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Abstract 

In this paper we prove the existence and uniqueness of solutions of the nonlinear martingale 
problems associated with the nonlinear master equations of multitype particle systems. Exis- 
tence is shown to hold under some weak growth conditions and a finite range condition, while 
uniqueness is proved under a Lipschitz condition. Uniqueness is also shown to hold under a 
non-Lipschitz condition and a strong growth condition. The proof of uniqueness involves a cou- 
pling argument and the exponential martingale property. The results are then applied to some 
examples such as the Lotka-Volterra model and the Brusselator. 

Keywords: Q-process; Pure jump Markov process; Nonlinear master equation; Coupling; Mean 
field interaction. 

I. Introduction 

The nonlinear master equation have been used to model a class of  chemical reactions 

in Nicolis and Prigogine (1977). Rigorous studies of  the equation in the case of particle 

systems of a single type have been carried out by several authors in the past few years. 

Feng and Zheng (1992) established the existence and uniqueness of  a solution to the 
equation using an analytical method. Dawson and Zheng (1991) introduced a finite 

exchangeable particle system and proved that the empirical processes of the particle 
systems converge to the unique solution of the nonlinear master equation. Central limit 

theorems are also obtained in Dawson and Zheng (1991). Recently, Feng (1994, 1993) 

obtained results on large deviations for the same model. 
The objective of  present article is to extend the results of Feng and Zheng (1992) to 

multitype particle systems. The structure of  multitype particle systems is more compli- 
cated and more interesting than that of single-type particle systems. One example that 
motivated this research is the Brusselator and its periodic behavior. Unfortunately, we 
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cannot even prove the uniqueness of this model at this stage. In Section 2 we show 
the existence of solutions of the multitype nonlinear master equation under some weak 
growth conditions which are satisfied by a large class of models. In Section 3 stronger 
assumptions are then imposed to obtain the uniqueness. 

We are interested in the nonlinear master equation because of the following: 
(1) the existence of multiple equilibria and phase transitions; 
(2) its role in the study of the exchangeable particle systems; 
(3) the connection between mean field particle system and the lattice model; 
(4) to get a better understanding of the structure and the stochastic calculus of 

nonlinear pure jump Markov processes. 
Studies of this kind have been carried out for nonlinear diffusion processes by a 

number of authors such as Dawson (1983), Dawson and G~irtner (1988), Funaki (1984, 
1985), Scheutzow (1986) and this list is in no way exhaustive. 

Here is a detailed description of our setting, followed by the main results of this 
article. 

Let Z+ be the set of nonnegative integers, and for any integer m > 1, S = Z_~ 
denotes the m-fold product of Z+ endowed with the metric p defined by: 

m 

p ( X , Y ) =  Y ] l x i - Y i  I, for every X, Y E S, X ~--(xI . . . . .  Xm), Y = ( Y t  . . . . .  Ym). 
i=1 

m For any r~>l, let [Xl r = (~--~m=lxi)r, IXl = ~ i = l x i .  We will use M(S) to denote 
the space of probability measures on S equipped with the weak topology, and Mr(S) 
will denote the space of all probability measures on S with finite moment of order r. 
The following two metrics will be used on M(S): For any u, v E M(S), 

~l(u,v) = ~ 2 -IxF. lu(X) - v(X)l 
m - l + i X [  ' 

XES Cix [ 

d (u ,v )= sup { f s  p(X,Y)P(dX, d Y ) } ,  
PE,~(u,v) ×S 

where ~lXl~m-l+lX[ = (m - 1 + IXl)!/(IXl)!(m - 1)!, and ~(u,v)  is the set of all proba- 

bility measures on S 2 = S x S with marginals u and v. It is known that d metrizes the 
vague topology which is weaker than the weak topology, while d is associated with a 
topology which is stronger than the weak topology. In fact, in our particular case, d 
is equivalent to the total variation metric. 

Let A = (qx, r)x. YeS be a matrix satisfying: 

for any X, Y E S, X (: Y, qx, r >1 0, (1.1) 

for a n y X E S ,  [qx, x[ < c~, ~ qx, r = O. 
YES 

(1.2) 

Such a matrix is called a totally stable, conservative Q-matrix. 
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Let Cb(S) be the set of all bounded functions on S (note: all functions on S are 

continuous because of the discrete topology). For any f E Cb(S) and any vector-valued 

function 

g : [ 0 , + o o )  --+ R m, t ~ g ( t )  = ( g l ( t )  . . . . .  gin( t ) ) ,  

gi(t)>~O, t E [0,+e~), i =  1 . . . . .  m, 

we define 

L f ( X )  = ~ qx, Y ( f ( Y )  - f ( X ) ) ,  
YES 

m 

Lg(t) f(X) = L f ( X )  + ~-][gi(t)(f(X + ei) - f ( X ) )  + x i ( f ( X  -- e l )  -- f ( g ) ) ] ,  
i--I 

where ei E S with (ei)i = 1,(ei)j = 0 for j ~ i. 

For any u E M(S), f E Cb(S), we define (u , f )  = f s f ( X ) u ( d X ) .  The nonlinear 
master equation has the form 

d(u ( t ) , f )  
dt - (u(t),Lilu(t)llf) , (1.3) 

where u(.) is a measure-valued function from [0,+cx~) to M(S)  and 

I lu(t ) l l  = ( l luX(t ) l l  . . . . .  I lum( / ) l l ) -  

ui(t) and Ilu'(t)ll denote the ith marginal of  u(t) and the first moment of ui(t), respec- 

tively. 
Let D = D ( [ 0 , + ~ ) , S )  denote the space of functions from [0,+c~) to S that are 

right continuous and have left-hand limits, equipped with the Skorohod topology. It is 
well-known that D is a Polish space in which the Borel a-algebra coincides with ~ = 

a { X ( t ) : t ~  0}, the smallest a-algebra generated by {X(t): t ~> 0}, where X(t)(og) = o9(t) 
for all ~o E D. The a-algebra ~ t  = a{X(s) :s  E [0,t]) is defined in the same way 

for any t ~>0. ~(D,  ~ )  denotes the set of  all probability measures on (D, ~ )  equipped 
with the usual weak topology. For any P E ~ ( D , ~ )  and t E [0,+c~), P o X - l ( t )  is 

given by 

P o X - l ( t ) ( A )  = P{X( t )  E A}, for any A C S. 

Definition 1.1. For any u E M(S) ,  Pu E ~ ( D , ~ )  is called a solution of the martingale 
problem [u,L] with initial distribution u if 

Pu o X - l ( 0 )  = u; (1.4) 

/o' V Y E S, ( l {Yi (X( t ) ) -  LI{ r i (X ( s ) )d s ,~ t ,Pu )  is a martingale; (1.5) 

where IA represents the indicator function on set A. 

