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Abstract

We formulate and investigate a general stochastic control problem under a progressive enlargement of
filtration. The global information is enlarged from a reference filtration and the knowledge of multiple
random times together with associated marks when they occur. By working under a density hypothesis
on the conditional joint distribution of the random times and marks, we prove a decomposition of the
original stochastic control problem under the global filtration into classical stochastic control problems
under the reference filtration, which is determined in a finite backward induction. Our method revisits and
extends in particular stochastic control of diffusion processes with a finite number of jumps. This study
is motivated by optimization problems arising in default risk management, and we provide applications
of our decomposition result for the indifference pricing of defaultable claims, and the optimal investment
under bilateral counterparty risk. The solutions are expressed in terms of BSDEs involving only Brownian
filtration, and remarkably without jump terms coming from the default times and marks in the global
filtration.
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1. Introduction

The field of stochastic control has known important developments over these last years,
inspired especially by various problems in economics and finance arising in risk management,
option hedging, optimal investment, portfolio selection or real options valuation. A vast literature
on this topic and its applications has grown with different approaches ranging from the dynamic
programming method, Hamilton–Jacobi–Bellman Partial Differential Equations (PDEs) and
Backward Stochastic Differential Equations (BSDEs) to convex martingale duality methods.
We refer to the monographs [7,25,17] or [18] for recent updates on this subject. In particular,
the theory of BSDEs has emerged as a major research topic with original and significant
contributions related to stochastic control and its financial applications, see a recent overview
in [5].

On the other hand, the field of enlargement of filtrations is a traditional subject in probability
theory initiated by fundamental works of the French school in the 80s, see e.g. [11,9,12], and
the recent lecture notes [16]. There is a renewed interest due to its natural application in credit
risk research where it appears as a powerful tool for modeling default events. For an overview,
we refer to the books [3,4,22] or the lecture notes [2]. The standard approach of a credit event
is based on the enlargement of a reference filtration F (the default-free information structure) by
the knowledge of a default time when it occurs, leading to the global filtration G, and called the
progressive enlargement of filtrations. Moreover, it assumes that the credit event should arrive
by surprise, i.e. it is a totally inaccessible random time for the reference filtration. Hence, the
main approaches consists in modeling the intensity of the random time (usually referred to
as the reduced-form approach), or more generally in the modeling of the conditional law of
this random time, and referred to as a density hypothesis, see [6]. The stability of the class of
semimartingales, usually called the (H′) hypothesis, and meaning that any F-semimartingale
remains a G-semimartingale, is a fundamental property both in probability and finance where it
is closely related to the absence of arbitrage. It holds true under the density hypothesis, and the
related canonical decomposition in the enlarged filtration can be explicitly expressed, as shown
in [10]. A stronger assumption than (H′) hypothesis is the so-called immersion property or (H)
hypothesis, denoting the fact that F-martingales remain G-martingales.

The purpose of this paper is to combine both features of stochastic control and progressive
enlargement of filtrations in view of applications in finance, in particular for defaults risk
management. We formulate and study the general structure for such control problems by
considering a progressive enlargement with multiple random times and associated marks. These
marks represent for example in credit events jump sizes of asset values, which may arrive several
times by surprise and cannot be predicted from the past observation of asset processes. We work
under the density hypothesis on the conditional joint distribution of the random times and marks.
Our new approach consists in decomposing the initial control problem in the G-filtration into
a finite sequence of control problems formulated in the F-filtration, and which are determined
recursively. This is based on an enlightening representation of any G-predictable or optional
process that we split into indexed F-predictable or optional processes between each random
time. This point of view allows us to change regimes in the state process, and to modify the
control set and the gain functions between random times. This flexibility in the formulation of
the stochastic control problem appears also quite useful and relevant for financial interpretation.
Our method consist basically in projecting G-processes into the reference F-filtration between
two random times, and features some similarities with filtering approach. This contrasts with
the standard approach in progressive enlargement of filtration focusing on the representation of
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controlled state process in the G-filtration where the control set has to be fixed at the initial time.
Moreover, in this global approach, one usually assumes that the (H) hypothesis holds in order to
get a martingale representation in the G-filtration. In this case, the solution is then characterized
from dynamic programming method in the G-filtration via PDEs with integrodifferential terms
or BSDEs with jumps. By means of our F-decomposition result under the density hypothesis
(and without assuming (H) hypothesis), we can solve each stochastic control problem by
dynamic programming in the F-filtration, which leads typically to PDEs or BSDEs related
only to Brownian motion, thus simpler a priori than Integro-PDEs and BSDEs with jumps.
Our decomposition method revisits and more importantly extends stochastic control of diffusion
processes with a finite number of jumps, and gives some new insight for studying Integro-PDEs
and BSDEs with jumps. We illustrate our methodology with two financial applications in default
risk management. The first one considers the problem of indifference pricing of defaultable
claims, and the second application deals with an optimal investment problem under bilateral
contagion risk with two nonordered default times. The solutions are explicitly expressed in terms
of BSDEs involving only Brownian motion.

The paper is organized as follows. The next section presents the general framework of
progressive enlargement of filtration with successive random times and marks. We state the
decomposition result for a G-predictable and optional process, and as a consequence we derive
under the density hypothesis the computation of expectation functionals of G-optional processes
in terms of F-expectations. In Section 3, we formulate the abstract stochastic control problem in
this context and connect it in particular to diffusion processes with jumps. Section 4 contains the
main F-decomposition result of the initial stochastic control problem. The case of enlargement of
filtration with multiple (and not necessarily successive) random times is considered in Section 5,
and we show how to derive the results from the case of successive random times with auxiliary
marks. Finally, Section 6 is devoted to some applications in risk management, where we present
the results and postpone the detailed proofs and more examples in a forthcoming paper [13].

2. Progressive enlargement of filtration with successive random times

We fix a probability space (Ω ,G,P), and we start with a reference filtration F = (Ft )t≥0
satisfying the usual conditions (F0 contains the null sets of P and F is right continuous:
Ft = Ft+ := ∩s>t Fs). We consider a vector of n random times τ1, . . . , τn (i.e. nonnegative
G-random variables) and a vector of nG-measurable random variables ζ1, . . . , ζn valued in
some Borel subset E of Rm . The default information is the knowledge of these default times
τk when they occur, together with the associated marks ζk . For each k = 1, . . . , n, it is
defined in mathematical terms as the smallest right-continuous filtration Dk

= (Dk
t )t≥0 such

that τk is a Dk-stopping time, and ζk is Dk
τk

-measurable. In other words, Dk
t = D̃k

t+ , where

D̃k
t = σ(ζk1τk≤s, s ≤ t) ∨ σ(1τk≤s, s ≤ t). The global market information is then defined by

the progressive enlargement of filtration G = F ∨ D1
∨ · · · ∨ Dn . The filtration G = (Gt )t≥0 is

the smallest filtration containing F, and such that for any k = 1, . . . , n, τk is a G-stopping time,
and ζk is Gτk -measurable. With respect to the classical framework of progressive enlargement
of filtration with a single random time extensively studied in the literature, we consider here
multiple random times together with marks. For simplicity of presentation, we first consider the
case where the random times are ordered, i.e. τ1 ≤ · · · ≤ τn , and so valued in ∆n on {τn <∞},
where

∆k =

{
(θ1, . . . , θk) ∈ (R+)k : θ1 ≤ · · · ≤ θk,

}
, k = 1, . . . , n.
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This means actually that the observations of interest are the ranked default times (together with
the marks). We shall indicate in Section 5 how to adapt the results in the case of multiple random
times not necessarily ordered.

We introduce some notations used throughout the paper.

– P(F) (resp. P(G)) is the σ -algebra of F (resp. G)-predictable measurable subsets on R+×Ω ,
i.e. the σ -algebra generated by the left-continuous F-adapted (resp. G-adapted) processes. We
also let PF (resp. PG) denote the set of processes that are F-predictable (resp. G-predictable),
i.e. P(F)-measurable (resp. P(G)-measurable).

– O(F) (resp. O(G)) is the σ -algebra of F (resp. G)-optional measurable subsets on R+ × Ω ,
i.e. the σ -algebra generated by the right-continuous F-adapted (resp. G-adapted) processes.
We also let OF (resp. OG) denote the set of processes that are F-optional (resp. G-optional),
i.e. O(F)-measurable (resp. O(G)-measurable).

– For k = 1, . . . , n, we denote by P k
F(∆k, Ek) (resp. Ok

F(∆k, Ek)) the set of of indexed pro-
cesses Y k(.) such that the map (t, ω, θ1, . . . , θk, e1, . . . , ek)→ Y k

t (ω, θ1, . . . , θk, e1, . . . , ek)

is P(F)⊗ B(∆k)⊗ B(Ek)-measurable (resp. O(F)⊗ B(∆k)⊗ B(Ek)-measurable).
– For θ = (θ1, . . . , θn) ∈ ∆n , e = (e1, . . . , en) ∈ En , we denote by

θ (k) = (θ1, . . . , θk), e(k) = (e1, . . . , ek), k = 1, . . . , n.

The following result provides the key decomposition of predictable and optional processes
with respect to this progressive enlargement of filtration. This extends a classical result, see e.g.
Lemma 4.4 in [11] or Chapter 6 in [20], stated for a progressive enlargement of filtration with a
single random time.

Lemma 2.1. Any G-predictable process Y = (Yt )t≥0 is represented as

Yt = Y 0
t 1t≤τ1 +

n−1∑
k=1

Y k
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk<t≤τk+1

+ Y n
t (τ1, . . . , τn, ζ1, . . . , ζn)1τn<t , t ≥ 0, (2.1)

where Y 0
∈ PF, and Y k

∈ P k
F(∆k, Ek), for k = 1, . . . , n. Any G-optional process Y = (Yt )t≥0

is represented as

Yt = Y 0
t 1t<τ1 +

n−1∑
k=1

Y k
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk≤t<τk+1

+ Y n
t (τ1, . . . , τn, ζ1, . . . , ζn)1τn≤t , t ≥ 0, (2.2)

where Y 0
∈ OF, and Y k

∈ Ok
F(∆k, Ek), for k = 1, . . . , n.

