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Abstract

We investigate the existence of invariant measures for self-stabilizing diffusions. These stochastic
processes represent roughly the behavior of some Brownian particle moving in a double-well landscape
and attracted by its own law. This specific self-interaction leads to nonlinear stochastic differential equations
and permits pointing out singular phenomena like non-uniqueness of associated stationary measures. The
existence of several invariant measures is essentially based on the non-convex environment and requires
generalized Laplace’s method approximations.
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MSC: primary 60H10; secondary 60J60; 60G10; 41A60

Keywords: Self-interacting diffusion; Stationary measures; Double-well potential; Perturbed dynamical system;
Laplace’s method; Fixed point theorem; McKean–Vlasov stochastic differential equations

1. Introduction

The aim of this paper is to present some new and surprising results concerning the existence
of invariant probability measures for one-dimensional self-stabilizing diffusions. The specificity
of such diffusion is the attraction of its paths by the own law of the stochastic process. The
dynamical system solved by self-stabilizing diffusions can be characterized by three essential
elements: first the system is governed by a double-well potential V which represents roughly
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the environment of the process, secondly some interaction potential F describes how strong the
attraction between the process and its own law is, and finally the system is perturbed by some
Brownian motion with small amplitude (

√
εBt , t ≥ 0).

Let us denote by uεt (dx) the law of the self-stabilizing diffusion (X εt , t ≥ 0), then the so-
called McKean–Vlasov SDE satisfied by (X εt ) is given by:

X εt = X0 +
√
εBt −

∫ t

0
V ′(X εs )ds −

∫ t

0

∫
R

F ′(X εs − x)duεs (x)ds, ε > 0. (Eε,X0 )

Introducing the notation of the convolution product, (Eε,X0) can be written as follows:

X εt = X0 +
√
εBt −

∫ t

0

(
V ′ + F ′ ∗ uεs

) (
X εs
)

ds. (1.1)

Let us just note that the interaction part of the drift term is related to the diffusion in some simple
way: F ′ ∗ uεt (x) = E[F ′(x − X εt )]. This way of characterizing the drift term essentially points
out the structure of the attraction between the paths of the diffusion and its law. Self-interaction
corresponds obviously to mean fields stabilization.

Such interacting particle systems have been studied from various points of view. A survey
about the general setting for interaction (under global Lipschitz and boundedness assumptions)
may be found in [11].

The aim of this paper is to consider both the existence and the uniqueness of stationary
measures for the self-stabilizing diffusion (Eε,X0). In [6] Herrmann, Imkeller and Peithmann
proved the existence of some unique strong solution to Eq. (1.1) generalizing previous results
obtained by Benachour, Roynette, Talay and Vallois [2] in the context of constant environment
potential V (V ′(x) = 0 for all x ∈ R). We choose their work as basis for developing our study.
Nevertheless there exist several different papers dealing with the existence problem for self-
stabilizing diffusion, each of them concerning other families of interaction functions. Let us cite
McKean who studied in some earlier work a class of Markov processes that contains the solution
of the limiting equation under restrictive global Lipschitz assumptions for the interaction [7],
Stroock and Varadhan who considered some local form of interaction [10], Oelschläger who
studied the particular case where interaction is represented by the derivative of the Dirac measure
at zero [9] and finally Funaki who addressed existence and uniqueness for the martingale problem
associated with self-stabilizing diffusions [4].

Let us now focus our attention to the stationary measures. In [2] the authors emphasize that
the invariant measure, corresponding to some given average, is unique in this particular constant
potential V situation. This feature is essential for further developments. The natural convergence
question between the law of the process and the invariant measure, as time elapses, can then
be analyzed, see [3]. This kind of convergence was also considered by Tamura under different
assumptions on the structure of the interaction, see [12,13].

The presence of some potential gradient which describes the environment of the self-
stabilizing diffusion is essential for the question of existence and uniqueness of invariant
measures. In particular, if the landscape is represented by some symmetric double-well potential
then surprising effects appear due to the lack of convexity: we shall prove that, under suitable
conditions, there exist at least three invariant measures of which one is symmetric (Theorem 4.5)
and two are asymmetric or so-called outlying (Theorem 4.6). In the particular linear interaction
case (F ′(x) = αx with α > 0), these three measures constitute the whole set of invariant
measures (Theorem 3.2) provided that V ′′ is a convex function.
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The material of this paper is organized as follows: first we list several assumptions concerning
both the interaction function F and the environment potential V which permit in particular to
assure the existence of the self-stabilizing diffusion (Eε,X0). In Section 2 preliminary results
concerning the structure of the invariant measure (if it exists!) are developed. These results are
essential for the construction of such measures. The question of existence starts to be addressed
in Section 3 in the particular linear interaction context. After pointing out some symmetric and
asymmetric invariant measures, we point out some nice context for which the whole set of
stationary measures can be described. This study is finally extended to the general interaction
case in the last section. We postpone different tools concerning asymptotic analysis based on
Laplace’s method to the Appendix.

1.1. Main assumptions

In order to study invariant measures for self-stabilizing diffusions, we especially need
that (1.1) admits some unique strong solution. For this reason, we assume that both the
potential landscape V and the interaction function F satisfy some growth conditions and some
regularity properties. Moreover we add some technical assumptions which permit to simplify the
statements.

We assume the following properties for the function V :

(V-1) Regularity: V ∈ C∞(R,R). C∞ denotes the Banach space of infinitely bounded continu-
ously differentiable function.

(V-2) Symmetry: V is an even function.
(V-3) V is a double-well potential. The equation V ′(x) = 0 admits exactly three solutions: a,

−a and 0 with a > 0; V ′′(a) > 0 and V ′′(0) < 0. The bottoms of the wells are reached
for x = a and x = −a.

(V-4) There exist two constants C4,C2 > 0 such that ∀x ∈ R, V (x) ≥ C4x4
− C2x2.

(V-5) limx→±∞ V ′′(x) = +∞ and ∀x ≥ a, V ′′(x) > 0.
(V-6) The growth of the potential V is at most polynomial: there exist q ∈ N∗ and Cq > 0 such

that
∣∣V ′(x)∣∣ ≤ Cq

(
1+ x2q

)
.

(V-7) Initialization: V (0) = 0.

Typically, V is a double-well polynomial function (Fig. 1). Nevertheless the results presented
in the following are applied to more general functions: regular double-well functions with
polynomial growth as |x | becomes large. Moreover, let us note that the hypothesis (V-5) implies
V ′ not to be globally Lipschitz. We introduce the parameter ϑ which plays some important role
in the following:

ϑ = sup
x∈R
−V ′′(x). (1.2)

Let us note that the simplest example (most famous in the literature) is V (x) = x4

4 −
x2

2 which
bottoms are localized in −1 and 1 and with parameter ϑ = 1.

Let us now present the assumptions concerning the attraction function F .

(F-1) F is an even polynomial function. Indeed we consider some classical situation: the
attraction between two points x and y only depends on the distance F(x − y) = F(y− x).

(F-2) F is a convex function.
(F-3) F ′ is a convex function on R+ therefore for any x ≥ 0 and y ≥ 0 such that x ≥ y we get

F ′(x)− F ′(y) ≥ F ′′(0)(x − y).
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Fig. 1. Potential V .

(F-4) The polynomial growth of the attraction function F is related to the growth condition (V-6):
|F ′(x)− F ′(y)| ≤ Cq |x − y|(1+ |x |2q−2

+ |y|2q−2).

The function F ′ is globally Lipschitz if and only if the degree of the polynomial function F is
equal to 2. Let us define the parameter α ≥ 0 which shall play an essential role in the following:

F ′(x) = αx + F ′0(x) with α = F ′′(0) ≥ 0. (1.3)

In [6], Herrmann, Imkeller and Peithmann presented sufficient conditions for the SDE (1.1) to

admit a unique strong solution. In particular, if E[X8q2

0 ] < +∞, where q is defined by (V-6),
and if all main assumptions just defined are satisfied, the existence of a unique solution is proved

and E[X8q2

t ] < +∞ for all t ≥ 0. In the following we shall always assume that the (8q2)-
th moment of the initial value X0 is finite. This permits to study further the self-stabilizing
diffusions and exhibit invariant measures. Also, we will use the same notation for the measures
absolutely continuous with respect to the Lebesgue measure and their density.

2. General structure of the invariant measures

This section deals with different preliminary results describing the main structure of the
invariant measures of

(
Eε,X0

)
. First of all, there is some classical link between the stochastic

differential equation and the associated parabolic partial differential equation which permits to
characterize stationary measures.

Lemma 2.1. We recall that
∫
R x8q2

uε0(dx) < ∞. Let duεt denote the probability measure of
(X εt ; t ≥ 0). Then, for all t > 0, duεt admits a C∞-continuous density uεt with respect to the
Lebesgue measure. Moreover, uε is solution of the following PDE:

∂

∂t
uεt (x) =

ε

2
∂2

∂x2 uεt (x)+
∂

∂x

[
uεt (x)

(
V ′(x)+

(
F ′ ∗ uε

)
(t, x)

)]
(2.1)

for all t > 0, x ∈ R and duε0(x) = P (X0 ∈ dx).

Proof. In [8] (Step 3), McKean proves, using Weyl’s lemma that the unique strong solution of
(1.1) admits a regular density function solution to the PDE (2.1) provided that the drift term of
the SDE is a C∞-continuous function. In fact the hypothesis (F-1) implies that x 7→ F ′ ∗ uεt (x)
is a polynomial function whose parameters are the moments of orders 1 to 2n − 1. We assume
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that the (8q2)-th moment of the initial value X0 is finite so
∫
R x8q2

duεt (x) < ∞ for all t ≥ 0
consequently the drift x 7→ V ′(x)+ F ′ ∗ uεt (x) is regular. �

Let us note that Tamura (Theorem 2.1 in [13]) extended the initial result of McKean to
unbounded drift terms. This extension was essential to prove the existence of self-stabilizing
processes but was not necessary in the study of the density regularity. Since the existence of
some unique solution of (1.1) was already presented in [6], we do not really need the extension
of Tamura.

The density of (X εt , t > 0) with respect to the Lebesgue measure is solution to the parabolic
PDE (2.1) (non-linear Kolmogorov equation): this implies in particular that any stationary
measure whose (8q2)-moment is finite (if such a measure exists!) satisfies an elliptic differential
equation. This link between non-linear differential equations and self-stabilizing diffusions
permits to express the invariant measure in some exponential form.

Lemma 2.2. If there exists an invariant measure uε to (Eε,X0) whose (8q2)-moment is finite,
then:

uε(x) =
1

λ(uε)
exp

[
−

2
ε

(∫ x

0
F ′ ∗ uε(y)dy + V (x)

)]
=

1
λ(uε)

exp
[
−

2
ε
(F ∗ uε(x)− F ∗ uε(0)+ V (x))

]
, (2.2)

where λ(uε) denotes the normalization factor:
∫
R uε(x)dx = 1. Conversely any measure whose

density satisfies (2.2) is invariant for (Eε,X0) and admits a 8q2 finite moment.

Proof. 1. First we shall prove that any measure uε satisfying (2.2) is an invariant measure for
(1.1). Let X0 be some random variable with distribution uε . We consider the diffusion

(
Y εt
)

t≥0
solution of the SDE:

Y εt = X0 +
√
εBt −

∫ t

0
W ′ε

(
Y εs
)

ds (2.3)

where Wε(x) = V (x)+F ∗uε(x)−F ∗uε(0). Since
(
Y εt
)

t≥0 is a Kolmogorov diffusion process,

it admits a unique stationary measure of probability vε given by vε(x) = e−
2
ε Wε (x)∫

R e−
2
ε Wε (y)dy

= uε(x).

Consequently the law of Y εt corresponds with uε for all t ≥ 0. Moreover (2.3) becomes (1.1).
Hence, uε is an invariant measure for (1.1).