Definition 1.2. Let u E M(S); and let v : [0 ,+oe)  ~ M(S)  satisfy 

m 

s u p  ~[[vi(t)[[ < O~, for all T > 0. 
O<~t ~ T i=l  
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P~,~¢.) E ~ (D , ~ - )  is called a solution of the time inhomogeneous martingale problem 

[u, Liiv~t)ll] with initial distribution u if 

Pu,v~.) o X - I ( 0 )  = u, (1.6) 

/0 V Y E S , ( I { v I ( X ( t ) ) -  Lil~(s)ltI{ri(X(s))ds, o~t,Pu,v(.)) is a martingale. (1.7) 

Definition 1.3. For any u E M(S) ,  P ,  E ~ (D,  ~ )  is called a solution of the nonlinear 
martingale problem [u,L] with initial distribution u if 

P~ oX- l (O)  = u; (1.8) 

P~ o X - l ( t )  = u(t); (1.9) 

/o' V Y C S , ( l {Y i (X( t ) )  - Lil~(,)l lZ{Yi(X(s))ds,~t,P~ ) is a martingale. (1.10) 

The main results of this article are: 

Theorem 1.1. Let A = (qx, r )x, Y~s be a totally stable, conservative Q-matrix satisfy- 

in9 

there exists A > 0, such that qx, r = 0 ,  for p ( X , Y )  > A, (1.11) 

there exists p > 1, C > 1, such that 

(i) ~v~sqx ,  r ( I Y I -  IXl)~<C(1 + IXl), (1.12) 

(ii) y]y~sqx, r(IY] p - IX]P)<~C(1 + ]XIP), 

then for  any u E Mp(S) ,  there exists a solution o f  the nonlinear martinoale problem 
[u,L]. 

Note.  1.11 implies that qx, r = 0 for [ Ix [  - [YII > A. 
Let  Cf (S  2 ) denote the set of all functions on S 2 with finite values. For any (X,X) E 

S 2 and G E Cf (S  2) we introduce the following operator: 

f2G(X,X)  = ~ {(qx, Y - q2 ,~)+(G(Y,X)  - G ( X , X ) )  
(Y,i')esL Y-X=~-2 

+( q~,~ - qx, r ) + ( G(X, Y)  - G(X ,X  ) ) 

+(qx, r A qyc) )(G(Y, Y)  - G(X,A'))} 
m 

+~]{(xi - Yci)+(G(X - e i , Y )  - G ( X , X ) )  
i=1 

+(Yci - x i )+(G(X,X - el) - G(X,X)) 

+(xi A Yci)(G(X - e i , Y  - el) - G(X,X))}. 

Theorem 1.2. Let  A = (qx, r)x, r~s be a totally stable, conservative Q-matrbc satisfy- 
ing (1.11), (1.12) and 

there exists h > O, such that f2p(X,)()<<.hp(X,X). (1.13) 

Then for  any u E Mp(S) ,  the nonlinear martinoale problem [u,L] is well-posed. 
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Remark. Condition (1.13) is just the Lipschitz condition. 

In next theorem we prove the uniqueness of the solution to the nonlinear martingale 
problem under a particular non-Lipschitz condition and a strong growth condition. 

Theorem 1.3. Let  A = (qx, r )x, v~s be a totally stable, conservative Q-matrix satisfy'- 
ing 1.11 and 

there exist a > O, b > O, such that f2p(S,2)<~[a(]Sl + 121)+ b]p(X,X) ,  (1.14) 

there exist c > O, ct > O, such that ~ r c s q x ,  y(e clrl - eclXl)<<,~e cx. (1.15) 

Then for  any u E M ( S )  satisfying f eclXlu (dX)  < go, the nonlinear martingale 

problem [u,L] is well-posed. 

Remark. If the state space is a subset of {0, 1 . . . . .  N} m for some integer N > 0, then 
the Q-matrix satisfies conditions (1.11 )-(1.15) and thus the corresponding martingale 
problems are well-posed. 

The following are two interesting examples. 

Example 1. (Lotka-Volterra model). This model involves the following chemical re- 
actions between four chemical species or molecules A,B, XI, and X2: 

A + XI ~ ~ Z~l, 

X1 + X2 ~2 23(2, 

B + X 2  ~3>E+B.  

Each diagram represents a reaction. For example, the diagram A + Xl ;-_2_% 2Xl 
represents a reaction between one A molecule and one X1 molecule resulting in two 

X~ molecules; 2~ is the reaction rate. The concentrations of A and B are held constant 
in time and space by appropriate feeding of the reactor. It is not hard to see that this 
is a nonequilibrium system. We are interested in the evolution of the concentrations 
of molecules of type )(1 and )(2 and the long-time behavior of the system such as the 
existence of phase transitions and metastability of the stationary states. Deterministic 
and stochastic differential equations have been used to model the reaction. In this article 
we consider a nonlinear jump Markov processes model with Q-matrix given by 

2 1 a x l ,  for Y = (xl + l,x2), 

23bx2, for Y = ( x x , x 2 -  1), 

qx, r = 22xlx2, for Y = (Xl - 1,x2 -4- 1), (1.16) 

0, for other Y # X, 

- ~ r 4 x q x ,  r, for Y =X.  

It can be checked that (1.11), (1.12), and (1.14) are satisfied by this matrix. Con- 
dition (1.15) holds if 2l ~< 1. 
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Example 2. (The trimolecular model (the "Brusselator")). This model consists of  fol- 
lowing chemical reactions between reactants A,B, XI, and )(2: 

A 21 > Xl~ 

B + X~ - ~  X2 + C, 

2)(1 + X2 ~ , 3X1, 

X1 )" , E. 

The concentrations of A and B are assumed to be constant in time and space. Dif- 
ferential equations and stochastic differential equations have been used to model these 
reactions. Both approches reveal periodic behavior of  this model. For our jump model, 
the Q-matrix is given by 

21a, for Y = (xl + 1,x2), 

~,4Xl, for Y = ( x  I - 1,x2), 

22bXl, for Y = (Xl - 1,x2 + 1), 

qx, r = 23C~ 'x2, for Y = (xl + 1,x2 - 1), 

0, for other Y ¢ X, 

- ~ r 4 x q x ,  r, for Y =X,  

(1.17) 

where C~ ~ = i x  1 ( x  I - 1 ). For this model, conditions (1.11 ), (1.12), (1.15) are satisfied 
but not (1.14). Thus, we are unable to prove the uniqueness for the jump model at 
this stage. 

2.  E x i s t e n c e  

In this section we will prove Theorem 1.1 through a series of lemmas. The proof 
consists of two parts: First we construct a sequence of probability measures on (D, ~ )  
and verify the tightness of this sequence; secondly, we will show that one of the limit 
points of this sequence is a solution of the nonlinear martingale problem [u,L]. 

The following lemma appears as Lemma 2.1 in Feng and Zheng (1992). 

Lemma 2.1. Let cg C ~(D,  o~). Assume for  every T > 0, 0 < ~ < 1, there exists a 

compact subset K o f  S such that 

inf P{X(t) E K;O~t<~T} > 1 - 7 ( 2 . 1 )  
PEqq 

and for  every T >  O, 0 < e < 1, 

lim sup P{6~(e) ~< 6} -- O, (2.2) 
6~0 PC~  
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where 

6~r(¢) = min{ ' r , (~)  - rn_l(OJ);l<~n<~Nr(co)}, 

Ny(cO) = min{n; r,+l(co) > T}, 

z0(co) = 0, zn(og)=in f{ t>~,_ , (~o) ;p(X( t ) ,X(~ ,_ l (co) )>~¢} .  

Then cg is relatively compact in ~ ( D , ~ )  in the weak topology. 

These conditions are not particularly practical when applied to specific situations. 
The following lemma gives a sufficient condition for (2.2) to be true for a class of  
stochastic processes on the space S. 

Lemma 2.2. Let {f2.(t)}.=l,2,.. be a sequence of time-dependent linear operators on 
Cb(S) satisfying f2.( t) l  = 0, where 1 is the function which is identically equal to one. 
The solutions of the associated martingale problems exist with initial distribution 
u E MI(S). Let Q~ be a solution of the martingale problem associated with f2.(t) 
with initial distribution u, and let Ck(S) denote the set of all bounded continuous 
functions on S with compact support. I f  

for any T > 0, 7 E (0, 1 ), there exists a compact set K C S such that 

inf. Q~,{X(t) E K;O<~t<~T} > 1 - ~,, 

(2.3) 

for any f E Ck(S), T > 0, there exists A f ( T )  > O, such that 

SUPn, t~[0,r ] [f2n( t ) f (X )[ <<,AT(T), with Af(  T ) being a non-decreasing 

function of  T, 

(2.4) 

then {Qua},=1,2,... is relatively compact in ~ ( D , ~ ) .  