Proof. We prove the decomposition result for predictable processes by induction on n. We denote
by Gn

= F ∨ D1
∨ · · · ∨ Dn .

Step 1. Suppose first that n = 1, so that G = F∨D1. Let us consider generators of P(G), which
are processes in the form

Yt = fs g(ζ11τ1≤s)h(τ1 ∧ s)1t>s, t ≥ 0,

with s ≥ 0, fs Fs-measurable, g measurable defined on E ∪ {0}, and h measurable defined on
R+. By taking

Y 0
t = fs g(0)h(s)1t>s, and Y 1

t (θ1, e) = fs g(e1θ1≤s)h(θ1 ∧ s)1t>s,
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we see that the decomposition (2.1) holds for generators of P(G). We then extend this
decomposition for any P(G)-measurable processes, by the monotone class theorem.

Step 2. Suppose that the result holds for n, and consider the case with n+1 ranked default times,
so that G = Gn

∨ Dn+1, Dn+1
t = D̃n+1

t+ , where D̃n+1
t = σ(ζn+11τn+1≤s, s ≤ t) ∨ σ(1τn+1≤s,

s ≤ t). By the same arguments of the enlargement of filtration with one default time as in Step 1,
we derive that any P(G)-measurable process Y is represented as

Yt = Y 0,(n)
t 1t≤τn+1 + Y 1,(n)

t (τn+1, ζn+1)1τn+1<t , (2.3)

where Y 0,(n) is P(Gn)-measurable, and (t, ω, θn+1, en+1) 7→ Y 1,(n)
t (ω, θn+1, en+1) is P(Gn)⊗

B(R+)⊗ B(E)-measurable. Now, from the induction hypothesis for Gn , we have

Y 0,(n)
t = Y 0,0,(n)

t 1t≤τ1 +

n−1∑
k=1

Y k,0,(n)
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk<t≤τk+1

+ Y n,0,(n)
t (τ1, . . . , τn, ζ1, . . . , ζn)1τn<t , t ≥ 0,

where Y 0,0,(n)
∈ PF, and Y k,0,(n)

∈ P k
F(∆k, Ek), for k = 1, . . . , n. Similarly, we have

Y 1,(n)
t (θn+1, en+1) = Y 0,1,(n)

t (θn+1, en+1)1t≤τ1

+

n−1∑
k=1

Y k,1,(n)
t (τ1, . . . , τk, ζ1, . . . , ζk, θn+1, en+1)1τk<t≤τk+1

+ Y n,1,(n)
t (τ1, . . . , τn, ζ1, . . . , ζn, θn+1, en+1)1τn<t , t ≥ 0,

where Y 0,1,(n)
∈ P 1

F(R+, E), Y k,1,(n)
∈ P k+1

F (∆k × R+, Ek+1), k = 1, . . . , n. Finally,
plugging these two decompositions with respect to P(Gn) into relation (2.3), and recalling that
τ1 ≤ · · · ≤ τn ≤ τn+1, we get the required decomposition at level n + 1 for G:

Yt = Y 0,0,(n)
t 1t≤τ1 +

n∑
k=1

Y k,0,(n)
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk<t≤τk+1

+ Y n+1
t (τ1, . . . , τn+1, ζ1, . . . , ζn+1)1τn+1<t , t ≥ 0,

where we notice that the indexed process Y n+1 defined by Y n+1(θ1, . . . , θn+1, e1, . . . , en+1) :=

Y n,1,(n)(θ1, . . . , θn, e1, . . . , en, θn+1, en+1), lies in P n+1
F (∆n+1, En+1).

The decomposition result for G-optional processes is proved similarly by induction and
considering the generators of O(G1), which are processes in the form

Yt = fs g(ζ11τ1≤s)h(τ1 ∧ s)1t≥s, t ≥ 0,

with s ≥ 0, fs Fs-measurable, g measurable defined on E ∪ {0}, and h measurable defined on
R+. �

Obviously, any process in the form (2.1) (resp. (2.2)) is G-predictable (resp. G-optional).
Lemma 2.1 states the converse property. Therefore, we can identify any Y ∈ PG (resp. OG) with
an n + 1-tuple (Y 0, . . . , Y n) ∈ PF × · · · ×P n

F(∆n, En) (resp. OF × · · · ×On
F(∆n, En)) arising

from its decomposition (2.1) (resp. (2.2)).
We now require a density hypothesis on the random times and their associated jumps by

assuming that for any t , the conditional distribution of (τ1, . . . , τn, ζ1, . . . , ζn) given Ft is
absolutely continuous with respect to a positive measure λ(dθ)η(de) on B(∆n)⊗B(En), with λ
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the Lebesgue measure λ(dθ) = dθ1 . . . dθn , and η a product measure η(de) = η1(de1) . . . η1(den)

on B(E)⊗ · · · ⊗ B(E). More precisely, we assume that there exists γ ∈ On
F(∆n, En) such that

(DH) P
[
(τ1, . . . , τn, ζ1, . . . , ζn) ∈ dθde|Ft

]
= γt (θ1, . . . , θn, e1, . . . , en)dθ1 . . . dθnη1(de1) . . . η1(den), a.s. �

Remark 2.1. In the particular case where γ is in the form γt (θ, e) = ϕt (θ)ψt (e), the condition
(DH) means that the random times (τ1, . . . , τn) and the jump sizes (ζ1, . . . , ζn) are independent
given Ft , for all t ≥ 0, and

P
[
(τ1, . . . , τn) ∈ dθ |Ft

]
= ϕt (θ)λ(dθ),

P
[
(ζ1, . . . , ζn) ∈ de|Ft

]
= ψt (e)η(de), a.s.

This condition extends the usual density hypothesis for a random time in the theory of initial
or progressive enlargement of filtration, see [9] or [10]. An important result in the theory of
enlargement of filtration under the density hypothesis is the semimartingale invariance property,
also called the (H′) hypothesis, i.e. any F-semimartingale remains a G-semimartingale. This
result is related in finance to no-arbitrage conditions, and is thus also a desirable property from
a economic viewpoint. Random times satisfying the density hypothesis are very well suitable
for the analysis of credit risk events, as shown recently in [6]. We also refer to this paper for
a discussion on the relation between the density hypothesis and the reduced-form (or intensity)
approach in credit risk modeling.

In the sequel, it is useful to introduce the following notations. We denote by γ 0 the F-optional
process defined by

γ 0
t = P

[
τ1 > t |Ft

]
(2.4)

=

∫
En

∫
∞

t

∫
∞

θ1

. . .

∫
∞

θn−1

γt (θ1, . . . , θn, e1, . . . , en)dθn . . . dθ1η1(de1) . . . ηn(den),

and we denote by γ k , k = 1, . . . , n − 1, the indexed process in Ok
F(∆k, Ek) defined by

γ k
t (θ1, . . . , θk, e1, . . . , ek) =

∫
En−k

∫
∞

t

∫
∞

θk+1

. . .

∫
∞

θn−1

γt (θ1, . . . , θn, e1, . . . , en)dθn

× . . . dθk+1η1(dek+1) . . . η1(den),

so that for k = 1, . . . , n − 1,

P
[
τk+1 > t |Ft

]
=

∫
Ek

∫
∆k

γ k
t (θ1, . . . , θk, e1, . . . , ek)dθ1 . . . dθkη1(de1) . . . η1(dek). (2.5)

Notice that the family of measurable maps γk , k = 0, . . . , n can be also written in backward
induction by

γ k
t (θ1, . . . , θk, e1, . . . , ek) =

∫
E

∫
∞

t
γ k+1

t (θ1, . . . , θk+1, e1, . . . , ek+1)dθk+1η1(dek+1),

for k = 0, . . . , n − 1, starting from γ n
= γ . In view of (2.4)–(2.5), the process γk may be

interpreted as the survival density process of τk+1, k = 0, . . . , n − 1.
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The next result provides the computation for the optional projection of a O(G)-measurable
process on the reference filtration F.

Lemma 2.2. Let Y = (Y 0, . . . , Y n) be a nonnegative (or bounded) G-optional process. Then
for any t ≥ 0, we have

ŶFt := E
[
Yt |Ft

]
= Y 0

t γ
0
t +

n∑
k=1

∫
Ek

∫ t

0
. . .

∫ t

θk−1

Y k
t (θ1, . . . , θk, e1, . . . , ek)

× γ k
t (θ1, . . . , θk, e1, . . . , ek)dθk . . . dθ1η1(de1) . . . η1(dek),

where we used the convention that θk−1 = 0 for k = 1 in the above integral. Equivalently, we
have the backward induction formula for ŶFt = Ŷ 0,F

t , where the Ŷ k,F
t are given for any t ≥ 0, by

Ŷ n,F
t (θ, e) = Y n

t (θ, e)γt (θ, e)

Ŷ k,F
t (θ (k), e(k)) = Y k

t (θ
(k), e(k))γ k

t (θ
(k), e(k))

+

∫ t

θk

∫
E

Ŷ k+1,F
t (θ (k), θk+1, e(k), ek+1)η1(dek+1)dθk+1,

for θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, t]n , e = (e1, . . . , en) ∈ En .

Proof. Let Y = (Y 0, . . . , Y n) be a nonnegative (or bounded) G-optional process, decomposed
as in (2.2) so that:

E
[

Yt |Ft
]
= E

[
Y 0

t 1t<τ1

∣∣∣Ft

]
+

n∑
k=1

E
[

Y k
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk≤t<τk+1

∣∣∣Ft

]
, (2.6)

with the convention that τn+1 = ∞. Now, for any k = 1, . . . , n, we have under the density
hypothesis (DH)

E
[

Y k
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk≤t<τk+1

∣∣∣Ft

]
=

∫
∆n×En

Y k
t (θ1, . . . , θk, e1, . . . , ek)1θk≤t<θk+1γt (θ1, . . . , θn, e1, . . . , en)λ(dθ)η(de)

=

∫
Ek

∫ t

0
. . .

