,κ(n) = E (
∑κ ñκ−1

j=0 Z2
j,κ)− hn . Using Propositions 3.1 and 3.2, we can deduce that

η1,κ(n) ∈

[
C2

2(r0, β0)n
2(1−β0) − hn,C2

1(r0 + 1, β0)n
2(1−β0) − hn

]
.

Now for hn such that hnn−2(1−β0) → 0 for all β0 ∈ [0, 1[, one gets that η1,κ(n) is positive for n
large enough and η1,κ(n) → ∞ with same order as n2(1−β0). Now, one may write∣∣∣∣∣κ ñκ−1∑

j=0

(
Z2

j,κ − E Z2
j,κ

)∣∣∣∣∣ =

∣∣∣∣∣κ ñκ−1∑
j=0

{
(Z j,κ − E Z j,κ)

2
− E (Z j,κ − E Z j,κ)

2
}

+
{
2
(
E Z j,κ

)
(Z j,κ − E Z j,κ)

}∣∣∣∣∣ ,
so that

P

( ∣∣∣∣∣κ ñκ−1∑
j=0

(
Z2

j,κ − E Z2
j,κ

)∣∣∣∣∣ > η1,κ(n)

)
≤ S1 + S2 (4.14)
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with

S1 := P

( ∣∣∣∣∣κ ñκ−1∑
j=0

(Z j,κ − E Z j,κ)
2
− E (Z j,κ − E Z j,κ)

2

∣∣∣∣∣ > η1,κ(n)

2

)
(4.15)

S2 := P

( ∣∣∣∣∣κ ñκ−1∑
j=0

(
E Z j,κ

)
(Z j,κ − E Z j,κ)

∣∣∣∣∣ ≥
η1,κ(n)

4

)
. (4.16)

(a) Study of the term S1

We consider an ortho-Gaussian basis {Yi }, Yi i.i.d. with distribution N (0, 1), of the subspace
of L2 spanned by {Z j,κ − E Z j,κ} j=0,...,κ ñκ−1. Let denote the size of the basis by dn . Then we
can write Z j,κ − E Z j,κ =

∑dn
i=1 Cov

(
Z j,κ , Yi

)
Yi :=

∑dn
i=1 b j,i Yi .

Next, if Y = (Y1, . . . , Ydn )
>, we obtain

κ ñκ−1∑
j=0

(Z j,κ − E Z j,κ)
2

=

dn∑
k,`=1

ck,`YkY` = Y >CY

with ck,` =
∑κ ñκ−1

j=0 Cov (Z j,κ , Yk)Cov (Z j,κ , Y`) so that C = B> B. Let us define C =(
ck,`

)
k,`=1,...,dn

and B =
(
bk,`

)
k=0,...,κ ñκ−1,`=1,...,dn

. The matrix C is real, symmetric and
positive semidefinite, so there exists an orthogonal matrix P such that diag(λ1, . . . , λdn ) =

P>C P , where the quantities λi are the eigenvalues of the matrix C . Then we can transform
the quadratic form

κ ñκ−1∑
j=0

(Z j,κ − E Z j,κ)
2

=

dn∑
j=1

λ j (P
>Y )2j

where (P>Y ) j denotes the j-th component of the (dn × 1) vector P>Y . As E(P>Y )2j = 1, we
arrive at

S1 = P

( ∣∣∣∣∣ dn∑
j=1

λ j

(
(P>Y )2j − 1

)∣∣∣∣∣ ≥
η1,κ(n)

2

)
.