Finally the hypotheses (V-4) and (F-3) imply that there exists Rε > 0 such that V (x) + F ∗
uε(x)− F ∗ uε(0) ≥ x2 for all x ≥ Rε . Therefore the (8q2)-moment of uε is finite.
2. Let us prove now that any invariant measure satisfies to some exponential implicit structure.
By (2.1), any stationary measure uε whose (8q2)-moment is finite satisfies

ε

2
u′′ε (x)+

(
uε(x)

(
V ′(x)+ F ′ ∗ uε(x)

))′
= 0, for all x ∈ R. (2.4)

By integrating (2.4), we obtain the existence of some constant Cε ∈ R such that
ε

2
u′ε(x)+ uε(x)(V

′(x)+ F ′ ∗ uε(x)) = Cε, for all x ∈ R.

Using the method of variation of parameters, uε takes the following form

uε(x) = Λε(x) exp
[
−

2
ε

(∫ x

0
F ′ ∗ uε(y)dy + V (x)

)]
,
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with

Λ′ε(x) =
2
ε

Cε exp
[

2
ε

(∫ x

0
F ′ ∗ uε(y)dy + V (x)

)]
.

Hence

uε(x) = Λε(0) exp
[
−

2
ε

(∫ x

0
F ′ ∗ uε(y)dy + V (x)

)]
+

2
ε

Cε

∫ x

0
exp

[
2
ε

(∫ y

0
F ′ ∗ uε(z)dz + V (y)

)]
dy

× exp
[
−

2
ε

(∫ x

0
F ′ ∗ uε(y)dy + V (x)

)]
.

Let us assume that Cε 6= 0. Applying Lemma A.1 to the function U (x) =
∫ x

0 F ′∗uε(y)dy+V (x),
whose second derivative is positive for |x | large enough (using hypotheses (V-5) and (F-2)),
permits to exhibit the equivalent of Λε(x):

Λε(x) ≈
2
ε

Cε
exp

[
2
ε

(∫ x
0 F ′ ∗ uε(y)dy + V (x)

)]
2
ε
(V ′(x)+ F ′ ∗ uε(x))

as x →±∞.

Hence uε(x) ≈
Cε

V ′(x)+F ′∗uε(x)
. We can note that V ′(x)+ F ′ ∗uε(x) is positive in a neighborhood

of +∞ and negative for −∞. Since uε is a probability distribution and consequently needs to be
nonnegative, we get Cε = 0 and obtain (2.2) after normalization. �

Lemma 2.2 presents the essential structure of any invariant measure. The global exponential
form will play a crucial role in next sections: to prove the existence of some stationary measure,
it is necessary and sufficient to solve Eq. (2.2).

3. The linear interaction case

First we shall analyze the existence problem for stationary measures in the simple linear case.
In this case F ′(x) = αx with α > 0, the interaction gradient function is quadratic: F(x) = α

2 x2

and the stochastic differential equation takes an interesting simple form. The non-linearity of the
drift term is limited to the average of the density uεt (x):

X εt = X0 +
√
εBt −

∫ t

0
V ′(X εs )ds − α

∫ t

0

(
X εs −

∫
R

xduεs (x)

)
ds, ε > 0.

The study of this particular case emphasizes the existence of several invariant measures. The
interesting problem is then to determine in which situations the number of such measures is
perfectly known.

3.1. Existence of invariant measures

The existence question is really simplified in the linear interaction case, it is just reduced in
fine to the following parametrization problem. Let us denote the first moment of an invariant
measure uε by

m1(ε) =

∫
R

xuε(x)dx, (3.1)
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then (2.2) becomes

uε(x) =
exp

[
−

2
ε

(
V (x)+ α x2

2 − αm1(ε)x
)]

∫
R exp

[
−

2
ε

(
V (y)+ α y2

2 − αm1(ε)y
)]

dy
. (3.2)

Consequently: uε is an invariant measure if and only if (3.1) and (3.2) are satisfied. It suffices
then to point out the convenient parameters m1(ε) since there is a one to one correspondence
between these parameters and the invariant measures. In other words, we shall find the solution
of the equation

m = Ψε(m) with Ψε(m) =

∫
R x exp

[
−

2
ε

(
V (x)+ α x2

2 − αmx
)]

dx∫
R exp

[
−

2
ε

(
V (x)+ α x2

2 − αmx
)]

dx
. (3.3)

Obviously, m0
1(ε) = 0 is a candidate. The corresponding measure u0

ε is invariant and symmetric:

u0
ε(x) = exp

[
−

2
ε

(
V (x)+ α

x2

2

)](∫
R

exp
[
−

2
ε

(
V (y)+ α

y2

2

)]
dy

)−1

.

In fact u0
ε is the unique symmetric stationary measure. Indeed, on one hand the average of such

measure vanishes and on the other hand any invariant measure satisfies (2.2); finally we obtain
the previous expression for u0

ε .
Of course the natural question concerns the existence of other real solutions m1(ε) of (3.2).

In fact the basic dynamical system associated to self-stabilizing diffusions is symmetric since
F and V are assumed to be even functions. The consequence is immediate: if the initial law
of the diffusion (X εt , t ≥ 0) is symmetric so will be the law of X εt for all t > 0. In [2], the
authors consider self-stabilizing diffusions without the environment potential V . They proved the
existence of some unique symmetric invariant measure and describe the behavior of the diffusion:
for any initial law satisfying the moment condition of order 8q2 the law of X t −E[X0] converges
to the invariant symmetric law as time elapses.

Adding some double-well potential V in the main structure of the stochastic differential
equation drastically changes the situation. In particular we prove the existence of several invariant
measures, one of them being symmetric.

Proposition 3.1. Let a be the unique positive real which minimizes V (see (V-3)). For all
δ ∈]0, 1[, there exists ε0 > 0 such that for all ε ≤ ε0, the Eq. (3.3) admits a solution satisfying
the estimates:∣∣∣∣∣m1(ε)− a +

V (3)(a)

4V ′′(a) (α + V ′′(a))
ε

∣∣∣∣∣ ≤ δε. (3.4)

Moreover −m1(ε) satisfies (3.3) too.

Let us note that, for ε small enough, the preceding proposition implies the existence of at least
three invariant measures corresponding to the averages: 0, m1(ε) and −m1(ε).
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Proof. Set τ > 0. Let’s proceed to the first order asymptotic development of the expression
Ψε(a − τε).

Ψε(a − τε) =

∫
R x exp

[
−

2
ε

(
V (x)+ α x2

2 − α(a − τε)x
)]

dx∫
R exp

[
−

2
ε

(
V (x)+ α x2

2 − α(a − τε)x
)]

dx

=

∫
R xe−2ατ x exp

[
−

2
ε

(
V (x)+ α x2

2 − αax
)]

dx∫
R e−2ατ x exp

[
−

2
ε

(
V (x)+ α x2

2 − αax
)]

dx
.

By Lemma A.3 applied to the context: f (x) = −2ατ x , n = 1, U (x) = V (x)+ α
2 x2
− αax and

µ = 0, we get:

Ψε(a − τε) = a −
1

4a (α + V ′′(a))2

[
aV (3)(a)+ 4aατ

(
α + V ′′(a)

)]
ε + o(ε)

= a − τε +
V ′′(a)

α + V ′′(a)

[
τ −

V (3)(a)

4V ′′(a) (α + V ′′(a))

]
ε + o(ε).

Set τ 0
=

V (3)(a)
4V ′′(a)(α+V ′′(a)) . Then a−τ 0ε is the first order approximation of the fixed point. Indeed

for δ ∈]0; 1[ we can define

d± := Ψε

(
a − (τ 0

± δ)ε
)
−

(
a − τ 0(1± δ)ε

)
= ±δ

V ′′(a)

α + V ′′(a)
ε + o(ε).

For ε small enough, d+ > 0 and d− < 0. Since the function Ψε is C 0 continuous, there exists
m1(ε) ∈ [a−(τ 0

+δ)ε; a−(τ 0
−δ)ε]which satisfies Ψε(m1(ε)) = m1(ε). Finally, by the change

of variable x := −x in the integral expression (3.3), we obtain Ψε(−m1(ε)) = −Ψε(m1(ε)) =

−m1(ε). �

3.2. Description of the set of invariant measures

According to Proposition 3.1, we know there are at least three invariants measures. One
of them is symmetric corresponding to the average 0 and two others will be called outlying
measures, one wrapped around a and the other one around −a. The aim of this section is to
study if there are exactly three invariants measures or more.

For this purpose, we study the asymptotic behavior of the function Ψε defined by (3.3) in the
small noise limit.

Theorem 3.2. If V ′′ is a convex function then, in the small noise limit, there exist exactly three
stationary measures.

Proof. Let m > 0. Let us recall that the interaction function is linear: F ′(x) = αx with α > 0.
In order to study the invariant measures, we have to consider the fixed points of the application
Ψε(m) defined by (3.3). We introduce the following potential function:

Wm(x) = V (x)+
α

2
x2
− αmx .

Since V ′(0) = 0, we have W ′m(0) < 0. Moreover limx→+∞W ′m(x) = +∞. So we denote by xm
the positive real for which the potential Wm admits its global minimum. It is uniquely determined
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since V ′′ (and so W ′′m) is a convex function. Let us prove by using reductio ad absurdum that
the global minimum is uniquely determined: we assume the existence of two positive reals
x (1)m < x (2)m such that Wm reaches its minimum on R for x = x (1)m and x = x (2)m . Hence
W ′m(x

(1)
m ) = W ′m(x

(2)
m ) = 0 and W ′′m(x

(1)
m ) ≥ 0. Since W ′′m is non-decreasing, we deduce that

W ′′m(x) = 0 for all x ∈ [x (1)m ; x
(2)
m ]. The convexity of W ′′m implies that W (3)

m is a non-decreasing
function. Moreover W (3)

m (0) = V (3)(0) = 0 which leads to W (3)
m (x) = 0 and so W ′′m(x) = 0

for all x ∈ [0; x (2)m ]. The following contradiction holds: W ′m(0) = −αm 6= 0 = W ′m(x
(2)
m ).

Consequently, xm is unique.
Moreover, xm satisfies

V ′(xm)+ α(xm − m) = 0 and V ′′(xm)+ α > 0. (3.5)

Indeed, since xm is a global minimum, the equality V ′′(xm)+ α = 0 implies that V (3)(xm) = 0
that is xm = 0 which contradicts the assumption concerning the positivity of xm .

We define

χε(m) = Ψε(m)− m and χ0(m) = xm − m.

We obtain the expression:

χε(m) = xm − m +

∫
R(x − xm) exp

[
−

2
ε

(
V (x)+ αx2

2 − αmx
)]

dx∫
R exp

[
−

2
ε

(
V (x)+ αx2

2 − αmx
)]

dx
. (3.6)

It suffices to prove that χε has just one zero in R∗+.

Step 1. For all ε > 0 and m > 0, we observe that χε(m) ≤ χ0(m) = xm − m.
We apply the change of variable x := y + xm to the integrals in (3.6) and obtain

χε(m) = χ0(m)+

∫
R y exp

[
−

2
ε

(
V (y + xm)+

αy2

2 + α (xm − m) y
)]

dy∫
R exp

[
−

2
ε

(
V (y + xm)+

αy2

2 + α (xm − m) y
)]

dy

= χ0(m)+

∫
∞

0 y exp
[
−
α
ε

y2
]
Ωε,m(y)dy∫

R exp
[
−

2
ε

(
V (y + xm)+

αy2

2 + α (xm − m) y
)]

dy
,

with

Ωε,m(y) = exp
[
−

2
ε
(V (y + xm)+ α (xm − m) y)

]
− exp

[
−

2
ε
(V (y − xm)− α (xm − m) y)

]
.

We introduce the function

Λm(y) = V (y + xm)− V (y − xm)+ 2α (xm − m) y.

