
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 126 (2016) 2388–2409
www.elsevier.com/locate/spa

Evolutionary games on the torus with weak selection

J. Theodore Coxa,1, Rick Durrettb,∗,1

a Department of Math., 215 Carnegie Building, Syracuse U., Syracuse NY, 13244-1150, United States
b Department of Math., Duke U., P.O. Box 90320, Durham NC, 27708-0320, United States

Received 7 December 2015; received in revised form 1 February 2016; accepted 3 February 2016
Available online 2 March 2016

Abstract

We study evolutionary games on the torus with N points in dimensions d ≥ 3. The matrices have the
form Ḡ = 1+wG, where 1 is a matrix that consists of all 1’s, andw is small. As in Cox Durrett and Perkins
(2011) we rescale time and space and take a limit as N → ∞ and w → 0. If (i) w ≫ N−2/d then the limit
is a PDE on Rd . If (ii) N−2/d

≫ w ≫ N−1, then the limit is an ODE. If (iii) w ≪ N−1 then the effect of
selection vanishes in the limit. In regime (ii) if we introduce mutations at rate µ so that µ/w → ∞ slowly
enough then we arrive at Tarnita’s formula that describes how the equilibrium frequencies are shifted due
to selection.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Here we will be interested in n-strategy evolutionary games on the torus TL = (Z mod L)d .
Throughout the paper we will suppose that n ≥ 2 and d ≥ 3. The dynamics are described by a
game matrix Gi, j that gives the payoff to a player who plays strategy i against an opponent who
plays strategy j . As in [7,8], we will study games with matrices of the form Ḡ = 1 +wG, and 1
is a matrix that consists of all 1’s, and w = ϵ2. We use two notations for the small parameter to
make it easier to connect with the literature.
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There are two commonly used update rules. To define them introduce

Assumption 1. Let p be a probability distribution on Zd with finite range, p(0) = 0 and that
satisfies the following symmetry assumptions.

• If π is a permutation of {1, 2, . . . , d} and (π z)i = zπ(i) then p(π z) = p(z).
• If we let ẑi

i = −zi and ẑi
j = z j for j ≠ i then p(ẑi ) = p(z).

For example, if p(z) = f (∥z∥p) where ∥z∥p is the L p norm on Zd with 1 ≤ p ≤ ∞ then the
symmetry assumptions are satisfied.

Birth–Death Dynamics. In this version of the model, a site x gives birth at a rate equal to its
fitness

ψ(x) =


y

p(y − x)Ḡ(ξ(x), ξ(y))

and the offspring, which uses the same strategy as the parent, replaces a “randomly chosen
neighbor of x”. Here, and in what follows, the phrase in quotes means z is chosen with probability
p(z − x). Note that we use the same transition probability to compute the fitness and do the
displacement. In general they can be different.

Death–Birth Dynamics. In this case, each site x dies at rate 1 and is replaced by the offspring
of a neighbor y chosen with probability proportional to p(y − x)ψ(y).

Tarnita et al. [23,24] have studied the behavior of evolutionary games on more general graphs
when w = o(1/N ) and N is the number of vertices. To describe their results, we begin with the
two strategy game written as

G =

1 2
1 α β

2 γ δ.

(1)

In [23] strategy 1 is said to be favored by selection (written 1 > 2) if the frequency of 1 in
equilibrium is >1/2 when w is small. Assuming that

(i) the transition probabilities are differentiable at w = 0,

(ii) the update rule is symmetric for the two strategies, and

(iii) strategy 1 is not disfavored in the game given with β = 1 and α = γ = δ = 0

they argued that

I. 1 > 2 is equivalent to σα+β > γ +σδ where σ is a constant that only depends on the spatial
structure and update rule.

In [8] it was shown that for games on Zd with d ≥ 3.

Theorem 1. I holds for the Birth–Death updating with σ = 1 and for the Death–Birth updating
with σ = (κ + 1)/(κ − 1) where

κ = 1


x
p(x)p(−x) (2)

is the effective number of neighbors.
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The name for κ comes from the fact that if each p(z) ∈ {0, 1/m} for all z then κ = m.
In [24] strategy k is said to be favored by selection in an n strategy game if, in the presence

of weak selection, i.e., w is small its frequency in equilibrium is >1/n. To state their result we
need some notation.

Ĝ∗,∗ =
1
n

n
i=1

Gi,i Ĝk,∗ =
1
n

n
i=1

Gk,i

Ĝ∗,k =
1
n

n
i=1

Gi,k Ĝ =
1

n2

n
i=1

n
j=1

Gi, j

where ∗’s indicate values that have been summed over. To make it easier for us to prove the result
and to have nicer constants, we will rewrite their condition for strategy k to be favored as

α1(Ĝk,∗ − Ĝ)+ α2(Gk,k − Ĝ∗,∗)+ α3(Ĝk,∗ − Ĝ∗,k) > 0 (3)

and refer to it as Tarnita’s formula. The parameters αi depend on the population structure and
the update rule, but they do not depend on the number of strategies or on the entries Gi, j of the
payoff matrix. In [24] they divide by α3 so σ2 = α1/α3 and σ1 = α2/α3.

When n > 2, (3) is different from the result for almost constant sum three strategy games on
Zd proved in [8]. The condition (3) is linear in the entries in the game matrix while the condition
(8.13) in [8] for the infinite graph is quadratic. This paper arose from an attempt to understand
this discrepancy. The resolution, as we will explain, is that the two formulas apply to different
weak selection regimes.

The path we take to reach this conclusion is somewhat lengthy. In Section 2, we introduce
the voter model and describe its duality with coalescing random walk. Section 3 introduces the
voter model perturbations studied by Cox, Durrett, and Perkins [7]. Section 4 states their result
that when space and time are scaled appropriately, the limit is a partial differential equation. The
limit PDE is then computed for birth–death and death–birth updating. They are reaction diffusion
equations with a reaction term that is a cubic polynomial. Section 5 uses the PDE limit to analyze
2 × 2 games. Section 6 introduces a duality for voter model perturbations, which is the key to
their analysis. Section 7 gives our results for regimes (i) and (ii) in the abstract and our version
of Tarnita’s formula for games with n ≥ 3 strategies. Sections 8–11 are devoted to proofs.

2. Voter model

Our results for evolutionary games are derived from results for a more general class of
processes called voter model perturbations. To introduce those we must first describe the voter
model. The state of the voter model at time t is ξt : Zd

→ S where S is a finite set of states, and
ξt (x) gives the state of the individual at x at time t . To formulate this class of models, let p(z) be
a probability distribution on Zd satisfying the conditions in Assumption 1. In the voter model,
the rate at which the voter at x changes its opinion from i to j is

cvi, j (x, ξ) = 1(ξ(x)=i) f j (x, ξ),

where f j (x, ξ) =


y p(y − x)1(ξ(y) = j) is the probability that a neighbor of x chosen at
random is in state i . In words at times of a rate 1 Poisson process the voter at x wakes up and
with probability p(y − x) imitates the opinion of the individual at y.