Proof.  For any L > 0, let KL = {X E S" [X] <~L}, BL = {suptcI0,T ] [X(t)l ~<L}. Then 
by (2.4) we have 

s u p Q ~ { B ~ } ~ 0  a s L ~ o ~ .  (2.5) 
n 

To prove the result it suffices to verify that {Qun}n=l,2,... satisfies condition (2.2). This 
is verified through the following estimates. For any 0 < 6 < 1 we have 

, r 6 -< " v 6,BL} +Q~{/~L}. (2.6) 

and 

Qu"{6~,(e)T < 6,BL} <~ Qu{fo~(e)" r < 6,BL,NT(~O)<~k} 

+Qn{BL, NT(Og) > k}. (2.7) 
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For the first term on the fight-hand side o f  (2.7), we have 

n T 6,BL,NT(CO)<k } Q. {6~(~) < 

k 
n 6T = ~-]Qu{ o~(e) < 6,BL,NT(~O)= i} 

i=1 

k i 
n .~ <~ ~ ~ Q u {  j - rj-1 < 6,BL,NT(O~) = i} 

i=1 j = ,  

k i 

i=1 j = l  

<< y] y-]E ~ n,j--I Ou [I{x(zj-,)}¢(Y("cj/~ ( 'cJ-1 q- 6 ) ) )  = 1, 
i=l j=l 

v{-~lx(~z)l <~L, zj-1 < T }  

k i { _ I f  Qn(s)l{x(,j_,)F(X(s))ds] ; <~ ~ Y]E ~ E O.'~ , ~jA(~j_,+6) 
i = l j = l  t. ~j-I 

v{-~lX(~,)l <.L,'rj-I < T )  

k i .{ [-f~i ~.(~)I~x.~_,),(X(s))d,]; <~ ~ ~ EQ" E~.j_ , v (~J-,+6) 
i=l j=l 

v{-}lX(vt)l<<.L,~j_, < T} 
k i k(k 

<<. ~ ~ C ( L , T ) 5  - + 1--------) C(L,r)6,  
i=,  j = l  2 

(2.8) 

where Q~,j-1 is the r.c.p.d, o f  Q~ given ~ j _ , , C ( L , T )  = SUpyCB L AI{r}(T-k- 1) < ~ .  

We also have 

n n Q, {BL,Nr(og) > k} - Qu{Zk..~T, BL} 

~< E ~ [ e r - ~ k ;  Tk ~< T, BL] 

<~ erEQ~{E ~'k-' [e~k--~k-' ; rk ~< T, BL]e -~k-' } 

~< erEQ~{e -~k-' [e-tQ~'k-l(zk -- rk-1 <~t,~k <<. T, BL) 

+Q~ 'k - l ( zk  - zk-1 > t, zk ~< T, BL)]} 

<~ er E~{e-~k-'[e -t  + (1 -- e-t)Q~dk-l(zk - zk-1 ~<t)]; 

~k-, ~ r, v~-,' Ix(~,)l ~L} 
<<. erEQ"~{e-~k-'(e -t  + (1 - e-t)C(L, T)t) ;  

Letting g(t) = e - t  + (1 - e-')C(L, T)t, we have 

g(o) = 1, g 7 o ) =  - 1 .  

Thus, for fixed L > 0 there is a to 6 (0 ,1)  such that 0 < g(to) < 1. 

(2.9) 
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Denote g(to) by F(L, T). By induction we have 

Q~{BL, Nr(co) > k} <~ F(L, T)ke r. (2.10) 

Then (2.5), combined with (2.6)-(2.10), implies 

k(k + 1 ) C(L, T)5 + F(L, T)ke r + 7c, (2.11 ) Q,{a~,,(e) < ,5} <~ 2 
sup n r 

n 

n ¢ where ~'L = sup, Q, {B L }. 
Let 8 ~ 0, then k ~ oc and finally let L ~ 2 ,  we get (2.2) and thus the 

result. [] 

We will assume without explicitly mentioning that conditions (1.11) and (1.12) are 

satisfied in the remainder of  this article. 

By an argument similar to that used in the proof of  Lemma 2.2 in Feng and Zheng 
(1992), we have 

Lemma 2.3. For every n>~ 1, u ¢ MI(S), there exists a pn E ~ ( D , ~ )  such that 

P,~ o X - l ( O )  = u, (2.12) 

fo 
t 

for any Y E S,(I{r}(X(t))  - Lllu,(sMIl{y}(X(s))ds, J'~t, P~) is a martingale, 

(2.13) 

where un(s) =fin([ns]/n), fin(s)= P~ o Y - l ( s )  and [nt] is the integer part o f  nt. 

Lemma 2.4. Let l [ I f in ( tMIIp  = fs ISlPfin(t)(dX) • Then for every T > O, u E Mp(S), 
we have 

sup Ilifin(t)lllp < oo. (2.14) 
n~>l, t¢[0, T] 

Proof. For everyN~>l ,  l <~k <~m, l <<.i~ < i2 < .. .  < ik <~m, let 

m 
fN(X) = ~-~(xi A N ) ,  SN = { 0 , 1  . . . . .  N }  m, 

i=1 

S~ ''ik = {X E S 'x ir  > N, for r = 1 . . . . .  k; xi<~N for all other coordinates}. 

Then it is not hard to check that 

UN(X)=  ~ IYII{y}(X) 
f C St¢ 

k 
+ k  Z ~ ( [ Y I -  ~-~Yit +kU)l{y}(X) .  

k= l  l~<il <i2<...<ik<~m yEs~,,ik /=1 

t 
This, combined with Lemma 2.3, implies that f N ( X ( t ) ) -  fo Lllu,(s)llfN(X(s))ds is 

a (~-t, P~)-martingale. For any fl<<.N- A, we introduce a stopping time 

~ = inf{t>~o:  Ix(t) l  ~>/~}. 
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Then by Theorem 6.1 of Ikeda and Watanabe (1981, p. 26) we have for any 0~<s < 

E~ f N(X(s A a# ) ) + E e". r / tA~ Lllu.(r)llf N(X(r) ) dr 
d SAal~ 

/ tACil~ 

< ]ll~,,(s A ~,)111 + g p;~ {~-~qx(r) ,Y( fN(Y)-- fN(X(r)) )  
JsAalt YffS 

m 

+~[I  [ui(r)l [ ( f  N ( X ( r )  q- ei) -- f N ( X ( r )  )) 
i=l 

+ x i ( r ) ( f  x ( X ( r )  -- ei ) -- f N ( Y ( r )  ) )]} dr 

/' 
~< IIl~,(s A ~a)[l[ + E ~  {C(1 + IX(r)l)+ Illu,(r)[ll}dr 

~< {lll~,(s A ~)111 + C(t - s) 

is" f '  " 
+ [llu.(r)III dr} + EP.CIX(r)I dr. (2.15) 

J S  

Letting N --+ oc and then ~ ~ oc, we get 

Ee:(IX(t)l)<~ {lll~,,(s)lll + C ( t -  s) + Illu,(r)l[I dr} + EPZClX(r)l dr. (2.16) 

By Gronwall's inequality, we have 

E~(Ix(t)l)<~ {lll~,,(s)lll + c( t  - s) + Illu,(r)lll dr}e cu- ') .  (2.17) 