Since V is an even function, Λm(0) = 0 and Λ′′m(0) = 0. According to the definition of xm ,
Λ′m(0) = 0. V ′′ is a convex function therefore V (3) is increasing. So Λ(3)m (y) = V (3)(y + xm)−

V (3)(y − xm) ≥ 0 for all y. We deduce that Λ′′m is increasing. Hence Λ′′m is nonnegative on R∗+
so does Λm(y) for y > 0. Finally we get Ωε,m(y) ≤ 0 for all y > 0. We obtain the announced
result: χε(m) ≤ χ0(m) for m > 0.
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Step 2. χ0 has a unique zero on R∗+.
Let us compute χ0(a) with a defined in (V-3). We know that a is solution of V ′(x) +

α (x − a) = 0 with V ′′(x)+ α > 0. Hence χ0(a) = 0.
Let us focus our attention on the variations of the function χ0 on the interval ]0,+∞[. Since

V ′(xm)+ αxm = αm, and α + V ′′(xm) > 0 we deduce that m → xm is derivable, we obtain

χ ′0(m) =
d

dm
xm − 1

and

d
dm

xm =
α

α + V ′′(xm)
> 0 which implies χ ′0(m) = −

V ′′(xm)

α + V ′′(xm)
. (3.7)

The denominator is positive due to the definition of xm . According to (V-5), V ′′(x) > 0 for all
x > a. Hence χ ′0(m) < 0 for all m > a. Since χ0(a) = 0 we deduce that, for all m > a, χ0(m)
is negative and therefore the function χ0 has no zero on ]a;+∞[.

It remains to study χ0 on the interval ]0, a]. Since V ′′ is a convex function, we deduce that the
derivative of χ0 is non positive for xm ≥ c with c > 0 satisfying V ′′(c) = 0. We know that c > 0
is unique since V ′′(0) < 0 and V ′′ is a convex function. Moreover c < a. Since the function
m → xm is increasing for m > 0, we deduce that χ ′0 is negative for m ∈]max(0,mc), a] where

mc is such that c is the solution of (3.5). By computation, mc = c + V ′(c)
α

.
We observe then two different cases:

• If mc ≤ 0 i.e. α < |V
′(c)|
c : χ0 is decreasing on R∗+ with χ0(a) = 0. The unique zero of χ0 on

R∗+ is a.

• If mc > 0 then χ0, which is a continuous function on R∗+, is increasing on ]0,mc[ and
decreasing on ]mc,+∞[ with χ0(a) = 0. It suffices to prove that limm→0+ χ0(m) ≥ 0 in
order to conclude that a is the unique zero of χ0 on R∗+. Due to the definition of xm we get:
limm→0+ χ0(m) = limm→0+ xm ≥ 0. Indeed m → xm is increasing on ]0;mc[ and xm > 0
for all m ∈]0;mc[ so the extension to m = 0 is non negative.

In these two cases, there is a unique zero of χ0 on R∗+.

Step 3. The family of functions (χε)ε (respectively (χ ′ε)ε) converges uniformly towards χ0
(resp. χ ′0) on each compact subset of R∗+.

First we prove the convergence of Ψε(m) for m > 0. Recall that

Ψε(m) =

∫
R x exp

[
−

2
ε

(
V (x)+ αx2

2 − αmx
)]

dx∫
R exp

[
−

2
ε

(
V (x)+ αx2

2 − αmx
)]

dx
.

By Lemma A.3 with U (x) = V (x)+ αx2

2 , n = 1, µ = m and G = −αx we obtain the announced
convergence result:

χε(m)− χ0(m) = Ψε(m)− xm = −
V (3)(xm)

4 (α + V ′′(xm))
2 ε + o(ε).

Moreover this convergence is uniform with respect to the variable m on compact subsets of R∗+.
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We estimate now the asymptotics of χ ′ε(m) as ε becomes small. Taking the derivative of Ψε ,
we obtain

Ψ ′ε(m) =
2α
ε


∫
R x2 exp

[
−

2
ε

Wm(x)
]

dx∫
R exp

[
−

2
ε

Wm(x)
]

dx
−

∫R x exp
[
−

2
ε

Wm(x)
]

dx∫
R exp

[
−

2
ε

Wm(x)
]

dx

2
 .

We recognize the variance of the measure u(m)ε which is the measure associated to the average m
by (3.2). Hence

χ ′ε(m) =
2α
ε

Var(u(m)ε )− 1. (3.8)

Applying again Lemma A.3 with U = V (x)+ αx2

2 , G = −αx , µ = m and n = 2, we obtain∫
R x2 exp

[
−

2
ε

Wm(x)
]

dx∫
R exp

[
−

2
ε

Wm(x)
]

dx
= x2

m −

(
xm V (3)(xm)− (α + V ′′(xm))

)
2 (α + V ′′(xm))

2 ε + o(ε).

Applying the same lemma with n = 1 permits to compute the first moment:∫
R x exp

[
−

2
ε

Wm(x)
]

dx∫
R exp

[
−

2
ε

Wm(x)
]

dx
= xm −

xm V (3)(xm)

4xm (α + V ′′(xm))
2 ε + o(ε).

By (3.8) and the computations of the two first moments, we get

χ ′ε(m) =
−V ′′(xm)

α + V ′′(xm)
+ o(1) = χ ′0(m)+ o(1). (3.9)

Furthermore this convergence is uniform with respect to the variable m on compact subsets
of R∗+.
Step 4. For any δ > 0 small enough, there exists ε0 > 0 such that χε has a unique zero on [δ,∞[
for all ε ≤ ε0.

Since there is no zero of χε on the interval ]a,+∞[ (Step 1 and 2), we focus our attention
on the interval ]0, a]. On each compact subset of this interval, χε converges uniformly towards
the limit function χ0 (Step 3). Hence the zeros of χε are in a small neighborhood of the unique
zero of χ0 namely a (Step 2). Let us study the derivative of χε in a neighborhood of a. Since χ ′ε
converges uniformly towards χ ′0 (Step 3) and χ ′0(m) < 0 in a neighborhood of a (Step 2), we
obtain that χ ′ε(m) < 0 in a neighborhood of a for ε small enough. Finally we proved that, as
soon as ε is small enough, the function χε cannot admit two zeros or more on R∗+.
Step 5. There exists δ > 0 and ε0 > 0 such that χε doesn’t vanish on ]0, δ] for all ε ≤ ε0.

In this last step, we have to distinguish three different cases depending on the values ϑ
(=− V ′′(0) since V ′′ is convex) and α defined by (1.2) and (1.3).
Step 5.1. We assume α < ϑ . In this particular case W0(x) = V (x) + αx2/2 reaches a unique
global minimum on R+ for x = x0 > 0.

Let us fix some small δ > 0 (depending on x0: we shall precise it in the following). We prove
that, for ε small enough, χε(m) = Ψε(m) − m > 0 on ]0, δ]. By the definition of Ψε , see (3.3),
it suffices to prove that Nε(m) > 0 for m ∈]0, δ] where

Nε(m) =
∫
R

x exp
[
−

2
ε

Wm(x)

]
dx − m

∫
R

exp
[
−

2
ε

Wm(x)

]
dx . (3.10)



1226 S. Herrmann, J. Tugaut / Stochastic Processes and their Applications 120 (2010) 1215–1246

Obviously Nε(0) = 0. Let us prove that Nε is non decreasing. Taking the derivative, we get

N ′ε(m) =
2α
ε

∫
R

(
x2
− mx −

ε

2α

)
exp

[
−

2
ε

Wm(x)

]
dx .

This expression is in fact non negative. Indeed, using the symmetry property of W0(x) and the
upper bound m ≤ δ, we obtain

N ′ε(m) =
2α
ε

∫
∞

0

{(
x2
−

ε

2α

)
cosh

(
2αmx

ε

)
− mx sinh

(
2αmx

ε

)}
e−

2
ε

W0(x)dx

≥
α

ε

∫
∞

0
Pδ(x)e

2αmx
ε e−

2
ε

W0(x)dx with Pδ(x) = x2
− δx −

ε

α
.

We split the preceding integral into two parts: the first integral I0 concerns the support [0, 2δ]
and the second integral I2δ the complementary support [2δ,∞[. We get N ′ε(m) ≥

α
ε
(I0 + I2δ).

Since the roots of the polynomial function Pδ satisfy

x± =
1
2

(
δ ±

√
δ2 +

4ε
α

)
< 2δ,

the polynomial is positive on the interval [2δ,∞[ and can be lower bounded by Pδ(2δ) =
2δ2
− ε/α. Lemma A.3 implies the existence of some constant C > 0 leading to the following

estimate as ε → 0:

I2δ ≥ (2δ2
− ε/α)

∫ x0+1

2δ
e−

2
ε

W0(x)dx ≥ Cδ2√εe−
2
ε
(V (x0)+αx2

0/2) (3.11)

provided that x0 > 2δ (it suffices then to chose δ small enough).
Let us finally focus our attention to the lower bound of the integral term I0. Since the minimum

value of Pδ is −(δ2/4+ ε/α) and since W ′′(0) < 0, we have

I0 ≥ −

(
δ2

4
+
ε

α

)∫ 2δ

0
e

2αmx
ε e−

2
ε

W0(x)dx ≥ −2δ
(
δ2

4
+
ε

α

)
e−

V (2δ)
ε . (3.12)

For δ > 0 small enough, V (2δ) > V (x0) + αx2
0/2 (since the minimum of V (x) + αx2/2 is

only reached for x = x0). Consequently the negative lower bound of I0 (3.12) is negligible with
respect to the positive lower bound of I2δ as ε becomes small. We deduce that there exists ε0 such
that N ′ε(m) > 0 for all m ∈ [0, δ] and ε ≤ ε0. Since Nε(0) = 0 we conclude that Nε(m) > 0 on
]0, δ] and so is χε .

Step 5.2. We assume α > ϑ . In this case W0(x) admits a unique minimum reached for x = 0 and
xm converges continuously to 0 as m → 0. Using similar arguments as those presented in Step 3,
we claim that χε (resp. χ ′ε) converges towards χ0 (resp. χ ′0) uniformly on [0, a] as ε → 0. Due

to the regularity of χ0 and by the inequality χ ′0(0) = −
V ′′(0)

α+V ′′(0) > 0 we obtain the existence of
δ > 0 and ε0 > 0 such that χ ′ε(m) > 0 for m ∈ [0, δ] and ε ≤ ε0. χε starts in 0 and is increasing
on [0, δ] which implies the announced result.

Step 5.3. We assume that α = ϑ . It suffices then to note that χε depends continuously on the
parameter α. The following results can be directly deduced from the preceding case (Step 5.2)
by continuity: χ ′ε(0) > 0 and χ ′ε(m) ≥ 0 for m ∈ [0, δ] and ε ≤ ε0. In fact χε vanishes for x = 0
and is increasing on [0, δ]. The inequality χε(m) > 0 for all m ∈]0, δ] and ε ≤ ε0 is an obvious
consequence.
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Conclusion: Step 4 and 5 lead to the existence of ε0 > 0 such that for all ε < ε0, χε has exactly
three zeros: 0 and two other reals, one in the neighborhood of a, the other one near −a. To each
of these averages corresponds a unique invariant measure obtained by (3.2). �

4. The general interaction case

We assumed for this study that the self-attraction phenomenon is represented by a polynomial
function F ′, see (F-1). In previous section, we analyzed the particular linear situation: F ′(x) =
αx and proved under suitable conditions that there exist exactly three invariant measures in the
small noise limit. In this section we shall focus our attention to the general case: the polynomial
function F is of degree n ≥ 2. First we shall present results, concerning symmetric invariant
measures, derived from the application of a fixed point theorem to some suitable function
space. Secondly, we deal with the uniqueness of stationary symmetric measures in particular
situations using similar methods as those developed in Proposition 3.1. Thirdly, we discuss the
existence of asymmetric measures based on the application of a fixed point theorem to some
finite-dimensional space.

4.1. Symmetric invariant measures

In the linear case we proved the existence of a unique symmetric invariant measure. The result
is obvious since it suffices to solve the Eq. (3.3) with m1(ε) = 0. In the general case in order to
find the symmetric measure we have to solve some equation like (3.2) but depending on much
more parameters than just the mean m1(ε). The total number of parameters depends in fact on the
degree of F . Instead of trying to solve such a system, we choose some other kind of proof based
on a fixed point theorem which permits to prove the existence of symmetric invariant measures
in even more general cases: the interaction function does not need to be polynomial. In [2],
Benachour, Roynette, Talay and Vallois introduced this method of proof for a self-stabilizing
diffusion in the constant environment case (V ′(x) = 0). This proof can be adapted to our situation
and is based on the following Schauder’s theorem (see for instance [5] Corollary 11.2 p. 280):

Proposition 4.1. Let B a Banach space, C a closed convex subset and A a continuous applica-
tion C→ C such that A(C) is compact. Then A admits a fixed point in C.

