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Abstract

In this paper, we are concerned with polymer models based on α-stable processes, where α ∈
d
2 , d ∧ 2) and d stands for dimension. They are attached with a delta potential at the origin and
he associated Gibbs measures are parametrized by a constant γ ∈ R ∪ {−∞} playing the role of

inverse temperature. Phase transition exhibits with critical value γcr = 0. Our first object is to formulate
the associated Dirichlet form of the canonical Markov process X (γ ) induced by the Gibbs measure
for a globular state γ > 0 or the critical state γ = 0. Approach of Dirichlet forms also leads to
deeper descriptions of their probabilistic counterparts. Furthermore, we will characterize the behaviour
of polymer near the critical point from probabilistic viewpoint by showing that X (γ ) is convergent to
X (0) as γ ↓ 0 in a certain meaning.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Polymers are chemical compounds consisting essentially of repeating units, called
onomers. Real polymers are complex objects on their own, typically fluctuating in a solvent
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as well as with other portion of themselves. The study of polymer models has been a very
active area of research in mathematical physics for a long time. It began to develop in 1930s
under the influence of chemical and biological applications. Research into these models led to
a great number of impressive advances, from the explanation of rubber elasticity to the creation
of the theory of helix–coil transitions in proteins and nucleic acids. Many physically relevant
problems on polymer chains have been outlined in e.g. a review of Lifschitz, Grosberg and
Khokhlov [19].

In simplified discrete models, the configuration of a polymer, i.e. the sequence of locations
of the monomers, follows the trajectory of a random walk on a lattice; see e.g. [14]. As a
continuous generalization, a continuum polymer model was constructed by Cranston et al.
(see e.g. [6–8]) in the context of Brownian motions. Let us use a few lines to explain some
details. It starts with a system of finite size T , which means the length of the polymer. Let
ΩT := C([0, T ],Rd ), i.e. the family of all continuous paths of size T in Rd , be the configuration
space of the system. Then the polymer model is described by a Gibbs ensemble at each inverse
temperature β (≥ 0), realized as a probability measure Pβ,T on ΩT , which is also called a Gibbs

easure. More precisely, the underlying probability measure P0,T is identified with the Wiener
easure on ΩT in this model, and we also denote it by PT in abbreviation. For β > 0, Pβ,T

s determined by the so-called Hamiltonian HT , which is given by a certain potential function
∈ C∞

c (Rd ), non-negative and not identically equal to 0 (see [6]) in the following manner:

HT (ω) = −

∫ T

0
v(ω(t))dt, ω ∈ ΩT . (1.1)

n other words,

Pβ,T (dω) =
exp{−βHT (ω)}

Zβ,T
PT (dω) =

exp{β
∫ T

0 v(ω(t))dt}
Zβ,T

PT (dω), (1.2)

here Zβ,T := ET exp{−βHT } is the so-called partition function. From probabilistic viewpoint,
he phenomenon of phase transition is observed by letting T ↑ ∞ with certain tactic. It is shown
n [6] that there is a critical value βcr such that for β < βcr and β > βcr , the polymer manifests
ifferent behaviours and is called in the diffusive state and in the globular state respectively. In
he former state, the canonical process induced by the limiting measure is nothing but Brownian

otion. However in the latter state, the limiting measure induces another diffusion process
njoying a certain ergodic measure ψ2

β(x)dx . In particular, βcr = 0 for d = 1, 2 and βcr > 0
or d ≥ 3. From analytic viewpoint, the (self-adjoint) operator

Hβ =
1
2
∆ + β · v : L2(Rd ) → L2(Rd ),

here ∆ is the Laplacian operator and v is the potential function in (1.1), plays a central role
n characterizing the phase transition. In the case that v ∈ C∞

c (Rd ) is non-negative and not
identically equal to 0, it is well known that the spectrum of Hβ consists of the absolutely
continuous part (−∞, 0] and at most a finite number of non-negative eigenvalues λ j (β), i.e.

(Hβ) = (−∞, 0] ∪ {λ j (β) : 0 ≤ j ≤ N }. We enumerate the eigenvalues in a decreasing
rder and particularly, λ0(β) = max{λ j (β) : 0 ≤ j ≤ N } if {λ j (β)} ̸= ∅. When β ≤ βcr ,
up σ (Hβ) = 0. When β > βcr , it holds that λ0(β) > 0 and β ↦→ λ0(β) is increasing
nd continuous with limβ↓βcr λ0(β) = 0 and limβ↑∞ λ0(β) = ∞ (see [6, Lemma 4.1]). The
xplicit form of λ0(β) is unclear, but its behaviour near βcr is analysed in [6, Theorem 6.1].
hese facts about σ (Hβ) are another reflection of phase transition. It is worth noting that in a
lobular state, the density function ψ appearing in the above ergodic measure is exactly the
β
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ground state of Hβ , i.e. its eigenfunction with eigenvalue λ0(β). In addition, λ0(β) coincides
with the rate of growth of Zβ,T (also called the free energy of the ensemble), i.e. λ0(β) =

imT ↑∞

(
log Zβ,T

)
/T , and the asymptotics of λ0(β) as β ↓ βcr demonstrate universality in

hat they depend only on dimension (see [6, Theorem 6.1]).
More interestingly, another particular and significant case with v = δ0, i.e. the delta function

t the origin, is explored in e.g. [1,7] and similar phase transition appears only for d = 3.
ote that Hβ are not self-adjoint any more and should be replaced by self-adjoint extensions,
arametrized by a constant γ ∈ {−∞} ∪ R as shown in [7, Theorem 2.1], of 1

2∆ restricted to
∞
c (R3

\ {0}). Denote the family of all these self-adjoint extensions by {Lγ : γ ∈ R or − ∞}.
eanwhile, the Hamiltonian should be understood as a limit − limε↓0

∫ T
0 Aε ·1(−ε,ε)(ωt )dt in a

ertain manner, where Aε (↑ ∞ as ε ↓ 0) is a constant depending on γ . This parameter γ plays
he role of inverse temperature in associated Gibbs measure, which exhibits a phase transition
ith critical value γcr = 0, and γ = −∞ corresponds to the underlying case. Indeed, in the
iffusive state γ < 0, Pγ,T converges to the Wiener measure under suitable scaling as T ↑ ∞

nd σ (Lγ ) = (−∞, 0]. Note that when γ = −∞, Lγ is exactly the Laplacian operator. In
he globular state γ > 0, σ (Lγ ) = (−∞, 0] ∪ {λ0(γ ) := γ 2/2} and the limiting process has
n ergodic measure ψ2

γ (x)dx , where ψγ is the eigenfunction of Lγ with the solo eigenvalue
0(γ ) = γ 2/2. The behaviours of polymer near γcr = 0 are also analysed in [7].

In this paper, we are concerned with a generalization based on α-stable process W α with
∈ (0, 2) of this continuum polymer model with delta potential. For the sake of brevity,

e only consider the isotropic case, where the transition density of W α is given by (2.1).
articularly, ∆α/2

:= −(−∆)α/2, not 1
2∆

α/2, is the generator of W α . This generalization was
first raised in [9] mainly from analytic viewpoint. At a heuristic level, the analogical operator,
denoted by Aγ , of Lγ may be informally written as

Aγ = ∆α/2
+ βγ · δ0, (1.3)

here βγ is a certain constant depending on γ (such that β−∞ = 0; see [9, §3]) and γ plays
he role of inverse temperature. Strictly speaking, Aγ is a self-adjoint extension on L2(Rd ) of
α/2 restricted to C∞

c (Rd
\ {0}). The rigorous statement is phrased in [9, Theorem 3.3] for

ither of the following cases:

(i) d = 1 and α > 1;
(ii) d = 1 or 2 and α = d;

(iii) d/2 < α < d.

n the cases (i) and (iii), phase transition exists with critical value γcr = 0. In the globular
tate γ > 0, Aγ possesses a solo eigenvalue λγ > 0. Meanwhile universality is demonstrated
n the concrete expression of λγ as presented in [9, §3.1 and §3.3]; but at this time, not only
imension d but also α is involved. However in the case (ii), no phase transitions exhibit
nd every γ corresponds to a globular state. The associated Gibbs measure (at γ ) in a strict
ense is also obtained in [9]. In abuse of notation, we still denote the configuration space by
T = D([0, T ],Rd ), i.e. the family of all càdlàg paths in Rd . Fix a starting point x of the
nderlying process W α (we take x = 0 in (1.1) tacitly). Let pγ (t, x, y) be the fundamental
olution of

∂u
∂t

= Aγ u.

When γ = −∞, we write p for p−∞ (i.e. the transition density of W α) in abbreviation.
Then the partition function, denoted by Z (x), and the Gibbs measure, denoted by Px , are
γ,T γ,T
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formulated as follows:

Zγ,T (x) =

∫
Rd

pγ (T, x, y)dy,

Px
γ,T ({ω ∈ ΩT : ω(t1) ∈ A1, . . . , ω(tn) ∈ An})

= Z−1
γ,T (x)

∫
A1×···×An×Rd

∏
1≤i≤n+1

pγ (ti − ti−1, xi−1, xi )dxn+1 · · · dx1,

(1.4)

where A1, . . . , An are Borel subsets of Rd , x0 = x and 0 = t0 < t1 < · · · < tn < tn+1 = T .
The case γ = −∞ corresponds to the truncated α-stable process and for γ in the globular
state, Px

γ,T converges to a probability measure Px
γ on Ω := D([0,∞),Rd ) inducing a canonical

process with an ergodic measure ψ2
γ (x)dx , where ψγ is the ground state of Aγ , as T ↑ ∞

(see [9, Theorem 4.1]). To our knowledge, however, no analogical limits were obtained for a
non-globular state. Note incidentally that the analogical approach of (1.4) for Hβ or Lγ is still
available, see e.g. [6].

Our paper aims to study this polymer model of non-local type from probabilistic viewpoint
by means of so-called Dirichlet forms. Although a conception in functional analysis, Dirichlet
forms are closely linked with Markov processes in probability theory due to several seminal
works by Fukushima in 1970s. It is now well known that a Dirichlet form satisfying so-called
regular condition is always associated with a nice Markov process. The notions related to them
are referred to [3,13].

The first main result stated in Theorem 2.1 derives the associated Dirichlet form of the
Markov process X (γ ) induced by Px

γ for a globular state γ > 0, i.e. X (γ )
t (ω) := ω(t) for all

ω ∈ Ω and t ≥ 0. This Dirichlet form denoted by (E (γ ),F (γ )) is regular with a core C∞
c (Rd ).

Formulation of it builds a new bridge between analytic and probabilistic characterizations of
globular states. On one hand, Aγ is linked with the generator of (E (γ ),F (γ )) in (2.6). On the
other hand, more properties of X (γ ) can be obtained by virtue of the theory of Dirichlet forms.
For example, X (γ ) is irreducible, recurrent and consequently ergodic as explained in (2.8).

As we see in (2.7), the Dirichlet space F (γ ) is a weighted Sobolev space of fractional order,
where the weight function ψγ is nothing but the resolvent density of W α with parameter λγ in
(2.5). Recall that the limiting Gibbs measure is not obtained for the critical case γ = 0 in [9].
However, the above Dirichlet form can be extended to the one with parameter γ = 0 in a truly
straightforward way: Replace the weight function ψγ by ψ0 := u0, i.e. the Riesz potential
kernel as presented in (2.3) (note that limγ↓0 λγ = 0). This extension works for the third case
d/2 < α < d, since the existence of u0 relies on the transience of W α . Analogically we
will show in Theorem 2.2 that this new Dirichlet form, denoted by (E (0),F (0)), is also regular
with a core C∞

c (Rd ). Again its associated Markov process X (0) is irreducible and recurrent.
But the symmetric measure of it is not finite, thus the ergodicity manifests a different limiting
behaviour. There are at least two evidences for that X (0) should correspond to the right Gibbs
measure at γ = 0. Firstly, the generator of (E (0),F (0)) is linked with A0 in the same manner
as (2.6). Secondly, as will be explained later, X (γ ) is convergent to X (0) as γ ↓ 0 in a certain
meaning. This continuity in γ is in agreement with the behaviour of polymer near the critical
point γcr = 0 exhibited by the continuity of γ ↦→ λγ near γcr .

Approach of Dirichlet forms has far more advantages in characterizing the probabilistic
counterparts of globular and critical state. In Section 5, we shall figure out a clear relation
between X (γ ) and W α for every γ ≥ 0. The first crucial fact is that the origin 0 is of positive
capacity relative to X (γ ) as stated in Theorem 5.1. This illustrates that X (γ ) feels a strong



5944 L. Li and X. Li / Stochastic Processes and their Applications 130 (2020) 5940–5972

a
l
p
i
t
r
F
e
b
c

γ

t
w
r
T
t
s

b

Fig. 1. Globular or critical state under h-transform.

ttraction to the origin (see (2.9)), as usually appears in one-dimensional models. At a heuristic
evel, it is a reflection of that Aγ has infinite potential at 0 as we can see in (1.3). In addition, the
art process of X (γ ) outside the origin, obtained by killing X (γ ) once upon leaving Rd

\ {0},
s identified with the h-transformed process, denoted by h W α,(γ ), of W α with h = ψγ . On
he contrary, X (γ ) is the unique one-point reflection of h W α,(γ ) at 0 in the sense of [4]. As a
esult, we can summarize these probabilistic counterparts in a road map illustrated in Fig. 1.
urther interesting properties of X (γ ) can be obtained from this alternative characterization. For
xample, 0 is regular for itself with respect to X (γ ); and the paths of X (γ ) are not only càdlàg
ut also continuous at the moments t when X (γ )

t = 0, although its associated Dirichlet form
ontains no diffusion part.