To analyze the voter model it is convenient to construct the process on a graphical
representation introduced by Harris [14] and further developed by Griffeath [13]. For each
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Fig. 1. Voter model graphical representation and duality.

x ∈ Zd and y with p(y − x) > 0 let T x,y
n , n ≥ 1 be the arrival times of a Poisson process with

rate p(y − x). At the times T x,y
n , n ≥ 1, the voter at x decides to change its opinion to match the

one at y. To indicate this, we draw an arrow from (x, T x,y
n ) to (y, T x,y

n ). To calculate the state
of the voter model on a finite set, we start at the bottom and work our way up determining what
should happen at each arrow. A nice feature of this approach is that it simultaneously constructs
the process for all initial conditions so that if ξ0(x) ≤ ξ ′

0(x) for all x then for all t > 0 we have
ξt (x) ≤ ξ ′

t (x) for all x .
To define the dual process we start with ζ x,t

0 = x and work down the graphical representation.
The process stays at x until the first time t − r that it encounters the tail of an arrow x . At this
time, the particle jumps to the site y at the head of the arrow, i.e., ζ x,t

r = y. The particle stays at
y until the next time the tail of an arrow is encountered and then jumps to the head of the arrow
etc. Intuitively ζ x,t

s gives the source at time t − s of the opinion at x at time t so for all s ∈ [0, t]

ξt (x) = ξt−s(ζ
x,t
s ).

The example in Fig. 1 should help explain the definitions. The family of particles ζ x,t
s are

coalescing random walk. Each particle at rate 1 makes jumps according to p. If a particle ζ x,t
s

lands on the site occupied by ζ y,t
s they coalesce to 1, and we know that ξt (x) = ξt (y). The dark

lines indicate the locations of the two dual particles that coalesce.
Using duality it is easy to analyze the asymptotic behavior of the voter model. The results we

are about to quote were proved by Holley and Liggett [16], and can also be found in Liggett’s
book [17]. In dimensions 1 and 2, random walks satisfying our assumptions are recurrent, so the
voter model clusters, i.e.,

P(ξt (x) ≠ ξt (y)) ≤ P(ζ x,t
t ≠ ζ

x,t
t ) → 0.

In d ≥ 3 random walks are transient so differences in opinion persist as t → ∞. Consider, for
simplicity, the case of two opinions, 0 and 1. Let ξu

t be the voter model starting from product
measure with density u, i.e., the initial voter opinions are independent and = 1 with probability
u. As t → ∞, ξu

t converges to a limit distribution νu .
A consequence of this duality relation is that if we let p(0|x) be the probability that two

continuous time random walks, one starting at the origin 0, and one starting at x never hit then

νu(ξ(0) = 1, ξ(x) = 0) = p(0|x)u(1 − u) (4)
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since in order for the two opinions to be different at time t , the corresponding random walks
cannot hit, and they must land on sites with the indicated opinions, an event of probability
u(1 − u).

To extend this reasoning to three sites, consider random walks starting at 0, x , and y. Let
p(0|x |y) be the probability that the three random walks never hit and let p(0|x, y) be the
probability that the walks starting from x and y coalesce, but they do not hit the one starting
at 0. Considering the possibilities that the walks starting from x and y may or may not coalesce:

νu(ξ(0) = 1, ξ(x) = 0, ξ(y) = 0) = p(0|x |y)u(1 − u)2 + p(0|x, y)u(1 − u). (5)

All the finite dimensional distributions of νu can be computed in this way.

3. Voter model perturbations

The processes that we consider have flip rates

cvi, j (x, ξ)+ ϵ2hϵi, j (x, ξ). (6)

The perturbation functions hϵi j , j ≠ i , may be negative but in order for the analysis in [7] to

work, there must be a law q of (Y 1, . . . , Y M ) ∈ (Zd)M and functions gϵi, j ≥ 0, which converge
to limits gi, j as ϵ → 0, so that for some γ < ∞, we have for ϵ ≤ ϵ0

hϵi, j (x, ξ) = −γ fi (x, ξ)+ EY [gϵi, j (ξ(x + Y 1), . . . ξ(x + Y M ))]. (7)

In words, we can make the perturbation positive by adding a positive multiple of the voter flip
rates. This is needed so that [7] can use gϵi, j to define jump rates of a Markov process.

For simplicity we will assume that both p and q are finite range. Applying Proposition 1.1
of [7] now implies the existence of suitable gϵi, j and that all our calculations can be done using
the original perturbation. However, to use Theorems 1.4 and 1.5 in [7] we need to suppose that

hi, j = lim
ϵ→0

hϵi, j (8)

has |hi, j (ξ)− hϵi, j (ξ)| ≤ Cϵr for some r > 0, see (1.41) in [7].

Birth–Death Dynamics. If we let ri, j (0, ξ) be the rate at which the state of 0 flips from i to j ,

ri, j (0, ξ) =


x

p(x)1(ξ(x) = j)


y
p(y − x)Ḡ( j, ξ(y))

=


x

p(x)1(ξ(x) = j)


1 + ϵ2


k

fk(x, ξ)G j,k


= f j (0, ξ)+ ϵ2


k

f (2)j,k (0, ξ)G j,k, (9)

where f (2)j,k (0, ξ) =


x


y p(x)p(y − x)1(ξ(x) = j, ξ(y) = k). Thus the perturbation, which
does not depend on ϵ is

hi, j (0, ξ) =


k

f (2)j,k (0, ξ)G j,k . (10)

If p is uniform on the nearest neighbors of 0, then q is nonrandom and Y 1, . . . , Y m is a listing of
the nearest and next nearest neighbors of 0.
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Death–Birth Dynamics. Using the notation in (9) the rate at which ξ(0) = i jumps to state j is

r̄i, j (0, ξ) =
ri, j (0, ξ)

k
ri,k(0, ξ)

=
f j (0, ξ)+ ϵ2hi, j (0, ξ)

1 + ϵ2

k

hi,k(0, ξ)

= f j (0, ξ)+ ϵ2hi, j (0, ξ)− ϵ2 f j (0, ξ)


k

hi,k(0, ξ)+ O(ϵ4). (11)

The new perturbation, which depends on ϵ, is

h̄ϵi, j (0, ξ) = hi, j (0, ξ)− f j (0, ξ)


k

hi,k(0, ξ)+ O(ϵ2). (12)

As noted above the technical condition (7) holds because p has finite range. (8) holds with r = 2.

4. PDE limit

Let ξ ϵt be the process with flip rates given in (6). The next result is the key to the analysis of
voter model perturbations on Zd . Intuitively, it says that if we rescale space to ϵZd and speed
up time by ϵ−2 the process converges to the solution of a partial differential equation. The first
thing we have to do is to define the mode of convergence. Given r ∈ (0, 1), let aϵ = ⌈ϵr−1

⌉ϵ,
Qϵ = [0, aϵ)d , and |Qϵ | the number of points in Qϵ . For x ∈ aϵZd and ξ ∈ Ωϵ the space of all
functions from ϵZd to S let

Di (x, ξ) = |{y ∈ Qϵ : ξ(x + y) = i}|/|Qϵ |.

