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Abstract

In this paper we prove the existence and uniqueness of solutions of the nonlinear martingale
problems associated with the nonlinear master equations of multitype particle systems. Exis-
tence is shown to hold under some weak growth conditions and a finite range condition, while
uniqueness is proved under a Lipschitz condition. Uniqueness is also shown to hold under a
non-Lipschitz condition and a strong growth condition. The proof of uniqueness involves a cou-
pling argument and the exponential martingale property. The results are then applied to some
examples such as the Lotka-Volterra model and the Brusselator.

Keywords: Q-process; Pure jump Markov process; Nonlinear master equation; Coupling; Mean
field interaction.

1. Introduction

The nonlinear master equation have been used to model a class of chemical reactions
in Nicolis and Prigogine (1977). Rigorous studies of the equation in the case of particle
systems of a single type have been carried out by several authors in the past few years.
Feng and Zheng (1992) established the existence and uniqueness of a solution to the
equation using an analytical method. Dawson and Zheng (1991) introduced a finite
exchangeable particle system and proved that the empirical processes of the particle
systems converge to the unique solution of the nonlinear master equation. Central limit
theorems are also obtained in Dawson and Zheng (1991). Recently, Feng (1994, 1993)
obtained results on large deviations for the same model.

The objective of present article is to extend the results of Feng and Zheng (1992) to
multitype particle systems. The structure of multitype particle systems is more compli-
cated and more interesting than that of single-type particle systems. One example that
motivated this research is the Brusselator and its periodic behavior. Unfortunately, we
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cannot even prove the uniqueness of this model at this stage. In Section 2 we show
the existence of solutions of the multitype nonlinear master equation under some weak
growth conditions which are satisfied by a large class of models. In Section 3 stronger
assumptions are then imposed to obtain the uniqueness.

We are interested in the nonlinear master equation because of the following:

(1) the existence of multiple equilibria and phase transitions;

(2) its role in the study of the exchangeable particle systems;

(3) the connection between mean field particle system and the lattice model;

(4) to get a better understanding of the structure and the stochastic calculus of

nonlinear pure jump Markov processes.

Studies of this kind have been carried out for nonlinear diffusion processes by a
number of authors such as Dawson (1983), Dawson and Gértner (1988), Funaki (1984,
1985), Scheutzow (1986) and this list is in no way exhaustive.

Here is a detailed description of our setting, followed by the main results of this
article.

Let Z, be the set of nonnegative integers, and for any integer m > 1, S = Z7
denotes the m-fold product of Z, endowed with the metric p defined by:

m
pPXY)Y=3|xi—yi|, forevery X,Y €S8, X =(x1,....%m), ¥ =(Vis--es Im)-
i=1

For any r>1, let |X|" = (XL, x), |X]| = Y.L, xi. We will use M(S) to denote
the space of probability measures on S equipped with the weak topology, and M,(S)
will denote the space of all probability measures on S with finite moment of order r.
The following two metrics will be used on M(S): For any u,v € M(S),

7 —ixy | [uX) = vX)|
duvy = 2~ B BA
X;S C|';‘(_II+|X|

d(w,v) = sup { /S Sp(X,Y)P(dx,dY)},

PeP(u,v)

where Cly; ! = (m — 1+ X)X ])(m — 1)1, and P(u,v) is the set of all proba-
bility measures on S2 = § x § with marginals u and v. It is known thatd metrizes the
vague topology which is weaker than the weak topology, while d is associated with a
topology which is stronger than the weak topology. In fact, in our particular case, d
is equivalent to the total variation metric.