Another main result is that X (γ ) converges to X (0) as γ ↓ 0 in the following sense: Take
n ↓ 0 and a non-negative function φ on Rd such that

φ/ψγ1 ∈ L2(Rd ),
∫
Rd
φ(x)dx = 1,

hen Pφγn
(·) :=

∫
Rd Px

γn
(·)φ(x)dx converges to Pφ0 (·) :=

∫
Rd Px

0(·)φ(x)dx weakly on Ω endowed
ith the Skorohod topology as n → ∞. The theory of Dirichlet forms plays an important

ole in the proof of it as well. Indeed, Mosco convergence of (E (γn ),F (γn )) demonstrated in
heorem 6.4 leads to the convergence of finite dimensional distributions of X (γn ), and to prove

heir tightness, an inequality concerning capacity, analysis of quasi-continuous functions and
o-called Fukushima’s decomposition are all employed.

Throughout this paper we will concentrate on globular and critical states for the case
d
2 < α < d . For other two cases mentioned earlier, the characterization by means of Dirichlet
forms is still available but only for globular states, since we cannot find a suitable substitution
of ψ0 when W α is recurrent at present. The state γ < 0 is not under consideration either,

ecause the expected counterpart is nothing but W α . We wish to treat them in a future work.
It is also worth pointing out that the Brownian case, i.e. α = 2 and d = 3, has been explored
by the first named author and his co-author in [12]. Nevertheless, the current case of non-local
type is much more involved, as we see the proofs of main results are far from routine.

The rest of this paper is organized as follows. In Section 2, we will present the expression
of associated Dirichlet form of X (γ ) for every γ ≥ 0. The proof will be postponed to Section 3
for globular states and to Section 4 for critical state. The road map illustrated in Fig. 1 will
be completed with the help of a theorem in Section 5 providing an alternative characterization
of X (γ ) via h-transform. Finally, the weak convergence of X (γ ) as γ ↓ 0 will be proved in
Section 6.
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Notations.
Let us put some often used notations here for handy reference, though we may restate them

when they appear.

The notation “:=” is read as “to be defined as”. For x, ξ ∈ Rd , ⟨x, ξ⟩ means the inner product
between x and ξ and |x | stands for the Euclidean norm of x . Given a domain D ⊂ Rd , the
families Cc(D),C0(D) and C∞

c (D) are those of all continuous functions on D with compact
support, all continuous functions on D vanishing on the boundary of D or at ∞ and all smooth
functions on D with compact support respectively. Given a continuous function f with compact
support, supp[ f ] stands for its support, i.e. the closure of {x : f (x) ̸= 0}. For every r > 0,
B(r ) := {x : |x | < r}. The notation ∥ · ∥∞ means the supremum norm of a bounded function.
Given a Hilbert space H , ∥ · ∥H stands for its norm and (·, ·)H stands for its inner product.

iven an operator L, D(L) stands for the domain of L tacitly.
The symbol ≲ (resp. ≳) means that the left (resp. right) term is bounded by the right

resp. left) term multiplying a nonessential constant. In addition, † ≈ ‡ means that there is
nonessential constant C > 1 such that 1

C † ≤ ‡ ≤ C†. There are several fixed constants
hroughout this paper: c−α,d , cα,d and c(α, d) first appear in (2.3)–(2.5) respectively. Otherwise
constant attached with subscript means it depends on the terms in subscript. Note that almost

ll constants are relevant to d and α, and we ignore them in subscript if no confusion is caused.
The semigroup and resolvent of isotropic α-stable process are denoted by Pt and Uλ

espectively. Accordingly, the transition density and resolvent density are pt and uλ. The Riesz
potential kernel u0 is given by (2.3). For every finite γ , P (γ )

t stands for the semigroup associated
ith Aγ . The semigroup and resolvent of X (γ ) for γ ≥ 0 are denoted by Q(γ )

t and R(γ )
λ

espectively. Meanwhile, ψγ := uλγ where λγ is given by (2.5).
The notions related to Dirichlet forms are referred to [3,13]. Particularly, every function in

Dirichlet space is taken to be a quasi-continuous version if without other statements.

. Probabilistic counterparts of globular and critical states

Fix α ∈ ( d
2 , 2 ∧ d) and let W α

= {Ω = D([0,∞),Rd ), (Px )x∈Rd , (W α
t )t≥0} denote the

sotropic α-stable process on Rd , i.e. W α is a Lévy process (see e.g. [20]) whose transition
ensity p(t, x, y) = p(t, 0, x−y) =: pt (x−y) with respect to the Lebesgue measure is given by

p̂t (ξ ) :=

∫
Rd

ei⟨x,ξ⟩ pt (x)dx = e−t |ξ |α , ξ ∈ Rd . (2.1)

Its resolvent kernel uλ(x) for λ > 0 is equal to

uλ(x) =

∫
∞

0
e−λt p(t, 0, x)dt =

1
(2π )d

∫
Rd

e−i⟨ξ,x⟩

λ+ |ξ |α
dξ. (2.2)

everal properties of uλ are presented in Lemma A.3. Particularly, uλ ∈ L2(Rd ) due to α > d/2.
In addition, α < d leads to

u0(x) :=

∫
∞

0
p(t, 0, x)dt =↑ lim

λ↓0
uλ(x) = c−α,d · |x |

α−d , (2.3)

where c−α,d =
2−αΓ ( d−α

2 )
πd/2Γ ( α2 )

and Γ is the so-called Gamma function. It is well known that the

generator of W α is ∆α/2, which is symmetric with respect to the Lebesgue measure, and its
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associated Dirichlet form (G ,D(G )) on L2(Rd ) is

D(G ) = Hα/2(Rd ) = { f ∈ L2(Rd ) : G ( f, f ) < ∞},

G ( f, g) =
cα,d

2

∫
Rd×Rd\D

( f (x) − f (y)) (g(x) − g(y))
|x − y|

d+α
dxdy, f, g ∈ D(G ),

(2.4)

here D is the diagonal of Rd
× Rd and cα,d =

2αΓ ( α+d
2 )

π
d
2 |Γ (− α

2 )|
.

As mentioned in Section 1, the self-adjoint extensions on L2(Rd ) of ∆α/2 restricted to
∞
c (Rd

\ {0}) are parametrized by a constant γ ∈ {−∞} ∪ R. For γ > γcr = 0 in a globular
tate, the corresponding self-adjoint extension Aγ has a solo eigenvalue

λγ =

(
γ

c(α, d)

)α/(d−α)

, (2.5)

here c(α, d) =
1

(2π )d

∫
Rd

dξ
|ξ |α (1+|ξ |α ) , with the eigenfunction

ψγ := uλγ ,

where uλγ is given by (2.2) with λγ in place of λ (see [9, §3.3]). One of the main purposes
in this section is to present an alternative description of the probabilistic counterpart of this
globular state by means of Dirichlet forms. To phrase the result, we prepare some notations.
For γ > 0, set mγ (dx) := ψγ (x)2dx , which is a finite measure, and define another operator

D(Aγ ) := { f ∈ L2(Rd ,mγ ) : f · ψγ ∈ D(Aγ )},

Aγ f :=
1
ψγ

· Aγ

(
f · ψγ

)
− λγ f, f ∈ D(Aγ ).

(2.6)

It is not hard to find that Aγ is self-adjoint on L2(Rd ,mλ) with Aγ 1 = 0.

heorem 2.1. Fix γ > 0. Set mγ (dx) = ψγ (x)2dx and let X (γ )
= {Ω ,Px

γ , X (γ )
t } be the process

orresponding to the globular state at γ , i.e. Ω = D([0,∞),Rd ), Px
γ is the probability measure

n Ω mentioned below (1.4) and X (γ )
t (ω) := ω(t) for ω ∈ Ω . Then X (γ ) is mγ -symmetric and

ssociated with a regular Dirichlet form on L2(Rd ,mγ ) as follows:

F (γ )
= { f ∈ L2(Rd ,mγ ) : E (γ )( f, f ) < ∞},

E (γ )( f, f ) =
cα,d

2

∫
Rd×Rd\D

( f (x) − f (y))2

|x − y|
d+α

ψγ (x)ψγ (y)dxdy, f ∈ F (γ ).
(2.7)

urthermore, C∞
c (Rd ) is a core of (E (γ ),F (γ )), whose generator is Aγ given by (2.6).

For the critical case γ = γcr = 0, no probabilistic counterparts are obtained in [9].
However, the analogues of (2.6) and (2.7) are still available. Indeed, set ψ0 := u0 in (2.3) and
m0(dx) := ψ0(x)2dx . Note that m0 is positive Radon on Rd since α > d/2. Then the operator
A0 and the quadratic form (E (0),F (0)) are well defined by letting γ = λγ = 0 in (2.6) and
(2.7) respectively. The analogical result of Theorem 2.1 states the regularity of (E (0),F (0)),
which leads to a probabilistic counterpart of the critical state γ = 0, i.e. its associated Markov
process denoted by X (0)

:= {Ω ,Px
0, X (0)

t }.

Theorem 2.2. The quadratic form (E (0),F (0)) is a regular Dirichlet form on L2(Rd ,m0) with
∞ d (0) (0)
the generator A0. Moreover, Cc (R ) is a core of (E ,F ).
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The proofs of these theorems are postponed to Sections 3 and 4. Instead, we point out two
facts about X (γ ) for γ ≥ 0. The first one concerns their global properties. It will turn out in
Propositions 3.3 and 4.1 that X (γ ) is irreducible and recurrent. As a result, we can conclude
that for γ > 0 and any x ∈ Rd (see [13, Theorem 4.7.3]),

1
t

∫ t

0
Px
γ (X (γ )

s ∈ ·)ds −→ πγ (·) :=
mγ (·)
mγ (Rd )

, weakly as t ↑ ∞. (2.8)

hen γ = 0, the probability measure on the left hand side is vaguely convergent to 0 as
↑ ∞. The second fact illustrates that X (γ ) feels a strong attraction to the origin. Indeed, the
apacity of {0} relative to E (γ ) is positive as shown in Theorem 5.1. This property also leads

to an alternative characterization of globular or critical state in Section 5 by means of Doob’s
well-known h-transform. Particularly it holds for every x ∈ Rd (see [13, Theorem 4.7.1 and
Exercise 4.7.1]),

Px
γ (σ0 < ∞) = 1, (2.9)

here σ0 := inf{t > 0 : X (γ )
t = 0}. Note incidentally that other singleton is always E (γ )-polar.

. Globular states

Fix γ > 0. This section is mainly devoted to proving Theorem 2.1 and presenting some
roperties of X (γ ). First We provide a lemma for later use.

.1. Proof of Theorem 2.1

This proof will be completed in several steps.

.1.1. Step 1
We prove (E (γ ),F (γ )) is a Dirichlet form. To this end, set

jγ (x, dy) := |x − y|
−(d+α)ψγ (y)ψγ (x)−1dy.

y [13, Example 1.2.4], it suffices to show

(j.1) For any ε > 0, x ↦→ jγ (x,Rd
\ Uε(x)) :=

∫
y∈Rd\Uε(x) jγ (x, dy) is locally integrable

with respect to mγ , where Uε(x) is the ε-neighbourhood of x .
(j.2)

∫
Rd f (x)( jγ g)(x)mγ (dx) =

∫
Rd ( jγ f )(x)g(x)mγ (dx) for all f, g ∈ B+(Rd ), where

jγ f (x) :=
∫

f (y) jγ (x, dy).
(j.3)

∫
K×K\D |x − y|

2 jγ (x, dy)mγ (dx) < ∞ for any compact K ⊂ Rd .

For (j.1), take ε > 0 and an arbitrary compact set K ⊂ Rd . Choose r > 1 sufficiently large
such that K ⊂ B(r ) := {x ∈ Rd

: |x | < r}. It follows from (2.3) that∫
K

jγ (x,Rd
\ Uε(x))mγ (dx) =

∫
K

∫
|x−y|>ε

|x − y|
−(d+α)ψγ (y)ψγ (x)dydx

≲
∫

K

∫
|x−y|>ε

|x − y|
−(d+α)

|x |
α−d

|y|
α−ddydx .

enote G1 := {y : |x − y| > ε, |y| > r} and G2 := {y : |x − y| > ε, |y| ≤ r}. Then we have∫
K

∫
G1

|x − y|
−(d+α)

|x |
α−d

|y|
α−ddydx

≤

∫ ∫ (
|y|

)α+d

|x |
α−d

|y|
−2ddydx .