Now, using the exponential bound of [10], one gets

S1 ≤ 2 exp

− min

 c1 η1,κ(n)

2 max
i=1,...,dn

λi
,

c2 η
2
1,κ(n)

4
∑
λ2

i

 ≤ 2 exp

−
c η1,κ(n)

max
i=1,...,dn

λi


for n large enough and with easy calculation. Next, since B> B and B B> have the same non-zero
eigenvalues, we can write

max
i=1,...,dn

λi ≤ max
0≤ j≤κ ñκ−1

κ ñκ−1∑
`=0

∣∣E (
Z j,κ − E (Z j,κ)

) (
Z`,κ − E (Z`,κ)

)∣∣
≤

n2κ

κ ñκ
max

0≤ j≤κ ñκ−1

κ ñκ−1∑
`=0

∣∣Cκ(t̄ j,κ , t̄`,κ)
∣∣
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with Cκ(·, ·) defined in (4.1). By Proposition 4.1, one obtains

max
i=1,...,dn

λi ≤ c

n1−2β0 if 0 ≤ β0 < 1/2,
ln n if β0 = 1/2,
1 if 1/2 < β0 < 1

so that

S1 ≤ 2 exp
(

−
c η1,κ(n)

n1−2β0I{0≤β0<1/2} + (ln n)I{β0=1/2} + I{1/2<β0<1}

)
.

Therefore, recalling η1,κ(n) ∝ n2(1−β0), one gets for all n large enough that

S1 ≤ 2 exp (−cϕn(β0)) (4.17)

with ϕn(β0) given in (3.3). Note that by Remark 4.2, the logarithmic term disappears if Baxter’s
condition is fulfilled.

(b) Study of the term S2
Let us recall the following well-known lemma:

Lemma 4.3. If Y ∼ N (0, σ 2), σ > 0, then for all ε > 0,

P (|Y | ≥ ε) ≤ 2 exp
(

−
ε2

2σ 2

)
.

Since X is a Gaussian process,
∑κ ñκ−1

j=0

(
E Z j,κ

)
(Z j,κ − E Z j,κ) with Z j,κ defined in (4.13) is

a zero-mean Gaussian random variable. Therefore, one may apply Lemma 4.3 to the term S2,
defined in (4.16), and get

S2 ≤ 2 exp

(
−
η2

1,κ(n)

32σ 2
n

)
,

where σ 2
n := Var

(∑κ ñκ−1
j=0

(
E Z j,κ

)
(Z j,κ − E Z j,κ)

)
. Moreover, using results (3.2) and (4.5),

one may obtain successively

σ 2
n =

κ ñκ−1∑
j,`=0

(
E Z j,κ

) (
E Z`,κ

)
Cov

(
Z j,κ , Z`,κ

)
≤ (κ ñκ)

(
max

j=0,...,κ ñκ−1

∣∣E Z j,κ
∣∣)2

max
j=0,...,κ ñκ−1

κ ñκ−1∑
`=0

∣∣Cov
(
Z j,κ , Z`,κ

)∣∣
≤ cn−2(1−β0) ×

{
n1−2β0I{0≤β0<1/2} + (ln n)I{β0=1/2} + I{1/2<β0<1}

}
.

Finally, for n large enough and using the order of η1,κ(n), we get

S2 ≤ 2 exp (−c ϕn(β0)) (4.18)

with ϕn(β0) given by (3.3). In conclusion, by collecting results from (4.14)–(4.18), for n large
enough, we arrive at

T1,n(r0, β0) ≤ 4 exp (−C7(r0, β0)ϕn(β0))

for all hn such that n2β0−2hn → 0 and for some positive constant C7(r0, β0).
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(ii) Study of the term T2,n(r0, β0).
Recall that this term, defined in Eq. (4.12), occurs only when r0 ≥ 1. For Z j,r defined in Eq.

(4.13), one has for η2,r (n) = hn −
∑r ñr −1

j=0 E Z2
j,r ,

T2,n(r0, β0) =

r0∑
r=1

P

(
r ñr −1∑

j=0

(
Z2

j,r − E Z2
j,r

)
≥ η2,r (n)

)
.