Let A =(qx y)x ves be a matrix satisfying:

for any X,Y € S, X #7, qxy =0, (1.1)
forany X €S, |gxx| < o0, D gqxy =0 (1.2)
yes

Such a matrix is called a totally stable, conservative Q-matrix.
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Let Co(S) be the set of all bounded functions on S (note: all functions on § are
continuous because of the discrete topology). For any f € C,(S) and any vector-valued
function

g:[0,+00) = R™, t+sg(t) = (g'(t),....g" (1)),
g ()20, t€[0,+00), i=1,..,m,

we define

LX) = Yzejsqx,y(f(Y)— VAC )

Ly f(X) =Lf(X)+ é[gi(t)(f(X +e)— f(X)) +x(f(X —e) - f(XN]

where ¢; € § with (e;); = 1,(e;); = 0 for j # i.
For any u € M(S), f € Cy(S), we define (u, f) = [¢ f(X)u(dX). The nonlinear
master equation has the form
d{u(t), f)

a4 (u(@®)s Lyjuey S (1.3)

where u(-) is a measure-valued function from [0, +o0) to M(S) and

)]l = (' O, [l @OI)-

w'(¢) and [|#'(¢)|| denote the ith marginal of u(¢) and the first moment of u(¢), respec-
tively.

Let D = D([0,+00),S) denote the space of functions from [0, +c0) to S that are
right continuous and have left-hand limits, equipped with the Skorohod topology. It is
well-known that D is a Polish space in which the Borel ¢-algebra coincides with & =
a{X(t):t >0}, the smallest g-algebra generated by {X(¢): >0}, where X(¢)(w) = w(z)
for all w € D. The o-algebra #, = ¢{X(s):s € [0,7]} is defined in the same way
for any 1=0. (D, %) denotes the set of ail probability measures on (D, %) equipped
with the usual weak topology. For any P € 2(D, %) and t € [0,+00), Po X~(¢) is
given by

PoX '(t)XA) = P{X(t) € A}, forany ACS.

Definition 1.1. For any u € M(S), P, € (D, #) is called a solution of the martingale
problem [u, L] with initial distribution u if

P,o X 1(0)=u; (1.4)
VYesS, InX®) - /Ol LI;yy(X(s))ds, #,P,) is a martingale; (1.5)
where I, represents the indicator function on set 4.
Definition 1.2. Let u € M(S); and let v : [0, +00) — M(S) satisfy

sup S|V(#)]| < oo, forall T > 0.

0T i=I
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Puvy € P(D,F) is called a solution of the time inhomogeneous martingale problem
[4, Ljjwry ] with initial distribution u if
Puviy o X71(0) = u, (1.6)
t
VYe S,(]{y}(X(t)) —/ LHV(x)HI{y}(X(s))ds,f,,Pu,V(.)) is a martingale. (17)
0
Definition 1.3. For any u € M(S), P, € #(D, %) is called a solution of the nonlinear
martingale problem [u, L] with initial distribution # if
P,oX N 0)=u (1.8)
Py o X7 (t) = u(t); (1.9)

t
VY €S (Iyy(X(t)) —/ Ljuesy I yy(X(s))ds, #,, P,) is a martingale.  (1.10)
0
The main results of this article are:

Theorem 1.1. Let A = (qx v )x,ves be a totally stable, conservative Q-matrix satisfy-
ing
there exists A > 0, such that gxy =0, for p(X,Y) > 4, (1.11)
there exists p > 1, C > 1, such that
(1) Yyesaxr(JY| - 1XD<C( + X)),
(i) Pyesaxr(Y1P — [XIP)<C + |X[P),

then for any u € M(S), there exists a solution of the nonlinear martingale problem
[, L).

(1.12)

Note. 1.11 implies that gy y = 0 for || X| — |Y|| > 4.
Let C7(S?) denote the set of all functions on S? with finite values. For any X,X) e
S% and G € Cf(SZ) we introduce the following operator:

QXx)= ¥ {(gxr — 9.9 (GEX) - GX X))
(v.V)es?, y—-x=¥-Xx
+Hagy —ax ) (GX.T) - GX, X))
+(qxy A gz NG, ¥) - G, X))}

3 — B)HGX — e, X) — GLXY)
i=1

+E —x) (G X — &) - G X))
+Hx AENGX — e, X — ) — G(X, X))}

Theorem 1.2. Let A = (qx y)x,ves be a totally stable, conservative Q-matrix satisfy-
ing (1.11), (1.12) and
there exists h > 0, such that Qp(X,X)<hp(X,X). (1.13)

Then for any u € M,(S), the nonlinear martingale problem [u,L] is well-posed.
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Remark. Condition (1.13) is just the Lipschitz condition.

