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Abstract

Dilative stability generalizes the property of selfsimilarity for infinitely divisible stochastic processes
by introducing an additional scaling in the convolution exponent. Inspired by results of Iglói (2008), we
will show how dilatively stable processes with independent increments can be represented by integrals
with respect to time-changed Lévy processes. Via a Lamperti-type transformation these representations
are shown to be closely connected to translatively stable processes of Ornstein–Uhlenbeck-type, where
translative stability generalizes the notion of stationarity. The presented results complement corresponding
representations for selfsimilar processes with independent increments known from the literature.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Many processes in physics and other sciences show certain space–time scaling properties
for which the class of self-similar processes provides a natural tool in stochastic modeling. For
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infinitely divisible processes Iglói [6] introduced a more general scaling property called dilative
stability with an additional scaling in the convolution exponent. We denote by Ψ X

t1,...,tk the log-
characteristic function or the Lévy exponent of (X t1 , . . . , X tk ) for an infinitely divisible process
X = (X t )t∈T, where T is either R or R+ = [0, ∞) and t1, . . . , tk ∈ T, i.e. Ψ X

t1,...,tk : Rk
→ C is

the unique continuous function with Ψ X
t1,...,tk (0, . . . , 0) = 0 and

E


exp


i

k
j=1

θ j X t j


= exp


Ψ X

t1,...,tk (θ1, . . . , θk)


for all θ1, . . . , θk ∈ R. Following [1], the infinitely divisible process X is called (α, δ)-dilatively
stable for some parameters α, δ ∈ R if

Ψ X
T t1,...,T tk (θ1, . . . , θk) = T δΨ X

t1,...,tk


T α−

δ
2 θ1, . . . , T α−

δ
2 θk


(1)

holds for all T > 0, k ∈ N, t1, . . . , tk ∈ T and θ1, . . . , θk ∈ R. It is immediately clear that
for δ = 0 and α > 0 an (α, δ)-dilatively stable process is α-selfsimilar. We remark that the
original definition of Iglói [6] is more restrictive (e.g., the process is assumed to be non-Gaussian
and to possess moments of arbitrary order) but we use the more general approach from [1]. The
class of dilatively stable processes contains some interesting classes of processes that are not
selfsimilar, see [6,1] for details. In particular, additionally assuming weak right-continuity of the
infinitely divisible process X , dilative stability of X is equivalent to the notion of aggregate-
similarity introduced by Kaj [11], see Proposition 1.5 in [1]. From this point of view, dilatively
stable processes naturally appear as the class of limit processes in certain aggregation models
as shown in Theorem 3.1 of [12]. Examples of dilatively stable limit processes in aggregation
schemes appear in [11,19], see Section 3 in [1] for a detailed analysis.

In this paper we will restrict our considerations to additive processes (X t )t∈T which are
defined as in [21] by the following conditions:

(i) The process has independent increments, i.e. for any t0 < t1 < · · · < tn in T the random
variables X t0 , X t1 − X t0 , X t2 − X t1 , . . . , X tn − X tn−1 are independent.

(ii) The process is stochastically continuous, i.e. P{|Xs − X t | > ε} → 0 as s → t ∈ T for any
ε > 0.

(iii) The process has càdlàg paths, i.e. almost surely the mapping t → X t is right-continuous
with left limits.

(iv) X0 = 0 almost surely.

It is well known that additive selfsimilar processes are closely connected to selfdecomposable
random variables and thus can be represented as integrals with respect to a Lévy process; cf.
Wolfe [23,22], Jurek and Vervaat [8,10] and Sato [20]. In order that the random integrals do
properly exist, the Lévy process necessarily must have a finite logarithmic moment. Certain
extensions of the integral representation for additive operator-selfsimilar and semi-selfsimilar
processes are given in [7,2,15], respectively. Further, the Lamperti transform [14] gives a well
known correspondence between selfsimilar processes and stationary processes. The latter are
stationary Ornstein–Uhlenbeck (OU) processes in case of additive selfsimilar processes and
the integral representation of an additive selfsimilar process is directly related to the integral
representation of the corresponding OU-process.

Our aim is to generalize the above mentioned integral representations and connections for the
larger class of additive dilatively stable processes in Section 2. As already laid out in sections 2.5
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and 2.6 of Iglói [6], these are integrals with respect to certain time-changed Lévy processes.
Since Iglói [6] requires finite moments of arbitrary order, for our less restrictive definition (1) of
dilative stability we are particularly interested in deriving appropriate moment conditions for the
driving Lévy processes. In case α = δ/2 it will turn out that there is also a connection to additive
quasi-selfsimilar processes introduced by Maejima and Ueda [17]; see Remark 2.6.

A certain generalization of the Lamperti transform directly relates dilatively stable processes
to so-called translatively stable processes. The definition of the latter processes also goes back
to Iglói [6] and is directly connected to processes which are infinitely divisible in time and to
time-stable processes as introduced by Mansuy [18], respectively Kopp and Molchanov [13]. We
will lay out this connection in Section 3 and, inspired by Iglói [6], we will further show how our
integral representation of additive dilatively stable processes from Section 2 is related to certain
translatively stable processes of OU-type via a Lamperti-type transformation.

2. Random integral representation

We use the following construction of random integrals as almost surely pathwise limits of
Riemann–Stieltjes sums which goes back to Wolfe [23,22] or Jurek and Vervaat [8,10], cf.
also Lemma 2.1 in [2]. Let Y = (Yt )t∈T be an additive process on R and let A : T → R be
continuously differentiable. Then for any a < b < ∞ and any sequence of partitions a = t (n)

0 ≤

s(n)
1 < t (n)

1 ≤ s(n)
2 < · · · ≤ s(n)

n < t (n)
n = b of [a, b] ⊆ T with max1≤ j≤n(t (n)

j − t (n)
j−1) → 0 as

n → ∞ we have
n

j=1


A(t (n)

j ) − A(t (n)
j−1)


Y

s(n)
j

→

 b

a
A′(t)Yt dt almost surely,

where the integral exists pathwise as a Riemann integral and the exceptional nullset does not
depend on the particular choice of partitions. Now we are able to define a random integral by
formal integration by parts b

a
A(t)dYt := A(b)Yb − A(a)Ya −

 b

a
A′(t)Yt dt (2)

and this random integral can be pathwise approximated by Riemann–Stieltjes sums
n

j=0

A(t (n)
j )

Y

s(n)
j+1

− Y
s(n)

j


→

 b

a
A(t)dYt almost surely,

where we define s(n)
0 := a and s(n)

n+1 := b. In this context the additive process Y is called the
background driving process. We will frequently make use of the following change of variables
formula which is an easy consequence of the random integral construction. For a continuous
non-increasing or non-decreasing function γ : T → R and [a, b] ⊆ T we have b

a
A(γ (t))d


Yγ (t) − Yγ (0)


=

 γ (b)

γ (a)

A(t)dYt ,

where in case γ (b) < γ (a) the random integral on the right-hand side is defined by d

c
A(t)dYt = −

 c

d
A(t)dYt for any c, d ∈ T.
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Our background driving process Y itself will be defined by random integrals of the following
kind.