∫ t

θk−1

Y k
t (θ1, . . . , θk, e1, . . . , ek)γ

k
t (θ1, . . . , θk, e1, . . . , ek)dθk . . . dθ1

η1(de1) . . . η1(dek),

where the second inequality follows from Fubini’s theorem and the definition of γ k . We also
have

E
[

Y 0
t 1t<τ1

∣∣∣Ft

]
= Y 0

t P[τ1 > t |Ft ] = Y 0
t γ

0
t .

We then get the required result by plugging these two last relations into (2.6). Finally,
the backward formula for the F-optional projection of Y is obtained by a straightforward
induction. �

As a consequence of the above backward induction formula for the optional projection,
we derive a backward formula for the computation of expectation functionals of G-optional
processes, which involves only F-expectations.
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Proposition 2.1. Let Y = (Y 0, . . . , Y n) and Z = (Z0, . . . , Zn) be two nonnegative (or
bounded) G-optional processes, and fix T ∈ (0,∞).

The expectation E[
∫ T

0 Yt dt + ZT ] can be computed in a backward induction as

E
[∫ T

0
Yt dt + ZT

]
= J0

where the Jk , k = 0, . . . , n are given by

Jn(θ, e) = E
[∫ T

θn

Y n
t γt (θ, e)dt + Zn

T γT (θ, e)
∣∣Fθn

]
Jk(θ

(k), e(k)) = E
[∫ T

θk

Y k
t γ

k
t (θ

(k), e(k))dt + Z k
T γ

k
T (θ

(k), e(k))

+

∫ T

θk

∫
E

Jk+1(θ
(k), θk+1, e(k), ek+1)η1(dek+1)dθk+1

∣∣∣∣Fθk

]
,

for θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n , e = (e1, . . . , en) ∈ En , with the convention θ0 = 0.

Proof. For any θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n , e = (e1, . . . , en) ∈ En , let us define

Jk(θ
(k), e(k)) = E

[∫ T

θk

Ŷ k,F
t (θ (k), e(k))dt + Ẑ k,F

T (θ (k), e(k))
∣∣∣Fθk

]
,

where the Ŷ k,F and Ẑ k,F are defined in Lemma 2.2, associated respectively to Y and Z . Then
J0 = E[

∫ T
0 Yt dt + ZT ], and we see from the backward induction for Ŷ k,F and Ẑ k,F that the Jk ,

k = 0, . . . , n, satisfy

Jn(θ, e) = E
[∫ T

θn

Y n
t γt (θ, e)dt + Zn

T (θ, e)γT (θ, e)
∣∣Fθn

]
Jk(θ

(k), e(k)) = E
[∫ T

θk

Y k
t γ

k
t (θ

(k), e(k))dt + Z k
T γ

k
T (θ

(k), e(k))

+

∫ T

θk

∫ t

θk

∫
E

Ŷ k+1,F
t (θ (k), θk+1, e(k), ek+1)η1(dek+1)dθk+1dt

+

∫ T

θk

∫
E

Ẑ k+1,F
T (θ (k), θk+1, e(k), ek+1)η1(dek+1)dθk+1

∣∣∣∣Fθk

]
= E

[∫ T

θk

Y k
t γ

k
t (θ

(k), e(k))dt + Z k
T γ

k
T (θ

(k), e(k))

+

∫ T

θk

∫
E

∫ T

θk+1

Ŷ k+1,F
t (θ (k), θk+1, e(k), ek+1)dtη1(dek+1)dθk+1

+

∫ T

θk

∫
E

Ẑ k+1,F
T (θ (k), θk+1, e(k), ek+1)η1(dek+1)dθk+1

∣∣∣∣Fθk

]
= E

[∫ T

θk

Y k
t γ

k
t (θ

(k), e(k))dt + Z k
T γ

k
T (θ

(k), e(k))

+

∫ T

θk

∫
E

Jk+1(θ
(k), θk+1, e(k), ek+1)η1(dek+1)dθk+1

∣∣∣∣Fθk

]
,
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where we used Fubini’s theorem in the second equality for Jk , and the law of iterated
conditional expectations for the last equality. This proves the required induction formula for Jk ,
k = 0, . . . , n. �

3. Abstract stochastic control problem

In this section, we formulate the general stochastic control problem in the context of
progressively enlargement of filtration with successive random times and marks.

3.1. Controls and state process

A control is a G-predictable process α = (α0, . . . , αn) ∈ PF × · · · × P n
F(∆n, En), where

the αk , k = 0, . . . , n, are valued in some given Borel set Ak of an Euclidian space. We denote
by PF(A0) (resp. P k

F(∆k, Ek
; Ak), k = 1, . . . , n), the set of elements in PF (resp. P k

F(∆, Ek),
k = 1, . . . , n) valued in A0 (resp. Ak , k = 1, . . . , n). We set A = A0 × · · · × An , and denote
by AG the set of admissible controls as the product A0

F × · · · × An
F, where A0

F (resp. Ak
F,

k = 1, . . . , n) is some separable metric space of PF(A0) (resp. P k
F(∆k, Ek

; Ak), k = 1, . . . , n).
The separability condition is required for the measurability selection issue.

The description of the controlled state process is formulated as follows:
• Controlled state process between default times: we are given a collection of measurable
mappings:

(x, α0) ∈ Rd
×A0

F 7−→ X0,x,α0
∈ OF (3.1)

(x, αk) ∈ Rd
×Ak

F 7−→ X k,x,αk
∈ Ok

F(∆k, Ek), k = 1, . . . , n, (3.2)

such that we have the initial data:

X0,x,α0

0 = x, ∀x ∈ Rd ,

X k,ξ,αk

θk
(θ1, . . . , θk, e1, . . . , ek) = ξ, ∀ξFθk -measurable, k = 1, . . . , n.

• Jumps of the controlled state process: we are given a collection of maps Γ k on R+×Ω×Rd
×

Ak−1 × E , for k = 1, . . . , n, such that

(t, ω, x, a, e) 7→ Γ k
t (ω, x, a, e) is P(F)⊗ B(Rd)⊗ B(Ak−1)⊗ B(E)-measurable.

• Global controlled state process: the controlled state process is then given by the mapping

(x, α = (α0, . . . , αn)) ∈ Rd
×AG 7−→ X x,α

∈ OG,

where X x,α is the process equal to

X x,α
t = X̄0

t 1t<τ1 +

n−1∑
k=1

X̄ k
t (τ1, . . . , τk, ζ1, . . . , ζk)1τk≤t<τk+1

+ X̄n
t (τ1, . . . , τn, ζ1, . . . , ζn)1τn≤t , t ≥ 0, (3.3)

with (X̄0, . . . , X̄n) ∈ OF × · · · ×On
F(∆n, En) given by

X̄0
= X0,x,α0

X̄ k(θ1, . . . , θk, e1, . . . , ek) = X
k,Γ k

θk
(X̄k−1

θk
,αk−1
θk

,ek ),α
k
(θ1, . . . , θk, e1, . . . , ek),

for k = 1, . . . , n.
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The interpretation is the following. Between the time interval τk = θk and τk+1 = θk+1,
k = 0, . . . , n − 1 (with the convention θ0 = 0), the state process X = X̄ k is controlled by αk ,
which is based on the basic information F, and the knowledge of the past jump times and marks
(θ1, . . . , θk, e1, . . . , ek). Then, at time θk+1, there is a jump in the state process determined by
the map Γ k+1, which depends on the current state value, control and information, but also on a
“nonpredictable” mark ζk+1 = ek+1 at time θk+1:

Xτk+1 = Γ k+1
τk+1

(Xτ−k+1
, αk
τk+1

, ζk+1).

3.2. Typical controlled state process

In typical applications, the dynamics of X0
= X0,x,α0

, X k
= X k,x,αk

, k = 1, . . . , n, are
governed by diffusion processes:

dX0
t = b0

t (X
0
t , α

0
t )dt + σ 0

t (X
0
t , α

0
t )dWt , t ≥ 0 (3.4)

dX k
t = bk

t (X
k
t , α

k
t , θ1, . . . , θk, e1, . . . , ek)dt

+ σ k
t (X

k
t , α

k
t , θ1, . . . , θk, e1, . . . , ek)dWt , t ≥ θk . (3.5)

Here, W is a standard m-dimensional (P,F)-Brownian motion, and (t, ω, x, a) → b0
t (ω, x, a),

σ 0
t (ω, x, a) are P(F) ⊗ B(Rd) ⊗ B(A0)-measurable maps valued respectively in Rd and

Rd×m , for k = 1, . . . , n, the maps (t, ω, x, a, θ1, . . . , θk, e1, . . . , ek)→ bk
t (ω, x, a, θ1, . . . , θk,

e1, . . . , ek), σ k
t (ω, x, u, θ1, . . . , θk, e1, . . . , ek) are P(F)⊗ B(Rd)⊗ B(Ak)⊗ B(∆k)⊗ B(Ek)-

measurable valued respectively in Rd and Rd×m . To alleviate notations, we omitted in (3.5)
the dependence of X k , αk in (θ1, . . . , θk, e1, . . . , ek). We make the linear growth and Lipschitz
assumptions on the functions x → bk

t (x, .), σ
k(x, .), k = 0, . . . , n, in order to ensure for all

(θ1, . . . , θk, e1, . . . , ek) ∈ ∆k × Ek , the existence and uniqueness of a solution X k(θ1, . . . , θk,

e1, . . . , ek) to the sde (3.4), (3.5), given the controls and the initial conditions, and this indexed
process X k lies in Ok

F(∆k, Ek). The dependence of the coefficients bk , σ k on the past jump
times θ1, . . . , θk , and marks e1, . . . , ek , corresponds to change of regimes after each jump time,
and may be interpreted in finance as rating upgrades or downgrades. Also, a typical choice for the
set of admissible controls Ak

F is the subset of indexed F-predictable processes in L p, p ∈ [1,∞),
and the separability of Ak

F follows from the separability of L p, see the discussion in [23].