In next theorem we prove the uniqueness of the solution to the nonlinear martingale
problem under a particular non-Lipschitz condition and a strong growth condition.

Theorem 1.3. Let A = (qx.v)x,ves be a totally stable, conservative Q-matrix satisfy-
ing 1.11 and

there exist a > 0, b > 0, such that Qp(X,X)<[a(|X| + |X|) + blp(X,X), (1.14)

there exist ¢ > 0, a > 0, such that ZYequ,y(e”m — Ty goe. (1.15)

Then for any u € M(S) satisfying [e?®lu (dX) < oo, the nonlinear martingale
problem [u,L] is well-posed.

Remark. If the state space is a subset of {0,1,...,N}™ for some integer N > 0, then
the Q-matrix satisfies conditions (1.11)—(1.15) and thus the corresponding martingale
problems are well-posed.

The following are two interesting examples.

Example 1. (Lotka-Volterra model). This model involves the following chemical re-
actions between four chemical species or molecules 4, B, X|, and X3:

A+ X 25 ox,
X+ Xz i>2./Y'2,
B+X 25 E+B.

Each diagram represents a reaction. For example, the diagram 4 + X 20X,
represents a reaction between one 4 molecule and one X| molecule resulting in two
X molecules; A, is the reaction rate. The concentrations of 4 and B are held constant
in time and space by appropriate feeding of the reactor. It is not hard to see that this
is a nonequilibrium system. We are interested in the evolution of the concentrations
of molecules of type X; and X5 and the long-time behavior of the system such as the
existence of phase transitions and metastability of the stationary states. Deterministic
and stochastic differential equations have been used to model the reaction. In this article
we consider a nonlinear jump Markov processes model with Q-matrix given by

( Araxy, for Y = (x; + 1L,x2),
Azbxy, for Y = (x1,x; — 1),
qx.y = § Aaxixz, for ¥ =(x; — Lx + 1), (1.16)
0, for other ¥ # X,
L _Zygx gxy, for Y =X

It can be checked that (1.11), (1.12), and (1.14) are satisfied by this matrix. Con-
dition (1.15) holds if 1, <1.
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Example 2. (The trimolecular model (the “Brusselator”)). This model consists of fol-
lowing chemical reactions between reactants 4, B,.X), and X>:
A

4 — X 1»

B+X -5 X+,

22X+ X; i> 3X,

X 25 E.

The concentrations of 4 and B are assumed to be constant in time and space. Dif-

ferential equations and stochastic differential equations have been used to model these

reactions. Both approches reveal periodic behavior of this model. For our jump model,
the Q-matrix is given by

( Aia, for Y = (x; + 1,x2),
/14)61, for Y = (x1 - 1,x2),
Abel, for Y = (x1 — I,XQ + 1),
qxy = 3 (1.17)
);3C;'X2, for Y = (xi + 1,x2 — 1),
0, for other Y # X,
(| Ly dxy, forY =X

where C}' = %xl(xl —1). For this model, conditions (1.11), (1.12), (1.15) are satisfied
but not (1.14). Thus, we are unable to prove the uniqueness for the jump model at
this stage.

2. Existence

In this section we will prove Theorem 1.1 through a series of lemmas. The proof
consists of two parts: First we construct a sequence of probability measures on (D, )
and verify the tightness of this sequence; secondly, we will show that one of the limit
points of this sequence is a solution of the nonlinear martingale problem [u, L].

The following lemma appears as Lemma 2.1 in Feng and Zheng (1992).

Lemma 2.1. Let € C (D, % ). Assume for every T > 0, 0 < y < 1, there exists a
compact subset K of S such that

li)xéf%P{X(t)eK;OStsT} >1-9 2.1)
and for every T > 0, 0 < e < 1,

lim sup P{é7(e)<d} =0, (2.2)
010 peg
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where
3T (e) = min{1,(®) — 1,1 (®); L <n<Np(w)},
Nr(w) = min{m 7, 1(0) > T},

1
To(w) =0, 1,(w) = inf {t;rn,l(w); p(X (), X (tp—1(w))= 55} .
Then € is relatively compact in P(D,F ) in the weak topology.