In order to use this proposition we introduce some definitions and notations:

1. Let us choose p > 4q where q is defined in (V-6).
2. B = { f : R −→ R; supx∈R (1+ |x |

p) | f (x)| < ∞}. B is equipped with the norm | · |∞
where | f |∞ = supx∈R (1+ |x |

p) | f (x)|.
3. For all M > 0 we define the function space CM as the subset of all non negative and even

function belonging to B which satisfy:∫
R

f (x)dx = 1 and sup
x∈R

(
1+ |x |p

)
f (x) ≤ M.

4. For any function f ∈ CM we define the operator:

Aε( f )(x) =
exp

[
−

2
ε

(
V (x)+

∫ x
0

(
F ′ ∗ f

)
(y)dy

)]
∫

z∈R exp
[
−

2
ε

(
V (z)+

∫ z
0 (F

′ ∗ f ) (y)dy
)]

=
1

λε( f )
exp

[
−

2
ε

(
V (x)+

∫ x

0

(
F ′ ∗ f

)
(y)dy

)]
, (4.1)

where λε( f ) is the normalization factor.
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5. For any function u ∈ CM , we define the moments γk(u) =
∫
R |x |

ku(x)dx with 0 ≤ k ≤
p − 2.

Let us just point out that CM is a closed and convex subset of B. The aim of this section
will consist in proving that the application Aε is C 0(CM ,CM )-continuous and that Aε(CM ) is
compact since M is large enough. Therefore Schauder’s theorem implies the existence of a fixed
point and as the matter of fact the existence of an invariant measure in the function space CM .

Lemma 4.2. There exists two constants C1 and C2 both independent of M such that for all
u ∈ CM , we have: γk(u) ≤ MC1 and for all x ∈ R:

α

2
x2
≤

∫ x

0
(F ′ ∗ u)(y)dy ≤ C2 Mx2(1+ x2q). (4.2)

Proof. 1. Since u ∈ CM , we have supx∈R (1+ |x |
p) u(x) ≤ M for all k ≤ p − 2. Therefore

γk(u) =
∫
R

|x |k

1+ |x |p
(1+ |x |p)u(x)dx ≤ M

∫
R

|x |k

1+ |x |p
dx ≤ MC1.

2. Let x ≥ 0. Since u ∈ CM , u is an even function. By (1.3) we have F ′(x) = αx + F ′0(x)
and (F-3) implies that F ′ and F ′0 are non negative odd functions, therefore F ′0 ∗ u is also odd
and non negative. Using the inequality developed in the statement of Lemma 4.3 in [2] and the
assumption (F-3), we have

F ′0(x) ≤
1
2

(
F ′0(x − y)+ F ′0(x + y)

)
for y ∈ R, x ≥ 0.

Therefore, for x ≥ 0:∫ x

0

(
F ′0 ∗ u

)
(y)dy =

∫ x

0

∫
∞

0

(
F ′0(y − z)+ F ′0(y + z)

)
u(z)dzdy

≥

∫ x

0

∫
∞

0
2F ′0(y)u(z)dzdy ≥ 0. (4.3)

From the preceding inequality we deduce∫ x

0

(
F ′ ∗ u

)
(y)dy =

∫ x

0

(
F ′0 ∗ u

)
(y)dy +

α

2
x2
≥
α

2
x2 for all x ≥ 0.

Since
∫ x

0 (F
′
∗ u)(y)dy is an even function, we get the inequality for all x ∈ R.

3. Due to the symmetry of F ′ ∗ u we restrict our study to x ≥ 0.∫ x

0

(
F ′ ∗ u

)
(y)dy =

1
2

∫ x

0

∫
∞

0

(
F ′(y − z)+ F ′(y + z)

)
u(z)dzdy.

According to the assumptions (F-1) and (F-4), F is an even polynomial function of degree smaller
than 2q with q ≥ 1. We can therefore write F ′ as follows

F ′(x) =
q−1∑
k=0

αk x2k+1.



S. Herrmann, J. Tugaut / Stochastic Processes and their Applications 120 (2010) 1215–1246 1229

Therefore defining F(y, z) = F ′(y − z)+ F ′(y + z) we get

F(y, z) = y
q−1∑
k=0

αk

k∑
j=0

C2 j+1
2k+1 y2 j z2k−2 j

≤ qy max
0≤k≤q−1

|αk |22q max
0≤ j≤q

k∑
j=0

y2 j z2k−2 j
≤ Cy

(
1+ y2q

) (
1+ z2q

)
.

Finally since p > 4q , there exists some constant C ′ > 0 such that:∫
∞

0
F(y, z)u(z)dz ≤ Cy

(
1+ y2q

) ∫ ∞
0

(
1+ z2q

)
u(z)dz

≤ Cy
(

1+ y2q
) ∫ ∞

0

1+ z2q

1+ z p

(
(1+ z p)u(z)

)
dz

≤ C ′yM
(

1+ y2q
)
.

By integration we obtain
∫ x

0 (F
′
∗ u)(y)dy ≤ C2 Mx2(1+ x2q) for all x ∈ R+. �

Lemma 4.3. There exists M0 > 0 such that for any M ≥ M0, Aε(CM ) ⊂ CM . Moreover, there
exists a constant C(ε) such that

1
λε(u)

≤ C(ε)
√

M (4.4)

for all u ∈ CM .

Proof. By construction Aεu is a non negative even function which satisfies
∫
R Aεu(x)dx = 1. It

suffices then to prove that:

sup
x∈R

(
1+ |x |p

)
Aεu(x) ≤ M.

By (4.1) and according to Lemma 4.2 we obtain some lower bound for the normalization factor:

λε(u) =
∫
+∞

−∞

exp
[
−

2
ε

(
V (x)+

∫ x

0
(F ′ ∗ u)(y)dy

)]
dx

≥

∫
+∞

−∞

exp
[
−

2
ε

(
V (x)+ C2 Mx2

(
1+ x2q

))]
dx .

According to both (V-3) and (V-7), we know that V (x) ≤ 0 for all x ∈ [−a; a]. Hence

λε(u) ≥
∫
+a

−a
exp

[
−

2
ε

C2 Mx2(1+ a2q)

]
dx .

By the change of variable x := y
√

M
and Lemma A.1, the following development holds∫

+a

−a
exp

[
−

2
ε

C2 Mx2(1+ a2q)

]
dx =

2
√

M

∫ a
√

M

0
exp

[
−

2
ε

C2x2(1+ a2q)

]
dx

=
1
√

M
{C(ε)+ o(1)}
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where C(ε) is independent of M and o(1)→ 0 as M →∞. As soon as M is large enough, we

have therefore 1
λε(u)
≤

2
√

M
C(ε) where C(ε) is a positive constant determined by parameters of the

global system and ε. By (4.1) and the preceding upper bound, we prove that

(1+ |x |p)Aεu(x) ≤
2
√

M

C(ε)
(1+ |x |p)e−

2
ε

V (x)
≤ C ′(ε)

√
M,

where C ′(ε) is a positive constant similar to C(ε). In order to conclude, it is sufficient to choose
M ≥ C ′(ε)2: we get immediately Aεu ∈ CM . �

Lemma 4.4. Aε is a continuous operator on CM with respect to the uniform norm.

Proof. We shall find some upper bound for the following expression |Aεu − Aεv|.
Step 1. Let u, v ∈ CM . We define:

Λε(x) = e−
2
ε

V (x)
{

exp
[
−

2
ε

∫ x

0
(F ′ ∗ u)(y)dy

]
− exp

[
−

2
ε

∫ x

0
(F ′ ∗ v)(y)dy

]}
= e−

2
ε

V (x)− α
ε

x2
{

exp
[
−

2
ε

∫ x

0
(F ′0 ∗ u)(y)dy

]
− exp

[
−

2
ε

∫ x

0
(F ′0 ∗ v)(y)dy

]}
.

It is well known that |e−a
− e−b

| ≤ |a−b| for a, b ≥ 0. In order to apply this inequality we have
to prove that

∫ x
0 (F

′

0 ∗ v)(y)dy and
∫ x

0 (F
′

0 ∗ u)(y)dy are non negative. For each function f ∈ CM

the convolution term
∫ x

0

(
F ′0 ∗ f

)
(y)dy is non negative due to (4.3). Hence

|Λε(x)| ≤
2
ε

e−
2
ε

V (x)− α
ε

x2
Λε0(x), (4.5)

with Λε0 defined by∣∣∣∣∫ x

0
(F ′0 ∗ u)(y)dy −

∫ x

0
(F ′0 ∗ v)(y)dy

∣∣∣∣ = ∣∣∣∣∫ x

0

∫
R

F ′0(y − z)(u(z)− v(z))dzdy

∣∣∣∣ .
Since u and v are elements of CM , they are even functions and the integral with respect to the
variable z becomes

Λε0 =
∣∣∣∣∫ x

0

∫
∞

0

(
F ′0(z + y)− F ′0(z − y)

)
(u(z)− v(z)) dzdy

∣∣∣∣
≤

∫ x

0

∫
∞

0

∣∣F ′0(z + y)− F ′0(z − y)
∣∣ |u(z)− v(z)| dzdy. (4.6)

The assumption (F-4) gives information about the increments of the interaction function: there
exist two positive constants C ′q and C such that∣∣F ′0(z + y)− F ′0(z − y)

∣∣ ≤ 2|y|C ′q
(

1+ |z + y|2q−2
+ |z − y|2q−2

)
≤ 2|y|C ′q

(
1+ 22q−1

|z|2q−2
+ 22q−1

|y|2q−2
)

≤ C |y|
(

1+ |y|2q−1
+ |z|2q−1

)
≤ C |y|

(
1+ |y|2q−1

) (
1+ |z|2q−1

)
. (4.7)

We shall now find some upper bound for |u(z)− v(z)| in (4.6). Since u, v ∈ CM then u(z)(1+
|z|p) ≤ M and v(z)(1+|z|p) ≤ M , ∀z ∈ R. The obvious upper bound |u(z)− v(z)|(1+|z|p) ≤
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2M permits to obtain
√
|u(z)− v(z)| ≤

√
2M

1+|z|p . Consequently, for all z of R, |u(z) − v(z)| ≤
√
‖u − v‖∞

√
2M

1+|z|p where ‖ · ‖∞ denotes the uniform norm. Using this inequality, (4.7) and

(4.6) in order to estimate Λε0, we get

|Λε0(x)| ≤ C
√
‖u − v‖∞

∫ x

0
|y|
(

1+ |y|2q−1
)

dy
∫
∞

0

√
2M

1+ |z|p

(
1+ z2q−1

)
dz.

Since p > 4q the integral with respect to the variable z is finite and can be considered like a
constant term. By (4.5) and using the positivity of αx2, we obtain directly the existence of some
positive constant C > 0 such that

|Λε(x)| ≤ C

√
M

ε

√
‖u − v‖∞x2

(
1+ |x |2q−1

)
e−

2
ε

V (x).

According to (V-4), the expression x2
(
1+ |x |2q−1

)
e−

2
ε

V (x) can be bounded by some constant
independent of M . Therefore

‖Λε‖∞ ≤ C(M, ε)
√
‖u − v‖∞. (4.8)

Two results can be deduced: firstly ‖Λε‖∞ is finite and secondly ‖Λε‖∞ becomes small as
‖u − v‖∞ decreases towards 0.

Step 2. For any x ∈ R, we introduce:

Ωε(x) =
1

λε(u)λε(v)
exp

[
−

2
ε

(∫ x

0
(F ′ ∗ v)(y)dy + V (x)

)]
. (4.9)

Then the difference Aεu(x)− Aεv(x) can be decomposed as follows:

Aεu(x)− Aεv(x) =
1

λε(u)
Λε(x)+ (λε(v)− λε(u))Ωε(x). (4.10)

Taking the uniform norm, we get

‖Aεu − Aεv‖∞ ≤
1

λε(u)
‖Λε‖∞ + |λε(v)− λε(u)| ‖Ωε‖∞ . (4.11)

By (4.4) and by (4.8), we deduce that

1
λε(u)

‖Λε‖∞ ≤ C ′(M, ε)
√
‖u − v‖∞.