(3.1)
K G1 |x − y|
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Take x ∈ K and y ∈ G1. Since |y| > r and |x | ≤ sup{|z| : z ∈ K } < r , it follows that
|y|/|x − y| ≤ r/(r − |x |) ≤ Cr,K for a finite constant Cr,K . Hence the right hand side of (3.1)
is not greater than

Cα+d
r,K

∫
K

|x |
α−ddx

∫
|y|>r

|y|
−2ddy < ∞.

In addition,∫
K

∫
G2

|x − y|
−(d+α)

|x |
α−d

|y|
α−ddydx ≤ ε−(α+d)

∫
K

|x |
α−ddx

∫
|y|≤r

|y|
α−ddy < ∞.

onsequently, one can conclude (j.1). The second item (j.2) is obvious. For (j.3), we still take
such that K ⊂ B(r ). When α + d ≤ 2, we have∫

K×K\D
|x − y|

2 jγ (x, dy)mγ (dx) ≤

∫
K×K\D

|x − y|
2−(α+d)

|x |
α−d

|y|
α−ddydx

≤ (2r )2−(α+d)
∫

K×K\D
|x |

α−d
|y|

α−ddydx < ∞.

hen α + d > 2, take a constant ε > 0 and denote K1 := {y : y ∈ K , |y − x | > ε},
K2 := {y : y ∈ K , 0 < |y − x | ≤ ε}. Then∫

K×K\D
|x − y|

2 jγ (x, dy)mγ (dx)

=

∫
K

∫
K1

|x − y|
2 jγ (x, dy)mγ (dx) +

∫
K

∫
K2

|x − y|
2 jγ (x, dy)mγ (dx).

he first term is not greater than∫
K

∫
K1

|x − y|
−(α+d−2)

|x |
α−d

|y|
α−ddydx ≤ ε−(α+d−2)

(∫
K

|x |
α−ddx

)2

< ∞,

nd the second is not greater than∫
K

∫
K2

|x − y|
−(α+d−2)

|x |
α−d

|y|
α−ddydx

≤

(∫
K

∫
K2

|x |
2(α−d)

|x − y|
α+d−2 dydx

)1/2

·

(∫
K

∫
K2

|y|
2(α−d)

|x − y|
α+d−2 dydx

)1/2

≤

∫
K

|x |
2(α−d)dx

∫
|y|≤ε

|y|
−(α+d−2)dy < ∞.

Hence (j.3) is verified.

3.1.2. Step 2
Note that (j.3) implies C∞

c (Rd ) ⊂ F (γ ) as well. Denote the E (γ )
1 -closure of C∞

c (Rd ) in F (γ )

y F̄ . Then (E (γ ), F̄ ) is also a Dirichlet form on L2(Rd ,mγ ). Further let A and ¯A be the
enerators of (E (γ ),F (γ )) and (E (γ ), F̄ ) respectively. In this step, we show

C∞

c (Rd
\ {0}) ⊂ D(A ) ∩ D( ¯A ),

A f (x) = ¯A f (x) =
cα,d
ψγ (x)

(
p.v.

∫
Rd

f (y) − f (x)
|x − y|

d+α
ψγ (y)dy

)
:=

cα,d
(

lim
∫

f (y) − f (x)
d+α

ψγ (y)dy
)
, f ∈ C∞

c (Rd
\ {0}),

(3.2)
ψγ (x) r↓0 y:|y−x |>r |x − y|
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where the limit is in the sense of L2(Rd ). To this end, we first show

L f (x) := p.v.
∫
Rd

f (y) − f (x)
|x − y|

d+α
ψγ (y)dy (3.3)

is well defined in L2(Rd ) for all f ∈ C∞
c (Rd

\ {0}). Fix such f and take a compact set
K ⊂ Rd

\ {0} such that supp[ f ] ⊂ K and δ := inf{|x − y| : x ∈ supp[ f ], y ∈ K c
} > 0. On

ne hand, it follows from Lemma A.3(1) and Minkowski’s inequality that(∫
K c

L f (x)2dx
)1/2

≤

(∫
K c

(∫
supp[ f ]

f (y)ψγ (y)
|x − y|

d+α
dy
)2

dx

)1/2

≤

∫
supp[ f ]

(∫
K c

dx
|x − y|

2(d+α)

)1/2

f (y)ψγ (y)dy

≤ ∥ψγ ∥K

∫
Rd

f (y)dy
(∫

x :|x−y|≥δ

dx
|x − y|

2(d+α)

)1/2

< ∞,

here ∥ψγ ∥K := sup{|ψγ (x)| : x ∈ K } < ∞. On the other hand,∫
K

L f (x)2dx

≤

∫
K

(∫
K

( f (y) − f (x))ψγ (y)
|x − y|

d+α
dy +

∫
K c

− f (x)ψγ (y)
|x − y|

d+α
dy
)2

dx

≲
∫

K

(∫
K

( f (y) − f (x))ψγ (y)
|x − y|

d+α
dy
)2

dx +

∫
K

(∫
K c

ψγ (y)dy
|x − y|

d+α

)2

f (x)2dx

=: J1 + J2.

o estimate J1, take h ∈ C∞
c (Rd

\ {0}) with h ≡ 1 on K and set ψ̃ := ψγ · h ∈ C∞
c (Rd

\ {0})
ue to Lemma A.3(1). Then we have

J1 =

∫
K

(∫
K

( f (y) − f (x))ψ̃(y)
|x − y|

d+α
dy

)2

dx .

ote that∫
K

(∫
K

( f (y) − f (x))(ψ̃(y) − ψ̃(x))
|x − y|

d+α
dy

)2

dx

≤ ∥∇ f ∥
2
∞

∥∇ψ̃∥
2
∞

∫
K

(∫
K

dy
|x − y|

d+α−2

)2

dx < ∞

and since f ∈ D(∆α/2) (see Definition A.1),∫
K

(∫
K

( f (y) − f (x))ψ̃(x)
|x − y|

d+α
dy

)2

dx ≤ ∥ψ̃∥
2
K

∫
K

(∫
K

f (y) − f (x)
|x − y|

d+α
dy
)2

dx < ∞.

Hence one can obtain J1 < ∞. For the second term J2, it follows from ψγ ∈ L2(Rd ) that

J2 ≤ ∥ψγ ∥
2
L2(Rd )

∫
f (x)2dx

∫
dy

2(d+α) < ∞.

supp[ f ] y:|y−x |≥δ |x − y|



5950 L. Li and X. Li / Stochastic Processes and their Applications 130 (2020) 5940–5972

o

w

3

R
S

S

B
ψ

Eventually we can conclude L f ∈ L2(Rd ). Secondly, fix f ∈ C∞
c (Rd

\ {0}). For any g ∈ F (γ )

r g ∈ F̄ , one can easily deduce by (3.3) and g · ψγ ∈ L2(Rd ) that

E (γ )( f, g) = −cα,d

∫
Rd

L f (x)g(x)ψγ (x)dx =

(
−

cα,d
ψγ

L f, g
)

L2(Rd ,mγ )
,

hich leads to (3.2).

.1.3. Step 3
Define a self-adjoint operator A on L2(Rd ) as follows:

D(A) := { f ∈ L2(Rd ) : f/ψγ ∈ D(A )},

A f := ψγ · A

(
f
ψγ

)
+ λγ f, f ∈ D(A).

(3.4)

Clearly, A is a self-adjoint operator on L2(Rd ). In this step, we assert A is an extension of
∆α/2 restricted to C∞

c (Rd
\ {0}), i.e.

C∞

c (Rd
\ {0}) ⊂ D(A), A f = ∆α/2 f, ∀ f ∈ C∞

c (Rd
\ {0}), (3.5)

and

ψγ ∈ D(A), Aψγ = λγψγ . (3.6)

Indeed, C∞
c (Rd

\ {0}) ⊂ D(A) is clear by (3.2) and Lemma A.3(1). Fix f ∈ C∞
c (Rd

\ {0}) and
take arbitrary g ∈ C∞

c (Rd ). A straightforward computation yields(
f (x)
ψγ (x)

−
f (y)
ψγ (y)

)
(g(x) − g(y))ψγ (x)ψγ (y)

= ( f (x) − f (y)) · (g(x)ψγ (x)) − ( f (x) − f (y)) · (g(y)ψγ (y))
+ ( f (x)g(x) − f (y)g(y)) · ψγ (y) − ( f (x)g(x) − f (y)g(y)) · ψγ (x).

(3.7)

ecall that L I and L S are two equivalent expressions of ∆α/2 as shown in Definition A.1.
ince f ∈ Hα(Rd ) = D(∆α/2) and g · ψγ ∈ L2(Rd ), we have

cα,d

∫
Rd

g(x)ψγ (x)dx
(

p.v.
∫
Rd

f (x) − f (y)
|x − y|

d+α
dy
)

= −

∫
Rd

L I f (x)g(x)ψγ (x)dx

and

cα,d

∫
Rd

g(y)ψγ (y)dy
(

p.v.
∫
Rd

f (x) − f (y)
|x − y|

d+α
dx
)

=

∫
Rd

L I f (x)g(x)ψγ (x)dx .

ince f · g ∈ Hα(Rd ) and ψγ ∈ L2(Rd ), it holds

cα,d

∫
Rd
ψγ (y)dy

(
p.v.

∫
Rd

f (x)g(x) − f (y)g(y)
|x − y|

d+α
dx
)

= (ψγ , L I ( f g))L2(Rd ) = (ψγ , L S( f g))L2(Rd )

= lim
t↓0

(
1
t

(pt ∗ ψγ − ψγ ), f g
)

L2(Rd )
.

(3.8)

y virtue of f ∈ C∞
c (Rd

\ {0}) and Lemma A.3(3), the last term is equal to λγ
∫
Rd f (x)g(x)

γ (x)dx . Analogically,

cα,d

∫
ψγ (x)dx

(
p.v.

∫
f (x)g(x) − f (y)g(y)

d+α
dy
)

= −λγ

∫
f (x)g(x)ψγ (x)dx .
Rd Rd |x − y| Rd
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Hence (3.7) tells us

E (γ )( f/ψγ , g) = −

∫
Rd

L I f (x)g(x)ψγ (x)dx + λγ

∫
Rd

f (x)g(x)ψγ (x)dx . (3.9)

ince f/ψγ ∈ D(A ), we can obtain

A
(

f/ψγ
)

= (L I f )/ψγ − λγ ( f/ψγ ).

rom the definition of A, (3.5) can be eventually concluded. On the other hand, one can easily
nd that 1 ∈ F (γ ) and E (γ )(1, f ) = 0 for all f ∈ F (γ ). This implies 1 ∈ D(A ) and A 1 = 0.
rom the definition of A, we obtain (3.6). Therefore, A = Aγ , i.e. the self-adjoint extension
ith parameter γ of ∆α/2 restricted to C∞

c (Rd
\ {0}). Particularly, A is identified with Aγ

n (2.6).

.1.4. Step 4
We can define an analogical self-adjoint operator Ā of A on L2(Rd ) by taking ¯A in place

f A in (3.4). Mimicking the proof of (3.5), one can figure out that Ā is also an extension of
α/2 restricted to C∞

c (Rd
\ {0}). In addition, take τ ∈ C∞

c (Rd ) such that 0 ≤ τ ≤ 1 and τ ≡ 1
n {x : |x | ≤ 1}. Set τn(x) := τ (x/n) ∈ C∞

c (Rd ). Then τn → 1 in L2(Rd ,mγ ) as n ↑ ∞ by
he dominated convergence theorem. It follows from (2.3) that

E (γ )(τn − 1, τn − 1) ≤
cα,d · c2

−α,d

2

∫∫
(τ (x/n) − τ (y/n))2

|x − y|
d+α

|x |
α−d

|y|
α−ddxdy

≲
1

nd−α

∫∫
(τ (x) − τ (y))2

|x − y|
d+α

|x |
α−d

|y|
α−ddxdy.

(3.10)

t is straightforward to verify that this integration is finite by mimicking the proof of (j.3)
nd thus E (γ )(τn − 1, τn − 1) → 0 as n → ∞. Particularly, we can conclude 1 ∈ F̄ and
learly, E (γ )(1, f ) = 0 for all f ∈ F̄ . This indicates 1 ∈ D( ¯A ) and ¯A 1 = 0. From the
efinition of Ā, we also have ψγ ∈ D(Ā) and Āψγ = λγψγ . Therefore, Ā = Aγ = A and
ence ¯A = Aγ = A , which implies F̄ = F (γ ). In other words, (E (γ ),F (γ )) is regular on

L2(Rd ,mγ ) with a core C∞
c (Rd ).