These conditions are not particularly practical when applied to specific situations.
The following lemma gives a sufficient condition for (2.2) to be true for a class of
stochastic processes on the space S.

Lemma 2.2. Let {Q,(t)}.=1.2.. be a sequence of time-dependent linear operators on
Co(S) satisfying ,(¢)1 = 0, where 1 is the function which is identically equal to one.
The solutions of the associated martingale problems exist with initial distribution
u € M(S). Let Q) be a solution of the martingale problem associated with Q,(t)
with initial distribution u, and let Cy(S) denote the set of all bounded continuous
Sfunctions on S with compact support. If

for any T > 0, y € (0,1), there exists a compact set K C S such that 2.3)
inf, O){X(1) e K;0<e<T} > 1 — 7,

forany f € Ci(S), T > 0, there exists A,(T') > 0,such that 2.4)
SUP, se(0.7] |Q,(2) f(X)| <Af(T), with A¢(T) being a non-decreasing
function of 7,

then {Q8}n=1.2,. is relatively compact in P(D, F).

Proof. For any L > 0, let K, = {X € S: |X|<L}, B, = {sup,¢[o.ry IX(t)|<L}. Then
by (2.4) we have

supOi{B;} -0 as L — oo. (2.5)
n

To prove the result it suffices to verify that {Q”},_, ,.. satisfies condition (2.2). This
is verified through the following estimates. For any 0 < § < 1 we have

Oi{60(e) < 8} <Qi{8l(e) < 0,BL} + QL{B5}. (2.6)
and

0i{d5(e) < 8,B.} < Qp{8L(e) < 8,B,Nr(w)<k}
+O{BL,Nr(w) > k}. 2.7
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For the first term on the right-hand side of (2.7), we have

0i{6L(e) < 6,BL,Nr(w)<k}

k
= Z {5 (¢) < 8,Br,Nr(w) = l}
ki
<2 20ty — 11 <8.BL,Nr(w) =1}
i=1 j=1
ki
<y Q"u{rj—rj 1 <5\/ 1|X(11)|<L,1:j_1 <T}
i=1 j=1
ki
<> 1E {Qu [I{X(r,-_|)}°(X(Tj A(T—1+6)) =1,
i=1 j=

VIZ X ()| <Lto < T}

i o . ‘Ej/\(‘[j_1+5)
Y E "{EQ {/ Q,,(s)I{X(,j_l)}C(X(s))ds];

1j=1

M»

i

I

Tj_]

\/’,:l1 X(t)|<L,tj—1 < T}

<

i " i r,-/\(r,-_|+5)
ZEQ" {EQ: [_ / QH(S)I{X(Tj_|)}(X(s))dS:| ;

1/=1 Tji—1

N

H

I

VIZ X (o)l L 1o < T}

iC(L )6 = C(L, TS, (2.8)

1j=1

M»

k(k + 1)
2

where Qﬁ’j " is the rcepd. of Oy given #,_,C(L,T) =supycp, A1, (T +1) < oo.
We also have

O, {Br, Nr(w) > k} = Q4{t <T,B.}
E%[eT~™; 1, <T,By]
eTE%{EL"  [en "1, 1, < T, B Je™ %'}
eTE% {e ™1 [e O (1 — 1 <t w<T,By)
+OM Nt — oy > L u<T,B)]}
< eTEG {7 [e™! + (1 - e )QF (1 — umr <0
o ST VIS X () <L}
< TE% {e1(e™" + (1 — e~ )C(L, T)0);
o ST,V Ix, <L) (2.9)

N ININ

Letting g(tr) =e~" + (1 — e *)C(L,T)t, we have

9(0)=1, 4(0)=-1
Thus, for fixed L > 0 there is a # € (0,1) such that 0 < g(%) < 1.
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Denote ¢(tp) by I'(L,T). By induction we have
Q" {B;,Nr(w) > k} <T'(L,T)e". (2.10)

Then (2.5), combined with (2.6)—(2.10), implies

k(k+1)
2

sup Qn{dl(e) < 8} < C(L, T + (L, Te" + v, (2.11)

where 7, = sup, Q1{B; ).
Let &6 — 0, then k — oc and finally let L — oo, we get (2.2) and thus the
result. O

We will assume without explicitly mentioning that conditions (1.11) and (1.12) are
satisfied in the remainder of this article.