It is then sufficient to find a similar inequality for the term |λε(v)− λε(u)| ‖Ωε‖∞ in order to
conclude the proof.

|λε(v)− λε(u)| =

∣∣∣∣∫
R

Λε(x)dx

∣∣∣∣
≤ C

√
M

ε

√
‖u − v‖∞

∫
+∞

−∞

x2
(

1+ |x |2q−1
)

e−
2
ε

V (x)dx .

According to (V-4), the integral with respect to the variable x is finite and does not depend on
M . We have immediately

|λε(v)− λε(u)| ≤ C(M, ε)
√
‖u − v‖∞.
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It remains to estimate Ωε(x). By (V-4) and (4.2), we have∫ x

0

(
F ′ ∗ v

)
(y)dy + V (x) ≥ C4x4

+

(α
2
− C2

)
x2

for all x positive. Furthermore the symmetry property of V and F permits to extend the bound

to all x ∈ R. The function exp
[
−

2
ε

(∫ x
0 (F

′
∗ v)(y)dy + V (x)

)]
is then bounded by a constant

depending on ε. Moreover we have already proved (4.4) that is to say 1
λε( f ) ≤ C(ε)

√
M for all

elements f of the function space CM . This bound can therefore be applied to u and v. Finally we
obtain the existence of some constant C(ε) > 0 such that, for all real value x , |Ωε(x)| ≤ C(ε)M .

By (4.10), we have

‖Aεu − Aεv‖∞ ≤ C ′(M, ε)
√
‖u − v‖∞ + C(M, ε)

√
‖u − v‖∞C(ε)M.

In other words,

‖Aεu − Aεv‖∞ ≤ C ′′(M, ε)
√
‖u − v‖∞

which finishes the proof. �

We have now all the keys for proving the existence of some symmetric invariant measure.
Indeed we have just presented some continuous mapping which stabilizes a convex subset of the
Banach space B.

Theorem 4.5. There exists a symmetric invariant measure for (1.1).

Proof. Let M0 defined by Lemma 4.3. Taking M ≥ M0, let us prove that Aε(CM ) is a compact
set. For this reason we shall estimate the following derivative:(

Aεu
)′
(x) = −

2
ε

(F ′ ∗ u)(x)+ V ′(x)

λε(u)
exp

[
−

2
ε

(∫ x

0
(F ′ ∗ u)(y)dy + V (x)

)]
.

Let us analyze the different elements of this derivative. We have already seen in the proof of
Lemma 4.3 that for any u ∈ CM the normalization factor λε(u) satisfies (4.4) that is to say

1
λε(u)
≤ C(ε)

√
M .

By (4.2), we obtain the bound: 0 ≤
∫ x

0

(
F ′ ∗ u

)
(y)dy ≤ C2 Mx2

(
1+ x2q

)
.

Furthermore by (V-4) and (V-7), we get some estimation of V and its derivative:

V (x) ≥ C4x4
− C2x2 and

∣∣V ′(x)∣∣ ≤ Cq

(
1+ |x |2q

)
for all x ∈ R. (4.12)

It remains to find some upper bound for the convolution term:
∣∣(F ′ ∗ u

)
(x)
∣∣ with x ∈ R+. By

(F-4) and since u is an even function,∣∣(F ′ ∗ u
)
(x)
∣∣ = ∣∣∣∣∫

R
F ′(x − z)u(z)dz

∣∣∣∣ ≤ ∫ ∞
0

∣∣F ′(x + z)+ F ′(x − z)
∣∣ u(z)dz

≤ Cq

∫
∞

0

{
|x + z|

(
1+ |x + z|2q−2

)
+ |x − z|

(
1+ |x − z|2q−2

)}
u(z)dz.

Therefore:∣∣(F ′ ∗ u
)
(x)
∣∣ ≤ ∫

R+
Cq22q−1

{
|x |2q−1

+ |z||x |2q−2
+ |x |

(
1+ |z|2q−2

)
+ |z|

(
1+ |z|2q−2

)}
u(z)dz.
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By definition of CM , we have u(z) ≤ M
1+|z|p for p > 4q . Hence the moments of order 1, 2q − 2

and 2q − 1 are bounded: there exist some constants C and C ′, independent of the function
u ∈ CM , such that∣∣(F ′ ∗ u

)
(x)
∣∣ ≤ C

(
1+ |x | + |x |2q−2

+ |x |2q−1
)
≤ C ′

(
1+ |x |2q+1

)
. (4.13)

To sum up: using (4.4), (4.12) and (4.13) we obtain∣∣∣(Aεu)′ (x)∣∣∣ ≤ 2
ε

C(ε)
√

M(1+ |x |2q+1) exp
[
−

2
ε

(
C4x4

− C2x2
)]
. (4.14)

Finally we deduce that there exists some constant Cε such that
∣∣(Aεu)′ (x)∣∣ ≤ Cε for all x ∈ R.

Let us prove now that AεCM is compact. To this end, we take some sequence of functions
(un)n∈N in CM and focus our attention to the sequence (Aεun)n∈N. We know, by Lemma 4.3 that
(1+ |x |p)Aεun(x) ≤ M for all x ∈ R. So there exist v and ϕ such that (1+ x p)Aεuϕ(n)(x)
converges to v, uniformly on compact sets. We extend the uniformity to the whole set of reals.
Indeed, (4.14) implies (1+ |x |p)

∣∣(Aεun)
′ (x)

∣∣ ≤ CM,εe−ρx2
where CM,ε and ρ are positive

constants. For any δ > 0, set R > 0 such that CM,ε
∫
+∞

R e−ρx2
dx ≤ δ. Hence,

∣∣Aεuϕ(n)(x)−
Aεuϕ(n)(R)

∣∣ ≤ δ for any x ≥ R. This proves the convergence of (1+ x p)Aεuϕ(n) towards v
uniformly on R.

By Lemmas 4.3 and 4.4 we can apply Schauder’s theorem (Proposition 4.1) for the operator
Aε on the function space CM with M ≥ M0. We deduce the existence of some fixed point which
is, by construction, a symmetric stationary measure for the diffusion (1.1). �

4.2. Example: F(x) = β
4 x4
+

α
2 x2

We have just shown the existence of a symmetric invariant measure for general self-stabilizing
diffusions using fixed point arguments. Now let us study the uniqueness for symmetric invariant
measure in suitable situations by using the previous result (Theorem 4.5) and a procedure close
to that developed in Section 3.2. Let V be a potential satisfying (V-1)–(V-7).

Let uε be a symmetric invariant measure (Theorem 4.5). We denote by m2(ε) its second
moment. The couple (m2(ε), uε) is solution to some system like (3.1) and (3.2). Indeed

F ∗ uε(x) =
∫
R

F(x − z)uε(z)dz

=
α

2
x2
+
β

4
x4
+

3βm2(ε)

2
x2
+

(
α

2
m2(ε)+

β

4

∫
R

z4uε(z)dz

)
,

with β ≥ 0 since F ′ is a convex function on R+.
The expression delimited by the brackets is just a constant so we obtain the following system

of equations for m2(ε) and uε : m2(ε) =
∫
R+ x2ν(m2(ε), x)dx and 2uε(x) = ν(m2(ε), x) where

ν(m, x) =
exp

[
−

2
ε

(
V (x)+ F(x)+ 3βm

2 x2
)]

∫
∞

0 exp
[
−

2
ε

(
V (z)+ F(z)+ 3βm

2 z2
)]

dz
.

Therefore we introduce the function χε(m) =
∫
∞

0 x2ν(m, x)dx − m. By Theorem 4.5, we
know that χε admits at least one zero on R+. Computing the derivative of χε , we prove that
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the considered function is decreasing:

χ ′ε(m) = −
3β
ε

{∫
∞

0
x4ν(m, x)dx −

(∫
∞

0
x2ν(m, x)dx

)2
}
− 1 < 0.

The conclusion is immediate: there is a unique symmetric invariant measure. Obviously this
result and the kind of method used to prove it are particular to our simple example. If the degree
of the interaction function is larger than 4 then it isn’t enough to know the second moment in
order to define the invariant measure: we need more moments and the proof of the uniqueness
becomes awkward.

4.3. Outlying invariant measures

This section is essentially motivated by the uniqueness question for invariant measures. The
existence of some symmetric measure was just proved in Section 4.1. It suffices now to point
out asymmetric stationary measures for self-stabilizing diffusions. In the general setting, the

interaction function is polynomial: set F(x) =
∑n

k=1
F (2k)(0)
(2k)! x2k .

Let u be the density of some probability measure with respect to the Lebesgue measure and
µ1, . . . , µ2n−1 denote its moments of orders 1 to 2n − 1 respectively. We assume they are finite.
Then the difference D(x) := F ∗ u(x)− F ∗ u(0) satisfies

D(x) = F(x − a)− F(−a)+
2n−1∑
p=1

(−1)p

p!
(µp − a p)

n∑
j≥ 1+p

2

F (2 j)(0)
(2 j − p)!

x2 j−p

= F(x − a)− F(a)+
2n−1∑
p=1

(−1)p

p!
(µp − a p)

(
F (p)(x)− F (p)(0)

)
.

Hence D(x) = Zµ(x)− Zµ(0) where

Zm(x) = F(x − a)+
2n−1∑
p=1

(−1)p

p!
(m p − a p)F (p)(x). (4.15)

Since the convolution product can be expressed as a polynomial function which coefficients just
depend on the moments of u, then the exponential expression of invariant measure (2.2) can be
specified. Indeed Eq. (2.2) can be transformed into some system of equations whose unknown
factors are the moments of the measure. In order to introduce this system, let us define, for all
k ∈ [1; 2n − 1], the function

ϕ
(ε)
k (m1, . . . ,m2n−1) =

∫
R xk exp

[
−

2
ε
(V (x)+ Zm(x)− Zm(0))

]
dx∫

R exp
[
−

2
ε
(V (x)+ Zm(x)− Zm(0))

]
dx

=

∫
R xk exp

[
−

2
ε

Wm(x)
]

dx∫
R exp

[
−

2
ε

Wm(x)
]

dx
(4.16)

with the potential Wm(x) = V (x)+ Zm(x). We construct the mapping:

Φ(ε)
= (ϕ

(ε)
1 , . . . , ϕ

(ε)
k , . . . , ϕ

(ε)
2n−1). (4.17)
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The measure associated to the density function u is invariant if and only if its moments vector
(µ1, . . . , µ2n−1) is a fixed point of the map Φ(ε).

We are going to show the existence of an asymmetric invariant measure defined by 2n − 1
parameters close to a, . . . , a2n−1 respectively, in other words the outlying measure is close to the
Dirac mass in the point a. More precisely, we shall prove that there exists a parallelepiped stable
by Φ(ε), which converges to the point (a, a2, . . . , a2n−1) as ε tends to 0. As in the linear case, we
shall proceed by applying the mean value theorem in order to obtain asymptotic developments in
the small noise limit.

Theorem 4.6. Let (ηε)ε some sequence satisfying limε→0 ηε = 0 and limε→0 ε/ηε = 0. Under
the condition

2n−2∑
p=0

∣∣F (p+2)(a)
∣∣

p!
a p < α + V ′′(a), (4.18)

for any ρ > 0, there are at least two outlying measures u+ε and u−ε satisfying, for ε small enough∣∣∣∣∫
R

xku±ε (x)dx − (±a)k
∣∣∣∣ ≤ ρηε . (4.19)

Proof. Let λ > 0. Let us define the parallelepiped

C(ε) =
2n−1∏
p=1

[a p
− pa p−1ληε, a p

+ pa p−1ληε].

Let m be an element of C(ε) then there exist some coordinates (rp)1≤p≤2n−1 which determine
m through the equations m p = a p

+ rp ηε . By (4.15) and (4.16), we get

ϕ
(ε)
k (m) =

∫
R xke−

2
ε
(V (x)+F(x−a)) exp

[
−

2ηε
ε

2n−1∑
p=1

(−1)prp
p! F (p)(x)

]
dx

∫
R e−

2
ε
(V (x)+F(x−a)) exp

[
−

2ηε
ε

2n−1∑
p=1

(−1)prp
p! F (p)(x)

]
dx

.