We endow Ωϵ with the σ -field Fϵ generated by the finite-dimensional distributions. Given a
sequence of measures λϵ on (Ωϵ,Fϵ) and continuous functionswi , we say that λϵ has asymptotic
densities wi if for all 0 < δ, R < ∞ and all i ∈ S

lim
ϵ→0

sup
x∈aϵZd ,|x |≤R

λϵ(|Di (x, ξ)− wi (x)| > δ) = 0.

Theorem 2. Suppose d ≥ 3. Let wi : Rd
→ [0, 1] be continuous with


i∈S wi = 1. Suppose

the initial conditions ξ ϵ0 have laws λϵ with local densities wi and let

uϵi (t, x) = P(ξ ϵtϵ−2(x) = i).

If xϵ → x then uϵi (t, xϵ) → ui (t, x) the solution of the system of partial differential equations:

∂

∂t
ui (t, x) =

σ 2

2
∆ui (t, x)+ φi (u(t, x)) (13)

with initial condition ui (0, x) = wi (x). The reaction term

φi (u) =


j≠i

⟨1(ξ(0)= j)h j,i (0, ξ)− 1(ξ(0)=i)hi, j (0, ξ)⟩u (14)

where the brackets are expected value with respect to the voter model stationary distribution νu
in which the densities are given by the vector u.

This result is Theorem 1.2 in [7]. Intuitively, on the fast time scale the voter model runs at rate
ϵ−2 versus the perturbation at rate 1, so the process is always close to the voter equilibrium for
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the current density vector u. Thus, we can compute the rate of change of ui by assuming the
nearby sites are in that voter model equilibrium.

In a homogeneously mixing population the frequencies of the strategies in an evolutionary
game follow the replicator equation, see e.g., Hofbauer and Sigmund’s book [15]:

dui

dt
= φi

R(u) ≡ ui


k

Gi,kuk −


j,k

u j G j,kuk


. (15)

We will now compute the reaction terms φi for our two examples.

Birth–Death Dynamics. On Zd we let vi be independent with P(vi = x) = p(x). Let

p1 = p(0|v1|v1 + v2) and p2 = p(0|v1, v1 + v2)

where the p’s are defined just before (5). In this case the limiting PDE in Theorem 2 is
∂ui/∂t = (1/2d)∆u + φi

B(u) where

φi
B(u) = p1φ

i
R(u)+ p2


j≠i

ui u j (Gi,i − G j,i + Gi, j − G j, j ). (16)

See Section 12 of [8] for a proof. Formula (4.8) in [8] implies that

2p(0|v1, v1 + v2) = p(0|v1)− p(0|v1|v1 + v2),

so it is enough to know the two probabilities on the right-hand side.
If coalescence is impossible then p1 = 1 and p2 = 0 so φi

B = φi
R . There is a second more

useful connection to the replicator equation. Let

Ai, j =
p2

p1
(Gi,i + Gi, j − G j,i − G j, j ).

The matrix A is skew symmetric. That is, Ai,i = 0 and if i ≠ j Ai, j = −A j,i . This implies
i, j ui Ai, j u j = 0 and it follows that φi

B(u) is p1 times the RHS of the replicator equation for
the game matrix A + G. This observation is due to Ohtsuki and Nowak [22] who studied the
limiting ODE that arises from the pair approximation.

Death–Birth Dynamics. On Zd we let vi be independent with P(vi = x) = p(x), let

p̄1 = p(v1|v2|v2 + v3) and p̄2 = p(v1|v2, v2 + v3).

With Death–Birth updating the limiting PDE is ∂ui/∂t = (1/2d)∆u + φi
D(u) where

φi
D(u) = p̄1φ

i
R(u)+ p̄2


j≠i

ui u j (Gi,i − G j,i + Gi, j − G j, j )

− (1/κ)p(v1|v2)

j≠i

ui u j (Gi, j − G j,i ) (17)

where κ = 1/P(v1 +v2 = 0) is the “effective number of neighbors”. Again see Section 12 of [8]
for a proof. The first two terms are the ones in (16) with pi replaced by p̄i . The similarity is not
surprising since the numerators of the flip rates in (11) are the flip rates in (9). The third term
comes from the denominator in (11). Formula (4.9) in [8] implies that

2p(v1|v2, v2 + v3) = (1 + 1/κ)p(v1|v2)− p(v1|v2|v2 + v3),

so again it is enough to know the two probabilities on the right-hand side.
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As in the Birth–Death case, if we let

Āi, j =
p̄2

p̄1
(Gi,i + Gi, j − G j,i − G j, j )−

p(v1|v2)

κ p̄1
(Gi, j − G j,i ),

then φD
i (u) is p̄1 times the RHS of the replicator equation for Ā + G.

5. Two strategy games

In a homogeneously mixing population playing the game G in (1), the fraction of individuals
playing the first strategy, u, evolves according to the replicator equation (15):

du

dt
= u{αu + β(1 − u)− u[αu + β(1 − u)] − (1 − u)[γ u + δ(1 − u)]}

= u(1 − u)[β − δ + Γu] ≡ φR(u) (18)

where we have introduced Γ = α − β − γ + δ. Note that φR(u) is a cubic with roots at 0 and at
1. If there is a fixed point in (0, 1) it occurs at

ū =
β − δ

β − δ + γ − α
. (19)

Using results from the previous section gives the following.

Birth–Death Dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u + φB(u) where φB(u) is p1
times the RHS of the replicator equation for the game

α β + θ

γ − θ δ


(20)

and θ = (p2/p1)(α + β − γ − δ).

Death–Birth Dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u + φD(u) where φD(u) is p̄1
times the RHS of the replicator equation for the game in (20) but now

θ =
p̄2

p̄1
(α + β − γ − δ)−

p(v1|v2)

κ p̄1
(β − γ ).

5.1. Analysis of 2 × 2 games

Suppose that the limiting PDE is ∂u/∂t = (1/2d)∆u + φ(u) where φ is a cubic with roots at
0 and 1. There are four possibilities

S1 ū attracting φ′(0) > 0, φ′(1) > 0
S2 ū repelling φ′(0) < 0, φ′(1) < 0
S3 φ < 0 on (0, 1) φ′(0) < 0, φ′(1) > 0
S4 φ > 0 on (0, 1) φ′(0) > 0, φ′(1) < 0.

To see this, we draw a picture. For convenience, we have drawn the cubic as a piecewise linear
function.
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We say that i ’s take over if for all K

P(ξs(x) = i for all x ∈ [−K , K ]
d and all s ≥ t) → 1 as t → ∞.

Let Ω0 be the configurations with infinitely many 1’s and infinitely many 2’s. We say that
coexistence occurs if there is a stationary distribution µ for the spatial model with µ(Ω0) = 1.
The next result follows from Theorems 1.4 and 1.5 in [7]. The PDE assumptions and the other
conditions can be checked as in the arguments in Section I.4 of [7] for the Lotka–Volterra system.
Intuitively, the result says that the behavior of the particle system for small ϵ is the same as that
of the PDE.