Lemma 2.1. Let X = (X t )t≥0 be an additive process. Then the process Y = (Yt )t∈R given by

Yt =

 et

1
u−α+δ/2d Xu =


 et

1
u−α+δ/2d Xu, for t ≥ 0

−

 1

et
u−α+δ/2d Xu, for t < 0

(3)

is again additive.

Proof. By the definition of the random integral, (Yt )t∈R has independent increments because
(X t )t≥0 has and its paths are almost surely càdlàg functions. Of course Y (0) = 0. It remains to
check that (Yt )t∈R is stochastically continuous. For s, t ∈ R we have

Yt − Ys = e−t (α−δ/2) Xet − e−s(α−δ/2) Xes +

 et

es
(α − δ/2)u−(α−δ/2)−1 Xudu,

where e−t (α−δ/2) Xet −e−s(α−δ/2) Xes → 0 in probability as s → t , since (X t )≥0 is stochastically
continuous, and the integral converges to zero almost surely as s → t , since the integrand is
almost surely bounded on compact sets; see [9, p. 114].

This directly enables us to obtain a random integral representation for additive dilatively stable
processes.

Theorem 2.2. Let (X t )t≥0 be an additive (α, δ)-dilatively stable process and (Yt )t∈R be the
corresponding process given in Lemma 2.1. Then for any t > 0 we have

X t =

 log t

−∞

eu(α−δ/2) dYu almost surely.

Proof. We will first prove a corresponding representation for the increments. By the construction
of the random integral we obtain for 0 < s < t log t

log s
eu(α−δ/2) dYu = tα−δ/2Ylog t − sα−δ/2Ylog s −

 log t

log s


α −

δ
2


eu(α−δ/2) Yu du.

For the latter integral we get by (3) log t

log s


α −

δ
2


eu(α−δ/2) Yu du =

 log t

log s


α −

δ
2


eu(α−δ/2)

 eu

1
v−α+δ/2 d Xv du

=

 s

1
v−α+δ/2

 log t

log s


α −

δ
2


eu(α−δ/2) du d Xv

+

 t

s
v−α+δ/2

 log t

log v


α −

δ
2


eu(α−δ/2) du d Xv

=

 s

1
v−α+δ/2


tα−δ/2

− sα−δ/2


d Xv +

 t

s
v−α+δ/2


tα−δ/2

− vα−δ/2


d Xv

=


tα−δ/2

− sα−δ/2


Ylog s + tα−δ/2 Ylog t − Ylog s

−

 t

s
d Xv

= tα−δ/2Ylog t − sα−δ/2Ylog s − (X t − Xs),
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where exchangeability of the order of integration follows by (2) and Fubini’s theorem. Together
it follows that for 0 < s < t we have

X t − Xs =

 log t

log s
eu(α−δ/2) dYu .

By stochastic continuity X t − Xs → X t − X0 = X t in probability as s ↓ 0. Since the process X
has independent increments, convergence in probability is equivalent to almost sure convergence
by Theorem A2.2 in [10].

We will now show that the background driving process (Yt )t∈R is a time-transformed Lévy
process. Preparatory, we will investigate its increments.

Lemma 2.3. For fixed T ∈ R let (Kt;T )t∈R := (Yt+T − YT )t∈R, where Y is the process
from Lemma 2.1 with an additive (α, δ)-dilatively stable process X. In terms of the Lévy exponent
this process fulfills

Ψ K
t1,...,tk ;T

(θ1, . . . , θk) = eδT ΨY
t1,...,tk (θ1, . . . , θk) (4)

for all k ∈ N and t1, . . . , tk, θ1, . . . , θk ∈ R, where Ψ K
t1,...,tk ;T

denotes the log-characteristic
function of (Kt1;T , . . . , Ktk ;T ).

Proof. Let us first prove that Ψ K
t;T (θ) = eδT ΨY

t (θ) for t, θ ∈ R. In case t = 0 there is nothing
to prove. By definition of Kt;T we get

Kt;T = Yt+T − YT =

 et+T

eT
u−α+δ/2d Xu =

 et

1
(ueT )−α+δ/2d XueT .

In case t > 0 this gives us the following approximation by Riemann–Stieltjes sums for a
sequence of partitions 1 = s(n)

0 = t (n)
0 ≤ s(n)

1 < t (n)
1 ≤ · · · ≤ s(n)

n < t (n)
n = s(n)

n+1 = et

Kt;T =

 et

1
(ueT )−α+δ/2d XueT = lim

n→∞

n
j=0

(t (n)
j eT )−α+δ/2


X

s(n)
j+1eT − X

s(n)
j eT


.

To derive the Fourier transforms we use the following property

PX t1−X t2
(θ) = E


eiθ(X t1−X t2 )


=


R2

eiθ(x1−x2)d P(X t1 ,X t2 )(x1, x2)

= P(X t1 ,X t2 )(θ, −θ) = exp

Ψ X

t1,t2(θ, −θ)

.

for all t1, t2, θ ∈ R. By Lévy’s continuity theorem we obtain for θ ∈ R

exp

Ψ K

t;T (θ)


= PKt;T (θ)

= lim
n→∞

n
j=0

exp

Ψ X

s(n)
j+1eT ,s(n)

j eT


(t (n)

j eT )−α+δ/2θ, −(t (n)
j eT )−α+δ/2θ



= lim
n→∞

exp


n

j=0

eδT Ψ X
s(n)

j+1,s
(n)
j


(t (n)

j )−α+δ/2θ, −(t (n)
j )−α+δ/2θ



=


lim

n→∞

n
j=0

exp

Ψ X

s(n)
j+1,s

(n)
j


(t (n)

j )−α+δ/2θ, −(t (n)
j )−α+δ/2θ

eδT

=
PYt (θ)

eδT

= exp(eδT ΨY
t (θ)),
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where in the third line we used the scaling property (1) of the dilatively stable processes X . In
conclusion Ψ K

t;T (θ) = eδT ΨY
t (θ) for t > 0 and θ ∈ R. The same property holds for t < 0 and