.1.5. Step 5
Finally, we show X (γ ) is associated with (E (γ ),F (γ )). Note that the transition density of

X (γ ) with respect to the Lebesgue measure is (see [9, (30)])

qγ (t, x, y) =
e−λγ t pγ (t, x, y)ψγ (y)

ψγ (x)
,

where pγ is in (1.4). Clearly, its semigroup Q(γ )
t f :=

∫
Rd qγ (t, ·, y) f (y)dy is symmetric with

respect to mγ , i.e.
∫

Q(γ )
t f (x)g(x)mγ (dx) =

∫
f (x)Q(γ )

t g(x)mγ (dx) for all t ≥ 0 and suitable
functions f, g. On the other hand, from (2.6) one can obtain that the semigroup of (E (γ ),F (γ ))
is

Qt f = etAγ f =
e−λγ t

ψγ
etAγ ( fψγ ) =

e−λγ t

ψγ

∫
pγ (t, ·, y) f (y)ψγ (y)dy

or all f ∈ L2(Rd ,mγ ). Hence Qt is identified with Q(γ )
t by a standard argument. That

ompletes the proof.
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3.2. Resolvent

As shown in Section 3.1.5, the semigroup of (E (γ ),F (γ )) is

Q(γ )
t f =

e−λγ t

ψγ
P (γ )

t ( f · ψγ ), f ∈ L2(Rd ,mγ ), t ≥ 0, (3.11)

where P (γ )
t is the semigroup associated with Aγ . Then its resolvent R(γ )

λ is

R(γ )
λ f =

1
ψγ

U (γ )
λγ+λ( f · ψγ ) f ∈ L2(Rd ,mγ ), λ > 0,

where U (γ ) is the resolvent of Aγ . From [9, (20)], we conclude the following.

Corollary 3.1. Let Uλ be the resolvent of isotropic α-stable process, i.e. for λ > 0, Uλ f =

uλ ∗ f for f ∈ L2(Rd ). Then the resolvent R(γ ) associated with (E (γ ),F (γ )) is expressed as
follows: for λ > 0 and f ∈ L2(Rd ,mγ ),

R(γ )
λ f =

1
ψγ

Uλ+λγ ( f · ψγ ) +

(
c(γ )
λ

∫
Rd

f (x)ψγ (x)uλ+λγ (x)dx
)

·
uλ+λγ
ψγ

, (3.12)

here c(γ )
λ =

1

c(α,d)(λ+λγ )
d
α −1

−γ
is a positive constant and c(α, d) is the constant in (2.5).

emark 3.2. For the critical case γ = 0, the analogical expression of the resolvent is still
vailable, see Section 4.1.5.

.3. Global properties

In this short subsection, we illustrate that X (γ ) is an irreducible and recurrent (hence also
conservative) Markov process by virtue of Theorem 2.1. Meanwhile, it is ergodic as explained
in (2.8).

Proposition 3.3. The Dirichlet form (E (γ ),F (γ )) is irreducible and recurrent.

Proof. Note that 1 ∈ F (γ ) and E (γ )(1, 1) = 0. Then the recurrence of (E (γ ),F (γ )) follows
from [3, Theorem 2.1.8]. To show the irreducibility, take f ∈ F (γ ) with E (γ )( f, f ) = 0. Since
ψγ (x) > 0 for all x ∈ Rd

\ {0}, one can easily deduce that f is a.e. constant. Eventually
applying [3, Theorem 2.1.10], we conclude that (E (γ ),F (γ )) is irreducible. That completes the
proof. □

4. Critical state

Now we turn to consider the case γ = 0. The first task is to prove Theorem 2.2.

4.1. Proof of Theorem 2.2

We will also complete this proof in several steps.

4.1.1. Step 1
Mimicking Section 3.1.1, one can also demonstrate that (E (0),F (0)) is a Dirichlet form on

L2(Rd ,m ). In addition, C∞(Rd ) ⊂ F (0).
0 c
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4.1.2. Step 2
In this step, we aim to show the denseness of C∞

c (Rd ) in F (0) relative to the E (0)
1 -norm.

Since its generator is expected to correspond to a self-adjoint extension of ∆α/2 restricted to
∞
c (Rd

\ {0}) with no eigenfunctions (ψ0 /∈ L2(Rd )), the tactic of the proof in Section 3.1.4 is
o longer available. Instead, we will prove it by a polishing technique that appeared in e.g. [10]
s follows.

Firstly, we show the family of all bounded functions with compact support in F (0) is E (0)
1 -

ense in F (0). Clearly, so is the family of all bounded functions in F (0). Fix a bounded
f ∈ F (0). Take τ, τn as in Section 3.1.4 and set ηn := 1 − τn , fn := f · τn . Then fn ∈ F (0)

s bounded with compact support. It suffices to show E (0)
1 ( f − fn, f − fn) → 0 as n → ∞.

ndeed, ∥ f − fn∥L2(Rd ,m0) → 0 as n → ∞ by the dominated convergence theorem. In addition,

E (0)( f − fn, f − fn) =
cα,d

2

∫∫
( f (x)ηn(x) − f (y)ηn(y))2

ψ0(x)ψ0(y)
|x − y|

d+α
dxdy.

Note that

( f (x)ηn(x) − f (y)ηn(y))2 ≲ f (x)2 (τn(x) − τn(y))2 + ηn(y)2 ( f (x) − f (y))2 .

ince f is bounded, it follows that∫∫
f (x)2 (τn(x) − τn(y))2

ψ0(x)ψ0(y)
|x − y|

d+α
dxdy

≤ ∥ f ∥
2
∞

∫∫
(τn(x) − τn(y))2

ψ0(x)ψ0(y)
|x − y|

d+α
dxdy → 0

by mimicking (3.10). By the dominated convergence theorem, one can also obtain

lim
n→∞

∫∫
ηn(y)2 ( f (x) − f (y))2

ψ0(x)ψ0(y)
|x − y|

d+α
dxdy = 0.

ence we can conclude E (0)( f − fn, f − fn) → 0 as n → ∞.
Secondly, fix a bounded f ∈ F (0) with compact support and we will show that there is a

equence { fn : n ≥ 1} ⊂ C∞
c (Rd ) such that E (0)

1 ( f − fn, f − fn) → 0 as n → ∞. To this
nd, take a radially symmetric, radially decreasing function ρ ∈ C∞

c (Rd ) such that ρ ≥ 0,
upp[ρ] ⊂ {x : |x | < 1} and

∫
Rd ρ(x)dx = 1. In other words, there exists a decreasing

unction ρ̂ on [0,∞) such that ρ(x) = ρ̂(|x |). For every δ > 0, define ρδ(x) := δ−dρ(x/δ)
nd fδ(x) := ρδ ∗ f (x) =

∫
Rd ρδ(x − y) f (y)dy. Since f is bounded with compact support, it

ollows that fδ ∈ C∞
c (Rd ). Clearly, fδ → f as δ ↓ 0 in L2(Rd ,m0). So it remains to show

(0)( f − fδ, f − fδ) → 0 as δ ↓ 0. Fix an arbitrary constant ε > 0. Note that

F f (x, y) :=
f (x) − f (y)

|x − y|
d+α

2
∈ L2 (R2d , ψ0(x)ψ0(y)dxdy

)
=: H. (4.1)

ince ψ0(x)ψ0(y)dxdy is a Radon measure on R2d , one can take a function g ∈ Cc(R2d ) such
that ∥g − F f ∥H < ε. For every function h(x, y) ∈ H , define

h ⋆ ρδ(x, y) :=

∫
Rd

h(x − z, y − z)ρδ(z)dz.

his special convolution was frequently used in [10]. Particularly by [10, (6.5)],

∥g − g ⋆ ρ ∥ → 0, δ → 0. (4.2)
δ H
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In addition, let F fδ be the function defined by (4.1) with fδ in place of f . Then

∥g ⋆ ρδ − F fδ∥H = ∥g ⋆ ρδ − F f ⋆ ρδ∥H = ∥(g − F f ) ⋆ ρδ∥H ≲ ∥g − F f ∥H .

The last inequality is due to [10, Proposition 4.4]. As a result,

E (0)( f − fδ, f − fδ)
1
2 = ∥F f − F fδ∥H

≤ ∥F f − g∥H + ∥g − g ⋆ ρδ∥H + ∥g ⋆ ρδ − F fδ∥H

≲ 2ε + ∥g − g ⋆ ρδ∥H .

Therefore we can conclude E (0)( f − fδ, f − fδ) → 0 as δ ↓ 0 by (4.2).

4.1.3. Step 3
Denote the generator of (E (0),F (0)) by A . We assert

C∞

c (Rd
\ {0}) ⊂ D(A ),

A f (x) =
cα,d
ψ0(x)

(
p.v.

∫
Rd

f (y) − f (x)
|x − y|

d+α
ψ0(y)dy

)
, f ∈ C∞

c (Rd
\ {0}).

(4.3)

his claim can be verified by repeating Section 3.1.2 with γ = 0 except for the estimate
f J2. Instead, take a constant r > 0 such that r/2 > sup{|x | : x ∈ K } and note that for

y /∈ B(r ) = {z : |z| < r} and x ∈ K , |x − y| ≥ |y| − |x | ≥ |y|/2. It follows that∫
K

(∫
K c∩B(r )c

ψ0(y)dy
|x − y|

d+α

)2

f (x)2dx ≲
∫

K
f (x)2dx

(∫
B(r )c

ψ0(y)dy
|y|

d+α

)2

< ∞,

since ψ0(y) = c−α,d |y|
α−d . In addition,

∫
K

(∫
K c∩B(r )

ψ0(y)dy
|x − y|

d+α

)2

f (x)2dx ≤

(∫
B(r ) ψ0(y)dy

)2

δ2(d+α)

∫
K

f (x)2dx < ∞,

ue to the definition of δ in Section 3.1.2. Hence J2 < ∞ and (4.3) holds.

4.1.4. Step 4
Next, define a self-adjoint operator A on L2(Rd ):

D(A) := { f ∈ L2(Rd ) : f/ψ0 ∈ D(A )},

A f := ψ0 · A

(
f
ψ0

)
, f ∈ D(A).

(4.4)

We assert

C∞

c (Rd
\ {0}) ⊂ D(A), A f = ∆α/2 f, ∀ f ∈ C∞

c (Rd
\ {0}). (4.5)

o prove it, one can repeat the procedures from (3.7) to (3.9) with γ = 0. However, the
rgument in (3.8) should be modified as follows (since ψ0 /∈ L2(Rd )). Note that f g ∈
∞
c (Rd

\ {0}). Take r > 0 such that supp[ f g] ⊂ B(r ). Then ψ0 · 1B(2r ) ∈ L2(Rd ) and it
ollows that(

ψ0 · 1B(2r ), L I ( f g)
)

L2(Rd ) = lim
(

1 (
pt ∗ (ψ0 · 1B(2r )) − ψ0 · 1B(2r )

)
, f g

)
. (4.6)
t↓0 t L2(Rd )
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On the other hand, fix y /∈ B(2r ) and then |x − y| ≥ |y| − |x | ≥ |y|/2 for all x ∈ supp[ f g] ⊂

B(r ). Hence

|L I ( f g)(y)| =

⏐⏐⏐⏐p.v.
∫
Rd

f (x)g(x)
|x − y|

d+α
dx
⏐⏐⏐⏐ ≲ ∥ f g∥L1(Rd )|y|

−d−α.

ince ψ0(y)|y|
−d−α1B(2r )c (y) is integrable, one can obtain by the dominated convergence

theorem that⏐⏐⏐⏐∫
B(2r )c

ψ0(y)L I ( f g)(y)dy
⏐⏐⏐⏐ < ∞. (4.7)

From [18, Lemma 3.4], we know L I ( f g)(y) = L S( f g)(y) for all y /∈ B(2r )c and (see e.g.
18, (S)]),

L S( f g)(y) = lim
t↓0

∫
Rd

( f g)(y + z)
pt (z)

t
dz, y /∈ B(2r ).

ctually this limit exists. Indeed, since ( f g)(y + z) ̸= 0 leads to |y + z| < r , it follows that
z| ≥ |y| − |y + z| > r . Hence by (A.1) and (A.2), it holds for t < rα ,

pt (z)
t

= t−
d+α
α p1

( z
t1/α

)
≲ |z|−d−α,

which is integrable on B(r )c. Mimicking (4.7), it is straightforward to verify∫
B(2r )c

ψ0(y)
∫
Rd

|( f g)(y + z)||z|−d−αdz < ∞.

Then by the dominated convergence theorem and Fubini’s theorem, one can obtain∫
B(2r )c

ψ0(y)L I ( f g)(y)dy =

∫
B(2r )c

ψ0(y)dy
(

lim
t↓0

∫
Rd

( f g)(y + z)
pt (z)

t
dz
)

= lim
t↓0

∫
B(2r )c

ψ0(y)dy
∫
Rd

( f g)(y + z)
pt (z)

t
dz

= lim
t↓0

1
t

∫
Rd

(
pt ∗ (ψ0 · 1B(2r )c )

)
(z)( f g)(z)dz.

rom (4.6) and Lemma A.3(3), we eventually conclude∫
Rd
ψ0(y)L I ( f g)(y)dy = lim

t↓0

∫
Rd

1
t

(pt ∗ ψ0(y) − ψ0(y)) f (y)g(y)dy = 0.