Theorem 3. If ϵ < ϵ0(G), then: In case S3, 2’s take over. In case S4, 1’s take over. In case S2, 1’s
take over if ū < 1/2, and 2’s take over if ū > 1/2. In case S1, coexistence occurs. Furthermore,
if δ > 0 and ϵ < ϵ0(G, δ) then any stationary distribution with µ(Ω0) = 1 has

sup
x

|µ(ξ(x) = 1)− ū| < δ.

This result, after some algebra gives Tarnita’s formula for two person games, Theorem 1. The
key observation is

Lemma 1. 1 > 2 if and only if the reaction term in the PDE has φ(1/2) > 0.

Proof. Clearly φ(1/2) > 0 in case S4 but not S3. In case S1, φ(1/2) > 0 implies ū > 1/2, while
in case S2 φ(1/2) > 0 implies ū < 1/2 and hence the 1’s take over. �

With this result in hand, Theorem 1 follows from the formulas for φB and φD .

6. Duality for voter model perturbations

We now return to the general case with n strategies. Our next step is to introduce a duality that
generalizes the one for the voter model. Suppose now that we have a voter model perturbation of
the form

hϵi, j (x, ξ) = −γ fi (x, ξ)+ EY [gϵi, j (ξ(x + Y 1), . . . ξ(x + Y M ))].

For each x ∈ Zd and y with p(y) > 0 let T x,y
k , k ≥ 1 be the arrival times of a Poisson process

with rate p(y). At the times T x,y
k , k ≥ 1, x decides to change its opinion to match the one at

x + y where the arithmetic is done modulo L in each coordinate. We call this a voter event.
To accommodate the perturbation we let

∥gϵi, j∥ = sup
η∈SM

gϵi, j (η1, . . . ηM )



J.T. Cox, R. Durrett / Stochastic Processes and their Applications 126 (2016) 2388–2409 2397

and introduce Poisson processes T x,i, j
k , k ≥ 1 with rate ri, j = ϵ2

∥gϵi, j∥, and independent random

variables U x,i, j
k , k ≥ 1 uniform on (0, 1). At the times t = T x,i, j

k we draw arrows from x to x+Y i

for 1 ≤ i ≤ M . We call this a branching event. If ξt−(x) = i and

gϵi, j (ξt−(x + Y 1), . . . ξt−(x + Y m)) < ri, jU
x,i, j
k (21)

then we set ξt (x) = j . The uniform random variables slow down the transition rate from the
maximum possible rate ri, j to the one appropriate for the current configuration.

To define the dual, suppose we start with particles at X1(0), . . . , Xk(0) at time t . We let
K (0) = k be the number of particles, J (0) = {1, 2, . . . , k} be the indices of the active particles,
and T0 = 0. Suppose we have constructed the dual up to time Tm with m ≥ 0. No particle moves
from its position at time Tm until the first time r > Tm that the tail of an arrow touches one of
the active particles at time t − r . Call that time Tm+1. We extend the definitions of K (t), X i (t),
i ≤ K (t), and J (t) to be constant on [Tm, Tm+1).

If the arrow is from a voter event affecting particle number i then X i jumps to the head of
the arrow at time Tm+1. If there is another active particle X j on that site, the two coalesce to 1
and the higher numbered particle is removed from the active set at time Tm+1. If the event is a
branching event, we add new particles numbered K (Tm) + k at X i (Tm) + Y k for 1 ≤ k ≤ M
and set K (Tm+1) = K (Tm)+ M . If there are collisions between the newly created particles and
existing active particles, those newly created particles are not added to the active set. Our proof
will show that in the situation covered in Theorem 6 the probability of a collision at a branching
event will go to zero as N → ∞.

Durrett and Neuhauser [11] called I (s) = {X i (s) : i ∈ J (s)} the influence set because

Lemma 2. If we know the values of ξt−s on I (s), the locations and types of arrows that occurred
at the jump times Tm ≤ s, and the associated uniform random variables Um then we can compute
the values of ξt at X1(0), . . . , Xk(0) by working our way up the graphical representation starting
from time t − s and determining the changes that should be made in the configuration at each
jump time.

This should be clear from the construction. A formal proof can be found in Section 2.6 of [7].
The computation process, as it is called in [7] is complicated, but is useful because up to time t/ϵ2

there will only be O(1) branching events. In between these events there will be many random
walk steps that on the rescaled lattice will converge to Brownian motions.

7. Results for the torus

To motivate the results that we are about to state, recall that if we have a random walk on
the torus TL = (Z mod L)d that takes jumps at rate 1 with a distribution p that satisfies our
assumptions in Assumption 1, then:

• One random walk needs of order L2 steps to converge to the uniform distribution on the torus
(see Proposition 1 in Section 10).

• Two independent random walks starting from randomly chosen points will need of order
N = Ld steps to meet for the first time. See e.g., [6].

7.1. Regime 1. ϵ−1
L ≪ L, or w ≫ N−2/d

In this case when we rescale space by multiplying by ϵL then the limit of the torus is all of
Rd and the PDE limit, Theorem 2, holds. Thus, one can apply results from Section 7 in [7] to
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show that the conclusions of Theorem 3 hold in cases S2, S3, and S4. Indeed, since we are on the
torus the linearly growing “dead zone” produced by the block construction eventually covers the
entire torus and the weaker type becomes extinct at a time O(L).

Case S1 is more interesting. We cannot have a nontrivial stationary distribution since we are
dealing with a Markov chain on a finite set in which ξ(x) = i for all x are absorbing. However,
as is the case for many other particle systems, e.g., the contact process on a finite set, we will
have a quasi-stationary distribution that will persist for a long time. Using the comparison with
oriented percolation described in Chapter 6 of [7] and in [9] we can show

Theorem 4. Consider a two strategy evolutionary game with types 0 and 1 in case S1, so
φ1(u) = λu(u − ρ)(1 − u). Suppose that ϵ−1

L ∼ C Lα where 0 < α < 1 and that for each
L we start from a product measure in which each type has a fixed positive density. Let N1(t) be
the number of sites occupied by 1’s at time t. There is a c > 0 so that for any δ > 0 if L is large
and log L ≤ t ≤ exp(cL(1−α)d) then N1(t)/N ∈ (ρ − δ, ρ + δ) with high probability.

The log L time needed to come close to equilibrium could be replaced by a fixed time T that
depends on λ, ρ, δ, and the initial density of 1’s. Our proof will show that with high probability
at any time log L ≤ t ≤ exp(cL(1−α)d) the density is close to ρ (in the sense used to define the
hydrodynamic limit) across most of the torus.

In many situations, e.g., the supercritical contact process on the d-dimensional cube [20],
and power-law random graphs [21], the quasi-stationary distribution persists for time exp(γ N d).
However, we think that is not true in Theorem 4. For a simpler situation where we can prove this,
consider the

Contact process with fast voting, studied by Durrett, Liggett, and Zhang [10]. In this voter
model perturbation, there are two states, 0 and 1.