We apply Lemma A.4 and Remark A.5 to the functions U (x) = V (x)+ F(x − a), f (x) = xk ,
µp = rp and G p(x) =

(−1)p

p! F (p)(x). We obtain:

ϕ
(ε)
k (m) = ak

− ηε
kak−1

α + V ′′(a)

2n−1∑
p=1

(−1)prp

p!
F (p+1)(a)+ o(ηε),

uniformly with respect to the coordinates (rp)p. By definition of the parallelepiped C(ε) the
coordinates satisfy

∣∣rp
∣∣ ≤ pa p−1λ. Therefore, under condition (4.18),∣∣∣ϕ(ε)k (m)− ak

∣∣∣ ≤ ηελ kak−1

α + V ′′(a)

2n−1∑
p=1

∣∣F (p+1)(a)
∣∣

p!
pa p−1

+ o(ηε)

< ηεkak−1λ+ o(ηε).

Since this estimate is uniform with respect to the coordinates, as soon as ε is small enough, we
have |ϕ(ε)k (m)− ak

| < kak−1ληε , that means that Φ(ε)(m) ∈ C(ε).
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Let us note that C(ε) is a convex, closed and bounded subset of R2n−1. Since the space
dimension is finite, the continuity of Φ(ε) implies that the closure of the parallelepiped’s image
is a compact set.

We can apply Schauder’s Theorem (Proposition 4.1) and obtain that there exists some fixed
point in the compact. In other words there exists m ∈ C(ε) such that the measure associated to
the density

uε,m(x) =
exp

[
−

2
ε

Wm(x)
]

∫
R exp

[
−

2
ε

Wm(z)
]

dz
(4.20)

is invariant. In a similar way, the measure defined by m− is also invariant; here m−(k) =
(−1)kmk . To conclude: we have at least two outlying measures, one around a and the second
one around −a. �

We can not prove at this stage the uniqueness of the couple of outlying invariant measures
(this question shall be explored in a subsequent work). We can effectively imagine that other
outlying measures could exist around a, around −a or even around other areas. Nevertheless we
can develop a sharper description of one particular outlying measure: the measure close to δa
where δ represents the Dirac measure. To do this it suffices to estimate its different moments,
that requires the following preliminary result.

Lemma 4.7. There exists a unique solution (τ 0
1 , . . . , τ

0
2n−1) to the following Cramer’s system

2n−1∑
p=1

(−1)p

p!
F (p+1)(a)τp +

α + V ′′(a)

kak−1 τk =
V (3)(a)

4(α + V ′′(a))
−

k − 1
4a

, (4.21)

for 1 ≤ k ≤ 2n − 1. This solution is given by

τ 0
k = kak−1 aV (3)(a)− (k − 1)V ′′(a)

4aV ′′(a) (α + V ′′(a))
, 1 ≤ k ≤ 2n − 1. (4.22)

Proof. Let us denote by I2n−1 the unit matrix of dimension 2n − 1 and for A ∈ R2n−1, AT

represents the transpose of the vector A. Moreover we adopt the following notation (xk)1≤k≤2n−1
= (x1, . . . , x2n−1). The system (4.21) can be written in this way: we define T = (τk)

T
1≤k≤2n−1

then [
(α + V ′′(a))I2n−1 + C1CT

2

]
T =

(
kak−1

(
V (3)(a)

4α + 4V ′′(a)
−

k − 1
4a

))T

1≤k≤2n−1

with the vectors CT
1 = (kak−1)1≤k≤2n−1 and CT

2 =

(
(−1)k

k! F (k+1)(a)
)

1≤k≤2n−1
. We define

therefore

A = (α + V ′′(a))I2n−1 + C1CT
2 . (4.23)

Let us note that C1CT
2 C1CT

2 = (C
T
2 C1)C1CT

2 and

CT
2 C1 =

2n−1∑
p=1

(−1)p

p!
F (p+1)(a)pa p−1

= −

2n−2∑
p=0

(−1)p

p!
F (p+2)(a)a p

= −F ′′(0).
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Since F ′′(0) = α, we obtain

A2
= (α + V ′′(a))2 I2n−1 +

(
2(α + V ′′(a))+ CT

2 C1

)
C1CT

2

= (α + V ′′(a))2 I2n−1 +
(
2(α + V ′′(a))− F ′′(0)

)
C1CT

2

= (α + V ′′(a))2 I2n−1 +
(
α + 2V ′′(a)

)
C1CT

2

= (α + 2V ′′(a))A − V ′′(a)
(
α + V ′′(a)

)
I2n−1.

We deduce that A is invertible, that is (4.21) is a Cramer’s system, and using (4.23) we get
explicitly the inverse:

A−1
=

1
V ′′(a)(α + V ′′(a))

(
(α + 2V ′′(a))I2n−1 − A

)
=

1
V ′′(a)(α + V ′′(a))

(
V ′′(a)I2n−1 − C1CT

2

)
.

Therefore the Cramer’s system (4.21) admits a unique solution given by

τ 0
k =

1
V ′′(a)(α + V ′′(a))

{
V ′′(a)kak−1 aV (3)(a)− (k − 1)(α + V ′′(a))

4a (α + V ′′(a))

− kak−1
2n−1∑
p=1

(−1)p

p!
F (p+1)(a)pa p−1 aV (3)(a)− (p − 1)(α + V ′′(a))

4a (α + V ′′(a))

}

=
kak−1

4aV ′′(a)(α + V ′′(a))2

{
aV (3)(a)

[
V ′′(a)−

2n−1∑
p=1

(−1)pa p−1

(p − 1)!
F (p+1)(a)

]

− (α + V ′′(a))

[
(k − 1)V ′′(a)−

2n−1∑
p=2

(−1)p

(p − 2)!
F (p+1)(a)a p−1

]}

= kak−1 aV (3)(a)− (k − 1)V ′′(a)
4aV ′′(a)(α + V ′′(a))

.

Indeed, we use the two equalities
∑2n−1

p=1
(−1)p

(p−1)! F
(p+1)(a)a p−1

= −F ′′(0) = −α and∑2n−1
p=2

(−1)p

(p−2)! F
(p+1)(a)a p−1

= aF (3)(0) = 0. �

Theorem 4.6 points out the existence of two outlying measures, one concentrated around a
and an other around −a. According to Lemma 4.7 we get some parallelepiped with sharper edge
which contains δa and some asymmetric invariant measure.

Theorem 4.8. Under the condition (4.18), for any δ > 0, there exists ε0 such that Φ(ε) admits
two fixed points m± with∣∣∣m±k (ε)− ((±1)kak

− (±1)kτ 0
k ε
)∣∣∣ ≤ δε, 1 ≤ k ≤ 2n − 1, ε ≤ ε0. (4.24)

Proof. It is similar to the proof of Theorem 4.6.
Let ρ > 0 and C(ε) =

∏2n−1
p=1 [a

p
− (τ 0

p + pa p−1ρ)ε, a p
− (τ 0

p − pa p−1ρ)ε]. We choose
an element m in the parallelepiped C(ε). For all 1 ≤ p ≤ 2n − 1, there exists a coordinate
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ρp ∈ [−ρ; ρ] such that m p = a p
− (τ 0

p + pa p−1ρp)ε. By (4.15) and (4.16), we obtain

ϕ
(ε)
k (m) =

∫
R xk exp

[
2

2n−1∑
p=1

(−1)p

p! (τ
0
p + pa p−1ρp)F (p)(x)

]
e−

2
ε
(V (x)+F(x−a))dx

∫
R exp

[
2

2n−1∑
p=1

(−1)p

p! (τ
0
p + pa p−1ρp)F (p)(x)

]
e−

2
ε
(V (x)+F(x−a))dx

.

We apply Lemma A.3 and Remark A.5 with the following functions: U (x) = V (x)+ F(x − a),
µp = τ

0
p + pa p−1ρp, G = 0 and f p(x) = 2 (−1)p

p! F (p)(x). Hence

ϕ
(ε)
k (m) = ak

−
kak−2

4(α + V ′′(a))2

[
aV (3)(a)− (α + V ′′(a))

×

(
(k − 1)+ 4a

2n−1∑
p=1

(−1)p

p!
(τ 0

p + pa p−1ρp)F
(p+1)(a)

)]
ε + o(ε)

= ak
−

1
α + V ′′(a)

[
kak−1V (3)(a)

4(α + V ′′(a))
− kak−1

2n−1∑
p=1

(−1)pτ 0
p

p!
F (p+1)(a)

−
k(k − 1)ak−2

4
− kak−1

2n−1∑
p=1

(−1)pρpa p−1

(p − 1)!
F (p+1)(a)

]
ε + o(ε).

This estimate is uniform with respect to the variables (ρp)p.

We denote by dεk the difference |ϕ(ε)k (m)− ak
+ τ 0

k ε|. We compute this expression:

dεk ≤

∣∣∣∣∣ kak−1V (3)(a)

4(α + V ′′(a))2
−

kak−1

α + V ′′(a)

2n−1∑
p=1

(−1)p

p!
τ 0

p F (p+1)(a)−
k(k − 1)ak−2

4(α + V ′′(a))

− τ 0
k −

kak−1

α + V ′′(a)

2n−1∑
p=1

(−1)p

(p − 1)!
ρp F (p+1)(a)a p−1

∣∣∣∣∣ ε + o(ε).

According to the Lemma 4.7 and using the condition (4.18), we obtain, for ε small enough,∣∣∣ϕ(ε)k (m)− ak
+ τ 0

k ε

∣∣∣ ≤ kak−1

α + V ′′(a)

2n−1∑
p=1

a p−1

(p − 1)!
|ρp||F

(p+1)(a)|ε + o(ε)

≤ ρ
kak−1

α + V ′′(a)

2n−2∑
p=0

1
p!
|F (p+2)(a)|a pε + o(ε) < kak−1ρε.

In other words, Φ(ε)(m) ∈ C(ε) in the small noise limit. The application of Schauder’s theorem
(Proposition 4.1) permits to prove the existence of some fixed point in the compact after choosing
ρ < δ

maxp∈[1;2n−1] pa p−1 . Therefore there exists m ∈ C(ε) such that the associated measure uε,m(x)

defined by (4.20) is invariant. In the same way, the measure defined by m− is invariant with
m−(k) = (−1)kmk . Finally the continuous map Φ(ε) admits two fixed points m±(ε) satisfying
(4.24). �
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Remark 4.9. 1. In the particular case: F (p)(a) ≥ 0 for all p ∈ N, the condition for the
existence of outlying measures i.e. (4.18) becomes V ′′(a) > F ′′0 (2a) where F0 is defined by
F(x) = α

2 x2
+ F0(x).

2. In the linear interaction case: F(x) = α
2 x2, (4.18) is equivalent to the simple condition

V ′′(a) > 0 which is in fact always satisfied according to (V-3). In other words we obtain the
existence result presented in the linear interaction case.

Appendix. Annex

We shall present here some useful asymptotic results which are close to the classical Laplace’s
method. The first lemma is quite classical (see, for instance [1], Corollary 6.4.2., p. 108).

Lemma A.1. Let M > 0. Let us assume that U is C 2([M,∞[)-continuous, U ′(x) 6= 0 and
U ′′(x) > 0 for all x ∈ [M,∞[ and limx→∞

U ′′(x)
(U ′(x))2

= 0. If x → e−U (x) is integrable on R then
for any x ≥ M:∫

+∞

x
e−U (t)dt ≈

e−U (x)

U ′(x)
and

∫ x

M
eU (t)dt ≈

eU (x)

U ′(x)
as x →∞. (A.1)

Lemma A.2. Set ε > 0. Let U and G two C∞(R)-continuous functions. We define Uµ = U+µG
for µ belonging to some compact interval I of R. Let us introduce some interval [a, b] satisfying:
U ′µ(a) 6= 0, U ′µ(b) 6= 0 and Uµ(x) admits some unique global minimum on the interval [a, b]
reached at xµ ∈]a, b[ for all µ ∈ I . We assume that there exists some exponent k0 independent

of µ ∈ I such that 2k0 = minr∈N∗
{

U (r)
µ (xµ) 6= 0

}
. Then taking the limit ε → 0 we get

I0 :=

∫ b

a
e−

Uµ(t)
ε dt =

1
k0

(
ε(2k0)!