For any 1 <<.k<~n, if we choose s = k/n, t = (k + 1)In, then (2.17) implies 

(k+ 1 )/n 
EeZ([X((k + l)/n)[)<~{[llu.(k/n)ll[ + C / n +  I[lu.(r)llldr}e C/" (2.18) 

d kin 

or equivalently 

[llun((k + 1)/n)lll ~<{(1 + 1/n)lllu,(k/n)[l[ + C/n}e c/n 

<~ Illu,(k/n)ll[e 2c/~ + C--eC/~. (2.19) 
n 

By induction (see the proof of Lemma 2.3 of Feng and Zheng (1992) for details), 

we get 

sup [llu,(t)lll -- C(T) < ~ .  (2.20) 
n>~l,t@[O,T] 

This, combined with condition (1.12), implies that 

Zllu,(t)l [ IX[ p <<. [C + C(T)2 p] + [C + C(T)(2 p - 1 )]IX[ p. (2.21) 

m For any N~> 1, let gN(X)=  [Y~i=l(Xi AN)] p. Then (2.21), combined with an argu- 
ment similar to that used between (2.15)-(2.17), implies that for any t c [0, T] and 
n>~l 

I[[?~n(t)lllp <~[[llul][p + (C + C(T)ZP)T]exp[C + C(T)(2 p - 1)]T 

which implies (2.14). [] 

t ~ OG, 

EP"~ f N(X(t A ~r~)) = 
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For any N ~> 1 let ~N = inf{t>~0: ]Y(t)l ~>N}. We have 

Lemma 2.5. For every O<~T < e~, there exists a constant M(T) such that 

sUpPun{gU < T}~< M(T) (2.22) 
n~>l 

Proof. By (1.12) and (2.20), we have for any t E [0, T] 

Lllu.(,)t I IXI ~< [C + C(T)] + ClX I. 

m 
Let ~b(X) -= IXI + (C + C(T))/C and (aN(X) = ~i=l(Xi) A N + (C + C(T))/C 

for N~> 1. Then Mt = C~N(X(t)) -- joLilu,(r)lldpN(X(r))dr is a (~t,P~) martingale. By 
Corollary 1.2.7 of Stroock and Varadhan (1979), (MtA~t~,~t,P~,) is also a martingale. 

Thus, for any 0~<s < t~<T, A E ~ s  we have 

E e'~ [qbN(X(t A o'/~ )); A] = E e~ [~)N (X(s/~ ¢7fl )); A] 

+EP2 [ f's~ "~t~)Ll[u.(r)llC~N(X(r))dr;A] 
a¢ ) 

< ~ E ~ [ ~ b N ( X ( s ) ) ; A ] + E ~ [ ~ s t C C ~ N ( X ( r ) ) d r ; A I .  

Letting N ~ oc and then/3 ~ oo, we get 

EP,[O(X(t) );A] <~E "[4)(X(s) );A] + Cc~(X(r) ) dr;A . (2.23) 

This, combined with Gronwall's inequality, implies 

Ee:[4(X(t));AI <.Ee;[4(X(s));A]e c(t-'). (;.24) 

In other words, on the time interval [0, T], Y(t) = ~)(X(t))e -ct is a supermartingale 

with respect to (o~t,P~,). Hence, 

CT eCT . 
P'~{gN < T} <~ ~ - E  ~ Y(T A ;x) <~ -~-E P" Y(O) 

which implies (2.22) with M(T) = [I Ilul II + c + C(T)/C]e cT. [] 

Remark. In the proof of Lemmas 2.4 and 2.5 we use the assumption (1.11) and a 
stopping time argument. This differs from the proofs of Lemmas 2.3 and 2.4 in Feng 
and Zheng (1992). It is expected that condition (1.11) can be weakened. 
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pn Lemma 2.6. For every u • MI(S), { u}n=l,2,.. ,  is relatively compact & ~(D,o  ~ )  /n 
the weak topology. 

Proof. It is not hard to see that (2.22) implies condition (2.1) in Lemma 2.1, while 
(1.11) and (2.20) together imply condition (2.4). Thus, by Lemma 2.2 we get the 
result. [] 

Lemma 2.7. Let u e Mp(S). There exist subsequences {unk(')} of {Un(')} and {pn,} 
of {pn} such that pnk converges weakly to some Pu C ~ (D ,~ ) ,  and for any t E 

[0, +~) ,  

d(un,(t),u(t)) --* 0 (k --* ~ )  

where u(t) = Pu ox-l(t) .  

Proof. It is known (see Rachev, 1982) that a subset cg of Ml(S) is relatively compact 
in the topology generated by the metric d, defined in Section 1, if 

(g is relatively compact in the weak topology, (2.25) 

__fxl >L [XIP(dX) ---* 0, when L --* ec. (2.26) SUpp~. 

If we choose q~ = {un(t)}n/> l,tc[0, r], then (2.14), combined with HSlder's inequality, 
implies (2.25) and (2.26). Thus, ~ is relatively compact in the spaces (MI(S), ~l) and 
(M1 ( S ), d). 

On the other hand, we have 

,~(~n(t),~n(s))--- ~ 2 -IYI' ]E .(I(ri(X(t))--I~rI(X(s)))[] ~m-l+lrp | '  
YeS L ~'IYI J 

while 

E P: ( l{y}(X(t) )  - I{y}(X(s)))  

m {11 + ~  Uin(r)lp[l(y)(X(r) + e , ) -  l{y}(X(r))] 
i=1 

+xi(r)[I{y}(X(r) - ei) - I {y}(X(r) )]}  } dr 

f'{ = Y'~zEs[qz, yP~(X(r) = Z)  - qy, zP~,(X(r) = Y)] 

+ u~(r)ll[P~,(X(r) = Y - e~) - P~(X(r)  --= Y)] 

+ [ ( y i ( r ) + l ) P : ( X ( r ) = Y + e i ) - y , ( r ) P : ( X ( r ) = Y ) ] } } d r .  
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o~3 
For any e > 0 choose L > 0 such that ~-]i=L+t 2-i  < e/2. Let 

C ( L , T ) =  sup qy, y +  sup Illu(t)lll+L+m. 
IYl <~L tE[O,T] 

Then we have 

sup lEG(I{ r} (X( t ) )  - l { r ) ( X ( s ) ) ) l  <~ C(L, T) ( t  - s), t, s E [0, T], 
YES 

and for any 6<~¢/(2C(L,T)), 

sup d(rn(t),rn(s)) < c. (2.27) 
s, tE[O,T], I t -s l<6 

Let C([0, +cx~),(Ml(S),a¢)) denote the space of all (Ml(S),tt)-valued continuous func- 
tions on [0, +oo) equipped with the topology of uniformly convergence on compact 
subintervals of [0,+c¢). Then (2.27) implies that {~( t )}  is a d-equicontinuous subset 
of C([0, +oc) , (MI(S) ,  d)). This, combined with the fact that {fin(t): n ~> 1, t E [0, T]} 
is relatively compact in (MI(S) ,d) ,  implies, by using the theorem of Arzela-Ascoli's 
that {rn(')}n~>l is in fact a relatively compact subset of C([O,+cx~),(Ml(S),d)). By 
Lemma 2.6 there exist Pu E ~(D, ~ )  and subsequence {p~k } of {Pun} such that p~k 
converges weakly to P~ as k ~ ~ .  Without loss of generality, we may assume 

that there is a u0(.) E C([O,+cx~),(Ml(S),cl)) such that rink(') converges to u0(.) 

in C ( [ O , + ~ ) , ( M I ( S ) f t ) )  as k --+ ~ .  
Let u(t) = Pu o X - l ( t ) ,  t~>0, and Tj = { t~O:P~(X( t )  # X ( t - ) )  -= 0}. Then by 

Lemma 7.7 of Ethier and Kurtz (1986, Ch. 3), Tj is dense in [0,+cx~) and T~ (the 
complement of Tj in [0 ,+oc))  is at most countable. This, combined with the right 

continuity of u(-) in the space D, implies that u0(-) = u(.). Moreover, for each t~>0, 

d(Unk( t ) ,u ( t ) )=d ( rn , ( [nk t ] /nk ) ,u ( t ) )  

sup d(r , , ( s ) ,u(s ) )  +d(u([nJ]/nk ) ,u(t))  ---+ 0 
O~s~t  

as nk ---+ ~ .  