• h1,0(x, ξ) ≡ 1: particles die at rate 1.
• h0,1(x, ξ) = λ f1(x, ξ): a particle at x gives birth to a new one at x + y at rate λp(y).

We only have to keep track of 1’s so the reaction term

φ(u) ≡ φ1(u) = ⟨1(ξ(0)=0)λ f1(x, ξ)− 1(ξ(0)=1)⟩u

= λp(0|v1)u(1 − u)− u.

If β = λp(0|v1) > 1 then 0 is an unstable equilibrium for du/dt = φ(u) and there is a fixed
point at ρ = (β − 1)/β. The proof of Theorem 4 can be easily extended to show survival up to
time exp(cL(1−α)d) with high probability. In this case we can prove a partial converse.

Theorem 5. There is an C < ∞ so that there are no occupied sites by time exp(C Ld−2α log L)
with high probability.

Note that the powers of L in the two results, d(1 − α) and d − 2α, do not match. We suspect
that the larger value is the correct answer. However it is not clear how to improve the proof of
Theorem 4 to close the gap.

7.2. Regime 2. L ≪ ϵ−1
L ≪ Ld/2 or N−2/d

≫ w ≫ N−1.

In this case the time scale for the perturbation to have an effect, ϵ−2
L is much larger than the

time O(L2) needed for a random walk to come to equilibrium, but much smaller than the time
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O(Ld) it takes for two random walks to hit. Because of this, the particles in the dual will (except
for times O(L2 log L) after the initial time or a branching event) be approximately independent
and uniformly distributed across the torus. Thus, if we speed up time by ϵ−2

L the fraction of sites
on the torus in state i will converge to an ordinary differential equation. To formulate a precise
result define the empirical density by

Ui (t) =
1
N


x∈TL

1

ξ ϵ

tϵ−2
L
(x) = i


.

Theorem 6. Suppose that L2
≪ ϵ−2

L ≪ Ld . If Ui (0) → ui then Ui (t) converges uniformly on
compact sets to ui (t), the solution of

dui

dt
= φi (u) ui (0) = ui

where φi is the reaction term in (14).

Thus in Regime 2, we have “mean-field” behavior, but the reaction function in the ODE is
computed using the voter model equilibrium, not the product measure that is typically used in
heuristic calculations. The asymptotic behavior of the particle system is now the same as that of
the limiting ODE. In particular in case S2, it will converge to 0 or 1, depending on whether the
initial density u1 < ū or u1 > ū.

7.3. Tarnita’s formula

Suppose that in addition to the game dynamics each individual switches to a strategy chosen
at random from the n possible strategies at rate µ.

Theorem 7. Suppose that N−2/d
≫ w ≫ N−1. If µ → 0 and µ/w → ∞ slowly enough, then

in an n-strategy game strategy k is favored by mutation if and only if

φk(1/n, . . . , 1/n) > 0.

Note the similarity to Lemma 1. Intuitively, the change from uniformity will be due to lineages
that have one branching event. We do not claim that these conditions are necessary for the
conclusion to hold but they are needed for our proof to work. Our next step is to show that
we recover the formula in [24] and identify the coefficients.

Birth–Death Dynamics. In this case the limiting PDE is ∂uk/∂t = (1/2d)∆u + φB
i (u) where

φB
k (u) = p1φ

R
k (u)+ p2


j

uku j (Gk,k − G j,k + Gk, j − G j, j )

see (16). If we take ui ≡ 1/n then

p1φ
R
k (1/n, . . . , 1/n) =

p1

n


i

Gk,i
1
n

−


i, j

1
n

Gi, j
1
n



=
p1

n
(Ĝk,∗ − Ĝ)
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while the second term in (16) is

p2

n
(Gk,k − Ĝ∗,k + Ĝk,∗ − Ĝ∗,∗).

For Birth–Death dynamics (3) holds with α1 = p(0|e1|e1 + e2) and α2 = α3 = p(0|e1, e1 + e2).

Death–Birth Dynamics. In this case the limiting PDE is ∂uk/∂t = (1/2d)∆u + φD
k (u) where

φD
k (u) = p̄1φ

R
k (u)+ p̄2


j

uku j (Gk,k − G j,k + Gk, j − G j, j )

− (1/κ)p(v1|v2)


j

uku j (Gk, j − G j,k) (22)

see (17). The computations for the first two terms are as in Birth–Death case with pi replaced by
p̄i . The third term is

−
(1/κ)p(v1|v2)

n
(Ĝk,∗ − Ĝ∗,k).

Thus for Death–Birth dynamics (3) holds with α1 = p(v1|v2|v2 + v3), α2 = p(v1|v2, v2 + v3),
α3 = p(v1|v2, v2 + v3) − (1/κ)p(v1|v2), where 1/κ = P(x1 + x2 = 0) =


x p(x)p(−x) is

the effective number of neighbors.
These calculations for Theorem 7 apply to graphs other than the torus. For example, a random

r -regular graph looks locally like a tree in which each vertex has r neighbors. Of course the
values of the constants for the random regular graph will be different from those on the torus.

8. Proof of Theorem 4

Proof. We will prove only the asymptotic lower bound on the number of 1’s. Once this is
done, the upper bound follows by interchanging the roles of 0’s and 1’s. The reaction term
φ(u) = λu(u − ρ)(1 − u) so the limiting PDE satisfies Assumption 1 in [7] with u∗ = u∗

= ρ.

There are constants 0 < v0 < ρ < v1 < 1 and w, L i > 0 so that

(i) if u(0, x) ≥ v0 when |x | ≤ L0 then lim inft→∞ inf|x |≤wt u(t, x) ≥ ρ.

(ii) If u(0, x) ≤ v1 when |x | ≤ L1 then lim supt→∞ sup|x |≤wt u(t, x) ≤ ρ.

In our case if w is chosen small enough we can take the vi and L i to be any positive numbers.
See Aronson and Weinberger [1,2]. We will take v0 = min{ρ/2, u1/2} where u1 is the density
of 1’s in the initial product measure.

As in the proof of Theorem 1.4 in [7] on the infinite lattice, we use a block construction. We let
K be the largest odd integer so that we can fit K d adjacent cubes with sides = 2ϵ−1

L into the torus.
Asymptotically we have K ∼ (C/2)L1−α . Suppose that the origin is in the middle of one of the
blocks and call that box I0. The other blocks can be indexed by {−K/2,−K/2 + 1, . . . , K/2}

d .
There is some space leftover outside our blocks, so the block construction lattice is not a torus
but a flat cube.