Connection with controlled jump-diffusion processes.
Consider the particular case where the sets of controls Ak are identical, equal to A, and let us

define the mappings b and σ on R+ × Ω × Rd
× A by:

bt (x, a) = b0
t (x, a)1t≤τ1 +

n−1∑
k=1

bk
t (x, a, τ1, . . . , τk, ζ1, . . . , ζk)1τk<t≤τk+1

+ bn
t (x, a, τ1, . . . , τn, ζ1, . . . , ζn)1t>τn ,

σt (x, a) = σ 0
t (x, a)1t≤τ1 +

n−1∑
k=1

σ k
t (x, a, τ1, . . . , τk, ζ1, . . . , ζk)1τk<t≤τk+1

+ σ n
t (x, a, τ1, . . . , τn, ζ1, . . . , ζn)1t>τn ,
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and notice that the maps (t, ω, x, a) → bt (ω, x, a), σt (ω, x, a) are P(G) ⊗ B(Rd) ⊗ B(A)-
measurable. Denote also by δ the mapping on R+ × Ω × Rd

× A × E :

δt (x, a, e) =
n−1∑
k=0

(
Γ k+1

t (x, a, e)− x
)

1τk<t≤τk+1

which is P(G) ⊗ B(Rd) ⊗ B(A) ⊗ B(E)-measurable. Let us denote by µ(dt, de) the integer-
valued random measure associated to the times τk and the marks ζk , k = 1, . . . , n, which is then
given by

µ([0, t] × B) =
∑
k≥1

1τn≤t 1B(ζk), ∀t ≥ 0, B ∈ B(E).

The progressive enlarged filtration G can then be written also as: G = F ∨ Fµ where Fµ is
the right-continuous filtration generated by the integer-valued random measure µ. Now, since
the semimartingale property is preserved under the density hypothesis for this progressive
enlargement of filtration, (see [10]), the process W remains a semimartingale under (P,G) (with
a canonical decomposition, which can be explicitly expressed in terms of the density). Then, we
can write the dynamics of the state process X = X x,α in (3.3) as a controlled jump-diffusion
process under (P,G):

dX t = bt (X t , αt )dt + σt (X t , αt )dWt +

∫
E
δt (X t− , αt , e)µ(dt, de).

However, notice that in the above G-formulation, the process W is not in general a Brownian
motion under (P,G), unless the so-called (H) immersion property is satisfied, i.e. the martingale
property is preserved from F to G, which corresponds to the particular case where the density
satisfies: γt (θ, e) = γθ (θ, e) for t ≥ θ .

In the classical formulation by controlled jump-diffusion processes, one has to fix a control
set A, which is invariant during the time horizon. Here, the more general formulation (3.3)
allows us to consider different control sets Ak between two default times, and this may be
relevant in practical applications. Moreover, we have a suitable decomposition of the coefficients
and controlled state process between random times, which provides a natural interpretation in
economics and finance.

3.3. Stochastic control problem

In the general framework for the controlled process in (3.3), let us formulate the objective
function for the stochastic control problem on a finite horizon T . The terminal gain function is
given by a nonnegative map GT on Ω × Rd such that (ω, x) 7→ GT (ω, x) is GT ⊗ B(Rd)-
measurable, and which may be represented as

GT (x) = G0
T (x)1T<τ1 +

n−1∑
k=1

Gk
T (x, τ1, . . . , τk, ζ1, . . . , ζk)1τk≤T<τk+1

+Gn
T (x, τ1, . . . , τn, ζ1, . . . , ζn)1τn≤T ,

where G0
T is FT ⊗ B(Rd)-measurable, and Gk

T is FT ⊗ B(Rd)⊗ B(∆k)⊗ B(Ek)-measurable,
for k = 1, . . . , n. The running gain function is given by a nonnegative map f on Ω × Rd

× A
such that (t, ω, x, a) 7→ ft (ω, x, a) is O(G) ⊗ B(Rd) ⊗ B(A)-measurable, and which may be
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decomposed as

ft (x, a) = f 0
t (x, a0)1t<τ1 +

n−1∑
k=1

f k
t (x, ak, τ1, . . . , τk, ζ1, . . . , ζk)1τk≤t<τk+1

+ f n
t (x, an, τ1, . . . , τn, ζ1, . . . , ζn)1τn≤t ,

for a = (a0, . . . , an) ∈ A = A0 × · · · × An , where f 0 is O(F)⊗ B(Rd)⊗ B(A0)-measurable,
and f k is O(F) ⊗ B(Rd) ⊗ B(Ak) ⊗ B(∆k) ⊗ B(Ek)-measurable, for k = 1, . . . , n. In other
words, there is a change of regime in the running and terminal gain after each default time.

The value function for the stochastic control problem is then defined by:

V0(x) = sup
α∈AG

E
[∫ T

0
ft (X

x,α
t , αt )dt + GT (X

x,α
T )

]
, x ∈ Rd . (3.6)

4. F-decomposition of the stochastic control problem

In this section, we provide a decomposition of the value function for the stochastic control
problem in the G-filtration, defined in (3.6), that we formulate in a backward induction for value
functions of stochastic control in the F-filtration. To alleviate notations, we shall often omit in
(3.2) the dependence of X k,x on αk and (θ1, . . . , θk, e1, . . . , ek) when there is no ambiguity.

Theorem 4.1. The value function V0 is obtained from the backward induction formula:

Vn(x, θ, e) = ess sup
αn∈An

F

E
[∫ T

θn

f n
t (X

n,x
t , αn

t , θ, e)γt (θ, e)dt

+Gn
T (X

n,x
T , θ, e)γT (θ, e)

∣∣Fθn

]
(4.1)

Vk(x, θ
(k), e(k)) = ess sup

αk∈Ak
F

E
[∫ T

θk

f k
t (X

k,x
t , αk

t , θ
(k), e(k))γ k

t (θ
(k), e(k))dt

+ Gk
T (X

k,x
T , θ (k), e(k))γ k

T (θ
(k), e(k))

+

∫ T

θk

∫
E

Vk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1

)
η1(dek+1)dθk+1|Fθk

]
, k = 0, . . . , n − 1, (4.2)

for all θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n , e = (e1, . . . , en) ∈ En , x ∈ Rd .

Remark 4.1. Each step in the backward induction for the determination of the original value
function V0 leads to the formulation of a family of value functions associated to the standard
stochastic control problem in the F-filtration. Indeed, at step n, Vn(x, .) is a family of value
functions parameterized by (θ1, . . . , θn) ∈ ∆n , (e1, . . . , en) ∈ En , and corresponding to the
stochastic control problem after the last default at time θn , with a running gain function f n

t and
terminal gain function Gn

T on the controlled state process Xn in the F-filtration, and weighted by
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the O(F)-measurable process γ . Now, suppose that at step k+ 1, we have determined the family
of value functions Vk+1(x, .), (θ1, . . . , θk+1) ∈ ∆k+1, (e1, . . . , ek+1) ∈ Ek+1, and denote by
V̂k+1 the map on Ω × Rd

× Ak ×∆k+1 × Ek :

V̂k+1
(
x, ak, θ

(k), θk+1, e(k)
)

=

∫
E

Vk+1
(
Γ k+1
θk+1

(x, ak, ek+1), θ
(k), θk+1, e(k), ek+1

)
η1(dek+1).

Then, the family of value functions at step k, representing the value for the stochastic control
problem after k defaults, is computed from the stochastic control problem in the F-filtration with
the running gain function f k

t and terminal gain function Gk
T weighted by the O(F)-measurable

random variable γ k , and with the running gain function V̂k+1:

Vk(x) = ess sup
αk∈Ak

F

E
[∫ T

θk

f k
t (X

k,x
t , αk

t )γ
k
t dt + Gk

T (X
k,x
T )γ k

T

+

∫ T

θk

V̂k+1(X
k,x
θk+1

, αk
θk+1

, θk+1)dθk+1

∣∣∣∣Fθk

]
. (4.3)

Here, we omitted the dependence in θ (k) = (θ1, . . . , θk), e(k) = (e1, . . . , ek) to alleviate
notations. The two first terms on the rhs of (4.3) represent the gain functional when there is no
more default after the k-th one, while the last term represents the gain in the case when a k+1-th
default would occur between the last one at time τk = θk and the finite horizon T . Finally, the
decomposition in Theorem 4.1 also shows that an optimal control for the global problem in the
G-filtration is obtained by a concatenation of optimal controls for each subproblems Vk in the
F-filtration.

Proof of Theorem 4.1. Fix x ∈ Rd , α = (α0, . . . , αn) ∈ AG, and consider the controlled state
process X x,α . By definition of X x,α in (3.3), GT (.) and ft (.), observe that the GT -measurable
random variable GT (X

x,α
T ) is decomposed according to the n+1-tuple (G0

T (X̄
0
T ), . . . ,Gn

T (X̄
n
T )),

and the G-optional process ft (X
x,α
t , αt ) is decomposed as ( f 0

t (X̄
0
t , α

0
t ), . . . , f n

t (X̄
n
t , α

n
t )). Let

us now define by backward induction the maps Jk , k = 0, . . . , n by

Jn(x, θ, e, α) = E
[∫ T

θn

f n
t (X

n,x
t , αn

t , θ, e)γt (θ, e)dt + Gn
T (X

n,x
T , θ, e)γT (θ, e)

∣∣Fθn

]
Jk(x, θ

(k), e(k), α) = E
[∫ T

θk

f k
t (X

k,x
t , αk

t , θ
(k), e(k))γ k

t (θ
(k), e(k))dt

+Gk
T (X

k,x
T , θ (k), e(k))γ k

T (θ
(k), e(k))

+

∫ T

θk

∫
E

Jk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1, α

)
× η1(dek+1)dθk+1|Fθk

]
, (4.4)

for any x ∈ Rd , θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n , e = (e1, . . . , en) ∈ En , and α =
(α0, . . . , αn) ∈ A0

F × · · · × An
F. Let us denote by J̄k(θ

(k), e(k)) = Jk(X̄ k
θk
, θ (k), e(k), α),

k = 0, . . . , n, and observe by definition of X x,α and X̄ k in (3.3) that J̄k satisfy the backward
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induction formula:

J̄n(θ, e) = E
[∫ T

θn

f n
t (X̄

n
t , α

n
t , θ, e)γt (θ, e)dt + Gn

T (X̄
n
T , θ, e)γT (θ, e)

∣∣Fθn

]
J̄k(θ

(k), e(k)) = E
[∫ T

θk

f k
t (X̄

k
t , α

k
t , θ

(k), e(k))γ k
t (θ

(k), e(k))dt

+Gk
T (X̄

k
T , θ

(k), e(k))γ k
T (θ

(k), e(k))

+

∫ T

θk

∫
E

J̄k+1(θ
(k), θk+1, e(k), ek+1)η1(dek+1)dθk+1

∣∣∣∣Fθk

]
.