• Suppose that r = r0. Propositions 3.1 and 3.2 lead to η2,r0(n) ∈ [hn − C2
1(r0, β0)n−2β0 , hn −

C2
2(r0, β0)n−2β0 ]. Now for hn such that hnn2β0 → +∞ for all β0 ∈ [0, 1[, one gets that
η2,r0(n) is positive for n large enough and η2,r0(n) → +∞ with the same order as hn . Now
using the same bounding method as in part (i), with η1,κ(n) replaced by η2,r0(n), we obtain
that

P

r0ñr0−1∑
j=0

(
Z2

j,r0
− E Z2

j,r0

)
≥ η2,r0(n)

 ≤ 2 exp
(
−c hnn2β0ϕn(β0)

)
+ 2 exp

(
−c h2

nn4β0ϕn(β0)
)

for n large enough and ϕn(β0) given in Eq. (3.3).
• Suppose that r = 1, . . . , r0 − 1 (and hence r0 ≥ 2). Propositions 3.1 and 3.2 imply that
η2,r (n) ∈

[
hn − C2

1(r, β0)n−2, hn − C2
2(r0, β0)n−2(r0−r+β0)

]
and we get for n large enough

P

(
r ñr −1∑

j=0

(
Z2

j,r − E Z2
j,r

)
≥ η2,r (n)

)
≤ 2 exp

(
−c hnn2

)
+ 2 exp

(
−c h2

nn4
)
.

• Collecting these results, one obtains

T2,n(r0, β0) ≤ 4r0 exp
(
−C8(r0, β0)hnn2β0ϕn(β0)

)
for all hn such that n2β0 hn → +∞ and for some positive constant C8(r0, β0).

Finally, for n large enough, we conclude that

T1,n(r0, β0)+ T2,n(r0, β0) ≤ 4 exp (−C7(r0, β0)ϕn(β0))

+ 4r0 exp
(
−C8(r0, β0)hnn2β0ϕn(β0)

)
. (4.19)

4.6. Proof of Theorem 3.2

(i) Clear from Theorem 3.1 and the Borel–Cantelli lemma.
(ii) If r̃n = max(̂rn, 1), one may write

P
(∣∣X (s)− X̃ r̃n (s)

∣∣ ≥ εn
)

= P
(∣∣X (s)− X̃ r̃n (s)

∣∣ ≥ εn, r̂n = r0
)
+ P

(∣∣X (s)− X̃ r̃n (s)
∣∣ ≥ εn, r̂n 6= r0

)
≤ P

(∣∣X (s)− X̃ r̃0(s)
∣∣ ≥ εn

)
+ P (̂rn 6= r0) (4.20)

where we have set r̃0 = max(r0, 1). Now since∣∣X (s)− X̃ r̃0(s)
∣∣ ≤

∣∣X (s)− X̃ r̃0(s)− E (X (s)− X̃ r̃0(s))
∣∣+ ∣∣E (X (s)− X̃ r̃0(s))

∣∣ ,



1868 D. Blanke, C. Vial / Stochastic Processes and their Applications 118 (2008) 1852–1869

we get

P
(∣∣X (s)− X̃ r̃0(s)

∣∣ ≥ εn
)

≤ P
(∣∣X (s)− X̃ r̃0(s)− E (X (s)− X̃ r̃0(s))

∣∣
≥ εn −

∣∣E (X (s)− X̃ r̃0(s))
∣∣) .

The choice εn = η
√

ln n n−(r0+β0) and (3.2) yield

εn −
∣∣E (X (s)− X̃ r̃0(s))

∣∣ ≥ η
√

ln n n−(r0+β0)αn

with αn →n→∞ 1−. Then, since Var
(
X (s)− X̃ r̃0(s)

)
≤ C2

1(r̃0, β0)n−2(r0+β0), one gets

P
(∣∣X (s)− X̃ r̃0(s)

∣∣ ≥ εn
)

≤ 2 exp

(
−

η2α2
n ln n

2C2
1(r̃0, β0)

)
as a consequence of Lemma 4.3. Next, from (4.20) and Theorem 3.1,∑

n
P
(∣∣X (s)− X̃ r̃n (s)

∣∣ ≥ η
√

ln n n−(r0+β0)
)
< ∞

for all η >
√

2 C1(r̃0, β0). The Borel–Cantelli lemma implies that, almost surely,

lim sup
n→∞

n(r0+β0)

√
ln n

∣∣X (s)− X̃max(1,̂rn)(s)
∣∣ ≤

√
2 C1(r̃0, β0).
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