To achieve the PDE limit we scale space by multiplying by ϵL and speed up time by ϵ−2
L . To

define our block event we consider the initial condition for the PDE in which u(0, x) ≥ v0 when
|x | ≤ 1/2. Given δ > 0, we choose T large enough so that u(T, x) ≥ ρ − δ/2 when |x | ≤ 3.
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As in the hydrodynamic limit, given r ∈ (0, 1), let aϵ = ⌈ϵr−1
⌉ϵ, Qϵ = [0, aϵ)d , and |Qϵ |

the number of points in Qϵ . For x ∈ aϵZd and ξ ∈ Ωϵ the space of all functions from ϵZd to S
let

Di (x, ξ) = |{y ∈ Qϵ : ξ(x + y) = i}|/|Qϵ |.

We say that the configuration in the box Ik is good at time t if in each small box xaϵ + Qϵ

contained in k +[−1/2, 1/2]
d the density Di (x, ξt ) ≥ v0, and it is very good if in each small box

xaϵ+ Qϵ contained in k+[−1, 1]
d we have Di (x, ξt ) ≥ ρ−δ. It follows from the hydrodynamic

limit that

Lemma 3. Let θ > 0. Suppose the configuration in Ik is good at time mT . If L is large enough
then with probability ≥1 − θ/2 all of the boxes Iℓ with ℓ− k ∈ {−1, 0, 1}

d are very good at time
(m + 1)T .

Determining whether that all of the boxes Ik with k ∈ {−1, 0, 1}
d are very good at time T can

be done by running the dual processes from all of these points back to time 0. Bounding the dual
by a branching random walk and then using exponential estimates it is easy to show:

Lemma 4. Given θ > 0 and T , there is a constant C so that if L is large enough with probability
≥1 − θ/2 none of the duals starting in [−3, 3]

d escape from [−3 − CT, 3 + CT ]
d by time T .

If the configuration in Ik is good at time mT , all of the boxes Iℓ with ℓ− k ∈ {−1, 0, 1}
d are

very good at time (m +1)T , and none of the dual processes escape from k +[−3−CT, 3+CT ]
d

as we work backwards from time (m + 1)T to time mT we set η(k,m) = 1. If we fail to achieve
any one of our goals we set η(k,m) = 0. If the configuration in Ik is not good at time mT we
define η(k,m) by an independent Bernoulli that is 1 with probability 1 − θ .

These variables η(k,m) define for us an oriented site percolation process on the graph
(Z mod K )d ×{0, 1, 2, . . .} in which (k,m) is connected to (ℓ,m +1) when ℓ−k ∈ {−1, 0, 1}

d .
Writing z as shorthand for (k,m) the collection of η(z) is “M-dependent with density at least
1 − θ” which means that for any k,

P(η(zi ) = 1|η(z j ), j ≠ i) ≥ (1 − θ), (23)

whenever zi , 1 ≤ i ≤ k satisfy |zi − z j | > M for all i ≠ j .

It is typically not difficult to prove results for M-dependent percolation processes with θ small
(see Chapter 4 of [9]), but here it will be useful to simplify things by applying Theorem 1.3 of
Liggett, Schonmann, and Stacy [18] to reduce to the case of independent percolation. By that
result, under (23), there is a constant ∆ depending on d and M such that if

1 − θ ′
=


1 −

θ1/∆

(∆ − 1)(∆−1)/∆


1 − (θ(∆ − 1))1/∆


, (24)

we may couple η(z) with a family ζ(z) of iid Bernoulli random variables with P(ζ(z) = 1) =

1 − θ ′ such that ζ(z) ≤ η(z) for all z.
With this result in hand we can prove the long time survival of our process on the torus by

using

Lemma 5. Suppose that θ < θ0. Start the oriented percolation on [−K/2, K/2]
d with all sites

occupied and let τ be the first time all sites are vacant. There is a constant c > 0 so that as
K → ∞

P(τ > exp(cK d)) → 1. (25)
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Mountford [20] proved for the contact process on [1, N ]
d that for all λ > λc

(log Eτ)/N d
→ γ. (26)

Earlier he showed, see [19]

τ/Eτ ⇒ E (27)

where E has an exponential distribution with mean 1 and ⇒ denotes weak convergence.

Proof of (25). We claim that our result can be proved by the method Mountford used to prove
the sharp result in (26) for all λ > λc. To explain why the reader should believe this, we note that
Lemma 1.1 in [20] concerns connectivity properties of an oriented percolation process in which
sites are open with probability 1 − ϵ0 which is then extended to the contact process with λ > λc
by using the renormalization argument of Bezuidenhout and Grimmett [4].

To be specific, Mountford, who only gives the details in d = 2, shows that if λ > λc there are
constants L and c > 0 so that for the contact process ξ̄ x

t in Dn = [1, n] × [1, 4L] starting with a
single occupied site at x

inf
λn2≤t≤n8

inf
x,y∈Dn

P(ξ̄ x
t (y) = 1) ≥ c > 0.

See his Corollary 1.1. This result which is the key to the proof is also true for our oriented
percolation process.

The last step in the proof of Theorem 4 is to note that if we start with product measure with
a density u1 of 1 then with high probability all of the Im are good at time 0. To do this we note
that the number of small boxes in the torus is a polynomial in L but the probability of an error in
one is ≤ exp(−cL(1−r)d) where r is the constant used to define the sizes of the little boxes. �

To justify the remark after Theorem 4 we use Proposition 1.2 of Mountford [19]. Write ξ1
t for

the contact process in [1, n]
2 starting from all sites occupied. He shows that there are sequences

a(n), b(n) → ∞ with b(n)/a(n) → ∞ so that P1(τ < b(n)) → 0 and

inf
ξ0

Pξ0(ξ1
a(n) = ξa(n) or τ < an) → 1.

In words the process either dies out before time a(n) or at time a(n) agrees with the process
starting from all 1’s. This idea, which is due to Durrett and Schonmann [12] allows one to
prove the limit is exponential by showing that it has the lack of memory property. Unfortunately,
Mountford writes sup rather than inf in the conclusion. He cannot mean sup because that is
attained by ξ0 ≡ 1 and the probability is 0.

9. Proof of Theorem 5

Proof. Suppose for simplicity that ϵ−1
L ∼ Lα . Start a coalescing random walk ζ̄ L

t with one
particle at each site of the torus.

Lemma 6. Let N̄L(t) be the number of particles in the coalescing random walks at time t. There
is a constant C1 so that for all L,

E N̄L(t) ≤ C1 N/(1 + t) for all 0 ≤ t ≤ L2α.

With high probability, i.e., one that tends to 1 as L → ∞,

N̄L(t) ≤ 4C1 N/(1 + t) for all 0 ≤ t ≤ L2α.
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The constant C1 is special but all the others C’s are not and will change from line to line.

Proof. Let St be the first coordinate of our d-dimensional random walk that makes jumps
according to p at rate 1.

E exp(θ St ) = exp(t (φ(θ)− 1)) where φ(θ) =


z

eθ z1 p(z)

Since z → exp(θ z1) is convex and p has mean zero and finite range

0 ≤ φ(θ)− 1 ∼
σ 2θ2

2
as θ → 0.