Therefore, from Proposition 2.1, we have the equality:

E
[∫ T

0
f (X x,α

t , αt )dt + GT (X
x,α
T )

]
= J̄0 = J0(x, α). (4.5)

Let us now define the value function processes:

Vk(x, θ
(k), e(k)) := ess sup

α∈AG
Jk(x, θ

(k), e(k), α), (4.6)

for k = 0, . . . , n, x ∈ Rd , and θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n , e = (e1, . . . , en) ∈ En . First,
observe that this definition for k = 0 is consistent with the definition of the value function V0
of the stochastic control problem (3.6) from the relation (4.5). Then, it remains to prove that the
value functions Vk defined in (4.6) satisfy the backward induction formula in the assertion of the
theorem. For k = n, and since Jn(x, θ, e, α) depends on α only through its last component αn ,
the relation (4.1) holds true. Next, from the backward induction (4.4) for Jk , and the definition
of Vk+1, we have for all α = (α0, . . . , αn) ∈ AG:

Jk(x, θ
(k), e(k), α) ≤ E

[∫ T

θk

f k
t (X

k,x
t , αk

t , θ
(k), e(k))γ k

t (θ
(k), e(k))dt

+Gk
T (X

k,x
T , θ (k), e(k))γ k

T (θ
(k), e(k))

+

∫ T

θk

∫
E

Vk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1

)
η1(dek+1)dθk+1|Fθk

]
≤ V̄k(x, θ

(k), e(k)), (4.7)

where V̄k is defined by the rhs of (4.2). By taking the supremum over α in the inequality
(4.7), this shows that Vk ≤ V̄k . Conversely, fix x ∈ Rd , θ = (θ1, . . . , θn) ∈ ∆n ∩ [0, T ]n ,
e = (e1, . . . , en) ∈ En , and let us prove that Vk(x, θ (k), e(k)) ≥ V̄k(x, θ (k), e(k)). Fix an
arbitrary αk

∈ Ak
F, and the associated controlled process X k,x . By definition of Vk+1, for any

ω ∈ Ω , ε > 0, there exists αω,ε ∈ AG, which is an ε-optimal control for Vk+1(., θ
(k), e(k))

at (ω,Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1)). Recalling that the set of admissible controls is a separable
metric space, one can use a measurable selection result (see e.g. [24]) to find αε ∈ AG s.t.
αεt (ω) = α

ω,ε
t (ω), dt ⊗ dP a.e., and so

Vk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1

)
− ε

≤ Jk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1, α

ε
)
, a.s.
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Denote by (αε,0, . . . , αε,n) the n + 1-tuple associated to αε ∈ AG, and let us consider the
admissible control α̃ε = (αε,0, . . . , αk, αε,k+1, . . . , αε,n) ∈ AG consisting in substituting the
k-th component of αε by αk

∈ Ak
F. Since Jk+1(x, θ, e, α) depends on α only through its last

components (αk+1, . . . , αn), we have from (4.4)

Vk(x, θ
(k), e(k)) ≥ Jk(x, θ

(k), e(k), α̃ε)

= E
[∫ T

θk

f k
t (X

k,x
t , αk

t , θ
(k), e(k))γ k

t (θ
(k), e(k))dt

+Gk
T (X

k,x
T , θ (k), e(k))γ k

T (θ
(k), e(k))

+

∫ T

θk

∫
E

Jk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1, α

ε
)

η1(dek+1)dθk+1|Fθk

]
≥ E

[∫ T

θk

f k
t (X

k,x
t , αk

t , θ
(k), e(k))γ k

t (θ
(k), e(k))dt

+Gk
T (X

k,x
T , θ (k), e(k))γ k

T (θ
(k), e(k))

+

∫ T

θk

∫
E

Vk+1
(
Γ k+1
θk+1

(X k,x
θk+1

, αk
θk+1

, ek+1), θ
(k), θk+1, e(k), ek+1

)
η1(dek+1)dθk+1|Fθk

]
− ε.

From the arbitrariness of αk
∈ Ak

F and ε > 0, we obtain the required inequality: Vk(x, θ (k), e(k))
≥ V̄k(x, θ (k), e(k)), and the proof is complete. �

5. The case of enlarged filtration with multiple random times

In this section, we consider the case where the random times are not assumed to be ordered. In
other words, this means that one has access to the default times themselves with their indices, and
not only to the ranked default times. This general case can actually be derived from the case of
successive random times associated with suitable auxiliary marks. Let us consider the progressive
enlargement of filtration from F to G with multiple random times (τ1, . . . , τn) associated with
the marks (ζ1, . . . , ζn). Denote by τ̂1 ≤ · · · ≤ τ̂n the corresponding ranked times, and by ιi the
index mark (valued in {1, . . . , n}) of the i-th order statistic of (τ1, . . . , τn) for i = 1, . . . , n, so
that (τ̂1, . . . , τ̂n) = (τι1 , . . . , τιn ). Then, it is clear that the progressive enlargement of filtration
of F with the successive random times (τ̂1, . . . , τ̂n) together with the marks (ι1, ζι1 , . . . , ιn, ζιn )
leads to the filtration G, so that one can apply the results of the previous sections. For simplicity
of notations, we shall focus on the case of two random times τ1 and τ2, associated to the marks
ζ1 and ζ2 valued in the E Borel space of Rm .

The decomposition of optional and predictable process with respect to this progressive
enlargement of filtration is given by the following lemma, which is derived from Lemma 2.1,
with the specific feature that we have also to take into account the index of the order statistic in
(τ1, τ2).
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Lemma 5.1. Any G-optional (resp. predictable) process Y = (Yt )t≥0 is represented as

Yt = Y 0
t 1t<τ̂1 + Y 1,1

t (τ1, ζ1)1τ1≤t<τ2 + Y 1,2
t (τ2, ζ2)1τ2≤t<τ1 + Y 2

t (τ1, τ2, ζ1, ζ2)1t≥τ̂2 ,

(resp. = Y 0
t 1t≤τ̂1 + Y 1,1

t (τ1, ζ1)1τ1<t≤τ2

+ Y 1,2
t (τ2, ζ2)1τ2<t≤τ1 + Y 2

t (τ1, τ2, ζ1, ζ2)1t>τ̂2),

for all t ≥ 0, where Y 0
∈ OF (resp. PF), Y 1,1, Y 1,2

∈ O1
F(R+, E) (resp. P 1

F(R+, E)), and
Y 2
∈ O2

F(R
2
+, E2) (resp. P 2

F(R
2
+, E2)).

Any Y ∈ OG (resp. PG) can then be identified with a quadruple (Y 0, Y 1,1, Y 1,2, Y 2) ∈ OF ×
O1
F(R+, E)×O1

F(R+, E)×O2
F(R

2
+, E2) (resp. PF×P 1

F(R+, E)×P 1
F(R+, E)×P 2

F(R
2
+, E2)).

Similarly as in Section 1, we now make a density hypothesis on the conditional distribution of
(τ1, τ2, ζ1, ζ2) given the reference information. We assume that there exists a O(F)⊗ B(R2

+)⊗

B(E2)-measurable map (t, ω, θ1, θ2, e1, e2)→ γt (ω, θ1, θ2, e1, e2) such that

(DH) P
[
(τ1, τ2, ζ1, ζ2) ∈ dθde|Ft

]
= γt (θ1, θ2, e1, e2)dθ1dθ2η(de1)η(de2), a.s.

where η is a nonnegative measure on B(E).
We next introduce some useful notations. We denote by γ0 the F-optional process defined by

γ 0
t = P[τ1 > t, τ2 > t |Ft ] =

∫
E2

∫
[t,∞)2

γt (θ1, θ2, e1, e2)dθ1dθ2η(de1)η(de2),

and we denote by (t, ω, θ1, e1) → γ
1,1
t (θ1, e1), and (t, ω, θ2, e2) → γ

1,2
t (θ2, e2), t ≥ 0, the

O(F)⊗ B(R+)⊗ B(E)-measurable maps defined by

γ
1,1
t (θ1, e1) =

∫
E

∫
∞

t
γt (θ1, θ2, e1, e2)dθ2η(de2),

γ
1,2
t (θ2, e2) =

∫
E

∫
∞

t
γt (θ1, θ2, e1, e2)dθ1η(de1),

so that

P[τ2 > t |Ft ] =

∫
E

∫
∞

0
γ

1,1
t (θ1, e1)dθ1η(de1),

P[τ1 > t |Ft ] =

∫
E

∫
∞

0
γ

1,2
t (θ2, e2)dθ2η(de2).

Hence, γ 1,1
t (θ1, e1) is interpreted as the probability for {τ2 > t} conditioned on Ft , and

{(τ1, ζ1) = (θ1, e1)}, and a similar interpretation holds for γ 1,2.
The next result, which is analog to Proposition 2.1, provides a backward induction formula

involving F-expectations for the computation of expectation functionals of G-optional processes.

Proposition 5.1. Let Y = (Y 0, Y 1,1, Y 1,2, Y 2) and Z = (Z0, Z1,1, Z1,2, Z2) be two nonnega-
tive (or bounded) G-optional processes, and fix T ∈ (0,∞).