.1.5. Step 5
Finally, it remains to prove A given by (4.4) is exactly A0, which leads to A = A0. By

he expression of the resolvent of A0 (see e.g. [9, (20)]), it suffices to show the resolvent Rλ
ssociated with (E (0),F (0)) is identified with

R(0)
λ f =

1
ψ0

Uλ( f · ψ0) +

(
c(0)
λ

∫
Rd

f (x)ψ0(x)uλ(x)dx
)

·
uλ
ψ0
, f ∈ L2(Rd ,m0), (4.8)

here c(0)
λ =

1

c(α,d)λ
d
α −1

. To this end, we apply a later result stated in Theorem 6.4, i.e. take

a sequence γn ↓ 0 and then (E (γn ),F (γn )) is convergent to (E (0),F (0)) in the sense of
Mosco. The proof of it only relies on the expression of (E (0),F (0)) as we have proved
in Sections 4.1.1 and 4.1.2. Recall that R(γn ) denotes the resolvent of (E (γn ),F (γn )) and is
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expressed in Corollary 3.1. Particularly, Mosco convergence implies R(γn )
λ strongly converges

o Rλ in the sense of Definition B.3. By Lemma B.4(4), this leads to

ψγn ·

(
R(γn )
λ f

)
→ ψ0 · (Rλ f ), in L2(Rd ) as n → ∞

or all f ∈ C∞
c (Rd ). From (3.12), one can easily find that ψγn ·

(
R(γn )
λ f

)
converges in L2(Rd )

to

Uλ( f · ψ0) +

(
c(0)
λ

∫
Rd

f (x)ψ0(x)uλ(x)dx
)

· uλ = ψ0 · (R(0)
λ f ).

herefore Rλ f = R(0)
λ f for all f ∈ C∞

c (Rd ). By a standard argument, we can conclude Rλ
nd R(0)

λ are identified. That completes the proof.

.2. Global properties

In this short subsection, we illustrate that X (0) is also irreducible and recurrent.

roposition 4.1. The Dirichlet form (E (0),F (0)) is irreducible and recurrent.

Proof. Take τ, τn as in Section 3.1.4. Note that τn ↑ 1 and E (0)(τn, τn) → 0 by mimicking
(3.10). Then it follows from [3, Theorem 2.1.8] that (E (0),F (0)) is recurrent.

To show the irreducibility, suppose fn ∈ F (0) such that limn→∞ E (0)( fn, fn) = 0 and
f (x) := limn→∞ fn(x) exists for a.e. x ∈ Rd . We use the same notations as in (4.1). Then
F fn ∈ H and ∥F fn ∥H → 0. This leads to F fnk

→ 0, dxdy-a.e. as k → ∞ for a suitable
subsequence { fnk : k ≥ 1} ⊂ { fn : n ≥ 1}. On the other hand,

lim
k→∞

F fnk
(x, y) =

f (x) − f (y)
|x − y|

(d+α)/2

or a.e. (x, y) ∈ R2d . Hence we can conclude f is a.e. constant. By applying [3, Theorem
5.2.16], (E (0),F (0)) is irreducible. That completes the proof. □

5. Alternative characterization via h-transform

In this section we reconsider globular states or critical state by means of so-called
h-transform. Fix γ ≥ 0. Recall that W α is the isotropic α-stable process on Rd with d

2 <

α < d ∧ 2. We use the notation Pt to stand for the probability transition semigroup of W α as
well as the L2-semigroup associated with (2.4) if no confusion is caused. Clearly, ψγ = uλγ
is λγ -excessive relative to (Pt ), i.e.

e−λγ t Ptψγ ≤ ψγ , lim
t↓0

e−λγ t Ptψγ = ψγ .

Following e.g. [5, Chapter 11], one can derive a nice Markov process on Eh := {x : 0 <

h(x) < ∞} by virtue of well-known h-transform with h := ψγ . More precisely, set

h P (γ )
t (x, dy) :=

⎧⎨⎩ e−λγ t ψγ (y)
ψγ (x)

Pt (x, dy), x ∈ Eh = Rd
\ {0},

0, x = 0.
(5.1)

hen (h P (γ )
t ) is a sub-Markov semigroup and generates a Markov process, denoted by h W α,(γ ),

n Rd
\ {0} as shown in e.g. [5, Theorem 11.9].
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To phrase the main result of this section, we prepare two notions. Let E be a locally compact
separable metric space and m be a positive Radon measure on it. The first one is the so-called
part process; see [13, §4.4]. Let (E ,F ) be a Dirichlet form on L2(E,m) associated with a
Markov process X and F ⊂ E be a closed set of positive capacity relative to (E ,F ). Then
the part process X G of X on G := E \ F is obtained by killing X once upon leaving G. In
other words,

X G
t =

{
X t , t < σF := {s > 0 : Xs ∈ F},

∂, t ≥ σF ,

where ∂ is the trap of X G . Note that X G is associated with the part Dirichlet form (E G,F G)
f (E ,F ) on G:

F G
= { f ∈ F : f̃ = 0, E -q.e. on F},

E G( f, g) = E ( f, g), f, g ∈ F G,
(5.2)

where f̃ stands for the quasi-continuous version of f . The second is the one-point reflection
of a Markov process studied in [4]; see also [3, §7.5]. Let a ∈ E be a non-isolated point with

({a}) = 0 and X0 be an m-symmetric Borel standard process on E0 := E \ {a} with no
illing inside. Then a right process X on E is called a one-point reflection of X0 (at a) if X
s m-symmetric and of no killing on {a}, and the part process of X on E0 is X0.

Theorem 5.1. Fix γ ≥ 0 and let X (γ ) and (E (γ ),F (γ )) be in Theorem 2.1 or Theorem 2.2.
Then {0} is of positive capacity relative to (E (γ ),F (γ )). Furthermore, the following hold:

(1) h W α,(γ ) is identified with the part process of X (γ ) on Rd
\ {0};

(2) X (γ ) is the unique (in law) one-point reflection of h W α,(γ ) at 0.

Proof. Denote the 1-capacity relative to (E (γ ),F (γ )) by Cap(γ ) (see [13, §2.1]). Since ψγ ≤ ψ0

for γ > 0, it follows from the definition of 1-capacities that Cap(γ )(A) ≤ Cap(0)(A) for any
orel set A ⊂ Rd . Hence we only need to show Cap(γ )({0}) > 0 for γ > 0. Argue with

contradiction and suppose Cap(γ )({0}) = 0 for some γ > 0. Then the part process of X (γ )

on Rd
\ {0} coincides with X (γ ) and particularly, it follows from [13, Theorem 4.4.3] that

∞
c (Rd

\ {0}) is also a core of (E (γ ),F (γ )). By (3.9), one can easily obtain that for any
f, g ∈ C∞

c (Rd
\ {0}),

E (γ )
(

f
ψγ
,

g
ψγ

)
= Gλγ ( f, g). (5.3)

Note that C∞
c (Rd

\ {0}) is a core of (G ,D(G )) due to α < d . This implies that

f ↦→
f
ψγ

is an isomorphism between D(G ) with the norm ∥ · ∥Gλγ +1 and F (γ ) with the norm ∥ · ∥
E

(γ )
1

.

articularly, the operator A defined by (3.4) must be identified with ∆α/2. This leads to
α/2
ontradiction, because we have shown A = Aγ ̸= ∆ in Section 3.1.3.
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To prove the first assertion, it is straightforward to verify that (h P (γ )
t ) is symmetric with

espect to mγ (dx) = ψγ (x)2dx and then associated with the Dirichlet form (see [13, (1.3.17)])

hF = { f ∈ L2(Rd ,mγ ) : hE ( f, f ) < ∞},

hE ( f, g) = lim
t↓0

1
t

∫
Rd

(
f (x) − h P (γ )

t f (x)
)

g(x)mγ (dx), f, g ∈ hF .

ne can easily deduce that for any f ∈ L2(Rd ,mγ ),

hE ( f, f ) = lim
t↓0

1
t

∫
Rd

(
f (x)ψγ (x) − e−λγ t Pt ( fψγ )(x)

)
( fψγ )(x)dx = Gλγ ( fψγ , fψγ ).

his leads to

hF = { f : fψγ ∈ D(G )}, hE ( f, f ) = Gλγ ( fψγ , fψγ ), f ∈ hF . (5.4)

ince C∞
c (Rd

\ {0}) is a core of (G ,D(G )) and ψγ ∈ C∞(Rd
\ {0}) is positive, we can

onclude that C∞
c (Rd

\ {0}) is also a core of (hE , hF ). On the other hand, the part process
X (γ ),0 of X (γ ) on Rd

\ {0} is associated with the Dirichlet form (E (γ ),0,F (γ ),0) given by (5.2)
ith (E ,F ) = (E (γ ),F (γ )) and G = Rd

\ {0}. Particularly, C∞
c (Rd

\ {0}) is also a core of
E (γ ),0,F (γ ),0) by [13, Theorem 4.4.3]. Mimicking (5.3) and applying (5.4), one can obtain
hat for any f ∈ C∞

c (Rd
\ {0}),

E (γ ),0( f, f ) = E (γ )( f, f ) = Gλγ ( fψγ , fψγ ) = hE ( f, f ),

hich implies (E (γ ),0,F (γ ),0) = (hE , hF ). Therefore, h W α,(γ ) is equivalent to the part process
f X (γ ) on Rd

\ {0}.
Finally we prove the second assertion. Clearly, X (γ ) is a one-point reflection of h W α,(γ ) by

he first assertion. Note that for every x ̸= 0,

hPx
γ (ζh < ∞, h W α,(γ )

ζh−
= 0) = hPx

γ (ζh < ∞) = Px
γ (σ0 < ∞) = 1, (5.5)

here hPx
γ is the probability measure of h W α,(γ ) starting from x , ζh is its life time and

0 = inf{t > 0 : X (γ )
t = 0}. The first equality is due to the conservativeness of X (γ ) (see [13,

heorem 4.5.4]) and that h W α,(γ )
= X (γ ),0 has no killing inside, and the last equality is already

entioned in (2.9). Applying [3, Theorem 7.5.4], we can eventually conclude the uniqueness
f one-point reflections. That completes the proof. □

emark 5.2. At a heuristic level, Cap(γ )({0}) > 0 is a reflection of the fact that Aγ has infinite
otential at 0 as we can see in (1.3). The analogical result for the three-dimensional Brownian
ase, i.e. α = 2 and d = 3, has been obtained in [12]. It is also worth noting that for any

x ̸= 0, {x} is of zero capacity relative to G as well as E (γ ) due to α < d and (5.4).

With the help of Theorem 5.1, we summarize an alternative characterization of the polymer
odel based on α-stable process in Fig. 1. The h-transform from ∆α/2 to h W α,(γ ) is reversible.

ndeed, one can operate a similar h-transform with h = 1/ψγ on h W α,(γ ) to regain the
-stable process; see (5.4). The transformation (3.4) or (4.4) enjoys a same form as h-transform.
owever, P (γ )

t is not Markovian (although P (γ )
t ψγ = eλγ tψγ by (3.11)) and 1/ψγ is not

xcessive relative to Q(γ )
t either. As mentioned before, (1.3) is a heuristic expression of the

nformal perturbation of ∆α/2 induced by a singular potential function βγ · δ0. From Fig. 1, we
gure out a rigorous probabilistic interpretation for this perturbation: it may be understood as
ne-point reflection at 0 under certain h-transform.
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We present a corollary to illustrate further properties of X (γ ) as well as its Dirichlet form
(E (γ ),F (γ )) by means of one-point reflection.

Corollary 5.3. Fix γ ≥ 0. The following hold:

(1) 0 is regular for itself with respect to X (γ ), i.e. P0
γ (σ0 = 0) = 1;

(2) For any λ > 0, wλ(x) := Ex
γ (e−λσ0; σ0 < ∞) is identified with

wλ,λγ (x) :=

⎧⎨⎩
uλ+λγ (x)
ψγ (x)

, x ̸= 0;

1, x = 0.

More precisely, wλ(x) = wλ,λγ (x) for E (γ )-q.e. x.
(3) X (γ ) admits no jump to or from {0}: for every x ∈ Rd ,

Px
γ (X (γ )

t− ∈ Rd
\ {0}, X (γ )

t = 0, or X (γ )
t− = 0, X (γ )

t ∈ Rd
\ {0}; ∃t > 0) = 0. (5.6)

(4) Let (E (γ ),0,F (γ ),0) be the Dirichlet form associated with h W α,(γ ) and fix λ > 0. Then it
holds

F (γ )
= F (γ ),0

⊕ wλ := {c1 f + c2wλ : f ∈ F (γ ),0, c1, c2 ∈ R}.

Particularly, C∞
c (Rd

\ {0}) ⊕ wλ = {c1 f + c2wλ : f ∈ C∞
c (Rd

\ {0}), c1, c2 ∈ R} is
E (γ )

1 -dense in F (γ ).

Proof. The first and fourth assertions are consequences of [3, Theorem 7.5.4]. By comparing
(3.12) or (4.8) with [3, (7.5.6)], a straightforward computation yields wλ = wλ,λγ , mγ -a.e.
Since wλ,λγ is continuous by Lemma A.3(2) and wλ is E (γ )-quasi-continuous, it follows that
wλ(x) = wλ,λγ (x) for E (γ )-q.e. x .