θ ∈ R, since

Kt;T = Yt+T − YT = −(Y(t+T )−t − Yt+T ) = −K−t;t+T

and hence by the above we get

Ψ K
t;T (θ) = Ψ K

−t;t+T (−θ) = eδ(t+T )ΨY
−t (−θ) = eδT Ψ K

−t;t (−θ) = eδT ΨY
t (θ),

where the last equality follows by K−t;t = Y0 − Yt = −Yt . Finally, we will prove (4) for
k = 2, the general case k ∈ N follows inductively. Without loss of generality let t1 < t2 then for
θ1, θ2 ∈ R by independence of the increments we have

exp

Ψ K

t1,t2;T
(θ1, θ2)


= E


exp(iθ1 Kt1;T + iθ2 Kt2;T )


= exp


Ψ K

t1;T
(θ1 + θ2)


exp


Ψ K

t2−t1;t1+T (θ2)


= exp


eδT ΨY
t1 (θ1 + θ2)


exp


eδ(t1+T )ΨY

t2−t1(θ2)


= exp


eδT ΨY
t1 (θ1 + θ2)


exp


eδT Ψ K

t2−t1;t1
(θ2)


=

E

exp(i(θ1 + θ2)Yt1)


E

exp(iθ2(Yt2 − Yt1))

eδT

=

E

exp(iθ1Yt1 + iθ2Yt2)

eδT
= exp


eδT ΨY

t1,t2(θ1, θ2)


concluding the proof.

Let Y be an infinitely divisible random variable. We say that (L(t))t∈R is the two-sided Lévy
process generated by the law of Y if it can be represented as

L(t) =


L(1)(t) if t ≥ 0
−L(2)((−t)−) if t < 0

with independent copies (L(1)(t))t≥0, (L(2)(t))t≥0 of the Lévy process generated by the law of
Y . Note that (L(t))t∈R has càdlàg paths.

Lemma 2.4. Let X = (X t )t≥0 be an additive (α, δ)-dilatively stable process. Then the back-
ground driving process Y = (Yt )t∈R from Lemma 2.1 is the time-changed process

(Yt )t∈R
d
=


L


eδt
−1

eδ−1


t∈R

,

where (L(t))t∈R is the two-sided Lévy process generated by the law of Y1 and
d
= denotes

equality in distribution. Note that for δ = 0 the time-change function is simply defined by
limδ→0


(eδt

− 1)/(eδ
− 1)


= t .

Proof. In case δ = 0 the process X is a selfsimilar additive process and it is well known that the
corresponding background driving process is a Lévy process. Thus we will only prove the case
δ ≠ 0. For N ∈ N and n = 0, . . . , N − 1, setting T = nt in Lemma 2.3 we get for any t ∈ R

YNt =

N−1
n=0

Yt+nt − Ynt =

N−1
n=0

Kt;nt .



T. Bhatti, P. Kern / Stochastic Processes and their Applications ( ) – 7

which by independence of the increments implies for the Lévy exponents

ΨY
Nt (θ) =

N−1
n=0

eδntΨY
t (θ) =

eδNt
− 1

eδt − 1
ΨY

t (θ) for any θ ∈ R.

Setting t = 1/N it follows that ΨY
1 (θ) =

eδ
−1

eδ/N −1
ΨY

1/N (θ) for any N ∈ N and setting t = 1/m
with m ∈ N we get

ΨY
N/m(θ) =

eδN/m
− 1

eδ/m − 1
ΨY

1/m(θ) =
eδN/m

− 1
eδ/m − 1

·
eδ/m

− 1
eδ − 1

ΨY
1 (θ) =

eδN/m
− 1

eδ − 1
ΨY

1 (θ).

Due to the stochastic continuity of (Yt )t∈R we get

Yt
d
= L(1)( eδt

−1
eδ−1

) for any t ≥ 0. (5)

The same arguments for t = −1/m with m ∈ N together with Lemma 2.3 imply

ΨY
−N/m(θ) =

e−δN/m
− 1

e−δ/m − 1
ΨY

−1/m(θ) =
e−δN/m

− 1
e−δ/m − 1

·
e−δ/m

− 1
e−δ − 1

ΨY
−1(θ)

= −
e−δN/m

− 1
eδ − 1

eδΨY
−1(θ) = −

e−δN/m
− 1

eδ − 1
Ψ K

−1;1(θ)

= −
e−δN/m

− 1
eδ − 1

ΨY
1 (−θ),

where the last equality follows since K−1;1 = Y0 −Y1 = −Y1. Hence, again due to the stochastic
continuity of (Yt )t∈R we get

Yt
d
= −L(2)


−

eδt
−1

eδ−1


d
= −L(2)


−

eδt
−1

eδ−1


−


for any t < 0. (6)

Combining (5) and (6) we get

Yt
d
= L


eδt

−1
eδ−1


for any t ∈ R (7)

and it remains to show thatPYt1 ,...,Ytk

(θ1, . . . , θk) = P
L


eδt1 −1
eδ−1


,...,L


eδtk −1
eδ−1

(θ1, . . . , θk)

for all k ∈ N and t1, . . . , tk, θ1, . . . , θk ∈ R. It suffices to prove the assertion for k = 2 and
t1 < t2, the general case follows analogously. By independence of the increments of (Yt )t∈R,
Lemma 2.3 and (7) we getP(Yt1 ,Yt2 )(θ1, θ2) = P(Yt1 ,Yt2−Yt1 )(θ1 + θ2, θ2)

= PYt1
(θ1 + θ2) · PYt2−Yt1

(θ2)

= exp

ΨY

t1 (θ1 + θ2)


· exp

Ψ K

t2−t1;t1
(θ2)


= exp


ΨY

t1 (θ1 + θ2)


· exp


eδt1ΨY
t2−t1(θ2)


= P

L


eδt1 −1
eδ−1

(θ1 + θ2) · P
L


eδt1 eδ(t2−t1)

−1
eδ−1

(θ2).
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Since the two-sided Lévy process (L(t))t∈R has stationary and independent increments we
further getP(Yt1 ,Yt2 )(θ1, θ2) = P

L


eδt1 −1
eδ−1

(θ1 + θ2) · P
L


eδt2 −1
eδ−1


−L


eδt1 −1
eδ−1

(θ2)

= P
L


eδt1 −1
eδ−1


,L


eδt2 −1
eδ−1

(θ1, θ2)

concluding the proof.