The expectation E[
∫ T

0 Yt dt + ZT ] can be computed in a backward induction as

E
[∫ T

0
Yt dt + ZT

]
= J0
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where the (J0, J1,1, J1,2, J2) are given by

J2(θ1, θ2, e1, e2) = E
[∫ T

θ1∨θ2

Y 2
t γt (θ1, θ2, e1, e2)dt + Z2

T γT (θ1, θ2, e1, e2)

∣∣∣Fθ1∨θ2

]
J1,1(θ1, e1) = E

[∫ T

θ1

Y 1,1
t γ

1,1
t (θ1, e1)dt + Z1,1

T γ
1,1
T (θ1, e1)

+

∫
E

∫ T

θ1

J2(θ1, θ2, e1, e2)dθ2η(de2)

∣∣∣∣Fθ1

]
J1,2(θ2, e2) = E

[∫ T

θ2

Y 1,2
t γ

1,2
t (θ2, e2)dt + Z1,2

T γ
1,2
T (θ2, e2)

+

∫
E

∫ T

θ1

J2(θ1, θ2, e1, e2)dθ2η(de2)

∣∣∣∣Fθ2

]
J0 = E

[∫ T

0
Y 0

t γ
0
t dt + Z0

T γ
0
T

+

∫
E

∫ T

0
J1,1(θ1, e1)dθ1η(de1)+

∫
E

∫ T

0
J1,2(θ2, e2)dθ2η(de2)

]
.

Let us now formulate the general stochastic control problem in this framework.
A control is a G-predictable process α = (α0, α1,1, α1,2, α2) ∈ PF × P 1

F(R+, E) ×
P 1
F(R+, E)×P 2

F(R
2
+, E2), where α0, α1,1, α1,2 and α2 are valued respectively in A0, A1,1, A1,2

and A2, the Borel sets of some Euclidian space. We denote by A = A0 × A1,1 × A1,2 × A2, and
by AG the set of admissible control processes, which is a product space A0

F×A1,1
F ×A1,2

F ×A2
F,

where A0
F, A1,1

F , A1,2
F and A2

F are some separable metric spaces respectively in PF(A0),
P 1
F(R+, E; A1,1), P 1

F(R+, E; A1,2) and P 2
F(R

2
+, E2

; A2).
We are next given a collection of measurable mappings:

(x, α0) ∈ Rd
×A0

F 7−→ X0,x,α0
∈ OF

(x, α1,1) ∈ Rd
×A1,1

F 7−→ X1,1,x,α1,1
∈ O1

F(R+, E)

(x, α1,2) ∈ Rd
×A1,2

F 7−→ X1,2,x,α1,2
∈ O1

F(R+, E)

(x, α2) ∈ Rd
×A2

F 7−→ X2,x,α2
∈ O2

F(R
2
+, E2),

such that we have the initial data

X0,x,α0

0 = x, ∀x ∈ Rd ,

X1,1,ξ,α1,1

θ1
(θ1, e1) = ξ, ∀ξ Fθ1 -measurable,

X1,2,ξ,α1,2

θ2
(θ2, e2) = ξ, ∀ξ Fθ2 -measurable,

X2,ξ,α2

θ1∨θ2
(θ1, θ2, e1, e2) = ξ, ∀ξ Fθ1∨θ2 -measurable.

We are also given a collection of maps Γ 1,1, Γ 1,2, on R+ × Ω × Rd
× A0 × E , Γ 2,1 on

R+ × Ω × Rd
× A1,1 × E and Γ 2,2 on R+ × Ω × Rd

× A1,2 × E such that
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(t, ω, x, a, e) 7→ Γ 1,1
t (ω, x, a, e), Γ 1,2

t (ω, x, a, e)

are P(F)⊗ B(Rd)⊗ B(A0)⊗ B(E)-measurable

(t, ω, x, a, e) 7→ Γ 2,1
t (ω, x, a, e) is P(F)⊗ B(Rd)⊗ B(A1,1)⊗ B(E)-measurable

(t, ω, x, a, e) 7→ Γ 2,2
t (ω, x, a, e) is P(F)⊗ B(Rd)⊗ B(A1,2)⊗ B(E)-measurable.

The controlled state process is then given by the mapping

(x, α) ∈ Rd
×AG 7−→ X x,α

∈ OG,

where for α = (α0, α1,1, α1,2, α2), X x,α is the process equal to

X x,α
t = X̄0

t 1t<τ̂1 + X̄1,1
t (τ1, ζ1)1τ1≤t<τ2 + X̄1,2

t (τ2, ζ2)1τ2≤t<τ1 + X̄2
t (τ1, τ2, ζ1, ζ2)1t≥τ̂2 ,

with (X̄0, X̄1,1, X̄1,2, X̄2) ∈ OF ×O1
F(R+, E)×O1

F(R+, E)×O2
F(R

2
+, E2) given by

X̄0 = X0,x,α0

X̄1,1(θ1, e1) = X1,1,Γ 1,1
θ1
(X̄0

θ1
,α0
θ1
,e1),α

1,1
(θ1, e1)

X̄1,2(θ2, e2) = X1,2,Γ 1,2
θ2
(X̄0

θ2
,α0
θ2
,e2),α

1,2
(θ2, e2)

X̄2(θ1, θ2, e1, e2) =

X2,Γ 2,2
θ2
(X̄1,1

θ2
,α

1,1
θ2
,e2),α

2
(θ1, θ2, e1, e2) if θ1 ≤ θ2

X2,Γ 2,1
θ1
(X̄1,2

θ1
,α

1,2
θ1
,e1),α

2
(θ1, θ2, e1, e2) if θ2 < θ1.

The interpretation is the following: X0 is the controlled state process before any default, X1,1

(resp. X1,2) is the controlled state process between τ1 and τ2 (resp. between τ2 and τ1) if the
default of index 1 (resp. index 2) occurs first, and X2 is the controlled state process after both
defaults. Moreover, Γ 1,1 (resp. Γ 1,2) represents the jump of X0 at τ1 (resp. τ2) if the default of
index 1 (resp. index 2) occurs first, and Γ 2,2 (resp. Γ 2,1) represents the jump of X1,1 (resp. X1,2)
at τ2 (resp. τ1) when the default of index 2 (resp. index 1) occurs second after index 1 (resp.
index 2).

For a fixed finite horizon T < ∞, we are given a nonnegative map GT on Ω × Rd such that
(ω, x) 7→ GT (ω, x) is GT ⊗ B(Rd)-measurable, thus in the form

GT (x) = G0
T (x)1T<τ̂1 + G1,1

T (x, τ1, ζ1)1τ1≤T<τ2 + G1,2
T (x, τ2, ζ2)1τ2≤T<τ1

+G2
T (x, τ1, τ2, ζ1, ζ2)1τ̂2≤T ,

where G0
T is FT ⊗B(Rd)-measurable, G1,1

T , G1,2
T are FT ⊗B(Rd)⊗B(R+)⊗B(E)-measurable,

and G2
T is FT ⊗ B(Rd)⊗ B(R2

+)⊗ B(E2)-measurable. The running gain function is given by a
nonnegative map f on Ω×Rd

×A such that (t, ω, x, a) 7→ ft (ω, x, a) is O(G)⊗B(Rd)⊗B(A)-
measurable, and which may be decomposed as

ft (x, a) = f 0
t (x, a0)1t<τ̂1 + f 1,1

t (x, a1,1, τ1, ζ1)1τ1≤t<τ2 + f 1,2
t (x, a1,2, τ2, ζ2)1τ2≤t<τ1

+ f 2
t (x, a2, τ1, τ2, ζ1, ζ2)1τ̂2≤T ,

for a = (a0, a1,1, a1,2, a2) ∈ A = A0× A1,1× A1,2× A2, where f 0 is O(F)⊗B(Rd)⊗B(A0)-
measurable, and f 1,1 is O(F) ⊗ B(Rd) ⊗ B(A1,1) ⊗ B(R+) ⊗ B(E)-measurable, f 1,2 is
O(F)⊗ B(Rd)⊗ B(A1,2)⊗ B(R+)⊗ B(E)-measurable and f 2 is O(F)⊗ B(Rd)⊗ B(A2)⊗

B(R2
+)⊗ B(E2)-measurable.
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The value function for the stochastic control problem is then defined by

V0(x) = sup
α∈AG

E
[∫ T

0
ft (X

x,α
t , αt )dt + GT (X

x,α
T )

]
, x ∈ Rd .

The main result of this section provides a decomposition of the value function in the reference
filtration, which is analogous to the decomposition in Theorem 4.1. To alleviate the notations, we
omit the dependence of the state process in the controls and in the parameters θ, e, when there is
no ambiguity.

Theorem 5.1. The value function V0 is obtained from the backward induction formula

V2(x, θ1, θ2, e1, e2) = ess sup
α2∈A2

F

E
[∫ T

θ1∨θ2

f 2
t (X

2,x
t , α2

t , θ1, θ2, e1, e2)γt (θ1, θ2, e1, e2)dt

+ G2
T (X

2,x
T , θ1, θ2, e1, e2)γT (θ1, θ2, e1, e2)

∣∣∣Fθ1∨θ2

]
V1,1(x, θ1, e1) = ess sup

α1,1∈A1,1
F

E
[∫ T

θ1

f 1,1
t (X1,1,x

t , α
1,1
t , θ1, e1)γ

1,1
t (θ1, e1)dt

+G1,1
T (X1,1,x

T , θ1, e1)γ
1,1
T (θ1, e1)

+

∫ T

θ1

∫
E

V2
(
Γ 2,2
θ2
(X1,1,x

θ2
, α

1,1
θ2
, e2), θ1, θ2, e1, e2

)
η(de2)dθ2

∣∣∣∣Fθ1

]
V1,2(x, θ2, e2) = ess sup

α1,2∈A1,2
F

E
[∫ T

θ2

f 1,2
t (X1,2,x

t , α
1,2
t , θ2, e2)γ

1,2
t (θ2, e2)dt

+G1,2
T (X1,2,x

T , θ2, e2)γ
1,2
T (θ2, e2)

+

∫ T

θ1

∫
E

V2
(
Γ 2,1
θ1
(X1,2,x

θ1
, α

1,2
θ1
, e1), θ1, θ2, e1, e2

)
η(de1)dθ1

∣∣∣∣Fθ2

]
V0(x) = sup

α0∈A0
F

E
[∫ T

0
f 0
t (X

0,x
t , α0

t )γ
0
t dt + G0

T (X
0,x
T )γ 0

T

+

∫ T

0

∫
E

V1,1
(
Γ 1,1
θ1
(X0,x

θ1
, α0
θ1
, e1), θ1, e1

)
η(de1)dθ1

+

∫ T

0

∫
E

V1,2
(
Γ 1,2
θ2
(X0,x

θ2
, α0
θ2
, e2), θ2, e2

)
η(de2)dθ2

]
,

for all (θ1, θ2) ∈ [0, T ]2, (e1, e2) ∈ E2.