To show the third assertion, we shall apply [3, Theorem 7.5.6] and so it suffices to verify
the conditions (A.2) (A.3) and (A.4) there. For any λ > 0, it follows from the second assertion
that ∫

wλ(x)mγ (dx) =

∫
uλ+λγ (x)uλγ (x)dx < ∞.

Hence (A.2) holds. Note that ϕ(x) := Px
γ (σ0 < ∞) ≡ 1. Denote the resolvent of h W α,(γ ) by

R(γ ),0
λ . Then from ψγ = uλγ , (5.1) and the resolvent equation, we obtain

R(γ ),0
1 ϕ =

∫
∞

0
e−t

h P (γ )
t ϕdt =

uλγ+1 ∗ ψγ

ψγ
=

uλγ − uλγ+1

uλγ
= 1 − w1,λγ .

Then it is easy to conclude from (A.5) that for any compact set K ⊂ Rd
\ {0},

inf
x∈K

R(γ ),0
1 ϕ(x) = 1 − sup

x∈K
w1,λγ (x) > 0,

which leads to (A.3). Note that the jumping measure of h W α,(γ ) is

J0(dxdy) =
cα,d ψγ (x)ψγ (y)

d+α
dxdy.
2 |x − y|
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Fix r > 0. For x ∈ B(r ), y /∈ B(2r ), it holds |x − y| ≥ |y| − |x | ≥ |y|/2. Thus

J0(B(r ) × B(2r )c) ≲
∫

B(r )
|x |

α−ddx
∫

B(2r )c

|y|
α−d

|x − y|
d+α

dy

≲
∫

B(r )
|x |

α−ddx
∫

B(2r )c
|y|

−2ddy < ∞.

onsequently, (A.4) holds. That completes the proof. □

The statement (5.6) tells us that the trajectories of X (γ ) are not only càdlàg but also
ontinuous at the moments t when X (γ )

t = 0, although its associated Dirichlet form contains
o diffusion part. The first part of it, i.e. X (γ ) admits no jump to {0}, can be verified by means
f so-called Lévy system (see e.g. [13, A.3]) directly. Note that the Lévy system (N , H ) of

X (γ ) may be taken to be

N (x, dy) = cα,d
ψγ (y)
ψγ (x)

dy
|x − y|

d+α
, Ht = t.

hen from [13, (A.3.23)], we obtain

Px
γ (X (γ )

t− ∈ Rd
\ {0}, X (γ )

t = 0; ∃t > 01)

≤ Ex
γ

(∑
t>0

1(Rd\{0})×{0}(X (γ )
t− , X (γ )

t )

)

= Ex
γ

∫
∞

0
dt
∫
Rd

1(Rd\{0})×{0}(X (γ )
t , y)N (X (γ )

t , dy) = 0.

owever, the other part of (5.6) was led in [3, Theorem 7.5.6] by a classical probabilistic
onstruction of X (γ ) initiated by Itô. Roughly speaking, let {νt : t > 0} be the unique h W α,(γ )-
ntrance law, i.e. νt is a σ -finite measure on Rd

\ {0} and νs · h P (γ )
t = νt+s for every t, s > 0,

uch that∫
∞

0
νt dt = mγ .

his entrance law determines a so-called excursion measure n on the space W of càdlàg paths w
n Rd

\{0} defined on a time interval (0, ζ (w)) with w(0+) = 0 and w(ζ−) ∈ {0, ∂} (the trap ∂
an be taken to be ∞ in the current case). Then a Poisson point process p = {pt : t ≥ 0} taking
alues in W with characteristic n can be constructed on a suitable probability measure space.
y piecing together the excursions p until the first non-returning excursion (i.e. w(ζ−) = ∂),
e create a path ω0 starting at 0. Then X (γ ) can be eventually constructed by joining the path
f h W α,(γ ) to ω0. The details of this construction are referred to e.g. [3, Theorem 7.5.6]. Note
hat the path ω0 is continuous at the moments t when ω0(t) = 0, as indicated that X (γ ) admits
o jump from {0} to Rd

\ {0}.

. Near the critical point

As mentioned in Section 1, the behaviour of polymer near the critical point is measured by
he parameter λ0(γ ) := sup σ (Aγ ) = λγ given by (2.5) in [9]. Note that limγ↓γcr λ0(γ ) = 0 =

0(γcr ) and the rate of convergence is equal to

lim
log λ0(γ )

=
α

,

γ↓γcr log γ d − α



L. Li and X. Li / Stochastic Processes and their Applications 130 (2020) 5940–5972 5961

T

T
Ω

T
t
c

R
T
M

i

o

d

H
Q
o
a

which only depends on d and α. This fact demonstrates so-called universality of critical
phenomenon as well. In this section, we will describe the critical behaviour from probabilistic
viewpoint by showing that the process X (γ ) is convergent to X (0) as γ ↓ 0 in a certain meaning.

Fix a sequence γn ↓ 0 and for the sake of convenience, denote

Xn
:= X (γn ), Px

n := Px
γn
, X := X (0), Px

:= Px
0 .

ake a non-negative function φ on Rd such that

φ/ψγ1 ∈ L2(Rd ),
∫
Rd
φ(x)dx = 1. (6.1)

hen Pφn (·) :=
∫
Rd Px

n(·)φ(x)dx and Pφ(·) :=
∫
Rd Px (·)φ(x)dx define probability measures on

= D([0,∞),Rd ). The main result of this section is stated as follows.

heorem 6.1. Let φ be a non-negative function satisfying (6.1). Then Xn is weakly convergent
o X under the initial distribution φ(x)dx as n → ∞. More precisely, for any bounded
ontinuous function f on Ω endowed with the Skorohod topology,

lim
n→∞

∫
Ω

f (ω)Pφn (dω) =

∫
Ω

f (ω)Pφ(dω). (6.2)

emark 6.2. The condition φ/ψγ1 ∈ L2(Rd ) implies that φ/ψγn , φ/ψ0 ∈ L2(Rd ) as well.
here are sufficient conditions, like φ is bounded and has compact support, leading to it.
oreover, for every γ ≥ γ1,

φ(x) =
ψ2
γ (x)∫

ψ2
γ (x)dx

s also an example satisfying (6.1).

To prove this theorem, assume without loss of generality that all Xn and X are realized
n a common family of probability measure spaces (Ξ ,Qx )x∈Rd , where Ξ is a certain

measurable space and Qx is a probability measure on it (although they are defined on Ω before
Theorem 6.1). In other words, for ϖ ∈ Ξ , t ↦→ Xn

t (ϖ ) or t ↦→ X t (ϖ ) forms a càdlàg path in
Rd , and by letting

Xn
: Ξ → Ω , ϖ ↦→ Xn

·
(ϖ ),

X : Ξ → Ω , ϖ ↦→ X ·(ϖ ),

it holds Px
n = Qx

◦ (Xn)−1 and Px
= Qx

◦ X−1 for x ∈ Rd . Then Qφ(·) :=
∫
Rd Qx (·)φ(x)dx

efines a new probability measure on Ξ and (6.2) is equivalent to

lim
n→∞

Qφ( f (Xn)) = Qφ( f (X )). (6.3)

ere and hereafter, the notation Qφ(·) also stands for the integration with respect to the measure
φ , i.e. Qφ(g) :=

∫
Ξ g(ϖ )Qφ(dϖ ) for any suitable function g on Ξ . In what follows, the proof

f (6.3) will be divided into two parts. The first one is to prove the Mosco convergence of the
ssociated Dirichlet forms of Xn and the second is to demonstrate the tightness of Xn .

6.1. Mosco convergence

The conception of Mosco convergence is reviewed in Appendix B (see Definition B.6). Re-
n (γn ) (γn ) 2 d (0) (0)
call that the Dirichlet form of X (resp. X ) is (E ,F ) on L (R ,mγn ) (resp. (E ,F )
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on L2(Rd ,m0)). Denote analogically

Hn := L2(Rd ,mγn ), (E n,F n) := (E (γn ),F (γn )), (6.4)

and

H := L2(Rd ,m0), (E ,F ) := (E (0),F (0)). (6.5)

Denote H ′
n := F n endowed with the norm ∥ · ∥E n

1
, and H ′

:= F 0 endowed with the norm
∥ · ∥E 0

1
.

Lemma 6.3. The following hold in the sense of Definition B.1.

(1) Hn converges to H.
(2) H ′

n converges to H ′.

Proof. It follows from (2.3) that ψγn ↑ ψ0 as n → ∞. Then H ⊂ Hn and H ′
⊂ H ′

n . Take
= H and Φn := id, i.e. Φn f := f for all f ∈ H in Definition B.1. (B.1) holds due to the

monotone convergence theorem. So (1) is true. (2) can be proved in the same way. □

Set H := {Hn, H : n ≥ 1}. Then it is sensible to explore Mosco convergence working on
them. Since this result is of independent interest as mentioned in Section 4.1.5, we conclude
it as a theorem.

Theorem 6.4. Let (E n,F n) and (E ,F ) be the Dirichlet forms in (6.4) and (6.5). Then E n

converges to E in the sense of Mosco.

Proof. To show the condition (M1), let fn be a sequence converging to f weakly in H in the
sense of Definition B.3 and suppose limn E n( fn, fn) < ∞ without loss of generality. It suffices
to prove

E ( f, f ) ≤ lim
n

E n( fn, fn). (6.6)

To this end, denote

Jn(x, y) =
ψγn (x)ψγn (y)
|x − y|

(d+α) , J (x, y) =
ψ0(x)ψ0(y)
|x − y|

(d+α) .

ut f̄n(x, y) =
(

fn(x) − fn(y)
)√

Jn(x, y) for (x, y) ∈ Rd
× Rd

\ D, which form a bounded
equence in L2

:= L2(Rd
× Rd

\ D, dxdy), and thus there is a subsequence, still denoted by
f̄n}, converging to some function f̄ weakly in L2. We claim that

f̄ (x, y) =
(

f (x) − f (y)
)√

J (x, y) =: f̃ (x, y), dxdy-a.e.,

hich leads to (6.6) since

E ( f, f ) =
cα,d

2
∥ f̄ ∥

2
L2 ≤

cα,d
2

lim inf
n

∥ f̄n∥
2
L2 = lim

n
E n( fn, fn).

ndeed, take an arbitrary non-negative function g ∈ Cc(Rd
×Rd

\ D). Then there is a constant
> 0 such that

supp[g] ⊂ {(x, y) : |x | < r, |y| < r, |x − y| > 1/r}. (6.7)
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For any n, we have⏐⏐⏐⏐ ∫ (
f̄ (x, y) − f̃ (x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐
≤

⏐⏐⏐⏐∫ (
f̄ (x, y) − f̄n(x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐+ ⏐⏐⏐⏐∫ (
f̄n(x, y) − f̃ (x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐ .
The first term on the right hand side converges to 0 as n → ∞, since f̄n converges to f̄ weakly
n L2. Denote the second term by In . Note that

In ≤

⏐⏐⏐⏐ ∫ (
fn(x)

√
Jn(x, y) − f (x)

√
J (x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐
+

⏐⏐⏐⏐ ∫ (
fn(y)

√
Jn(x, y) − f (y)

√
J (x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐ =: I 1
n + I 2

n .

We only need to show I 1
n → 0 and then I 2

n → 0 is analogical. Clearly, I 1
n is not greater than⏐⏐⏐⏐ ∫ fn(x)ψγn (x)

(√
ψγn (y)
ψγn (x)

−

√
ψ0(y)
ψ0(x)

)
g(x, y)

|x − y|
d+α

2
dxdy

⏐⏐⏐⏐
+

⏐⏐⏐⏐ ∫ (
fn(x)ψγn (x) − f (x)ψ0(x)

)√ψ0(y)
ψ0(x)

g(x, y)

|x − y|
d+α

2
dxdy

⏐⏐⏐⏐ =: I 1,1
n + I 1,2

n .