Combining Theorem 2.2 and Lemma 2.4 we immediately get the following representation in law.

Corollary 2.5. Let (X t )t≥0 be an additive (α, δ)-dilatively stable process and (L(t))t∈R be the
two-sided Lévy process generated by the law of Y1 =

 e
1 u−α+δ/2 d Xu from Lemma 2.1. Then

we have

(X t )t≥0
d
=

 log t

−∞

eu(α−δ/2) d L


eδu
−1

eδ−1


t≥0

.

Remark 2.6. In case α = δ/2 our representation in Theorem 2.2 is trivial and we can only
deduce that (X t )t≥0 = (Ylog t − Y−∞)t≥0, where Y−∞ exists almost surely due to stochastic
continuity. By Corollary 2.5 we further get

(X t )t≥0
d
=


L


tδ−1
eδ−1


− L


−1

eδ−1


t≥0

d
= L


tδ

eδ−1


t≥0

provided δ > 0.

Nevertheless, Maejima and Ueda [17] provide an integral representation in case α = δ/2 as
follows. Writing α = −γ /2 and hence δ = −γ for γ ∈ R, an additive (−γ /2, −γ )-dilatively
stable process (X t )t≥0 is γ -quasi-selfsimilar, which by Definition 1.3 in [17] means that the
Lévy exponent fulfills

Ψ X
T t (θ) = T −γ Ψ X

t (T θ) for all t ≥ 0, T > 0, θ ∈ R.

This has the following interesting consequence. If γ < 0 then by Theorem 2.2(II)(i) in [17] the
Lamperti-type transform (Z t = (1 − γ t)1/γ X(1−γ t)−1/γ )t≥0 is a γ -mild OU-type process, which
by Definition 1.2(i) in [17] means that

Z t = (1 − γ t)1/γ

 t

1/γ

(1 − γ u)−1/γ Y (du),

where Y denotes an independently scattered random measure. In conclusion we get

X t =

 1
γ

(1+t−γ )

1/γ

(1 − γ u)−1/γ Y (du) =

 log t

−∞

eu Y (dϕ(u)),

where the last equality applies by formal change of variables ϕ(log t) =
1
γ
(1 + t−γ ). Similar

representations hold for 0 < γ < 2 by Theorem 2.2(II) together with Definition 1.2 in [17]
if certain moment conditions on Y are fulfilled. Note that by Theorem 2.3(II) in [17] a further
connection between γ -quasi-selfsimilar processes and γ -selfdecomposable random variables is
outlined. The latter fulfill an integral representation by [16].

For α ≠ δ/2 we will investigate a Lamperti-type transformation of dilatively stable processes
and its connection to OU-type processes in Section 3.
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We now turn to the converse relation of constructing additive dilatively stable processes as
random integrals with respect to a time-changed Lévy process. As mentioned in the Introduction,
for additive selfsimilar processes (case δ = 0) the driving Lévy process must have a finite
logarithmic moment. Since the desired converse relation for additive selfsimilar processes is
already fully established in the mathematical literature, we concentrate on the case δ ≠ 0. For
δ < 0 we will need the following moment condition for which we were not able to find a suitable
reference.

Lemma 2.7. Let (Xn)n∈N be an i.i.d. sequence. Then for a, b ∈ N with a ≥ 2 and β > 1 we
have

∞
k=0

a−kβ
ak b
ℓ=1

Xℓ converges absolutely almost surely iff E

|X1|

1/β


< ∞.

Proof. Provided that the series converges absolutely almost surely, we may change the order of
summation to get

∞
k=0

a−kβ
ak b
ℓ=1

Xℓ =

∞
ℓ=1

 ∞
k=max


log(ℓ/b)

log a


,0
 a−kβ


Xℓ

=
1

1 − a−β


b−1
ℓ=1

Xℓ +

∞
ℓ=b

a
−β


log(ℓ/b)

log a


Xℓ


. (8)

The latter series has independent summands and hence by Kolmogorov’s three-series theorem
we get for any d > 0

∞
ℓ=b

P

|X1|

1/β > d1/β a
b ℓ


=

∞
ℓ=b

P


|X1|

1/β > d1/βa
log(ℓ/b)

log a +1


≤

∞
ℓ=b

P

a−β


log(ℓ/b)
log a


Xℓ

 > d


< ∞.

Choosing d = ( b
a )β this shows that E


|X1|

1/β


< ∞.
Conversely, if E


|X1|

1/β


exists then


∞

ℓ=b ℓ−β
|Xℓ| converges almost surely, cf. Remark 3

in [3]. Thus we get

∞
ℓ=b

a
−β


log(ℓ/b)

log a


|Xℓ| ≤

∞
ℓ=b

ℓ−β
|Xℓ| < ∞ almost surely

and the assertion follows by (8).

Lemma 2.8. Let (L(t))t∈R be a two-sided Lévy process and let (Yt )t∈R := (L( eδt
−1

eδ−1
))t∈R be

the time-changed Lévy process. Then for fixed T ∈ R the increment process (Kt;T )t∈R :=

(Yt+T − YT )t∈R fulfills (4), i.e. in terms of the Lévy exponent we have

Ψ K
t1,...,tk ;T

(θ1, . . . , θk) = eδT ΨY
t1,...,tk (θ1, . . . , θk)

for all k ∈ N and t1, . . . , tk, θ1, . . . , θk ∈ R.



10 T. Bhatti, P. Kern / Stochastic Processes and their Applications ( ) –

Proof. Since (L(t))t∈R is a Lévy process, for t, T ∈ R we have

Kt;T = L
eδ(t+T )

− 1
eδ − 1


− L

eδT
− 1

eδ − 1


d
= L


eδT eδt

− 1
eδ − 1


which in terms of the Lévy exponents gives

Ψ K
t;T (θ) = Ψ L

eδT eδt −1
eδ−1

(θ) = eδT eδt
− 1

eδ − 1
Ψ L

1 (θ) = eδT ΨY
t (θ)

for all θ ∈ R which shows that (4) holds for k = 1. Now the remaining case k ≥ 2 follows as in
the proof of Lemma 2.3.

Lemma 2.9. Let (L(t))t∈R be a two-sided Lévy process and let (Yt )t∈R := (L( eδt
−1

eδ−1
))t∈R be the

time-changed Lévy process. Then each of the following conditions is sufficient for the almost sure
convergence of b

a
et (α−δ/2) dYt as a ↓ −∞ for any b ∈ R.