By an argument similar to that used in the proof of Lemma 2.2 in Feng and Zheng
(1992), we have

Lemma 2.3. For every n=1, u € M\(S), there exists a Pl € P(D,F) such that

PioX~'(0)=u, (2.12)

t
for any Y € §,(I{y,(X(¢)) —/ Ly, liry(X(s))ds, F,, P;) is a martingale,
0
(2.13)

where u,(s) =tin([ns]/n), i,(s) = P" o X~Y(s) and [nt] is the integer part of nt.

Lemma 2.4. Let |||in(t)|||, = [ |X|Pun(t)(dX). Then for every T > 0, u € My(S),
we have

sup || ()l < oc. (2.14)
n=1, 1€0,T]

Proof. For every N2 1, 1<k<m, 1<i) <ip < - < ip<m, let
m
v X)) =3 (i AN), Sy ={0,1,....N}",
i=1

S}G""”“‘ ={Xe€S:x, >Nforr=1,...k x;<N for all other coordinates}.

Then it is not hard to check that

IvX)y= 3 [Y|Iyy(X)
YESy

m k
+2 > > (Y] - 1;}’:'1 + kNI y3(X).

k=11<ih<i<---<ix<m YGSfl-"'v'k
N

This, combined with Lemma 2.3, implies that f(X(¢)) — fOtL“,,"(S)”fN(X(s))ds is
a (#,, Pj)-martingale. For any <N — A, we introduce a stopping time

o =inf{t=0: | X(¢)| =}
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Then by Theorem 6.1 of Ikeda and Watanabe (1981, p. 26) we have for any 0<s <
t < 00,

" . t/\o'tg
EP fu(X(t A ) = EP- fu(X(s A ) + EF / Lo /(X (r)) dr
N
" l/\(l/;
< llints A ap)l|] + E: / (X axn () = X))
(S

+iz;":l[||u,-(r)||(fN(X(r) +e) = fu(X(r))
(WX — ) — [u X))} dr
<l Aoyl + E7 [ €1+ X+ a1} o
< {llints A ap)ll + €t — 5)
+/st [|ua(r)l|| dr} + /StE”ZC|X(r)|dr. (2.15)

Letting N — oo and then f — oo, we get

ERXOD < (Nl + Ct — ) + / ()|l dr} + / EPCIX ()| dr. (2.16)

By Gronwall’s inequality, we have

ER (X)) <{lllin(s)||| + Ct — 5) + / ||| dr }eCC—), (2.17)
For any 1<k <n, if we choose s = k/n, t = (k + 1)/n, then (2.17) implies
(k+1)/n
EP(X((k + Dym)) < {[llun(him)|[] + Cln + /k/ (| dreSn  (2.18)

or equivalently
n(Ck + DIl < {1+ Um)llualkfm)l]] + Cln}eS
< |l unChim)| (12" + %ec/"- (2.19)
By induction (see the proof of Lemma 2.3 of Feng and Zheng (1992) for details),
we get

swp (0l = C(7) < oo (2.20)

nz1,t€[0,
This, combined with condition (1.12), implies that
Liju, o X7 <[C + C(T P+ [C + C(T )27 - D]IX|?. (2.21)

For any N >1, let gy(X) = [>_I-,(x; AN)]?. Then (2.21), combined with an argu-
ment similar to that used between (2.15)—(2.17), implies that for any ¢ € [0,7T] and
n=1

(O p < [fulllp + (C + C(T)2P)T]exp[C + C(T )27 — DT
which implies (2.14). 0O



Shui Feng! Stochastic Processes and their Applications 57 (1995) 247-271 257
For any N 21 let ¢y = inf{¢>0: |[X(¢)| 2N}. We have
Lemma 2.5. For every 0<T < oc, there exists a constant M(T) such that