Thus, unk (t) converges to u(t) in the vague topology. Noting that {Unk (t)} is a relatively 
d-compact subset of MI(S), we conclude that d(unk(t),u(t)) ~ 0 as k ~ cx~. [] 

Proof  of Theorem 1.1. Let Pu be as in Lemma 2.7. For any Y E S, let 

/o /0 7~t(Y) = Lllu(s)lll{y}(X(s))ds, ~7(Y)  = Lllu,(s)lll{r}(X(s))ds. 

By Lemma 2.7, for each t E Tj, 4 E Cb(D) (the set of all bounded continuous 

functions on D), there exists {nk} C{0,  1,2 . . . .  } such that 

E t""' [I{ y} (X(t))4]  -+ E P" [I( y} (X(t))41,  (2.28) 

/o' IE p? [ (~?(Y)  - q',fY))4]l ~< 11411 d(u,~(s),ufs))ds --~ 0 (nk --~ cx~), (2.29) 



260 Shui Feng / Stochastic Processes and their Applications 57 (1995) 247-271 

where II~ll is the supremum of ¢~ on D. The boundedness of • and condition (1.11) 
imply that [Zll~(s)lllfy}(X(s))]~ E Cb(D) for s E Tj. By Fubini's theorem we get that 
for every t ~> 0, 

E P~* [ ~ t ( y ) o ]  ~ EPu[~t(Y)O ]. 

Thus for any s,t E Tj, 0~<s < t < oo, ~ E Cb(D), 

EP"[(I(y}(X(t))-  ~t(Y))O] = EPu[(I{y}(X(s))- 7Js(Y))~]. 

Finally, by the right continuity of l { r } ( X ( t ) ) - ~ t ( Y )  and the dominated convergence 
theorem, we get the result. [] 

From the proof of Lemma 2.4 and Lemma 2.7, we obtain the following: 

Theorem 2.8. Assume (1.11) and (1.12) are satisfied. Let u E Mp(S), and let Pu E 
~ ( D , ~ )  be any solution of  the nonlinear martingale problem [u,L] with initial dis- 
tribution u. Then u(t) = Pu o X - l ( t )  is a (Ml(S),d)-valued continuous function on 
[0, +ee). 

Proof. It is not hard to check, by using the martingale property, that the following is 
t r u e .  

sup Illu(t)lllp < ~ ,  
tE [0, T] 

lim sup f I X l u ( t ) ( d X )  = O, 
L ~tEIO, T]JIXI> L 

lim sup{ ~l(u(t),u(s));t,s C [0, T], I t - s I < 6} = 0. 
6--,0 

These, combined with an argument similar to that used in the last part of the proof 
of Lemma 2.7, imply the result. [] 

3. Uniqueness 

In this section we prove the uniqueness of solutions of the nonlinear martingale 
problems. 

In the sequel we will always assume that u E Mp(S), T > 0 and v : [0, +c~) 
(Ml(S),d) is continuous and satisfies suP0~<t~<r ~-~iml (x p, vi(t)) < (30. Let (qx. r(t))x, r~s 
denote the Q-matrix determined by Liiv(t)l I. Then we have 

Lemma 3.1. For all s,t C [0,+c~), X,Y  C S, the minimal nonnegative solutions of  
the following two equations 

q~(s,X; t, Y) = 6(y)(X)ef '  qx.x(r)dz 

+ f t  ~ qx.z(a)(a(a, Z; t, Y)e f~` qx, x(r)dTdo. ' (3.1) 
as Z~X 
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49(s,X; t, Y) = 6{ y}(X)e3~' f qr, r(z)dz 

f '  + ~4)(s ,X;a,Z)qz,  v(a)ef~qY'"(')d~da, 
s ZCY 

exist and are, in fact, the same. 

(3.2) 

Proof. First we show the existence of minimal nonnegative solutions of (3.1) and 
(3.2). For every n ~> 1, let 

Pl (s,X; t, Y) = 5{ y}(X)e f'qx' r(r)d~, 

f '  o W+l(s,X; t, Y) = ~ qx, z(a)W(a,Z; t, Y)e~ qx'x(r)drda; 
ZCX 

pl (s,X; t, Y) = (~{ r}(X)ef '  qr, ,fir)dr, 

f P~+I(s,X; t, Y) = y~ P~(s,X; a,Z)qz, r(a)ef~ qY' "(Od~da; 
z ~ Y  

oo 
P(s,X; t, Y) = y'~Pn(s,X; t, Y), 

n~l  

o~ 
F(s,X;  t, Y) = ~ F " ( s , X ;  t, r) .  

n=l 

Then P(s,X;t, Y) and P(s,X;t, Y) are nonnegative solutions of Eqs. (3.1) and (3.2), 
respectively. 

Let c~(s,X; t, Y) and@s,X; t, Y) be any two nonnegative solutions of (3.1) and (3.2), 
respectively. Then it is obvious that 

q~(s,X;t,Y)>~pl(s,X;t,Y), ~(s,X;t,Y)>~Pt(s,X;t,Y). 

By induction it is not hard to check that 

49(s,X;t,Y)>~P(s,X;t,Y), ~(s,X;t,Y)>~P(s,Y;t,Y). 

Thus, P(s,X;t ,Y)  and P(s,X;t ,Y)  are in fact minimal nonnegative solutions of 
Eqs. (3.1) and (3.2), respectively. 

To finish the proof it suffices to verify that for each n ~> 1, 

W(s,X; t, Y) = P"(s,X; t, Y). (3.3) 

This can be done by induction. For n = 1 the result is obvious. For n = 2 we have 
that for X = Y, p2(s ,X; t ,X)= p2(s ,X; t ,X)= O; for X ¢ Y 

P2(s,X; t, Y) = ~ qx, z(a)Pl(a,Z; t, Y)e ~° qxx(r)d~da, 
z ¢ x  

f S  t ~ [--XS~ e,-nx ~tqz,  z(T)dz ~'~qx.x(r)d~.  = ~ ,tx, ztolu{r}tLleoo eo, oa, 
z c x  

[ '  qx, r( a )eJ J qY" r(z)d~e~" qx.x( ~ ) d~ da 
ds 
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f t  t 
p2(s,X; t, Y) = ~. pl(s,X; a,Z)qz, v(a)ef, qY' Y(Od~da, 

z~Y 

f = ~ 6{x}(Z)ef°qz'z(Odrqz, v(a)e f~ qY.r(~)d~da ' 
z~Y 

f s  t t a = qx, r(a)efo qy' Y(~)dref qx'x(r)drda, 

which implies  that (3.3)  is true for n = 2. 