Let 1/2 < ρ < 1. If we take θ = tρ−1/2σ 2 and t is large we have

P(St > tρ) ≤ exp

−θ tρ + σ 2θ2t


≤ exp(−t2ρ−1/4σ 2).

Let β ∈ (α, 1) so that ρ = β/2α < 1, and let δ = 2ρ − 1. Using the last result on each of the
d coordinates.

(*) With probability ≥1 − N · d exp(−Lδ/4σ 2) no particle that starts outside [−2Lβ , 2Lβ ]d

will enter [−Lβ , Lβ ]d by time L2α and no particle that starts inside [−2Lβ , 2Lβ ]d will exit
[−3Lβ , 3Lβ ]d .

Let ζ̄t be the coalescing random walk on Zd , let p(t) = P(x ∈ ζ̄t ) and let pL(t) = P(x ∈ ζ̄ L
t ).

The last two probabilities do not depend on x by translation invariance. (*) implies that

|pL(t)− p(t)| ≤ N · d exp(−Lδ/4σ 2) for all t ≤ L2α.

The result for the expected value now follows from a result of Bramson and Griffeath [5] that
shows p(t) ∼ c/t as t → ∞.

We begin by proving the second result for each fixed t . A result of Arratia [3], see Lemma 1
on page 913, shows

P(x ∈ ζ̄t , y ∈ ζ̄t ) ≤ P(x ∈ ζ̄t )P(y ∈ ζ̄t ),

so we have

var (N̄ L
t ) ≤ N pL(t)(1 − pL(t)) ≤ E N̄L(t).

Using Chebyshev’s inequality, and N̄L(t) ≤ C1 N/(1 + t)

P(|N̄L(t)− E N̄L(t)| ≥ C1 N/(1 + t)) ≤
1 + t

C1 N
≤

C

Ld−2α .

To complete the proof now let M = [log2 L2α
]. Applying the last result to the O(log L) values

si = 2i with 1 ≤ i ≤ M we see that

P(N̄L(si ) ≤ 2C1 N/(1 + t) for 1 ≤ i ≤ M) ≥ 1 −
C log L

Ld−2α .

Using the fact that t → N L(t) is decreasing and si+1/si = 2 we have

P(N̄L(t) ≤ 2C1 N/(1 + t/2) for 0 ≤ t ≤ L2α) ≥ 1 −
C log L

Ld−2α ,

which proves the desired result. �
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The dual for the contact process with fast voting is a branching coalescing random walk. The
maximum branching rate is ∥h∥∞ϵ

2
L , so the expected number of branchings that occur on the

space–time set covered by particles in the coalescing random walk is

≤4C1∥h∥∞ϵ
2
L

 ϵ−2
L

0
N/(1 + t) dt ≤ C Ld−2α log L .

Since the total number of branchings on the space–time set occupied by particles is Poisson, the
probability that no branching occurs is

≥exp(−C Ld−2α log L).

Since there are deaths in the graphical representation for the contact process, the rest is easy.
With probability ≥exp(−C Ld−2α) all of the particles at time L2α/2 will be hit by a death by
time L2α . Thus even if the process is in the all 1’s state at time 0, the probability it dies out by
time L2α is at least

≥exp(−C2Ld−2α log L) ≡ M.

If we are given M2
= exp(2C2Ld−2α log L) trials the probability we always fail is

≤ (1 − 1/M)M2
≤ exp(−M).

This completes the proof. �

We could try to prove the upper bound on the survival time by arguing that with probability
≥exp(−C Ld−2α) all the particles at time L2α land on a 0 in the configuration at time t − L2α .
In the contact process we can argue this by noting that the state at time t − L2α is dominated by
the process starting from all 1 at time t − 2L2α . Since ξ ≡ 1 is absorbing in evolutionary games,
this simple argument is not possible.

10. Proof of Theorem 6

We use the notation for the dual introduced in Section 6. Let Rn denote the increasing
subsequence of jump times Tm that are branching times, and N (t) be the number that occur
by time t/ϵ2. Since branching times occur at rate CBkϵ2 when there are k particles in the dual,
and the number of particles in the dual is bounded by a branching process in which each particle
gives birth to M new particles at rate CBϵ

2, the expected number of particles at time t/ϵ2 is
≤exp(CB Mt) times the number at time 0.

Choose a time KL so that KL/L2
→ ∞ and ϵ2

L KL → 0. This is possible since L2
≪ ϵ−2

L . If
there are k particles at time 0, then the second condition implies

P(R1 ≤ KL) → 0

as L → ∞. From this it follows easily that

P(Rm − Rm−1 ≤ KL for some m ≤ N (t)) → 0 (28)

as L → ∞ and

P(t/ϵ2
− RN (t) ≤ KL) → 0. (29)

Let Sn = Rn + L2
+ KL .
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The next three results, which will be proved at the end of the section, concern the time intervals
[Rn, Rn + L2

], [Rn + L2, Sn] and [Sn, Rn+1]. In each of the three lemmas we suppose that at
time 0 there are k particles in the dual and no two particles are within distance L3/4 of each other.

Lemma 7. Suppose the first particle encounters a birth event in the dual at time 0. With high
probability (i) there is no coalescence between the newborn particles or with their parent after
time L2 and before the next birth event, (ii) up to time L2 there is no coalescence between the new
born particles and particles 2, . . . , k, and (iii) at time L2 all particles are separated by L3/4.

Lemma 8. Even if we condition on the starting locations, then the particle locations at time KL
are almost independent and uniformly distributed over the torus, i.e., the total variation distance
between the random positions and independent uniformly distributed positions tends to 0.

Lemma 9. With high probability, (i) there is no coalescence before the first time a birth event
affects a particle, and (ii) just before the first birth time the existing particles are separated by
L3/4.

Proof of Theorem 6. We will now argue that the three lemmas imply the desired conclusion.
(29) implies that with high probability there is no branching event in [t/ϵ2

− KL , t/ϵ2
]. Let N (t)

be the last branching time before time t/ϵ2. By the last remark SN (t) < t/ϵ2. Lemma 9 implies
that no coalescence occurs in the dual in [SN (t), t/ϵ2

].
When (28) holds, Lemma 9 implies that the particles at time RN (t) are all separated by L3/4

so using Lemma 7 all of the coalescences between the new born particles and their parent occur
before RN (t) + L2 and there is no coalescence with other particles during that time interval. At
time RN (t)+ L2 all the particles are separated by L3/4, so Lemmas 8 and 9 imply that there is no
coalescence during [RN (t) + L2, SN (t)] and at time SN (t) the particles are almost uniform over
the torus.

The results in the last paragraph imply that when the jump occurs at time RN (t) the joint
distribution of the focal site and its neighbors are approximately that of the voter model with
the density at time SN (t). Since ϵ2

L KL → 0 this is almost the same as the density at time RN (t).
Working backwards in time and using induction we see that as L → ∞ the dual on the time
scale tϵ−2

L converges to a limit in which branchings occur at rate ∥h∥∞ and when they occur the
joint distribution of the state of the focal site and its neighbors is given by the density at time t .