M(T
supPr{cy < Th< XU (2.22)
nzl N

Proof. By (1.12) and (2.20), we have for any ¢ € [0, 7]

LHMn(f)H |X| <[C+C(TH+ C\X|

Let ¢(X) = |X| 4+ (C + C(T))/C and ¢n(X) = Z;":l(x,») AN+ (C + C(T))/C
for N> 1. Then M, = ¢pn(X(t)) — fOtL“un(,Wi)N(X(r))dr is a (%, P}) martingale. By
Corollary 1.2.7 of Stroock and Varadhan (1979), (Minq,, # ., Py) is also a martingale.
Thus, for any 0<s < t<T, 4 € #, we have

EFi[on(X (2 A ap)); Al = EFe[dn(X (s A 05)); 4]

. thog)
+EPu [/ L”un(,)“qSN(X(r))dr;A]

/\Gﬂ)

< ER[n(X(s)); 4] + E {/ C¢>N(X(r))dr;AJ-

Letting N — oo and then § — oo, we get

EP[@(X(8)); AY<EP [ (X (5)); 4] + EF [ / CH(X(r)) dr;A} (2.23)
This, combined with Gronwall’s inequality, implies
EPN[¢(X(£)); A1 S ET“[ (X (5)); A]eCC ). (2.24)

In other words, on the time interval [0, 7], Y(¢) = ¢(X(¢))e™" is a supermartingale
with respect to (%, P}). Hence,

" eCT - eCT -
Pi{cy < T}<7E “Y(T/\CN)g“N—E “Y(0)

which implies (2.22) with M(T) = [|||u||| + C + C(T)/Cle‘T. O

Remark. In the proof of Lemmas 2.4 and 2.5 we use the assumption (1.11) and a
stopping time argument. This differs from the proofs of Lemmas 2.3 and 2.4 in Feng
and Zheng (1992). It is expected that condition (1.11) can be weakened.
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Lemma 2.6. For every u € M(S), {Pi}nzi12
the weak topology.

is relatively compact in P(D,F) in

oen

Proof. It is not hard to see that (2.22) implies condition (2.1) in Lemma 2.1, while
(1.11) and (2.20) together imply condition (2.4). Thus, by Lemma 2.2 we get the
result. 0O

Lemma 2.7. Let u € My(S). There exist subsequences {uy,(-)} of {u,(-)} and {P;}}
of {P!} such that P™ converges weakly to some P, € P(D,F), and for any t €
[0, +00),

d(up (1), u(t)) = 0 (k — o0)
where u(t) = P, o X~ 1(¢).
Proof. It is known (see Rachev, 1982) that a subset € of M(S) is relatively compact
in the topology generated by the metric d, defined in Section 1, if

% is relatively compact in the weak topology, (2.25)
suppeg/ |X|P(dX) — 0, when L — oc. (2.26)
|X|>L

If we choose € = {i1,(t)}n>1,1c0, 1), then (2.14), combined with Holder’s inequality,
implies (2.25) and (2.26). Thus, € is relatively compact in the spaces (M,(S),d) and
(M\(S),d).

On the other hand, we have
[rm |ER Uy (X () ~ I (X ()

m—1+|Y|
Ciy|

d(iin(2 ), itn(5)) = 3

Yes
while

EPe (1) (X (0) — 111 (X(5)))

= BN {/ Lllun(r)III{Y}(X(r))dr}

EPZ/ {ZQX(r),z[I{Y}(Z) — Iy (X(r))]
s VAN
+f:l{||ui,(r)li[1{y}(X(r) +e;) — Iiyy(X(r))]
+x,-(r)[1{y}(X(r) —e;)— l{y}(X(r))]}} dr
!
=/ {Zzgs[qz yPu(X(r)=2Z) — qvzP,(X(r) = Y)]
+§{||ML(V)II[PZ(X(V) =Y —e€)— P X(r)=Y)]