N o w  we assume that (3.3)  holds for n - 1 and n. For  n + 1 we  have  

f P"+l(s,X; t, Y) = ~_~ qx, z(a)P"(a,Z; t, Y)ef~ qx'x(O d~da, 
z~x 

f = ~_,qx, z (a)P"(a ,Z; t ,Y)e f  qx'x(Od~da, 
z4x 

= E qX, Z(O') e~ qx'x(z)dZdo" 
z:tx 

× ~ pn-l(a,Z;a',Z')qz,,r(al)ef~'qY'y(Odrdal 
Zt~Y 

f '  I f '  , qx.x(z)dz = da ~ qx, z(a)qz,,v(a )e f f  
z=Ax, z,~Y 

ef'~, q': Y~) a~P"-l(a, Z; a', Z') da' } 
and 

fs' P"+1(s,X; t, Y) = ~, P"(s,X; a',Z')qz,, v(a')ef~' qv' '(Od~drr' 
Z'~Y 

fss' = ~_, en(s,X;a',Zt)qz,,r(a')ef~'qr'r(r)d~da' 
Z'~Y 

fs' = ~ qz', r(a')ef~' qY'r(Od~da' 
Z~.C Y 

t 
× f~ ~ q~z(a)e~°qx'x(Odrpn-l(a,Z; a ' ,Z ' )da 

Z:/X 

ft ( fa' 

,Is ~,as Z~X,Z'¢Y 

eft: qr, r(~) a~pn- 1 (a, Z; a', Z') da } 

fs t ( f t  . . . .  ' .  f aqx.x(z,d'¢ = da 2_.z4x, z,4rqx, z(a)qz',rl.a )e 

eft', qY' r(~) drp.- l (a, Z; a', Z') da' }, 
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where the last step is obtained by changing the order of integration. Thus, we get the 
result. [] 

Remark. The uniqueness of the minimal nonnegative solutions of Eqs. (3.1) and (3.2) 
follows from the definition of minimal nonnegative solution. 

Lemma 3.2. For any (s,X) E [0,+oo) × S, let pmin(s ,X; ' , ' )  denote the minimal 
nonnegative solution of  Eqs. (3.1) and (3.2). Then for every t>~s we have 

~,pmin(s ,X; t ,  Y )  = 1. (3.4) 
YES 

Proof. For any n~>l, u~>0 and X , Y  E S, let Sn = {0,1 . . . . .  n} m and q~v,v(u) = 
ls,(X)qx, v(u), Then q~v,r(u) is uniformly bounded on any finite interval [0, T] for any 

pin ing^  v . n. Let n , a , a ;  ~, Y) denote the minimal nonnegative solution of Eqs. (3.1) and (3.2) 
with qx, v(u) being replaced by q~,r(u), pmi"(s,X; t,S) = ~YESPmin(s,X; t, Y). Then a 
direct calculation, combined with the uniformly boundedness of q~,v(u) and Fubini's 
theorem, gives 

t n 

min . = e ~  qx.x(r) dr Pn (s ,X, t ,S)  (3.5) 

f t qr, r(z)d~da ' - ~ - E  E min P~ ( s ,X;a ,Z)q} , r (a )e£"  
YES Z#Y 

which implies that 

d p m i n  . . . .  n ts ,~; t ,S)  
dt 

=qnxx(t)ef/q"~x(~)d~ + ~ rain . , ~ P ,  (s,X,t,Z)qnz, r(t) 
YESZ¢Y 

~. ' a, Z)q~z, r(a)ef/ q"r, A~)drqny, r(t)da + E P. (s,X; 
YES ZCY 

= ~ ~ pmin(s,X; t,Z)q~z, v(t) 
ZES VCZ 

+ ~resqny, 
k 

f, } + ~2 pmin(s,X; a, Z)q}, y(a)e o q"~ Y(~)d~da 
z#Y 

n t min . =  pmin(s,X;t,r) qy, z( )+ (s,X,t,r)q"y, At)  
YES Z~Y YES 

=0, a.e. in t. (3.6) 

The last equality holds because of the conservativity of the Q-matrix (q~, y(t))x, YES. 
Since dpmin(s,X; t,S)/dt is continuous in t, we conclude that 

y'~pmin(s,X;t, Y) = 1. (3.7) 
YES 

By Fatou's lemma and Theorem 2.6 in Chen (1992) we have 

lim rain n~ooPn (s ,X; t ,  Sn) = pmin(s ,X;t ,S) .  ( 3 . 8 )  
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Hence, to finish the proof it suffices to verify that 

lim min c P, (s,X;t,S~) = 0. (3.9) 
n ----+ o ~  

By condition (1.12), we have that for any s,t E [0, T] 

q~ y( t )l YI p - ( f I T )  - q~,x(  t ) ) lXl p ~<0, 
Y¢X 

or equivalently 

t f s  (C(T) -qx ' x (Z) )  d r  d f, (C(T)--q~xx(z))dr] ' n dt[IXiPe- , + ~ qk, r ( t ) l v l P e  - <<.0. 
Y~X 

Integrating from s to t and then multiplying on both sides by e c(r)(t-s), we get 

f' eC(T)(t-s)IX[P >~ [X[Pe f] q~,x (~)d'r .~_ ~ q~,z(a)lZlPeC(T)(t-a)ef,'q"x'x(r)d~da. 
z#x 

Noting that min . P, ( s ,X , t ,Y )  is the minimal nonnegative solution of Eq. (3.1) with 
qx.v(u) being replaced by q~c,r(u), then Theorem 2.12 of Chen (1992) implies that 
the minimal nonnegative solution of equation 

t" t n qx.x(r)dz h(s,X,t) = IXIPeJs 

f + ~ q},z(a)h(a,Z,t))ef~q}'x(~)d~da 
zcx 

is V" eminl"s X'  z-.res . ~ , , t, Y)IYI p. Using the comparison theorem again we get 

pmin(s,X ; t, Y)I riP ~ < ee(r)(t-') Ix[ p 
YES 

which implies (3.9) and thus the result. [] 

Lemma 3.3. Under assumptions (1.11) and (1.12)(i), the time inhomogeneous mar- 
tingale problem [u, Lir~(t)ll ] with initial distribution u is well-posed. 

Proof. For any integer n > 1, let Vn(t) = v([nt]/n). Under assumptions (1.11) and 

(1.12), the sequence of operators Lil,,(t)l I satisfies condition (2.4) in Lemma 2.2. By 
applying Theorem 2.25 of Chen (1992) and Theorem 3.2 of Zheng and Zheng (1987), 
we conclude that for every X C S the martingale problem [6{x},Lllv(O)ll ] is well-posed. 
We denote the unique solution by Px,~(0). For s C [0,+cx~), let ~ • D ~ D be the 
standard shift operator defined by ~s(to) = to(s + .). Let P~v(O) E ~ ( D , ~ )  be the 
unique probability measure satisfying: 

~X,v(O) ° x - l ( t )  = 6Ix}, O<.t<~s, 

P~', ~(o) o ~ s  l = Px, ~(o). 

It is easy to check that P~,, ~(o) is a solution of the martingale problem for Lllv(0)lt starting 
from Is, X) .  In fact, v(O) can be replaced by any probability measure in Ml(S) and 
the above result still hold. 



Shui Feng I Stochastic Processes and their Applications 57 (1995) 247-271 265 

Let P,,~(0) be defined as 

f 
Pu,,.(0)(' ) = Js Px,~o)u(dX). 