Remark 5.1. As mentioned in Remark 4.1, the value functions V2, V1,1 and V1,2 correspond
to standard stochastic control problem in the F-filtration. This is also the case for V0 in the
decomposition formula of Theorem 5.1. Indeed, denote by V1 the map on Ω ×[0, T ]×Rd

× A0:

V1(x, θ, a0) =

∫
E

V1,1(Γ
1,1
θ (x, a0, e), θ, e)+ V1,2(Γ

1,2
θ (x, a0, e), θ, e)η(de).

Then, V0 is computed from the stochastic control problem in the F-filtration with the terminal
gain function G0

T weighted by the FT -measurable random variable γ 0
T , and with the running gain
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functions f 0γ 0 and V1:

V0(x) = sup
α0∈AF

E
[

G0
T (X

0,x
T )γ 0

T +

∫ T

0
f 0
t (X

0,x
t , α0

t )γ
0
t + V1(X

0,x
t , t, α0

t )dt

]
.

6. Applications in mathematical finance

6.1. Indifference pricing of defaultable claims

We consider a stock subject to a single counterparty default at a random time τ , which induces
a jump of random relative size ζ valued in E ⊂ (−1,∞). The price process of the stock is
described by

St = S0
t 1t<τ + S1

t (τ, ζ )1t≥τ ,

where S0 is governed by

dS0
t = S0

t

(
b0

t dt + σ 0
t dWt

)
,

and the indexed process S1(θ, e), (θ, e) ∈ R+ × E is given by

dS1
t (θ, e) = S1

t (θ, e)
(
b1

t (θ, e)dt + σ 1
t (θ, e)dWt

)
, t ≥ θ,

S1
θ (θ, e) = S0

θ (1+ e).

Here W is a (P,F)-Brownian motion, b0, σ 0 > 0 are F-adapted processes, b1, σ 1 > 0
∈ O1

F(R+, E). The market information is represented by the progressive enlarged filtration
G = F∨D, with D = (Dt )t≥0, Dt = ∩ε>0{σ(ζ1τ≤s, s ≤ t+ε)∨σ(1τ≤s, s ≤ t+ε)}. Denoting
by b, σ the G-adapted processes: bt = b0

t 1t<τ + b1
t (τ, ζ )1t≥τ , σt = σ

0
t 1t<τ + σ

1
t (τ, ζ )1t≥τ , and

by µ(dt, de) the random measure associated to (τ, ζ ), we can write the dynamics of the stock
price under G as:

dSt = St−

(
bt dt + σt dWt +

∫
eµ(dt, de)

)
,

where W is a (P,G)-semimartingale under the density hypothesis. By Girsanov’s theorem and
under suitable integrability conditions on the model coefficients, one can find a probability
measure Q ∼ P such that S is a (Q,G)-local martingale, so that this model is arbitrage-free
(see the discussion in Remark 2.3 in [14] for more details). An investor can trade in a riskless
bond with zero interest rate, and in the defaultable stock. Her trading strategy is a G-predictable
process α = (α0, α1) ∈ PF ×P 1

F(R+, E) representing the amount traded in the stock. We allow
constraints on the trading strategy by considering closed sets A0 and A1 in which the controls α0

and α1 take values. Notice also that A0 and A1 may differ. The controlled wealth process of the
investor is then given by

X t = X0
t 1t<τ + X1

t (τ, ζ )1t≥τ , (6.1)

where X0 is the wealth process before the default, and governed by

dX0
t = α

0
t

dS0
t

S0
t
= α0

t (b
0
t dt + σ 0

t dWt ),
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and X1(θ, e) is the wealth indexed process after-default, governed by

dX1
t (θ, e) = α1

t (θ, e)
dS1

t (θ, e)

S1
t (θ, e)

= α1
t (θ, e)

(
b1

t (θ, e)dt + σ 1
t (θ, e)dWt

)
, t ≥ θ

X1
θ (θ, e) = X0

θ + α
0
θ e.

Let us now consider a defaultable contingent claim with payoff at maturity T given by

HT = H0
T 1T<τ + H1

T (τ, ζ )1τ≤T ,

where H0
T is a bounded FT -measurable random variable, and H1

T (, ) is a bounded FT ⊗

B(R+) ⊗ B(E)-measurable map. We use the popular indifference pricing criterion for valuing
this defaultable claim. We are then given an exponential utility function U on R, i.e.

U (x) = − exp(−px), x ∈ R,

for some p > 0, and we consider the optimal investment problem for an agent delivering the
defaultable claim at maturity T :

V H
0 (x) = sup

α∈AG
E
[
U (X x,α

T − HT )
]
. (6.2)

Here X x,α is the wealth process in (6.1) controlled by the trading strategy α, and starting from
x at time 0. We denote by V0 the value function for the optimal investment problem without the
defaultable claim, i.e. when HT = 0 in (6.2), and the indifference price for HT is the amount of
initial capital such that the investor is indifferent between holding or not the defaultable claim. It
is then defined as the unique number π such that

V H
0 (x + π) = V0(x).

A similar problem (without unpredictable mark ζ ) was recently considered in [15,1] by using
a global G-filtration approach under (H) hypothesis, see also [19]. The paper [14] studied an
optimal investment problem with power utility functions under a single counterparty default
by using a density approach for decomposing the problem in the F-filtration. We follow this
methodology and solve the stochastic control problem (6.2) by applying the F-decomposition
method. From Theorem 4.1, the value function V H

0 is obtained in two steps via the resolution of
the after-default problem

V H
1 (x, θ, e) = ess sup

α1∈A1
F

E
[
U
(
X1,x

T (θ, e)− H1
T (θ, e)

)
γT (θ, e)

∣∣∣Fθ

]
, (6.3)

and then via the resolution of the before-default problem

V H
0 (x) = sup

α0∈A0
F

E
[
U (X0,x

T − H0
T )γ

0
T +

∫ T

0

∫
E

V H
1 (X

0,x
θ + α

0
θ e, θ, e)η(de)dθ

]
. (6.4)

• Solution to the after-default problem.
For fixed (θ, e) ∈ [0, T ] × E , problem (6.3) is a classical utility maximization problem with

random endowment in the complete market model after default described by the indexed price
process S1(θ, e). Indeed, notice that we can remove the positive term γT (θ, e) in (6.3) by defining
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the “modified claim” H̃1
T (θ, e) = H1

T (θ, e)+ 1
p ln γT (θ, e) so that

V H
1 (x, θ, e) = ess sup

α1∈A1
F

E
[
U
(
X1,x

T (θ, e)− H̃1
T (θ, e)

)∣∣∣Fθ

]
. (6.5)

This problem was addressed by several methods in the literature, and we know from dynamic
programming and BSDE methods (see [21] or [8]) that

V H
1 (x, θ, e) = U

(
x − Y 1,H

θ (θ, e)
)

where Y 1,H (θ, e) is the unique bounded solution to the BSDE

Y 1,H
t (θ, e) = H1

T (θ, e)+
1
p

ln γT (θ, e)+
∫ T

t
f 1(r, Z1,H

r , θ, e)dr −
∫ T

t
Z1,H

r dWr

and the generator f 1 is the P(F)⊗ B(R)⊗ B(R+)⊗ B(E)-measurable map defined by

f 1(t, z, θ, e) = −
b1

t (θ, e)

σ 1
t (θ, e)

z

−
1

2p

(
b1

t (θ, e)

σ 1
t (θ, e)

)2

+
p

2
inf

a∈A1

∣∣∣∣ (z +
1
p

b1
t (θ, e)

σ 1
t (θ, e)

)
− aσ 1

t (θ, e)

∣∣∣∣2 .
• Global solution

The global solution is finally obtained from the resolution of the before-default problem,
which is then reduced to

V H
0 (x) = sup

α0∈A0
F

E
[

U (X0,x
T − H0

T )γ
0
T +

∫ T

0

∫
E

U (X0,x
θ + α

0
θ e − Y 1,H

θ (θ, e))η(de)dθ
]
.

From the additive dependence of the wealth process X0,x in function of x , and the exponential
form of the utility function U , we know that the value function V H

0 is in the form

V H
0 (x) = U (x − Y 0,H

0 ),

for some quantity Y 0,H
0 independent of x , and which may be characterized by dynamic

programming methods in the F-filtration. This can be achieved either via PDE methods in a
Markovian setting, or via BSDE methods in the general case. The BSDE associated to Y 0,H is

Y 0,H
t = H0

T +
1
p

ln γ 0
T +

∫ T

t
f 0,H (r, Y 0,H

r , Z0,H
r )dr −

∫ T

t
Z0,H

r dWr , (6.6)

where the generator f 0,H is the O(F)⊗ B(R)⊗ B(R)-measurable map defined by

f 0,H (t, y, z) = −
b0

t

σ 0
t

z −
1

2p

(
b0

t

σ 0
t

)2

+
p

2
inf

a∈A0

∣∣∣∣ (z +
1
p

b0
t

σ 0
t

)
− aσ 0

t +
2
p

U (y)
∫

E
U
(
ae − Y 1,H

t (t, e)
)
η(de)

∣∣∣∣2. (6.7)

The solution to the optimal investment problem without defaultable claim is obtained similarly
as for the case with claim, by considering H = 0. We thus have V0(x) = U (x − Y 0

0 ), where the
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BSDE associated to Y 0 is given by

Y 0
t =

1
p

ln γ 0
T +

∫ T

t
f 0(r, Y 0

r , Z0
r )dr −

∫ T

t
Z0

r dWr ,

with a generator f 0 as in (6.7) for H = 0, i.e. Y 1,H replaced by Y 1 solution to the BSDE

Y 1
t (θ, e) =

1
p

ln γT (θ, e)+
∫ T

t
f 1(r, Z1

r , θ, e)dr −
∫ T

t
Z1

r dWr .