(a) δ > 0 and α > δ/2.
(b) δ < 0, α > −δ/2 and

sup
1
δ

log 2≤s≤0

E

 0

s
et (α−δ/2) dYt

γ < ∞ for some γ >
−δ

α + δ/2
. (9)

Proof. Let b ≥ an ↓ −∞ be an arbitrary sequence and δ ≠ 0. Choose k0 ∈ N such that
−

1
|δ|

log(k0) ≤ b and k(n) ∈ N0 such that

−
1
|δ|

log

2k(n)+1k0


< an ≤ −

1
|δ|

log

2k(n)k0


.

Setting γn = −
1
|δ|

log(2nk0) we decompose b

an

et (α−δ/2)dYt =

 b

γ0

et (α−δ/2)dYt +

 γ0

γk(n)

et (α−δ/2)dYt +

 γk(n)

an

et (α−δ/2)dYt

=: A + Bn + Cn,

where A, Bn, Cn are independent and A is a fixed random variable. Now observe that

Bn =

k(n)−1
k=0

 γk

γk+1

et (α−δ/2)dYt =:

k(n)−1
k=0

Zk

is a sum of independent random variables (Zk)k∈N. Note that (Zk)k∈N is a sequence of
infinitely divisible random variables by Theorem 9.1 in [21], since for any T ∈ R the process
(
 T +s

T et (α−δ/2)dYt )s≥0 is additive as in Lemma 2.1. We will now distinguish between the two
cases δ > 0 and δ < 0.

(i) In case δ > 0 for any k ∈ N0 we get by a change of variables

Zk =

 γk

γk+1

et (α−δ/2)dYt
d
=

 γk+1

γk+2

e


t+ 1

δ
log 2


(α−δ/2)

d Kt; 1
δ

log 2
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and by Lemma 2.8 we obtain that
Kt; 1

δ
log 2


t∈R

d
=

Y (1)

t + Y (2)
t


t∈R,

where (Y (1)
t )t∈R

d
= (Y (2)

t )t∈R are independent copies of (Yt )t∈R. It follows that

Zk
d
= 2(α−δ/2)/δ


Z (1)

k+1 + Z (2)
k+1


,

where Z (1)
k+1, Z (2)

k+1 are i.i.d. and distributed as Zk . Let Ψk be the Lévy exponent of Zk then we
obtain Ψk(θ) = 2 Ψk+1(2(α−δ/2)/δθ) for any θ ∈ R and k ∈ N0. Inductively, for the Lévy
exponent ΨBn of Bn we get

ΨBn (θ) =

k(n)−1
k=0

Ψk(θ) =

k(n)−1
k=0

2−kΨ0(2−k(α−δ/2)/δθ).

Since in (a) we assume α > δ/2, we get Ψ0(2−k(α−δ/2)/δθ) → Ψ0(0) = 0 as k → ∞ and hence
ΨBn (θ) → g(θ) for some function g : R → C with g(0) = 0. By continuity of Ψ0 at 0, for any
ε > 0 we can choose η > 0 such that

|Ψ0

2−k(α−δ/2)/δθ


| ≤

ε

4
for all k ∈ N0 and |θ | < η.

For any θ ∈ R with |θ | < η we can further choose n ∈ N such that |g(θ) − ΨBn (θ)| ≤
ε
2 and

hence

|g(θ)| ≤ |g(θ) − ΨBn (θ)| + |ΨBn (θ)|

≤
ε

2
+

k(n)−1
k=0

2−k
|Ψ0(2−k(α−δ/2)/δθ)| ≤

ε

2
+

ε

4
·

∞
k=0

2−k
= ε

for all |θ | < η which shows that g is continuous at 0. By Lévy’s continuity theorem it follows
that (Bn)n∈N converges in distribution. We now turn to

Cn =

 γk(n)

an

et (α−δ/2)dYt =

 0

an−γk(n)

e(t+γk(n))(α−δ/2)d Kt;γk(n)

=

2k(n)k0

− α−δ/2
δ ·

 0

an−γk(n)

et (α−δ/2)d Kt;γk(n)
=: bn · Wn .

Then bn → 0 and the following calculation shows that Wn → 0 in probability. For fixed n ∈ N
let an − γk(n) = s(m)

0 = t (m)
0 ≤ s(m)

1 < t (m)
1 ≤ · · · ≤ s(m)

m < t (m)
m = s(m)

m+1 = 0 be a partition with

maxk=1,...,m

t (m)
k − t (m)

k−1


→ 0 as m → ∞. Then we get almost surely

Wn = lim
m→∞

m
j=0

et (m)
j (α−δ/2)K

s(m)
j+1;γk(n)

− K
s(m)

j ;γk(n)


= lim

m→∞

m
j=0

et (m)
j (α−δ/2)K

s(m)
j+1−s(m)

j ;s(m)
j +γk(n)

.
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Hence for the Lévy exponent ΨWn of Wn we obtain by Lemma 2.8 for any θ ∈ R

ΨWn (θ) = lim
m→∞

m
j=0

Ψ K
s(m)

j+1−s(m)
j ;s(m)

j +γk(n)


et (m)

j (α−δ/2)
θ


= lim
m→∞

m
j=0

eδ(s(m)
j +γk(n))ΨY

s(m)
j+1−s(m)

j


et (m)

j (α−δ/2)
θ


=

2k(n)k0

−1 lim
m→∞

m
j=0

Ψ K
s(m)

j+1−s(m)
j ;s(m)

j


et (m)

j (α−δ/2)
θ


=

2k(n)k0

−1ΨVn (θ),

where Vn =
 0

an−γk(n)
et (α−δ/2)dYt . Now for every subsequence n′

→ ∞ there exists a further

subsequence n′′
→ ∞ with an′′ −γk(n′′) → a ∈ [−

1
δ

log 2, 0 ] and hence Vn′′ →
 0

a et (α−δ/2)dYt

in probability by stochastic continuity. Hence ΨWn′′ (θ) → 0 for all θ ∈ Rd . This shows Wn → 0
in probability and hence Cn → 0 in probability.