The last observation implies EUi (t) converges to a limit ui (t). To show that the limit satisfies
the differential equation we consider ui (t + h) − ui (t). When h is small the probability of two
or more branching events in the time interval [t, t + h] is o(h2). By considering the effect of a
single event and letting h → 0 we conclude that dui/dt = φi (u). For more details in the more
complicated situation of convergence to a PDE, see Section 2 in Durrett and Neuhauser [11] or
Chapter 2 of [7].

The final detail is to show that var Ui (t) → 0 as L → ∞. To do this, we note that if x and
y are separated by a distance greater than L3/4 then with high probability their dual processes
never intersect before time t/ϵ2. Writing ηt (x) as shorthand for ξ ϵ

tϵ−2
L
(x), we see that if δ > 0

and L is large

var (Ui (t)) =
1

N 2


x∈TL

cov (ηt (x), ηt (y))

≤
cd L3d/4

Ld + δ.
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Since δ > 0 is arbitrary, letting L → ∞, we conclude var (Ui (t)) → 0. Using Chebyshev’s
inequality gives the desired result.

10.1. Proofs of the three lemmas

Let p(x) be a finite range, irreducible symmetric random walk kernel on Zd , some d ≥ 3,
with characteristic function

φ(θ) =


x∈Zd

eiθx p(x), θ ∈ [−π, π]
d .

Then φ is real-valued, and by PII.5 in Spitzer there is a constant λ > 0 such that

1 − φ(θ) ≥ λ|θ |2, θ ∈ [−π, π]
d . (30)

Let Z t be a rate-one continuous time random walk on Zd with jump kernel p, starting at 0.
Then Z t has characteristic function

φt (θ) = E0(e
iθ Zt ) = exp(−t (1 − φ(θ))),

and by (30),

φt (θ) ≤ e−λt |θ |2 , θ ∈ [−π, π]
d . (31)

Let Z L
t = Z t mod L be the corresponding walk on the torus TL .

Proposition 1. (a) There is a constant C > 0 such that

P(Z L
t = x) ≤ C


L−d

∨ t−d/2

, t ≥ 0, x ∈ TL . (32)

(b) If sL → ∞ then

sup
t≥L2sL

max
x∈TL

Ld
|P(Z L

t = x)− L−d
| = 0 (33)

(b) implies Lemma 8.

Proof. By a standard inversion formula,

P(Z L
t = x) = L−d


y∈TL

φt (2πy/L)e2π i xy/L .

Pulling out the y = 0 term and using (31) gives

|P(Z L
t = x)− L−d

| ≤ L−d


y∈TL ,y≠0

e−λt |2πy|
2/L2

. (34)

After bounding the sum by an integral and then changing variables, there is a constant C ′ > 0
such that

y∈TL ,y≠0

e−λt |2πy|
2/L2

≤ C ′

 L

1
e−λt (2πr/L)2rd−1dr

≤ C ′

 L

2π
√
λt

d


∞

0
ud−1e−u2

du. (35)
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Since Cd =


∞

0 rd−1e−r dr < ∞, (34) and (35) imply

P(Z L
t = x) ≤ L−d

+ CdC ′(2πλ)−d t−d/2

which proves part (a).
For part (b), plug any t ≥ L2sL into (34) and (35) to get

Ld
|P(Z x

t = x)− L−d
| ≤ CdC ′(2π

√
λ)−ds−d/2

L .

Since sL → ∞ this proves part (b). �

Proposition 2. (a) If 1 ≪ rL ≤ L/2 and tL ≪ Ld , then

max
x∈TL ,|x |≥rL

P(Z L ,x
s = 0 for some s ≤ tL) → 0.

(b) If rL ≪ L then

sup
t≥L2

P(|Z L ,0
t | ≤ rL) → 0

(b) with rL = L3/4 gives (iii) of Lemma 7 and (ii) of Lemma 9. (a) gives (i) of Lemma 9 and (ii)
of Lemma 7. To prove (i) of Lemma 7, combine (iii) of Lemma 7 with (i) of Lemma 9.

Proof. Let τ = inf{t ≥ 0 : Z L ,x
t = 0}, let |x | ≥ rL , and choose {t ′L} such that t ′L → ∞ and

t ′L ≪ tL ∧ rL . Using a standard martingale argument,

P(τ ∈ [0, t ′L ]) ≤ P( sup
0≤t≤t ′L

|Z L ,0
t | ≥ rL) ≤ 2d P(|Z0

t ′L
| ≥ rL) ≤ 2d E(|Z0

t ′L
|)/rL ,

which tends to 0 because t ′L ≪ rL . (Alternatively, we could use the assumption p has finite range
and (32) for some t ′L → ∞, which is all that is needed for below.)

Next, by the Markov property and the fact that Z L ,x
t is a rate one walk, (32) implies

P(τ ∈ [t ′L , tL ]) ≤ e
 tL+1

t ′L

P(Z x
t = 0) dt ≤ Ce

 L2
∧t ′L

t ′L

t−d/2dt + Ce
 t ′L+1

t ′L∧L2
L−ddt.

This tends to 0 because t ′L → ∞ and t ′L/Ld
→ 0, proving (a).

For (b), the bound (32) implies P(Z L ,0
L2 = 0) ≤ C L−d , so we have

P(|Z L ,0
L2 | ≤ rL) ≤ C L−d(|rL | + 1)d → 0

which is the desired result. �

11. Proof of Theorem 7

For this result we need to augment the construction with Poisson processes T x
n , n ≥ 1 that

have rate µ, and random variables V x
n that are uniform over the strategy set. At time T x

n the value
at x is set equal to V x

n . Since mutations tell us the value at a site, when we work backward in the
dual, we kill a particle when it encounters a mutation. When all of the particles have been killed
then we can compute the value of the process at all the sites used to initialize the dual.
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Suppose first that there are no mutations. Since w satisfies the conditions for Regime 2, it
follows from Theorem 6 that if we run time at rate 1/w then in the limit as L → ∞ the density
of type k satisfies

duk

dt
= φk(u). (36)

If we now return to the case with mutations and assume thatµ/w → c then the limiting equations
become

duk

dt
= φk(u)+

µ

w
(1/n − uk) (37)

so equilibria are solutions of

uk =
1
n

+
w

µ
φk(u).

Doing some algebra gives

uk −
1
n

=
w

µ
φk(1/n, . . . , 1/n)+

w

µ
(φk(u)− φk(1/n, . . . , 1/n))

and henceuk −
1
n

−
w

µ
φk(1/n, . . . , 1/n)

 ≤
w

µ
|φk(u)− φk(1/n, . . . , 1/n)| .

Using the fact that φk is Lipschitz continuous we concludeuk −
1
n

 ≤ C1w/µ,uk −
1
n

−
w

µ
φk(1/n, . . . , 1/n)

 ≤ C2(w/µ)
2.

If µ/w → ∞ slowly enough then we can use the last result to conclude

uk > 1/n,

when w is small giving the desired formula.
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