Finally, the indifference price is given by

π = Y 0,H
0 − Y 0

0 .

Remark 6.1. Notice that the quadratic generator f 0,H in (6.7) of the BSDE (6.6) is not standard
due to the additional term arising from the integral gain involving Y 1,H . However, one can prove
the existence and uniqueness of this BSDE and obtain a verification theorem relating the solution
of this BSDE to the original value function by choosing a suitable set of admissible controls
AG = A0

F ×A1
F. The details are provided in the companion paper [13]. Actually, in this related

paper, we consider a multi-dimensional extension of the above model with assets subject to
successive counterparty default times, and we apply the F-decomposition method for solving the
indifference pricing of defaultable claims, including credit derivatives such as CDOs.

6.2. Optimal investment under bilateral counterparty risk

We consider a portfolio with two names, each one subject to an external counterparty default,
but also to the default of the other one due to a contagion effect. We denote by S1 and S2 the
value process of these two names, by τ1 and τ2 their default times, not necessarily ordered, and
by τ̂1 = min(τ1, τ2), τ̂2 = max(τ1, τ2). Once the name i defaults at random time τi , meaning
that the value of Si drops to zero, it also incurs a jump (drop or gain) on the other value process
S j , i, j ∈ {1, 2}, i 6= j .

The reference filtration F is the filtration generated by a two-dimensional Brownian motion
W = (W 1,W 2), driving the evolution of the names in absence of defaults, and the global market
information is represented by G = F ∨ D1

∨ D2, with Di
= (Di

t )t≥0, Di
t = ∩ε>0 σ(1τi≤s,

s ≤ t + ε), i = 1, 2.
The G-adapted value processes Si of names i = 1, 2, are given by

Si
t = Si,0

t 1t<τ̂1 + Si, j
t (τ j )1τ j≤t<τi , t ≥ 0, i, j = 1, 2, i 6= j,

where S0
= (S1,0, S2,0) is the vector price process of the two names in absence of any default,

governed by

dS0
t = diag(S0

t )
(
b0

t dt + σ 0
t dWt

)
,

b0
= (b1,0, b2,0) is F-adapted, σ 0 is the 2×2-diagonal F-adapted matrix with diagonal diffusion

coefficients σ 1,0 > 0, σ 2,0 > 0, and the indexed process Si, j (θ j ), θ j ∈ R+, representing the
price process of name i after the default of name j at time θ j , is given by

dSi, j
t (θ j ) = dSi, j

t (θ j )
(
bi, j

t (θ j )dt + σ i, j
t (θ j )dW i

t

)
, t ≥ θ j ,

Si, j
θ j
(θ j ) = Si,0

θ j
.(1+ ei, j ),
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where ei, j represents the proportional jump induced by the default of name j on name i , and
assumed constant for simplicity and valued in (−1,∞). The coefficients bi,0, σ i,0 > 0 are
F-adapted processes, and bi, j , σ i, j > 0 are in O1

F(R+). As in the model of Section 6.1, each
asset price process is a (P,G)-semimartingale with nondegenerate diffusion term as long as it
can be traded, and so the two-assets model is arbitrage-free.

The trading strategy of the investor is a G-predictable measurable process α representing the
fraction of wealth invested in the two names. It is then decomposed in four components: the
first component α0 is a pair of F-predictable processes representing the fraction invested in the
two names before any default, the second component α1,1 is an indexed F-predictable process
representing the fraction invested in the name 2 when the name 1 defaults, the third component
α1,2 is an indexed F-predictable process representing the fraction invested in the name 1 when
the name 2 defaults, and the fourth component is zero when both names default. The wealth
process of the investor is then given by

X t = X0
t 1t<τ̂1 + X1,1

t (τ1)1τ1≤t<τ2 + X1,2
t (τ2)1τ2≤t<τ1 + X2

t (τ1, τ2)1t≥τ̂2 ,

where X0 is the wealth process before any default, governed by

dX0
t = X0

t (α
0
t )
′diag(S0

t )
−1dS0

t

= X0
t

(
α0

t .b
0
t dt + (α0

t )
′σ 0

t dWt
)
,

X1,1(θ1) is the wealth indexed process after default of name 1, governed by

dX1,1
t (θ1) = X1,1

t (θ1)α
1,1
t (θ1)

dS2,1
t (θ1)

S2,1
t (θ1)

, t ≥ θ1

X1,1
θ1
(θ1) = X0

θ1
.(1+ α0

θ1
.(−1, e2,1)),

X1,2(θ2) is the wealth indexed process after default of name 2, governed by

dX1,2
t (θ2) = X1,2

t (θ2)α
1,2
t (θ2)

dS1,2
t (θ2)

S1,2
t (θ2)

, t ≥ θ2

X1,2
θ2
(θ2) = X0

θ2
.
(
1+ α0

θ2
.(e1,2,−1)

)
,

and X2(θ1, θ2) is the wealth indexed process after both defaults, hence constant after θ1∨θ2, and
then given by

X2
t (θ1, θ2) =

{
X1,1
θ2
(θ1).

(
1− α1,1

θ2
(θ1)

)
, θ1 ≤ θ2 ≤ t

X1,2
θ1
(θ2).

(
1− α1,2

θ1
(θ2)

)
, θ2 < θ1 ≤ t.

In order to ensure that the wealth process is strictly positive, we assume that α0 is valued in a
closed subset A0 ⊂ {a ∈ R2

: 1+ a.(−1, e2,1) > 0, and 1+ a.(e1,2,−1) > 0}, and α1,1, α1,2

are valued respectively in closed subsets A1,1, A1,2 ⊂ (−∞, 1).
We are next given a utility function U on R+, over a finite horizon T , and we consider the

optimal investment problem

V0(x) = sup
α∈AG

E
[
U (X x,α

T )
]
. (6.8)
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We use the F-decomposition method of Section 5 for the resolution of (6.8). From
Theorem 5.1, the value function V0 is obtained via the following backward induction formula:

V2(x, θ1, θ2) = U (x)E
[
γT (θ1, θ2)|Fθ1∨θ2

]
:= U (x)γ̄ (θ1, θ2)

V1,1(x, θ1) = ess sup
α1,1∈A1,1

F

E
[

U (X1,1,x
T )γ

1,1
T (θ1)+

∫ T

θ1

U
(

X1,1
θ2
.
(

1− α1,1
θ2

))
γ̄ (θ1, θ2)dθ2

∣∣∣∣∣Fθ1

]

V1,2(x, θ2) = ess sup
α1,2∈A1,2

F

E
[

U (X1,2,x
T )γ

1,2
T (θ2)+

∫ T

θ2

U
(

X1,2
θ1
.
(

1− α1,2
θ1

))
γ̄ (θ1, θ2)dθ1

∣∣∣∣∣Fθ2

]

V0(x) = sup
α0∈A0

F

E
[

U (X0,x
T )γ 0

T +

∫ T

0
V1,1

(
X0
θ .
(

1+ α0
θ .(−1, e2,1)

)
, θ)

+ V1,2

(
X0
θ .
(

1+ α0
θ .(e

1,2,−1)
)
, θ
)

dθ

]
.

In the sequel, we consider the power utility functions

U (x) =
1
p

x p, x ≥ 0, p < 1, p 6= 0,

and we use dynamic programming and BSDE methods in the F-filtration to solve the above
stochastic control problems. The value functions V1,1 and V1,2 are then in the form

V1,1(x, θ1) = U (x)Y 1,1
θ1
(θ1), V1,2(x, θ2) = U (x)Y 1,2

θ2
(θ2),

where Y 1,1(θ1) and Y 1,2(θ2) are solutions to the BSDEs:

Y 1,1
t (θ1) = γ

1,1
T (θ1)+

∫ T

t
f1,1(r, Y 1,1

r (θ1), Z1,1
r (θ1), θ1)dr −

∫ T

t
Z1,1

r (θ1)dW 2
r ,

Y 1,2
t (θ2) = γ

1,2
T (θ2)+

∫ T

t
f1,2(r, Y 1,2

r (θ2), Z1,2
r (θ2), θ2)dr,−

∫ T

t
Z1,2

r (θ2)dW 1
r

with generators

f1,1(t, y, z, θ1) = p sup
a∈A1,1

[(
b2,1

t (θ1)y + σ
2,1
t (θ1)z

)
a −

1− p

2
y|σ 2,1

t (θ1)a|
2

+ γ̄ (θ1, t)
(1− a)p

p

]
f1,2(t, y, z, θ2) = p sup

a∈A1,2

[(
b1,2

t (θ2)y + σ
1,2
t (θ2)z

)
a −

1− p

2
y|σ 1,2

t (θ2)a|
2

+ γ̄ (t, θ2)
(1− a)p

p

]
.

Finally, we have

V0(x) = U (x)Y0,
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where Y 0 is the solution to the BSDE

Y 0
t = γ

0
T +

∫ T

t
f0(r, Y 0

r , Z0
r )dr −

∫ T

t
Z0

r .dWr ,

with a generator

f0(t, y, z) = p sup
a∈A0

[(
yb0

t + σ
0
t z).a −

1− p

2
y|σ 0

t a|2

+ Y 1,1
t (t)

(1+ a.(−1, e2,1))p

p
+ Y 1,2

t (t)
(1+ a.(e1,2,−1))p

p

]
.

The details and rigorous mathematical treatment of the above derivation are studied in [13],
where we prove the existence and uniqueness of the solutions to these BSDEs, and that they are
indeed related to the original value functions of our optimal investment problem.
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