(ii) In case δ < 0 for any k ∈ N0 we get by a change of variables

Zk =

 γk

γk+1

et (α−δ/2)dYt =

 0

1
δ

log 2
e(t+γk )(α−δ/2)d Kt;γk

= (2kk0)
(α−δ/2)/δ

 0

1
δ

log 2
et (α−δ/2)d Kt;γk

and by Lemma 2.8 we obtain


Kt;γk


t∈R

d
=

2k k0
ℓ=1

Y (ℓ)
t


t∈R

, (10)

where (Y (ℓ)
t )t∈R, ℓ ∈ N, are independent copies of (Yt )t∈R. It follows that

Bn
d
= k(α−δ/2)/δ

0

k(n)−1
k=0

2k(α−δ/2)/δ
2k k0
ℓ=1

 0

1
δ

log 2
et (α−δ/2)dY (ℓ)

t .

By our assumptions in (b), Lemma 2.7 applied to a = 2, β = −(α − δ/2)/δ > 1 and b = k0
shows that Bn converges in distribution as n → ∞, since the i.i.d. integrals have finite absolute
moment of order 1/β = −δ/(α − δ/2) < −δ/(α + δ/2) by (9). We will now show that Cn → 0
in probability. For any ε > 0 and γ > 0 we get using (10) and Markov’s inequality

P

|Cn| > ε


= P

 0

an−γk(n)

e


t+ 1

δ
log(2k(n)k0)


(α−δ/2)

d Kt;γk(n)

 > ε



≤ P

2k(n)k0
ℓ=1

 0

an−γk(n)

et (α−δ/2)dY (ℓ)
t

 > ε(2k(n)k0)
−(α−δ/2)/δ



≤ 2k(n)k0 P

 0

an−γk(n)

et (α−δ/2)dYt

 > ε(2k(n)k0)
−1−(α−δ/2)/δ


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≤ ε−γ (2k(n)k0)
1+γ (1+(α−δ/2)/δ) E

 0

an−γk(n)

et (α−δ/2)dYt

γ 
≤ ε−γ (2k(n)k0)

1+γ (α+δ/2)/δ sup
1
δ

log 2≤s≤0

E
 0

s
et (α−δ/2)dYt

γ .
The first term on the right-hand side converges to zero if 1 + γ

α+δ/2
δ

< 0, or equivalently if
γ > −δ

α+δ/2 in which case the second term is bounded by (9).
Altogether, in both cases (i) and (ii) we have shown that if either condition (a) or (b) is fulfilled

then (A+ Bn +Cn)n∈N converges in distribution, which in our situation by Corollary A2.3 in [10]
is equivalent to the asserted almost sure convergence.

Theorem 2.10. Let (L(t))t∈R be a two-sided Lévy process and (Yt )t∈R = (L( eδt
−1

eδ−1
))t∈R be the

time-changed Lévy process such that one of the conditions (a) or (b) in Lemma 2.9 is fulfilled.
Then the process (X t )t≥0 given by

X t :=

 log t

−∞

eu(α−δ/2)dYu (11)

is well-defined and an additive (α, δ)-dilatively stable process.

Proof. By Lemma 2.9 the random integral in (11) exists as an almost sure limit and thus X =

(X t )t≥0 is well-defined. Similar to the proof of Lemma 2.1 one can show that X is an additive
process. It remains to show that X is (α, δ)-dilatively stable. For 0 < s < t and T > 0 given a
sequence of partitions log s = s(n)

0 = t (n)
0 ≤ s(n)

1 < t (n)
1 ≤ · · · ≤ s(n)

n < t (n)
n = s(n)

n+1 = log t with

maxk=1,...,n

t (n)
k − t (n)

k−1


→ 0 we have almost surely

X tT − XsT =

 log(tT )

log(sT )

eu(α−δ/2)dYu = T α−δ/2
 log t

log s
eu(α−δ/2) d(Yu+log T − Ylog T )

= T α−δ/2 lim
n→∞

n
j=0

et (n)
j (α−δ/2)K

s(n)
j+1;log T

− K
s(n)

j ;log T


.

Setting γ
(n)
j := et (n)

j (α−δ/2)T (α−δ/2)θ for arbitrary θ ∈ R, by Lemma 2.8 we obtain for the Fourier
transforms

PX tT −XsT (θ) = lim
n→∞

n
j=0

exp

Ψ K

s(n)
j ,s(n)

j+1;log T


γ

(n)
j , −γ

(n)
j


= lim

n→∞
exp

 n
j=0

T δΨY
s(n)

j ,s(n)
j+1


γ

(n)
j , −γ

(n)
j


= lim

n→∞


exp

 n
j=0

ΨY
s(n)

j ,s(n)
j+1


γ

(n)
j , −γ

(n)
j

T δ

=

PX t −Xs (T α−δ/2θ)
T δ

. (12)

By stochastic continuity, for s ↓ 0 it follows that

PX tT =

PX t (T α−δ/2θ)
T δ

for all t, T > 0.
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Choosing T = n1/δ for n ∈ N this shows that (X t )t≥0 is infinitely divisible and in terms of the
Lévy exponent fulfills

Ψ X
tT (θ) = T δ Ψ X

t


T α−δ/2θ


for all t ≥ 0, T > 0 and θ ∈ R. (13)

It remains to show that this scaling relation holds for the finite-dimensional distributions, i.e. that
(1) holds. Again it suffices to show the case k = 2, the general case follows analogously. For
k = 2 we get for any 0 ≤ t1 < t2, θ1, θ2 ∈ R, T > 0 by independence of the increments and
(12), (13)

exp

Ψ X

t1T,t2T


θ1, θ2


= E


exp


iθ1 X t1T + iθ2 X t2T


= E


exp


i(θ1 + θ2)X t1T


E

exp


iθ2(X t2T − X t1T )


= exp


Ψ X

t1T (θ1 + θ2)
PX t2T −X t1T (θ2)

= exp

T δΨ X

t1 (T α−δ/2(θ1 + θ2))
PX t2−X t1

(T α−δ/2θ2)
T δ

= E

exp


iT α−δ/2(θ1 + θ2)X t1 + iT α−δ/2θ2(X t2 − X t1)

T δ

= E

exp


iT α−δ/2θ1 X t1 + iT α−δ/2θ2 X t2

T δ

= exp


T δΨ X
t1,t2


T α−δ/2θ1, T α−δ/2θ2


concluding the proof.