By induction we define Pu.v((k+l)/n) E "J~(D,~) to be the unique probability measure 
satisfying 

(i)  P~, ~(k+n )/.) = P~, v(k/.) on o~k/~, 
(ii) A regular conditional probability of P,,~l(k+l)/,) given o~k/, is P~k/,),~((k+l)/n)" 

It is obvious that P~.~(k/,){k/n<<,t} --~ 0 as k ~ ~c. Thus, by Theorem 1.3.5 of Stroock 
and Varadhan (1979), there exists a unique probability measure Pun E ~ ( D , ~ )  such 
that 

P~ = Pu,~k/n) on o~k/,, k = 1,2 . . . . .  

From Theorem 6.1.2 of Stroock and Varadhan (1979) we know that Pun is the solution 

of the martingale problem [u, Lil~,~Oll]. By applying Lemma 2.2 we can show that 
{P~}n-l,2.... is relatively compact and, by the construction, all the limit points solve the 

martingale problem [u, Lil~t)ll]. By a shifting argument we can prove the existence of 
solutions of the martingale problem for Lib. ~t)q I starting from time s and with initial 
distribution u. 

Now we turn to the proof of uniqueness. In order to do this it suffices to verify that 
the solution of the martingale problem for Lll,.~t)l I starting from (s,X) is unique. By 
Theorem 6.2.3 of Stroock and Varadhan (1979), this is equivalent to showing that any 
two solutions of the martingale problem have the same one-dimensional distributions. 

Let Ps,x be any solution of the martingale problem for LHv~t)l I starting from (s,X). 
Then for any t > s and Y E S we have 

Ee~X Il{v}(X(t)) - l { y ) (X(s ) ) -  ~ tL l l~)J{v}(X(v) )dr  ] =0.  

Let P(s ,X ; t ,Y )=  Ps,x{X(t)= Y}. Then we have 

EJ' 1 P(s,X; t, Y) - fi{y}(X) - E Px.~ Lll~(¢)lll{y}(X(r))dr = O. 

By assumption (1.11), we have that ILII~(¢)III{y}(X(z))I is bounded by a constant 
depending on Y. This, combined with Fubini's theorem, implies 

fs l P(s,X;t, Y) - 6{y}(X) = }--~P(s,X;r,Z)qz, y(z)dr. (3.10) 
ZCS 

Hence 

d p ( s , X ; t , Y )  = Y~P(s,X;t,Z)qz, r(t), a.e. in t. 
ZES 

(3.11) 
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Now, multiplying both sides of (3.1 I) by e-fstqr'r(Qdz and then integrating from s 
to t we get 

£ P(s,X;t, Y) = 6{r}(X)e qYY(~) 

f 
' £ 

+ Y ~ P ( s , X ; a , Z ) q z ,  r ( a ) e  ~qr'r(Od~da. (3.12) 
z=/ Y 

By Lemmas 3.1 and 3.2, the minimal nonnegative solution pmin(s,X; t, Y) of Eq. (3.2) 
exists and satisfies (3.4). Hence, we get that V s, t E [0, + o c )  and X, Y E S, 

P ( s , X ;  t, Y )  = pmin( s ,X ,  t, Y) .  

Since P~.x was arbitrarily chosen, we get the result. [] 

For any u E M p ( S ) ,  let Pu and/3u be any two solutions of the nonlinear martingale 
problem [u,L] with initial distribution u. Let u( t )  = Pu o x - l ( t ) ,  fi(t) -- Pu o X - l ( t ) .  

Then, by Theorem 2.8, both u( t )  and fi(t) are ( M l ( S ) , d ) - v a l u e d  continuous functions. 
By Lemma 3.3, in order to prove the equality Pu = Pu it suffices to verify that for 

every t~>0, llu(t)lJ = II~(t)ll. 
For any (X,A') E S 2 and G E C f ( S  2) we introduce the following time-inhomogeneous 

coupling operator: 

rn 

[ 2 t G ( X , X )  -= I 2 G ( X , X )  + ~'~{([[u~(t)[[ - [[~(t)ll)+(G(g + e i , X )  - G(X,)()) 
i = 1  

÷ ( l [ ~ ( t ) [ I  - Ilui(t)ll)+(G(X,X + ei) - -  G(X,2)) 

+ (lid(Oil A [Ir~i(t)ll)(G(X + ei,2 + ei) - G(X,2))}, 

where 

~ G ( X , 2 )  = {(qx, r - q2,~:)+(G(Y,X) - G(X,2)) 
(r,~:)~s 2, r - x - ~ - £  

+(q2, ? - qx, Y)+(G(  X,  Y )  - G(X,X)) 

+(qx, Y A q2 ,~ , ) (G(r ,  Y )  - G(X,X))} 
m 

+)-~. {(xi - Yci)+(G(X - e i , X )  - G ( X , X ) )  
i = 1  

+(xi  -- x i ) + ( G ( X , X  - ei) - G(X,X)) 

+(xi  A Yci)(G(X - e i , X  - el)  - G(X,X))}. 

Now we are ready to prove the uniqueness. 

Proof of Theorem 1.2. It is not hard to check that the Q-matrix associated with 
operator g2 satisfies assumptions (1.11) and (1.12)(i), and the time inhomogeneous 
jump rates in f2t are continuous functions of time t. Thus, the existence of solutions 
of the time-inhomogeneous martingale problem associated with f2t follows from an 
argument similar to that used in the first part of the proof of Lemma 3.3. Let Qu be 
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a solution of the time inhomogeneous martingale problem associated with s'2t and with 
initial distribution Au defined by 

A~(X,X) -- / 0, for X ¢ X, 

t u(X), for Y = 2 .  

It is obvious that Qu has marginal distributions P, and P~. 
For every N~> 1, let FN(X,X) = p(X,2)I(IyI<.N, It~I<.NI(X,2). For n<~N - A define 

qn = inf{t>>.O : iX(t)[>~n, [2(t)l~>n}. 

Then we have 

E o" FN(X(t A qn),X(t A rl,)) 

f 
tAr ln  

= EA"FN(X(O),X(O)) + E Q" f2sFu(X(s),X(s))ds 
d O  

= E Q° ggFN(X(s),2(s))ds + E 0° (FX, - t2)FN(X(s),2(s))ds 
do do L' 

<<. hE Q" p(X(s) ,X(s))ds + 2 [lllui(s)ll- I[fii(s)lil]ds 

io' ~< (h + 2) EO~p(X(s),3((s))ds. 

In the last inequality we used the following fact: 

~lllui(t)ll - Ilfi'(t)lll <~E~p(X(t),2(t)).  (3.13) 
i=1 

Letting N --+ oo and then n --+ o~, we have 

~< (h + 2) f '  EO"p(X(s),2(s)) ds, E~p(X( t ) ,X ( t ) )  

which, by Gronwall's inequality, implies that EQ, p(X(t) ,X(t))  = 0, V t~>0. 