U 2k0
µ (xµ)

) 1
2k0

Γ
(

1
2k0

)
e−

Uµ(xµ)
ε (1+ oI(1)), (A.2)

where Γ represents the Euler function and oI(1) converges towards 0 uniformly with respect to
µ ∈ I .

Proof. Since Uµ is regular and admits some unique global minimum for x = xµ, there exists
0 < τ0 < minµ∈I min

{
xµ − a; b − xµ

}
such that the minimum on the interval [a; xµ −

τ ]
⋃
[xµ + τ ; b] denoted by Uµ(τ ) is reached on the boundary

{
xµ − τ ; xµ + τ

}
for all τ < τ0.

Consequently∫ xµ−τ

a
exp

[
−

Uµ(t)

ε

]
dt +

∫ b

xµ+τ
exp

[
−

Uµ(t)

ε

]
dt ≤ (b − a) exp

[
−

Uµ(τ )

ε

]
.

Defining Iτ =
∫ xµ+τ

xµ−τ
exp

[
−

Uµ(t)
ε

]
dt , we obtain the following bound:

|I0 − Iτ | ≤ (b − a) exp
[
−

Uµ(τ )

ε

]
. (A.3)

Let us first estimate Iτ . We define ηµ =
U
(2k0)
µ (xµ)
(2k0)!

. Let us note that ηµ depends continuously on
µ. By the mean value theorem, there exists some constant C > 0 independent of µ ∈ I such that,
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in a neighborhood of xµ, the following bound is satisfied:
∣∣Uµ(t)−Uµ(xµ)− ηµ(t − xµ)2k0

∣∣ ≤
C |t − xµ|2k0+1. Hence

Jτ exp
[
−

Cτ 2k0+1

ε

]
≤

Iτ
2

exp
Uµ(xµ)

ε
≤ Jτ exp

[
Cτ 2k0+1

ε

]
, (A.4)

where

Jτ =
∫ τ

0
exp

[
−

1
ε
ηµt2k0

]
dt =

(
ε

ηµ

) 1
2k0 1

2k0

∫ τ 2k0
ηµ
ε

0
t

1
2k0
−1

e−t dt,

by the change of variable t :=
(
ε
ηµ

) 1
2k0 (t ′)

1
2k0 . A simple integration leads to

− τ 1−2k0
(ηµ
ε

) 1
2k0
−1

e−τ
2k0

ηµ
ε ≤

∫ τ 2k0
ηµ
ε

0
t

1
2k0
−1

e−t dt − Γ
(

1
2k0

)
≤ 0. (A.5)

In order to conclude we set τ = exp
[

log(ε)
2k0+

1
2

]
. Then we get: for C ∈ R, l > 0,

lim
ε→0

eC τ2k0+1
ε = 1, lim

ε→0
e−ηµ

τ2k0
ε
τ 1−2k0

ε
1

2k0
−1
= lim
ε→0

ε−le
Uµ(xµ)−Uµ(τ)

ε = 0.

These convergences are uniform with respect to µ. Applying these asymptotic results to
(A.3)–(A.5) permits to prove the statement of the lemma. �

Lemma A.3. Let U and G be two C∞(R)-continuous functions. We define Uµ = U + µG for
the parameter µ belonging to some compact interval I of R. We assume that Uµ(t) ≥ t2 for |t |
larger than some R independent of µ and that Uµ admits a unique global minimum at xµ with
U ′′µ(xµ) > 0. Let fm be a C 3-continuous function depending on some parameter m which belongs
to a compact set M. Furthermore we assume that there exists some constant λ > 0 such that
| fm(t)| ≤ exp

[
λ|Uµ(t)|

]
for all t ≥ R, µ ∈ I , m ∈ M and | f (i)m | is locally bounded uniformly

with respect to the parameter m ∈ M for 0 ≤ i ≤ 3. Let a, b ∈ R̄ such that a < xµ < b. Then
the following asymptotic result holds as ε tends to 0:∫ b

a
fm(t)e

−2Uµ(t)
ε dt =

√
πε

U2
e−

2Uµ(xµ)
ε

{
fm(xµ)+ γ0(µ)ε + o(1)I M(ε)

}
, (A.6)

with

γ0(µ) = fm(xµ)

(
5U 2

3

48U 3
2

−
U4

16U 2
2

)
− f ′m(xµ)

U3

4U 2
2

+
f ′′m(xµ)

4 U2
. (A.7)

Here Uk = U (k)
µ (xµ) and o(1,2)I M(ε)/ε converges to 0 as ε becomes small uniformly with respect

to the parameters m and µ. Moreover, for any n ≥ 1, we have∫
R tne fm (t)e

−2Uµ(t)
ε dt∫

R e fm (t)e
−2Uµ(t)

ε dt
− xn

µ ≈ −
nxn−2
µ

4U2

[
xµ

U3

U2
− n + 1− 2xµ f ′m(xµ)

]
ε, (A.8)

where the estimate is uniform with respect to the parameters m and µ as ε → 0.
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Proof. First, we consider [a, b] compact and split the integral in (A.6) into two parts:

I =
∫ xµ+ρ

xµ−ρ
fm(t)e

−2Uµ(t)
ε dt +

∫
[xµ−ρ;xµ+ρ]c

⋂
[a;b]

fm(t)e
−2Uµ(t)

ε dt = I1 + I2

with some arbitrary ρ > 0 which should be specified in the following. Since the hypotheses,
there exists η > 0 such that | f (i)m (x)| ≤ η for all m ∈ M, x ∈ [a, b] and 0 ≤ i ≤ 3. And, xµ is
the unique global minimum on ]a; b[.

Step 1. We shall prove that the second integral is negligible as ρ2

ε
→ ∞ that means that

I2 = oI M{ε3/2e−
2U (xµ)

ε }. We get

I2 ≤ (b − a) sup
z∈[a,b]

| fm(z)| exp

−2

inf
z∈[xµ−ρ;xµ+ρ]c

Uµ(z)

ε

 . (A.9)

Since the global minimum of Uµ is unique and due to the regularity of Uµ with respect to
the parameter µ, we deduce that the minimum of the function on the interval [xµ − ρ; xµ +
ρ]c

⋂
[a; b] is reached on the boundary provided that ρ is small enough. The development

Uµ(xµ ± ρ) = Uµ(xµ) + 1
2U ′′µ(xµ)ρ

2
+ oI(ρ2) implies, as already claimed that I2 =

oI M

{
ε3/2e−

2U (xµ)
ε

}
as ρ2/ε →∞.

Step 2. Let us focus our attention to the integral on [xµ − ρ; xµ + ρ]. The function fm can be
developed in the neighborhood of xµ:

fm(x) = fm(xµ)+ f ′m(xµ)(x − xµ)+
1
2

f ′′m(xµ)(x − xµ)
2
+

1
6

f (3)m (wm,µ(x))(x − xµ)
3

with the value wm,µ(x) between xµ and x . Taking into account these different terms, the integral
I1 can be split into 4 different integrals respectively Ĩ0, . . . , Ĩ3. For each integral we shall analyze
the asymptotic behavior.

Step 2.1. Asymptotic behavior of Ĩ3. By definition wm,µ(t) ∈ [xµ − ρ; xµ + ρ] when t ∈

[xµ − ρ; xµ + ρ]. Moreover, by assumption | f (3)m (wm,µ(t))| is upper bounded by some constant
η > 0 independent of m and µ. By Lemma A.2 applied to 2Uµ, for ρ < 1 and ε small, we obtain
the existence of some constant C > 0, independent of the parameters m and µ, such that

| Ĩ3| ≤
η

6
ρ3
∫ (xµ+1)∧b

(xµ−1)∨a
e−

2Uµ(t)
ε dt ≤ C

√
πρ3

√
ε

U ′′µ(xµ)
e−

2Uµ(xµ)
ε .

Hence, if ρ3
= o(ε) then the following asymptotic result holds

Ĩ3 = oI M

{
ε

3
2 e−

2U (x0)
ε

}
. (A.10)

Step 2.2. Asymptotic behavior of Ĩ2. Using the C 3-regularity of Uµ that is Uµ(t) = Uµ(xµ) +
1
2U ′′µ(xµ)(t − xµ)2 + 1

6U (3)
µ (yµ(t))(t − xµ)3 with yµ(t) belonging to [xµ − ρ; xµ + ρ], we get

Ĩ2 =
f ′′m(xµ)

2
e−

2Uµ(xµ)
ε

∫ xµ+ρ

xµ−ρ
(t − xµ)

2e−
U ′′µ(xµ)

ε
(t−xµ)2−

U (3)µ (yµ(t))
3ε (t−xµ)3dt.
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Since yµ(t) belongs to some compact set, the third derivative U (3)
µ (yµ(t)) is bounded by some

constant independent of µ. Applying the following change of variable u = (t − xµ)2U ′′µ(xµ)/ε
yields

J2e−C ρ3
ε

(
ε

U ′′µ(xµ)

) 3
2

≤
2 Ĩ2 e

2Uµ(xµ)
ε

f ′′m(xµ)
≤ J2eC ρ3

ε

(
ε

U ′′µ(xµ)

) 3
2

,

with J2 =
∫ U ′′µ(xµ)

ρ2
ε

0
√

ue−udu. If ρ
3

ε
→ 0 and ρ2

ε
→∞ then

Ĩ2 =
√
π

f ′′m(xµ)

4
e−

2Uµ(xµ)
ε

(
ε

U ′′µ(xµ)

) 3
2

(1+ oI(1)). (A.11)

Step 2.3. Asymptotic behavior of Ĩ1. We expand the function Uµ in the neighborhood of
xµ: Uµ(t + xµ) = Uµ(x0) +

1
2U ′′µ(xµ)t

2
+

1
6U (3)

µ (xµ)t3
+

1
24U (4)

µ (yµ(t))t4 where yµ(t) ∈
[xµ − ρ, xµ + ρ]. The regularity of Uµ(x) with respect to both x and µ implies the existence of
some constant C > 0 independent of µ which bounds the fourth derivative of Uµ on the integral
support. Therefore we have

f ′m(xµ)e
−C ρ4

ε Jρ ≤ e
2Uµ(xµ)

ε Ĩ1 ≤ f ′m(xµ)e
C ρ4

ε Jρ,

with Jρ =
∫ ρ
−ρ

ze−
U2
ε

z2
−

U3
3ε z3

dz and Uk = U (k)
µ (xµ). Since |e−x

− 1 + x − x2

2 | ≤ |x |
3e|x |, we

deduce that, for any z ∈ [−ρ; ρ]:∣∣∣∣∣e−U3
3ε z3
− 1+

U3z3

3ε
−

U 2
3 z6

18ε2

∣∣∣∣∣ ≤
∣∣∣∣U3

3

∣∣∣∣3 ρ9

ε3 e
|U3|ρ

3

3ε .

We define mρ(l) =
∫ ρ
−ρ

zle−
U2
ε

z2
dz and nρ(l) =

∫ ρ
0 |z|

le−
U2
ε

z2
dz. Some estimation of the inte-

gral Jρ points out directly:∣∣∣∣∣Jρ − mρ(1)+
U3

3ε
mρ(4)−

U 2
3

18ε2 mρ(7)

∣∣∣∣∣ ≤ 2

∣∣∣∣U3

3

∣∣∣∣3 ρ9

ε3 e
|U3|ρ

3

3ε nρ(1).

Symmetry arguments permit easily to deduce that mρ(1) = mρ(7) = 0. Finally it suffices to
compute mρ(4) and nρ(1). To this end we introduce the change of variable u := U2

ε
z2 and let

ρ2/ε tend to infinity:

mρ(4) =
3
√
π

4

(
1

U ′′µ(xµ)

) 5
2

ε
5
2 (1+ oI(1)) and nρ(1) =

ε

2U ′′µ(xµ)
(1+ oI(1)).