Remark 2.11. If (X t )t≥0 is an additive (α, δ)-dilatively stable process then by Theorem 2.2 we
know that

X1 =

 0

−∞

eu(α−δ/2)dYu almost surely. (14)

In case δ < 0 and α > −δ/2 we can decompose the integral as in part (ii) of the proof of
Lemma 2.9 into

X1 =

∞
k=0

2k(α−δ/2)/δ
2k

ℓ=1

 0

1
δ

log 2
et (α−δ/2)dY (ℓ)

t , (15)

where (Y (ℓ)
t )t∈R, ℓ ∈ N, are i.i.d. copies of (Yt )t∈R. In particular, by (14) the series in (15)

converges almost surely. If we assume a bit more, namely that the series in (15) converges
absolutely almost surely, then Lemma 2.7 applied to a = 2, b = 1 and β = −(α − δ/2)/δ > 1
shows that the moment condition

E

 0

1
δ

log 2
et (α−δ/2) dYt

 −δ
α−δ/2


< ∞

of order 1/β = −δ/(α − δ/2) < 1 necessarily has to be fulfilled. Since we have to assure
the almost sure convergence of the integral in (14) for arbitrary sequences decreasing to −∞ in
Theorem 2.10, we asserted the stronger moment condition (9) of order γ > −δ

α+δ/2 > 1/β which
can get arbitrary large for α ↓ −δ/2. We were not able to derive a precise moment condition
which is necessary and sufficient for the existence of the integral in (14) in an almost sure sense.
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3. Translatively stable processes

In this section we restate Iglói’s [6] notion of translative stability, a generalization of station-
arity for stochastic processes. Similar to stationary processes, a Lamperti-type transformation
provides a close connection to dilatively stable processes already laid out in [6]. Specifying
this connection to the subclass of additive dilatively stable processes, we can relate our re-
sults from Section 2 to an integral representation for certain translatively stable processes of
Ornstein–Uhlenbeck type.

Definition 3.1. An infinitely divisible process (Vt )t∈R is called δ-translatively stable if for some
δ ∈ R in terms of the Lévy exponent we have

ΨV
t1+T,...,tk+T (θ1, . . . , θk) = eδT ΨV

t1,...,tk (θ1, . . . , θk)

for all T ∈ R, t1, . . . , tk ∈ R, θ1, . . . , θk ∈ R.

Note that for δ = 0 this definition coincides with stationarity. There appears a related scaling
relation in the literature called δ-time stability by Kopp and Molchanov [13]. The definition of
this scaling relation goes back to Mansuy’s [18] concept of infinite divisibility with respect to time
and was further investigated in [4,5]. Assuming stochastic continuity (or weak right-continuity)
of the stochastic process, the definition of δ-time stability in [13] and of infinite divisibility with
respect to time in [18] implies that the process is infinitely divisible in the usual sense; see the
introduction in [13] or Theorem 3.1 in [4]. Hence, we will state these concepts in our context of
characteristic exponents to compare them to translatively stable processes.

A real-valued infinitely divisible process (Dt )t≥0, is said to be infinitely divisible with respect
to time (IDT) if for any n ∈ N we have

Ψ D
nt1,...,ntk (θ1, . . . , θk) = n · Ψ D

t1,...,tk (θ1, . . . , θk) (16)

for all t1, . . . , tk ≥ 0 and θ1, . . . , θk ∈ R. A stochastically continuous and infinitely divisible
process (Z t )t≥0 is called δ-time stable for some δ ≠ 0 if for any n ∈ N we have

Ψ Z
n1/δ t1,...,n1/δ tk

(θ1, . . . , θk) = n · Ψ Z
t1,...,tk (θ1, . . . , θk) (17)

for all t1, . . . , tk ≥ 0 and θ1, . . . , θk ∈ R. As a direct consequence from (16), respectively (17)
we immediately get D0 = 0 and Z0 = 0 almost surely.

We will now show that these concepts are closely related to translative stability and thus
examples of IDT, respectively δ-time stable processes given in [4,5,13,18] may also serve as
examples of δ-translatively stable processes.

Lemma 3.2. Let δ ≠ 0.

(a) If (Vt )t∈R is stochastically continuous and δ-translatively stable with Vt → 0 in probability
as t ↓ −∞ then (Z t := Vlog t )t≥0 is δ-time-stable. Conversely, if (Z t )t≥0 is a δ-time-stable
process then (Vt := Zet )t∈R is δ-translatively stable.

(b) If (Vt )t∈R is δ-translatively stable then (Dt := V1/δ log t )t≥0 is IDT. Conversely, if (Dt )t≥0
is IDT and all its finite-dimensional distributions are weakly right-continuous then (Vt :=

Deδt )t∈R is δ-translatively stable.
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Proof. (a) For n ∈ N let T =
1
δ

log t in Definition 3.1 and let V−∞ := 0 then for any
t1, . . . , tk ≥ 0 the Lévy exponent of (Z t = Vlog t )t≥0 fulfills

Ψ Z
n1/δ t1,...,n1/δ tk

= ΨV
log t1+

1
δ

log n,...,log tk+
1
δ

log n
= elog nΨV

log t1,...,log tk = n · Ψ Z
t1,...,tk

showing that (Z t )t≥0 is δ-time stable. For the converse relation we observe that for n, m ∈ N and
si = m−1/δti

Ψ Z
(n/m)1/δ t1,...,(n/m)1/δ tk

= n · Ψ Z
s1,...,sk

=
n

m
· Ψ Z

m1/δs1,...,m1/δsk
=

n

m
· Ψ Z

t1,...,tk .

Since (Z t )t≥0 is stochastically continuous, its finite-dimensional distributions are weakly right-
continuous and thus for any S > 0 and t1, . . . , tk ≥ 0 we get

Ψ Z
S1/δ t1,...,S1/δ tk

= S · Ψ Z
t1,...,tk .

Rewriting S = eδT for T ∈ R this shows that (Vt := Zet )t∈R is δ-translatively stable.
(b) Setting V−∞ = 0 = V∞ we can show that (Dt := V1/δ log t )t≥0 is IDT similar to part

(a). For the converse relation our assumption on weak right-continuity guarantees that we can
proceed as in part (a) to show that (Vt := Deδt )t∈R is δ-translatively stable.

As mentioned above, a Lamperti-type transformation connects the class of dilatively stable and
translatively stable processes as follows. In the special case of a convolution exponent δ = 0, the
classical Lamperti transform [14] is known to build a one-to-one correspondence between self-
similar processes and stationary processes on the real line. We use the following generalization
of the Lamperti transform due to Iglói [6].