It follows from Cauchy–Schwartz inequality and (6.7) that

I 1,1
n ≤ |B(r )|1/2∥ fn∥Hn ·

⎛⎝∫ (√
wγn ,0(y)
wγn ,0(x)

− 1

)2
ψ0(y)
ψ0(x)

g(x, y)2

|x − y|
d+α

dxdy

⎞⎠1/2

≤ cr∥ fn∥Hn ∥g∥∞

⎛⎝∫
B(r )×B(r )

(√
wγn ,0(y)
wγn ,0(x)

− 1

)2
ψ0(y)
ψ0(x)

dxdy

⎞⎠1/2

,

(6.8)

here |B(r )| is the volume of a ball of radius r in Rd , cr = |B(r )|1/2r
d+α

2 , and wγn ,0 =

ψγn/ψ0 is positive and continuous on Rd due to Lemma A.3. Note that supn ∥ fn∥Hn <

∞ by Lemma B.4(3) and ψ0(y)/ψ0(x) is clearly integrable on B(r ) × B(r ). In addition,
wγn ,0(y)/wγn ,0(x) is bounded on B(r )× B(r ) and for every x, y ∈ B(r ), one can easily deduce
from (A.5) that

lim
γn↓0

wγn ,0(y)
wγn ,0(x)

= 1.

ence by applying the dominated convergence theorem to the last term in (6.8), we obtain
1,1

n → 0. On the other hand, mimicking (6.8), one can figure out

x ↦→

∫
Rd

√
ψ0(y)
ψ0(x)

g(x, y)

|x − y|
d+α

2
dy ∈ L2(Rd ).

ince fnψγn → fψ0 weakly in L2(Rd ) by Lemma B.4(4), we obtain I 1,2
n → 0. Eventually

or all g ∈ Cc(Rd
× Rd

\ D), it holds⏐⏐⏐⏐ ∫ (
f̄ (x, y) − f̃ (x, y)

)
g(x, y)dxdy

⏐⏐⏐⏐ = 0,

hich leads to f̄ = f̃ . Therefore, (M1) is verified.
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Now we turn to verify (M2). When f ∈ H \ F , take fn := f . Since fn clearly converges
to f weakly in H, it follows from (M1) that

∞ = E ( f ) ≤ lim inf
n

E n( fn) = lim
n

E n( fn) = ∞.

Next fix f ∈ F . H ′
n, H ′ are denoted above Lemma 6.3. By Lemma 6.3(2) and applying

Lemma B.4(1) to H′
:= {H ′

n, H ′
: n ≥ 1}, we can take a sequence fn ∈ H ′

n such that fn
onverges to f strongly in H′. Particularly, fn also converges to f strongly in H. Consequently,

it follows from Lemma B.4(2) that

∥ fn∥Hn → ∥ f ∥H , ∥ fn∥H ′
n → ∥ f ∥H ′ .

s a result,

lim
n

E n( fn, fn) = lim
n

E n
1 ( fn, fn) − lim

n
∥ fn∥

2
Hn

= E1( f, f ) − ∥ f ∥
2
H = E ( f, f ),

hich leads to (M2). That completes the proof. □

Following Theorem B.7, we can conclude the convergence of associated semigroups and
esolvents. Recall that Qn

t := Q(γn )
t and Rn

λ := R(γn )
λ are the semigroup and resolvent of

E n,F n) respectively. Both Qn
t and Rn

λ (t ≥ 0, λ > 0) are bounded linear operators on Hn .
et Qt := Q(0)

t and Rλ := R(0)
λ further. Note that Rn

λ f ∈ F n and Rλ f ∈ F ⊂ F n for all
f ∈ H ⊂ Hn .

orollary 6.5. For any t ≥ 0 and λ > 0, Qn
t → Qt and Rn

λ → Rλ as n → ∞ in the sense
f Definition B.3(3). Furthermore, for any λ > 0 and f ∈ H,

lim
n→∞

E n(Rn
λ f − Rλ f, Rn

λ f − Rλ f ) = 0. (6.9)

roof. It suffices to prove (6.9). Note that E n(Rn
λ f − Rλ f, Rn

λ f − Rλ f ) is equal to

E n(Rλ f, Rλ f ) − λ∥Rn
λ f ∥

2
Hn

+ ( f, Rn
λ f )Hn − 2(Rλ f, f )Hn + 2λ(Rλ f, Rn

λ f )Hn .

ince Rn
λ f converges to Rλ f in H, it follows from Lemma B.4 that ∥Rn

λ f ∥Hn → ∥Rλ f ∥H ,
f, Rn

λ f )Hn → ( f, Rλ f )H and (Rλ f, Rn
λ f )Hn → (Rλ f, Rλ f )H . In addition, the dominated

onvergence theorem yields E n(Rλ f, Rλ f ) → E (Rλ f, Rλ f ) and (Rλ f, f )Hn → (Rλ f, f )H .
inally we can conclude that

lim
n→∞

E n(Rn
λ f − Rλ f, Rn

λ f − Rλ f ) = E (Rλ f − Rλ f, Rλ f − Rλ f ) = 0.

hat completes the proof. □

.2. Proof of Theorem 6.1

Denote the 1-capacity of (E n,F n) (resp. (E ,F )) by Capn (resp. Cap). Note that Capn(A) ≤

ap(A) for any Borel set A ⊂ Rd . Let us prepare a simple lemma as given below.

emma 6.6. For any nearly Borel measurable set G with Capn(G) < ∞, set σ n
G := {t > 0 :

Xn
t ∈ G}. Then it holds

Qφ(e−σ n
G ) ≤ CφCapn(G)1/2,

here Cφ := ∥φ/ψγ1∥L2(Rd ) is a finite constant independent of n.
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Proof. Set w1(·) := Q·(e−σ n
G ). It follows from [13, Theorem 4.2.5] that w1 is a quasi-

continuous function in F n . Clearly φ/ψ2
γn

∈ Hn by (6.1) and Remark 6.2. Applying
[13, Lemma 4.2.1,Theorem 2.1.5], we can deduce that

Qφ(e−σ n
G ) =

∫
Rd
w1(x)

φ(x)
ψγn (x)2 mγn (dx) = E n

1 (w1, Rn
1

(
φ/ψ2

γn

)
)

≤ E n
1 (Rn

1 (φ/ψ2
γn

), Rn
1 (φ/ψ2

γn
))1/2

· E n
1 (w1, w1)1/2

=

(∫
Rd
φ(x)Rn

1 (φ/ψ2
γn

)(x)dx
)1/2

Capn(G)1/2.

t suffices to show Cφ,n :=
(∫

Rd φ(x)Rn
1 (φ/ψ2

γn
)(x)dx

)1/2
≤ Cφ . Indeed, it follows from

/ψ2
γn

∈ Hn that

C2
φ,n = (φ/ψ2

γn
, Rn

1 (φ/ψ2
γn

))Hn =

∫
∞

0
e−t

· (φ/ψ2
γn
, Qn

t (φ/ψ2
γn

))Hn dt

≤ (φ/ψ2
γn
, φ/ψ2

γn
)Hn =

∫ (
φ/ψγn

)2 (x)dx ≤

∫ (
φ/ψγ1

)2 (x)dx = C2
φ .

he first inequality is led by

(φ/ψ2
γn
, Qn

t (φ/ψ2
γn

))Hn = (Qn
t/2(φ/ψ2

γn
), Qn

t/2(φ/ψ2
γn

))Hn ≤ (φ/ψ2
γn
, φ/ψ2

γn
)Hn .

hat completes the proof. □

We pursue the proof of Theorem 6.1. The idea of it is due to [15] and the crucial fact is
hat ψγn is monotone in n.

roof of Theorem 6.1. Step 1. We first show for any λ, T > 0 and any bounded h ∈ H ,

lim
n→∞

Qφ

[
sup

t∈[0,T ]

⏐⏐Rn
λh(Xn

t ) − Rλh(Xn
t )
⏐⏐] = 0. (6.10)

ince Rn
λh, Rλh ∈ F n , suppose they are taken to be E n-quasi-continuous versions still

enoted by Rn
λh and Rλh. Moreover, Rn

λh − Rλh ∈ F n leads to |Rn
λh − Rλh| ∈ F n and

n(|Rn
λh − Rλh|, |Rn

λh − Rλh|) ≤ E n(Rn
λh − Rλh, Rn

λh − Rλh). Fix an arbitrary small constant
> 0. Set Gn

ε := {x : |Rn
λh(x) − Rλh(x)| > ε}. Then Gn

ε is E n-q.e. finely open with

Capn(Gn
ε ) ≤

1
ε2 E n(|Rn

λh − Rλh|, |Rn
λh − Rλh|) ≤

1
ε2 E n(Rn

λh − Rλh, Rn
λh − Rλh).

Further set σGn
ε

:= inf{t > 0 : Xn
t ∈ Gn

ε }. Then

Qφ

[
sup

t∈[0,T ]

⏐⏐Rn
λh(Xn

t ) − Rλh(Xn
t )
⏐⏐ ; T < σGn

ε

]
≤ ε · Qφ(T < σGn

ε
) ≤ ε, (6.11)

and it follows from ∥Rn
λh∥∞ ≤

1
λ
∥h∥∞ and ∥Rλh∥∞ ≤

1
λ
∥h∥∞ that

Qφ

[
sup

t∈[0,T ]

⏐⏐Rn
λh(Xn

t ) − Rλh(Xn
t )
⏐⏐ ; T ≥ σGn

ε

]
≤

2∥h∥∞ Qφ(T ≥ σGn ) ≤
2∥h∥∞eT

Qφ(e−σGn
ε ).
λ ε λ
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Applying Lemma 6.6 to Gn
ε , we obtain the above term is not greater than

2∥h∥∞eT Cφ

λ
Capn(Gn

ε )
1/2

≤
2∥h∥∞eT Cφ

λ

E n(Rn
λh − Rλh, Rn

λh − Rλh)1/2

ε
. (6.12)

By (6.9), there exists N ∈ N such that for all n > N ,

2∥h∥∞eT Cφ

λ
· E n(Rn

λh − Rλh, Rn
λh − Rλh)1/2

≤ ε2.

s a result, (6.11) and (6.12) yield

Qφ

[
sup

t∈[0,T ]

⏐⏐Rn
λh(Xn

t ) − Rλh(Xn
t )
⏐⏐] ≤ 2ε, ∀n > N .

This leads to (6.10).
Step 2. Fix g ∈ Cc(Rd ) and T, ε > 0. We claim that there exist h ∈ Cc(Rd ), a constant

λ0 > 0 and an integer N such that

sup
n≥N

Qφ

[
sup

t∈[0,T ]

⏐⏐⏐λ0 Rn
λ0

h(Xn
t ) − g(Xn

t )
⏐⏐⏐] < ε. (6.13)

To this end, take h ∈ F ∩ Cc(Rd ) such that ∥h∥∞ ≤ 2∥g∥∞ and

sup
x∈Rd

|h(x) − g(x)| < ε/3. (6.14)

The existence of h is due to the regularity of (E ,F ). Note that λRλh ∈ F is
E -quasi-continuous and λRλh converges to h strongly in F endowed with the E1-norm by
13, Lemma 1.3.3]. Thus applying [3, Theorem 1.3.3 and Exercise 1.3.16], we can take a Cap-
est {Fm : m ≥ 1}, i.e. Fm is a sequence of increasing closed sets such that limm→∞ Cap(Fc

m) =

, such that λRλh converges to h uniformly on each Fm . Take m0 ∈ N such that

Cap(Fc
m0

) ≤
ε2(

24∥g∥∞eT Cφ

)2 , (6.15)

here Cφ is the constant in Lemma 6.6 and further take λ0 such that

sup
x∈Fm0

|λ0 Rλ0 h(x) − h(x)| <
ε

6
. (6.16)

inally by virtue of (6.10) for λ0, T and h, take N ∈ N such that

sup
n≥N

Qφ

[
sup

t∈[0,T ]

⏐⏐⏐Rn
λ0

h(Xn
t ) − Rλ0 h(Xn

t )
⏐⏐⏐] < ε

3λ0
. (6.17)

ith h, λ0 and N in hand, we pursue to verify (6.13). Clearly,

|λ0 Rn
λ0

h − g| ≤ λ0|Rn
λ0

h − Rλ0 h| + |λ0 Rλ0 h − h| + |h − g|. (6.18)

rom (6.14), we obtain

Qφ

[
sup

t∈[0,T ]

⏐⏐h(Xn
t ) − g(Xn

t )
⏐⏐] < ε

3
(6.19)

or all n. For every n, set σ n
m0

:= inf{t > 0 : Xn
t ∈ Fc

m0
}. Then it follows from (6.16) that

Qφ

[
sup

⏐⏐λ0 Rλ0 h(Xn
t ) − h(Xn

t )
⏐⏐ ; T < σ n

m0

]
<
ε

6
.

t∈[0,T ]
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C

In addition, mimicking the first step, one can deduce from ∥h∥∞ ≤ 2∥g∥∞, Capn
≤ Cap and

6.15) that

Qφ

[
sup

t∈[0,T ]

⏐⏐λ0 Rλ0 h(Xn
t ) − h(Xn

t )
⏐⏐ ; T ≥ σ n

m0

]
≤
(
∥λ0 Rλ0 h∥∞ + ∥h∥∞

)
Qφ(T ≥ σ n

m0
)

≤ 2∥h∥∞eT CφCapn(Fc
m0

)1/2

≤ 4∥g∥∞eT CφCap(Fc
m0

)1/2 <
ε

6
.

onsequently, for all n,

Qφ

[
sup

t∈[0,T ]

⏐⏐λ0 Rλ0 h(Xn
t ) − h(Xn

t )
⏐⏐] < ε

3
. (6.20)

Eventually, (6.17), (6.18), (6.19) and (6.20) yield (6.13).
Step 3. In this step, we will demonstrate that for any m ≥ 1 and gi ∈ Cc(Rd ) for 1 ≤ i ≤ m,

{ξn :=
(
g1(Xn), . . . , gm(Xn)

)
: n ≥ 1} (6.21)

under Qφ forms a tight family on D([0,∞),Rm), i.e. the Skorohod topology space on Rm , by
virtue of [11, Theorem 3.9.4 and Remark 3.9.5 (b)]. More precisely,

ξn : Ξ → D([0,∞),Rm), ϖ ↦→ ξnϖ,

where ξnϖ (t) :=
(
g1(Xn

t (ϖ )), . . . , gm(Xn
t (ϖ ))

)
∈ Rm is clearly càdlàg in t , induces a

probability measure Qφ
◦ ξ−1

n on D([0,∞),Rm). Our object is to show {Qφ
◦ ξ−1

n : n ≥ 1} is
tight. It suffices to consider m = 1 and write g := g1 for the sake of brevity. To this end, fix
ε, T > 0. Apply Step 2 to these g, ε, T and take h, λ0, N such that (6.13) holds. Set

Y n
t := λ0 Rn

λ0
h(Xn

t ), Zn
t := λ0

(
λ0 Rn

λ0
h − h

)
(Xn

t ).