Hence [[u(t)l I = [lfi(t)[[ for all t>~0, and thus the result follows. [] 

In order to prove Theorem 1.3, we introduce the following stopping times: 

1" N = inf{t~>0 : Ix(t)l ~>N}, (3.14) 

O" u = inf{t~>0 : IX(t)[ ~>N}, IN = "ON /~ O'N. (3.15) 

Let (qx.r(t)) and (gtx, r(t)) denote the Q-matrices associated with Lil~(t)l I and Zll~(t)l I, 
respectively. For any finite subset A of S and X E S, let 

L[lu(t)N(X,A)= ~ qx, r(t), LIIa(t)II(X,A)= ~ gtx, v(t) (3.16) 
YEAYCX Y6A,YgX 
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N(t ,A;X( . ) )  = #{s:X(s) E A,X(s)  ¢ X(s-) ,s<~t}  (3.17) 

~((t,A;X(.)) = N(t ,A;X( . ) )  - Lliu(s)ll(X(s),A)ds (3.18) 

~( t ,A;X( . ) )  = N(t ,A;X( . ) )  - Llla(s)ll(X(s),A)ds. (3.19) 

By applying Lemma 3.4(i) in Dawson and Zheng (1991) we can show that for any 
f E Ck(S), 

fs f ( r )~¢( t  d r ;X( . ) )  = ~ f (Y )N( t ,  Y;X(.)) 
YES 

and 

fs f(Y)~I(t ,  dY;X(.)) = ~ f (Y)N(t ,  Y;X(.)) 
YES 

are Pu- and/3u-martingales, respectively. We also have 

Lemma 3.4. For any T > 0, N~> 1, and u E M(S)  satisfyin9 fseCIXlu(dX) < cx~, we 
have 

Pu( sup Ix(t)l >~N) <~ C(c, u, T)e -cN, (3.20) 
O<~t<~T 

/Su( sup IX(t)l >>.N)<<.C(c,u, T)e -cN, (3.21) 
O<~t<~T 

where c is the constant in (1.15), and C(c,u,T) is a constant dependin9 on c, u, T. 

Proof. For any N~> 1, let f N ( X )  ~ -  c[XII{Ix[<~N}(X), f ( X )  = cIX[. Let 

AN(t)= fot f s { e X p [ f N ( Y ) -  fN(X(s-- ) )]- -  l}Lllu~s)ll(X(s--),dY)ds 

/o' = ~ {exp[fN(Y) - f N ( X ( s - ) ) ]  - 1}qx(,_).r(s)ds, 
Ycs  

A(t) = f0t J~s {exp[f(Y) - f ( X ( s - ) ) ]  - 1}Lilu(,)ll(X(s-), dY) ds 

= ~ {exp[f(Y) - f ( X ( s - ) ) ]  - 1}qx(,_)#(s)ds. 
YES 

By Ito's formula in Ikeda and Watanabe (1981) and (3.17)-(3.19), we can show that 
e x p [ f N ( X ( t ) ) -  AN(t)] is a Pu-martingale which implies that e x p [ f ( X ( t ) ) -  A(t)] is a 
P~-local martingale and thus a supermartingale. By definition for any t 1> 0 and X E S 

qx, Y if Y - X  ([ {+ei;i = 1 . . . . .  m}, 

qx, r ( t ) =  qx, r+llui(t)ll i f Y = X + e i ,  for i E { 1  . . . . .  m}, 

qx, r + xi if Y = X - el, for i C {1 . . . . .  m}. 
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By condition (1.15) and the facts that ][u(t)}l is uniformly bounded on [0, T] and xi is 

the death rate for i = 1 . . . . .  m, we get 

sup IA(/)] ~<~T. 
t~[0,T] 

This, combined with Doob's inequality for supermartingales, implies 

P,(  sup [X(t)l>~N ) = P ~ (  sup e"txU)l>~e <N) 
O<~t<~T O~t<~T 

<~ Pu( sup exp[f(X(t)) -A(t)] ~> exp[cN - ~T]) 
O<~t<~T 

~< E p~ exp[f(Y(0))] exp[-cN + ~T]) 

= C(c,u, T)e -oN, 

where C(c,u, T ) =  e ~r fsedXlu(dX) < ~ .  The inequality (3.21) can be obtained in 
the same way. [] 

Proof of  Theorem 1.3. Let R. be the solution of the time- inhomogeneous martingale 
problem for (2t with initial distribution A~ defined as above. Assume t ~< 1 in the sequel. 
By the martingale property we have 

ER'p(X(t A ~U),2(t A ~N)) = EAup(X(O),2(O)) 

f 
t A~,,, 

+ER° Jo ~sp(X(s),2(s)) ds 

E R" ftA~N 
= dO - Qp(X(s A fN),2(S A ~N))ds 

f t A ~ ,  _ A +ER" dO " (O s ~'~)p(X(s ~N),2(S A ~N))ds 

Jo' <~ (2aN + b)E R" p(X(s A ~N),X(s A ~u))ds 

+ E  R° [I li,,'(~)il - II~'(s)ll I] ds. (3.22) 

while 

fot ~=l [l llui(s)" -- t[ui(s) I[ '] aS 

I' Jo' <~ ER~o(X(s),2(s))ds<~ ER"p(X(s A ~N),2(S A ~N))ds 

foo '°  + ~ [ER"(xi; ~N <~S) + ERu(~i; ~N ~<S)] ds. 
i=1 

By H61der's inequality, we have for each 1 <.i<~m 

ER"(xi ", iN ~S)  ~ {EU'(S)(xf)}l/pR1/q{~N ~-~s} 

<~ {Ed(S)(xff)}l/P[Pu(~N <~s) +Pu(cru <~s)] '/q, 

(3.23) 

(3.24) 
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ER~(yci; ~N <s) <~ {EU(S)(xiP)} l/pRlu/q{~ N <~s} 

<-~ {Efi'(s)(~c p)} I/P[Pu('CN <~- s) +Pu(aN <<. s)] l/q, (3.25) 

where l /p  + 1/q = 1. 
Let M = sups~[o, i], l<i<m{{EU'(S)(xP)} l/p, {E~'(s)(YcP)}J/P} • Then by (3.20) and (3.21) 

we have 

fot ~.~l [] l[ui(S)l[ - ll~ti(s )[ l[] 

<. ER"p(X(s A ~N),X(s A ~N )) ds + 2mM[2C(c, u, 1 )] l/qte-(C/q)N. 

which, combined with (3.22), implies 

ER"p(X(t A ~N ) ,2( t  /~ ~N) ) <~ 2mM[2C(c,u, 1)]l/qe -(c/q)N 

+ ( 2 a N  + b + 1) ERup(X(s A ~N),X(s A ~N))ds. 

By Gronwall 's  inequality we get 

ER"p(X(t A ~N ) ,2( t  /~ ~N )) <<. 2mM[2C(c, u, 1 )]~/qe-(C/qWe (2aN+b+~)t (3.26) 

I f  we choose t small enough such that c > 2taq and let N ~ e~, then (3.26) implies 
that for t E [O,c/2aq) we have 

ERup(X(t),X(t)) = O. 

This implies that 

u(t) = fi(t), t E 0, . (3.27) 

By a standard argument we conclude that (3.27) is true for all t, which gives the 
result. [] 

Remark. The proof above does not imply the uniqueness of the trimolecular model 
because of the competition between the nonlinear term and the cubic term in generator 
Qt. Noting that the cubic term does not change the total number of particles in the 
system, we can introduce the following nonlinear model: 

Q f ( X )  = 21a( f (X + el)  - -  f ( X ) )  + / .4x l ( f (X  - el)  - -  f ( X ) )  

+22xl ( f (X  - el + e 2 ) -  f ( X ) )  

+23Cj 'x2(f(X + el - e2) - f ( X ) ) ,  

Q t f ( X )  = L f ( X )  + (l[u I (t)[ I + [lu2(t)ll ) ( f ( X  + el ) - f ( x ) )  

+(Xl + x2) ( f (X  - el ) - f ( x ) )  

+([[ul(t)[I + I[u2(t)H)(f(x + e2) - f ( X ) )  

+(Xl + x2) ( f (X  - e2) - f ( x ) ) .  



Shui Feny / Stochastic Processes and their Applications 57 ~1995) 247-271 271 

In this case the cubic term does not change the rates in the nonlinear term. The 

model looks like the nonlinear master equation a single type of particle systems and 

the uniqueness follows from an argument similar to that used in Feng and Zheng 
(1992). But this modified model is essentially different from the trimolecular model. 
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