Definition 3.3. Let (X t )t>0 be a real-valued stochastic process and α, δ ∈ R. We call the
stochastic process

V = (Vt := e−(α−δ/2)t Xet )t∈R

the Lamperti-type transform of (X t )t>0. Its inverse on the path space given by

X = (X t := tα−δ/2Vlog t )t>0

is called the inverse Lamperti-type transform of (Vt )t∈R.

Proposition 3.4. (a) If (X t )t≥0 is (α, δ)-dilatively stable for some α, δ ∈ R then its Lamperti-
type transform (Vt = e−(α−δ/2)t Xet )t∈R is δ-translatively stable.

(b) If (Vt )t∈R is δ-translatively stable for some δ ∈ R then with X0 := 0 its inverse Lamperti-
type transform (X t = tα−δ/2Vlog t )t≥0 is (α, δ)-dilatively stable for any α ∈ R.

Proof. The proof is a straightforward calculation using the scaling properties of translatively and
dilatively stable processes.

(a) For T ∈ R, t1, . . . , tk ∈ R and θ1, . . . , θk ∈ R we get

ΨV
t1+T,...,tk+T (θ1, . . . , θk) = Ψ X

et1+T ,...,etk+T (e−(α−δ/2)(t1+T )θ1, . . . , e−(α−δ/2)(tk+T )θk)

= Ψ X
et1 eT ,...,etk eT (e−(α−δ/2)(t1+T )θ1, . . . , e−(α−δ/2)(tk+T )θk)

= eδT Ψ X
et1 ,...,etk (e

T (α−δ/2)e−(α−δ/2)(t1+T )θ1, . . . , eT (α−δ/2)e−(α−δ/2)(tk+T )θk)

= eδT Ψ X
et1 ,...,etk (e

−(α−δ/2)t1θ1, . . . , e−(α−δ/2)tk θk)

= eδT ΨV
t1,...,tk (θ1, . . . , θk).
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(b) For T > 0, t1, . . . , tk ≥ 0 and θ1, . . . , θk ∈ R we get setting V−∞ := 0

Ψ X
T t1,...,T tk (θ1, . . . , θk) = ΨV

log(T t1),...,log(T tk )
((T t1)

α−δ/2θ1, . . . , (T tk)
α−δ/2θk)

= ΨV
log T +log t1,...,log T +log tk ((T t1)

α−δ/2θ1, . . . , (T tk)
α−δ/2θk)

= eδ log T ΨV
log t1,...,log tk (T α−δ/2tα−δ/2

1 θ1, . . . , T α−δ/2tα−δ/2
k θk)

= T δΨ X
t1,...,tk (T α−δ/2θ1, . . . , T α−δ/2θk)

concluding the proof.

Further we can show that there is a close connection between additive dilatively stable
processes and translatively stable wide-sense Ornstein–Uhlenbeck type (OU-type) processes as
introduced in Maejima and Sato [15].

Definition 3.5. Let (Yt )t∈R be an additive process. A stochastic process (Ut )t∈R is called wide-
sense OU-type process with parameter λ ∈ R and background driving process (Yt )t∈R if

Ut = eλt


U0 +

 t

0
e−λsdYs


for all t ∈ R. (18)

Proposition 3.6. (a) Let (X t )t≥0 be an additive (α, δ)-dilatively stable process for some α, δ ∈

R. Then its Lamperti-type transform (Vt = e−(α−δ/2)t Xet )t∈R is a δ-translatively stable
wide-sense OU-type process with parameter λ = δ/2 − α and driving process (Yt )t∈R as in
Lemma 2.1.

(b) For some α, δ ∈ R let (Vt )t∈R be a δ-translatively stable wide-sense OU-type process with
parameter λ = δ/2 − α and driving process (Yt = L( eδt

−1
eδ−1

))t∈R, where (L(t))t∈R is a two-

sided Lévy process. If e(α−δ/2)t Vt → 0 in probability as t ↓ −∞ then the inverse Lamperti-
type transform (X t = tα−δ/2Vlog t )t≥0 is an additive (α, δ)-dilatively stable process.

Proof. (a) By Proposition 3.4(a) the process (Vt )t∈R is δ-translatively stable and by Theorem 2.2
we have

eλt


V0 +

 t

0
e−λu dYu


= e−(α−δ/2)tX1 + (Xet − X1)


= e−(α−δ/2)t Xet = Vt

showing that (Vt )t∈R is a wide-sense OU-type process as asserted.
(b) By Proposition 3.4(b) the process (X t )t≥0 is (α, δ)-dilatively stable with X t → 0 =: X0

in probability as t ↓ 0 by assumption. For 0 < s < t we observe by (18)

X t − Xs = tα−δ/2Vlog t − sα−δ/2Vlog s =

 log t

log s
e(α−δ/2)ud L( eδu

−1
eδ−1

)

showing that (X t )t≥0 has independent increments, is stochastically continuous and has càdlàg
paths.

Combining Proposition 3.6 with the results of Section 2 we can directly state an integral
representation for translatively stable wide-sense OU-type processes.

Corollary 3.7. (a) For some α, δ ∈ R let (Vt )t∈R be a δ-translatively stable wide-sense OU-
type process with parameter λ = δ/2 − α and driving process (Yt = L( eδt

−1
eδ−1

))t∈R, where
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(L(t))t∈R is a two-sided Lévy process. If e(α−δ/2)t Vt → 0 in probability as t ↓ −∞ then
(Vt )t∈R has the integral representation

Vt =

 t

−∞

e(u−t)(α−δ/2)dYu .

(b) For δ ≠ 0 let (L(t))t∈R be a two-sided Lévy process and (Yt )t∈R = (L( eδt
−1

eδ−1
))t∈R be the

time-changed Lévy process such that for some α ∈ R one of the conditions (a) or (b) in
Lemma 2.9 is fulfilled. Then the process (Vt )t∈R given by

Vt :=

 t

−∞

e(u−t)(α−δ/2)dYu

is well-defined and a δ-translatively stable wide-sense OU-type process with parameter
λ = δ/2 − α and driving process (Yt )t∈R.

Proof. Part (a) follows directly from Proposition 3.6(b) and Theorem 2.2, whereas part (b) is a
direct consequence of Theorem 2.10 together with Proposition 3.6(a).
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[6] E. Iglói, Dilative Stability (Ph.D. Thesis), Faculty of Informatics, University of Debrecen, Hungary, 2008,
http://www.inf.unideb.hu/valseg/dolgozok/igloi/dissertation.pdf.

[7] M. Jeanblanc, J. Pitman, M. Yor, Self-similar processes with independent increments associated with Lévy and
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