To sum up: if ρ
18

ε7 → 0 (that is ρ9

ε2 = o{ε
3
2 }) then

Ĩ1 = −
√
π f ′m(xµ)

U (3)
µ (xµ)

4

(
1

U ′′µ(xµ)

) 5
2

ε
3
2 e−

2Uµ(xµ)
ε (1+ oI(1)). (A.12)
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Step 2.4. Asymptotic behavior of Ĩ0. Let us first study the following integral

I ′0 =
∫ ρ

−ρ

exp

[
−

U ′′µ(xµ)

ε
z2
−

U (3)
µ (xµ)

3ε
z3
−

U (4)
µ (xµ)

12ε
z4

]
dz.

We recall the notations Uk = U (k)
µ (xµ). The arguments are similar to those used in Step 2.3.

Since
∣∣∣e−u
− 1+ u − u2

2

∣∣∣ ≤ |u|3e|u|, for any z ∈ [−ρ; ρ] we get∣∣∣∣∣e−U3
3ε z3
−

U4
12ε z4
− 1+

U3

3ε
z3
+

U4

12ε
z4
−

1
2

(
U3

3ε
z3
+

U4

12ε
z4
)2
∣∣∣∣∣ ≤ C

ρ9

ε3 .

Adopting the same notations as in Step 2.3 and using symmetry properties, the following bound
(uniform with respect to the parameter µ) yields∣∣∣∣∣I ′0 − mρ(0)+

U4

12ε
mρ(4)−

1
2

(
U3

3ε

)2

mρ(6)−
1
2

(
U4

12ε

)2

mρ(8)

∣∣∣∣∣ ≤ C
ρ9

ε3 mρ(0).

By the usual change of variable u :=
U ′′µ(xµ)
ε

z2 we emphasize some asymptotic estimation of I ′0
as ρ2/ε →∞, ρ3/ε → 0 and ρ9

ε3 → 0:

I ′0 =

√
πε

U ′′µ(xµ)

{
1−

U (4)
µ (xµ)

16U ′′µ(xµ)2
ε +

5U (3)
µ (xµ)2

48U ′′µ(xµ)3
ε + oI(ε)

}
.

We apply the mean value theorem to the function Uµ:

Uµ(xµ + z) = Uµ(xµ)+
U2

2
z2
+

U3

6
z3
+

U4

24
z4
+

1
120

U (5)(yµ(t))z
5,

with yµ(t) ∈ [xµ − ρ, xµ + ρ] and |z| ≤ ρ. From this equality we deduce an estimation of the

distance D = e
2Uµ(xµ)

ε Ĩ0 − fm(xµ)I ′0. Then there exists some constant C > 0 independent of µ
and m such that

|D| ≤ | fm(xµ)|
∫ ρ

−ρ

e−
U2
ε

z2
−

U3
3ε z3
−

U4
12ε z4

∣∣∣1− e−
1

60εU (5)(yµ(z+xµ))z5
∣∣∣ dz

≤
| fm(xµ)|C

60ε
ρ5
∫ ρ

−ρ

e−
U2
ε

z2
−

U3
3ε z3
−

U4
12ε z4

+
1

60ε

∣∣U (5)(yµ(z+xµ))z5
∣∣
dz.

If both conditions ρ2/ε →∞ and ρ3/ε → 0 are satisfied then the integral term in the preceding
inequality is obviously equivalent to

√
πε

U ′′µ(xµ)
. The following equivalence holds for the initial

integral Ĩ0: under the assumption that ρ5
√
ε
= o

(
ε

3
2

)
, we get |D| = oI M

(
ε

3
2

)
and consequently

Ĩ0 = e−
2U (xµ)

ε

√
πε

U2

{
1−

U4

16 U 2
2

ε +
5 U 2

3

48 U 3
2

ε + oI M(ε)

}
. (A.13)

Step 3. To sum up: in Step 1, we proved that it suffices to estimate the integral I1 which can be
split into 4 terms. Each of them has been estimated in Eqs. (A.10)–(A.13). The whole integral has

the asymptotic equivalence (A.6) as soon as ρ3/ε → 0, ρ18/ε7
→ 0, ρ

9

ε3 → 0 and ρ5/ε2
→ 0.

The particular choice ρ = ε
9
20 fulfills all these conditions.
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Step 4. Now, we will prove (A.6) for a = −∞ and b = +∞. Let R > maxµ∈I |xµ| such that
Uµ(t) ≥ t2 for all t ≥ R and for all µ ∈ I . The integral on R can be split into two integrals:

L =
∫ R

−R
fm(t)e

−2Uµ(t)
ε dt +

∫
[−R;R]c

fm(t)e
−2Uµ(t)

ε dt = L1 + L2.

For L1 it suffices to apply (A.6) with a := −R and b := R in order to get the asymptotic
development. It remains then to prove that L2 is negligible with respect to L1 that is L2 =

oI M

{
ε

3
2 e−

2Uµ(xµ)
ε

}
. Using the change of variable t :=

(
2
ε
− λ

)− 1
2

s the following bound holds:

|L2| ≤ 2
∫
+∞

R
exp

[
t2
(
λ−

2
ε

)]
dt ≤ 2

√
ε

2− λε

∫
+∞

R
√

2−λε
ε

exp
[
−s2

]
ds.

Lemma A.1 permits to prove as claimed that L2 can be neglected.

Step 5. We just apply two times (A.6): the first time to the denominator Dε that is for the function
t → e fm (t) and the second time to the numerator N ε for the function t → tne fm (t). The following
asymptotic result holds

Dε
= e−

2Uµ(xµ)
ε

√
πε

U2
e fm (xµ)

{
1+ γ̂dε + oI M(ε)

}
(A.14)

where

γ̂d =

(
5U 2

3

48U 3
2

−
U4

16U 2
2

)
− f ′m(xµ)

U3

4U 2
2

+

(
f ′′m(xµ)+ f ′m(xµ)

2
) 1

4U2
.

The numerator normalized by xn
µ i.e. N ε/xn

µ satisfies some similar identity as Dε , namely (A.14)

with γ̂d replaced by γ̂d −
nU3

4xµU 2
2
+

(
n(n−1)

x2
µ
+ 2 n

xµ
f ′m(xµ)

)
1

4U2
. The estimation of the ratio is

then a classical exercise of asymptotic analysis. �

We will now generalize to functions G depending on the small parameter ε.

Lemma A.4. Let U and G be two C∞(R)-continuous functions such that U (t) ≥ t2 for |t |
large enough and |G(t)| ≤ λ|U (t)| + C for some constants λ > 0 and C > 0. Moreover we
assume that U admits some unique global minimum reached at x0 with U ′′(x0) > 0. For any
sequence (ηε)ε satisfying limε→0 ηε = 0 and limε→0 ε/ηε = 0 we define Uε,µ = U + ηεµG
depending on the parameter µ which belongs to some compact interval I of R. Let f a C 3-
continuous function such that | f (t)| ≤ eλ|U (t)| for all |t | large enough and such that | f (i)m | is
locally bounded uniformly with respect to m ∈ M for 0 ≤ i ≤ 3. Then, there exists ε0 > 0
such that the potential Uε,µ admits a unique global minimum reached at xε,µ for all ε ≤ ε0.
Furthermore the following asymptotic results hold∫

R
f (t)e−

2Uε,µ(t)
ε dt =

√
πε

U ′′(x0)
e−

2Uε,µ(xε,µ)
ε

(
f (x0)+ γµηε + oI(ηε)

)
, (A.15)

where

xε,µ = x0 − µ
G ′(x0)

U ′′(x0)
ηε + oI(ηε), (A.16)
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γµ =
µ

2U ′′(x0)

(
−2 f ′(x0)G

′(x0)− f (x0)G
′′(x0)+ f (x0)

U (3)(x0)G ′(x0)

U ′′(x0)

)
,

and oI(ηε)/ηε tends to 0 as ε → 0 uniformly with respect to the parameter µ.
Moreover, as ε → 0, we have the following estimate∫

R f (t)e−
2Uε,µ(t)

ε dt∫
R e−

2Uε,µ(t)
ε dt

= f (x0)− µ
f ′(x0)G ′(x0)

U ′′(x0)
ηε + oI(ηε) (A.17)

where oI(ηε)/ηε tends to 0 as ε → 0 uniformly with respect to the parameter µ.

Proof. Let us first prove that the potential Uε,µ(x) admits a unique minimum for x = xε,µ with
limε→0 xε,µ = x0. By the definitions of (ηε)ε and Uε,µ, the following convergence holds

lim
ε→0

Uε,µ(x0) = U (x0). (A.18)

Since x0 is the unique global minimum of U , for any small R > 0 there exists ρR > 0 such that
infx∈[x0−R,x0+R]c U (x) > U (x0) + ρR . We deduce the existence of two small constants ρ′R and
ε0 such that

Uε,µ(x) ≥ (1− µληε)U (x)− ηεµC ≥ U (x0)+ ρ
′

R, (A.19)

for all ε ≤ ε0 and x ∈ [x0 − R, x0 + R]c. By (A.18) and (A.19) we obtain: for any R > 0 the
global minimum of the parametrized potential Uε,µ is reached in the interval [x0 − R, x0 + R]
provided that ε is small enough (uniformly with respect to µ). Moreover this global minimum
is unique. Indeed U ′′(x0) > 0 and the regularity of U implies that U ′′(x) > 0 for all x in
some small neighborhood of x0. Since U ′′ε,µ converges towards U ′′ as ε → 0 uniformly on each
compact subset of R, we obtain that U ′′ε,µ > 0 on [x0 − R, x0 + R] provided that R and ε are
small enough. The minimum is actually unique, we denote its localization xε,µ and point out that,
for ε small, U ′′ε,µ(xε,µ) > 0 uniformly with respect to µ. Let us determine xε,µ. By applying the
mean value theorem to Uε,µ, we get

0 = U ′ε,µ(xε,µ) = U ′(x0)+ µηεG
′(x0)+U ′′ε,µ(x̃)(xε,µ − x0),

where x̃ is in between x0 and xε,µ. Since the second derivative is continuous, U ′′ε,µ(x̃) is
uniformly bounded. Moreover U ′(x0) = 0. Consequently xε,µ − x0 = OI(ηε). Using the same
argument for the second order asymptotic development of U ′ε,µ(xε,µ), that is

0 = U ′(x0)+ µηεG
′(x0)+

(
U ′′(x0)+ µηεG

′′(x0)
)
(xε,µ − x0)+

U (3)
ε,µ(x̃)

2
(xε,µ − x0)

2,

we obtain the announced estimate (A.16). Finally let us prove the estimate (A.15). The statement
of Lemma A.3 can be applied to Uε,µ since the asymptotic result (A.6) is uniform with respect to
the parameter µ. So it suffices to consider the case when µ is replaced by µηε . We immediately
obtain∫

R
f (t)e−

Uε,µ(t)
ε dt =

√
πε

U ′′ε,µ(xε,µ)
f (xε,µ)e−

Uε,µ(xε,µ)
ε (1+ oI(ηε)) . (A.20)
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It remains to approximate f (xε,µ) and U ′′ε,µ(xε,µ) using (A.16). Due to the regularity of both f
and U , the following developments hold

f (xε,µ) = f (x0)− µηε f ′(x0)
G ′(x0)

U ′′(x0)
+ oI(ηε),

U ′′ε,µ(xε,µ) = U ′′(x0)+ µηε

(
G ′′(x0)−U (3)(x0)

G ′(x0)

U ′′(x0)

)
+ oI(ηε).

The statement of Lemma A.4 is obtained just by combination of the two preceding asymptotics
and (A.20). Then, we apply (A.15) to the numerator and to the denominator. After dividing, we
find (A.17). �

Remark A.5. The statements of Lemmas A.2–A.4 can be easily generalized, replacing the
parametrized function Uµ = U + µG by Uµ = U +

∑k
i=1 µi Gi where µ = (µ1, . . . , µk) ∈

I1 × · · · × Ik . The convergence results are then uniform with respect to all parameters.
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