From the Fukushima’s decomposition of Xn with respect to λ0 Rn
λ0

h (see [13, Theorem 5.2.5]),
one can find that

t ↦→ Y n
t −

∫ t

0
Zn

s ds

is a martingale relative to the filtration of Xn . In addition, (6.13) tells us

sup
n≥N

Qφ

[
sup

t∈[0,T ]

⏐⏐Y n
t − g(Xn

t )
⏐⏐] < ε.

Furthermore, since ∥h∥∞ ≤ 2∥g∥∞ < ∞, it follows that

sup
n≥1

Qφ

[
sup

t∈[0,T ]
|Zn

t |

]
≤ 2λ0∥h∥∞ < ∞.

Eventually, [11, Theorem 3.9.4 and Remark 3.9.5 (b)] yield the desirable tightness.
Step 4. Finally, we shall conclude that ξn in (6.21) is weakly convergent to ξ :=

(g1(X ), . . . , gm(X )) under Qφ . Since Cc(Rd ) strongly separates points in Rd (for the definition
of strong separation, see [11, §3.4]; for the proof of this fact, see [2]), this convergence leads
to (6.3) due to [11, Corollary 3.9.2]. To show ξ weakly converges to ξ , note that {ξ : n ≥ 1}
n n
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is tight by the third step. Thus it suffices to show the finite dimensional distributions of ξn

re weakly convergent to those of ξ by employing [11, Theorem 3.7.8]. To this end, take
f1 ∈ Cb(Rm) and set h1 := f1 ◦ (g1, . . . , gm) ∈ Cb(Rd ). Note that C := f1(0) is not necessarily
equal to 0. For every x /∈ ∪1≤i≤msupp[gi ], we have h1(x) = C . Then h̃1 := h1 − C defines a
ontinuous function with compact support and thus h̃1 ∈ H . For any t1 > 0,

Qφ(h1(Xn
t1

)) = Qφ(h̃1(Xn
t1

)) + C =

(
Qn

t1
h̃1,

φ

ψ2
γn

)
Hn

+ C.

Corollary 6.5 tells us Qn
t1

h̃1 converges to Qt1 h̃1 strongly (as well as weakly due to Remark B.5)
n H. Clearly, φ/ψ2

γn
converges to φ/ψ2

0 strongly in H by means of Lemma B.4(4) and
/ψγ1 ∈ L2(Rd ). As a result,

Qφ(h1(Xn
t1

)) →

(
Qt1 h̃1,

φ

ψ2
0

)
H

+ C = Qφ(h1(X t1 )).

imicking the above argument, one can obtain by induction that for t1 < · · · < tk , f1, . . . , fk ∈

b(Rm), it still holds (see [15, Theorem 3.7] for more details)

lim
n→0

Qφ
[
h1(Xn

t1
) · · · hk(Xn

tk )
]

= Qφ
[
h1(X t1 ) · · · hk(X tk )

]
,

here hi := fi ◦ (g1, . . . , gm). In other words, the finite dimensional distribution of ξn at
t1, . . . , tk) is weakly convergent to that of ξ . That completes the proof. □
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ppendix A. Basics of isotropic α-stable process

Fix 0 < α < 2 ∧ d. The generator of isotropic α-stale process is denoted by ∆α/2 (on
L2(Rd )), whose definition is usually given by Fourier transform. We present two alternative
quivalent definitions of ∆α/2 as follows. Note that pt (x) := p(t, 0, x) stands for its transition
ensity, which enjoys the following properties:

pt (x) = t−d/α p1(x/t1/α), t > 0, x ̸= 0, (A.1)

nd

p1 ∈ C∞(Rd ) ∩ B+(Rd ), p1(x) ≈ 1 ∧ |x |
−d−α

; (A.2)

ee e.g. [18, §2.6].

efinition A.1. Recall that the constant cα,d is given in Section 2. Define

L I f := lim
r↓0

cα,d

∫
y:|y|>r

f (· + y) − f (·)
|y|

d+α
dy

ith the limit in L2(Rd ), where the domain D(L I ) consists of functions such that this limit
xists. In addition, define

L S f := lim
1
(∫

pt (· − y) f (y)dy − f (·)
)

t↓0 t Rd
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with the limit in L2(Rd ), where the domain D(L S) consists of functions such that this limit
exists.

Remark A.2. Note that L I = L S = ∆α/2 with D(L I ) = D(L S) = D(∆α/2) = Hα(Rd ), where
Hα(Rd ) is the Sobolev space of order α.

Let uλ given by (2.2) be the resolvent density of isotropic α-stable process. The following
lemma summarizes some crucial properties of uλ. Though it is elementary, we present a proof
for readers’ convenience.

Lemma A.3. Fix λ ≥ 0 and let uλ be in (2.2) or (2.3). Then the following hold:

(1) uλ ∈ C∞(Rd
\ {0}) and uλ(x) > 0 for all x ∈ Rd

\ {0}.
(2) For any µ ≥ 0,

lim
x→0

uλ+µ(x)
uλ(x)

= 1. (A.3)

Particularly, wλ,µ(x) := uλ+µ(x)/uµ(x) for x ̸= 0 and wλ,µ(0) := 1 form a continuous
function on Rd .

(3) The following limit holds uniformly on any compact subset of Rd
\ {0}:

lim
t↓0

1
t
(pt ∗ uλ − uλ) = λuλ.

Proof. For the first assertion, it suffices to consider λ > 0. We first prove uλ(x) > 0 for x ̸= 0.
rgue by contradiction and suppose that uλ(x0) = 0 for some x0 ̸= 0. It follows from (A.1)

that

uλ(x) =

∫
∞

0
e−λt t−

d
α p1

( x
t1/α

)
dt, x ̸= 0. (A.4)

hen from (A.4) and the smoothness of p1, we obtain p1(x0/t1/α) = 0 for all t > 0. Note that
p1 is a radius function by the isotropy of α-stable process, i.e. there is a function r1 on [0,∞)
uch that p1(x) = r1(|x |). This implies p1(y) = 0 for all y ̸= 0, which leads to a contradiction
ith
∫
Rd p1(y)dy = 1. Now we turn to prove uλ ∈ C∞(Rd

\ {0}). Substituting t := |x |/t1/α in
A.4), we obtain

uλ(x) =
α

|x |
d−α

∫
∞

0
exp

{
−λ

|x |
α

tα

}
td−α−1 p1

(
x
|x |

t

)
dt. (A.5)

ince (A.2) and p1

(
x
|x |
t
)

= r1(t) is independent of x , one can easily conclude that |x |
d−αuλ(x)

s smooth at x ̸= 0. Hence uλ ∈ C∞(Rd
\ {0}).

To prove (A.3), note that

exp
{
−λ

|x |
α

tα

}
td−α−1 p1

(
x
|x |

t

)
≤ td−α−1r1 (t)

s integrable in t on (0,∞) due to (A.2) and α < d. Then (A.5) and the dominated convergence
heorem yield

lim
x→0

uλ+µ(x)
uλ(x)

=

limx→0
∫

∞

0 exp
{
−(λ+ µ) |x |

α

tα

}
td−α−1r1 (t) dt

limx→0
∫

∞ exp
{
−λ

|x |α
}
td−α−1r1 (t) dt

= 1.

0 tα
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L

Finally, a straightforward computation yields

1
t
(pt ∗ uλ − uλ) =

eλt
− 1
t

∫
∞

t
e−λss−

d
α p1

( x
s1/α

)
ds −

1
t

∫ t

0
e−λss−

d
α p1

( x
s1/α

)
ds.

Then we can obtain the last assertion by virtue of (A.2) and the dominated convergence
theorem. □

Appendix B. Mosco convergence with changing speed measures

To make the paper more self-contained, we summarize in this appendix some basic
conceptions and results concerning Mosco convergence from [16]. It is working on a sequence
of Hilbert spaces {Hn : n ≥ 1} converging to another one H in the following sense.

Definition B.1. A sequence of Hilbert spaces {Hn} is called to converge to another Hilbert
space H , if there exist a dense subspace C ⊂ H and a sequence of operators

Φn : C −→ Hn

with the following property:

lim
n→∞

∥Φn f ∥Hn = ∥ f ∥H (B.1)

for every f ∈ C .

Remark B.2. In Section 6, we always take Hn = L2(Rd ,mγn ), H = L2(Rd ,m0) with γn ↓ 0
and C = H (or C∞

c (Rd )), Φn := id, i.e. Φn f := f for all f ∈ H . Note that H ⊂ Hn since
ψγn ≤ ψ0, and (B.1) holds due to the monotone convergence theorem.

Set H := {Hn, H : n ≥ 1}. The following definition presents elementary convergences in
the context of these Hilbert spaces.

Definition B.3.

(1) (Strong convergence in H) We say that fn converges to f strongly in H (as n → ∞), if
fn ∈ Hn , f ∈ H and there exists a sequence { f̃m} ⊂ C with the following properties:

∥ f̃m − f ∥H → 0, lim
m

lim sup
n

∥Φn f̃m − fn∥Hn = 0.

(2) (Weak convergence in H) We say that fn converges to f weakly in H (as n → ∞), if
fn ∈ Hn , f ∈ H and

( fn, gn)Hn → ( f, g)H

for every sequence {gn} converging to g strongly in H.
(3) (Convergence of operators) Given a sequence of bounded linear operators Bn on Hn , we

say Bn strongly converges to a bounded linear operator B on H (as n → ∞), if for every
sequence fn converging to f strongly in H, Bn fn converges to B f strongly in H.

The lemma below states some important results concerning these convergences.

emma B.4 (See [16]). Let Hn and H be in Definition B.1. Then the following hold:

(1) For every f ∈ H, there exists a sequence { f : n ≥ 1} such that f → f strongly in H.
n n
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(2) If fn → f strongly in H, then ∥ fn∥Hn → ∥ f ∥H .
(3) If fn → f weakly in H, then

sup
n

∥ fn∥Hn < ∞, ∥ f ∥H ≤ lim inf
n

∥ fn∥Hn .

(4) Let Hn := L2(Rd , ϕn(x)2dx) and H = L2(Rd , ϕ(x)2dx) such that ϕn, ϕ are posi-
tive in L2

loc(Rd ) and Hn converges to H in the sense of Definition B.1. Assume that∫
K (ϕn(x) − ϕ(x))2 dx → 0 for any compact set K ⊂ Rd . Then fn converges to f strongly

(resp. weakly) in H, if and only if fnϕn converges to f ϕ strongly (resp. weakly) in L2(Rd ).

emark B.5. When ϕn := ψγn and ϕ := ψ0 as in Remark B.2, it is straightforward to verify
hat all conditions in the fourth assertion are satisfied. Meanwhile, this claim indicates that
trong convergence in H leads to weak convergence in H.

Now we turn to consider the so-called Mosco convergence of closed forms. Identify a
uadratic form (E ,D(E )) on H (or Hn) with the function

E (·) : H → R̄ := R ∪ {∞}, f ↦→

{
E ( f, f ), f ∈ D(E )
∞ f /∈ D(E ).

he following conception is our main concern.

efinition B.6. Let (E n,D(E n)) be a closed form on Hn and (E ,D(E )) be a closed form on
H . We say E n converges to E in the sense of Mosco, if the following conditions hold:

(M1) If fn converges to f weakly in H, then

E ( f ) ≤ lim inf
n

E n( fn).

(M2) For every f ∈ H , there exists a sequence { fn : n ≥ 1} converging to f strongly in H
such that

E ( f ) = lim
n

E n( fn).

The significance of Mosco convergence is indicated in the following well-known result.

heorem B.7 (See [17] and also [16]). Let {E n
: Hn → R̄} be a sequence of closed forms

nd E be a closed form on H. Let (T n
t )t≥0 and (Gn

λ)λ>0 (resp. (Tt )t≥0 and (Gλ)λ>0) be the
emigroup and resolvent of E n (resp. E ) respectively. Then the following are all equivalent:

(1) E n converges to E in the sense of Mosco;
(2) Gn

λ strongly converges to Gλ for every λ > 0;
(3) T n

t strongly converges to Tt for every t > 0.
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