Hi(r) + DPyX(r) = Y + &) — yi(r)Py(X(r) = Y)]}} dr.
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For any ¢ > 0 choose L > 0 such that 7, 27" < /2. Let

aLTy~amqw+-wpmwnm+L+m
|Y|<L t€[0.T

Then we have

sup \EPe (v (X (8) ~ Iy (X ()| S CL,TX(t — ), .5 €[0,T),
€

and for any 6 <e/(2C(L,T)),

sup d~(i~ln(t), '}n(s)) < €. (227)
S€[0.T), Ji—s|<d

Let C([0,+o0), (Ml(S),ci )) denote the space of all (Ml(S),J )-valued continuous func-
tions on [0, +00) equipped with the topology of uniformly convergence on compact
subintervals of [0, +oo) Then (2.27) implies that {#,(¢)} is a d-equicontinuous subset
of C([0,+400),(M(S), d)) This, combined with the fact that {it,(¢):n>1,1 € [0,T]}
is relatively compact in (M;(S ),d), implies, by using the theorem of Arzela—Ascoli’s
that {#,(-)}»»1 is in fact a relatively compact subset of C([0,+o0), (Ml(S),J)). By
Lemma 2.6 there exist P, € #(D, #) and subsequence {P}*} of {P}} such that P}
converges weakly to P, as £k — oo. Without loss of generality, we may assume
that there is a ug(-) € C([0,+00), (M1(S), d)) such that iy, (-) converges to uo(-)
in C([0, +00),(M(S)d)) as k — oco.

Let u(t) = P,o X~ (1), t=0, and T; = {t20: P,(X(¢) # X(t—)) = 0}. Then by
Lemma 7.7 of Ethier and Kurtz (1986, Ch. 3), 7, is dense in [0,+00) and T (the
complement of T; in [0,+o0c)) is at most countable. This, combined with the right
continuity of u«(-) in the space D, implies that uo(-) = u(-). Moreover, for each =0,

Aty (1), (1)) = (i, ([mit]/me ), u(2))
< sup J(ﬂ,,k(s), u(s)) +a7(u([nkt]/nk), u(t))y — 0 as np — oo.

0€s<t

Thus, u,, () converges to u() in the vague topology. Noting that {u,, (¢)} is a relatively
d-compact subset of M;(S), we conclude that d(u,,(¢),u(t)) > 0as k —oo. 0O

Proof of Theorem 1.1. Let P, be as in Lemma 2.7. For any Y € S, let
1 1
YY) =/0 Lyjuisy Iy (X (s)) ds, YY) =/ Ly lry(X(s))ds.
0

By Lemma 2.7, for each ¢t € 7;, @ € Cy(D) (the set of all bounded continuous
functions on D), there exists {n;} C{0,1,2,...} such that

EP Iy (X(0))®] — E™ (1) (X(1))®], (2.28)

B () = )OI < 0] [ dlun (s ds =0 (m = 00). (2.29)
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where {|®| is the supremum of @ on D. The boundedness of @ and condition (1.11)
imply that [L,. (v} (X(5))]® € Cy(D) for s € T,. By Fubini’s theorem we get that
for every =0,

EP [9,(Y)®] — EP[¥(Y)®).
Thus for any s, € T, 0<s < t < o0, @ € Gp(D),
EP[(Iyy (X (1) — PAY))P] = EP[(I1y1(X(5)) — P(Y))D].

Finally, by the right continuity of /;y)(X(¢))— ¥,(Y) and the dominated convergence
theorem, we get the result. O
From the proof of Lemma 2.4 and Lemma 2.7, we obtain the following:

Theorem 2.8. Assume (1.11) and (1.12) are satisfied. Let u € M,(S), and let P, €
P(D,F) be any solution of the nonlinear martingale problem [u,L] with initial dis-
tribution u. Then u(t) = P, o X~'(¢) is a (M\(S),d)-valued continuous function on
[0, +00).

Proof. It is not hard to check, by using the martingale property, that the following is
true.

sup |[|u(®)|l[, < oo,
t€[0,T]

lim sup / | X |u(t)(dX) = 0,
L—oo g0, 11 J|X|>L

lim sup{ d@u(t),u(s));t,s € [0, T], |t —s| < 8} =0.

These, combined with an argument similar to that used in the last part of the proof
of Lemma 2.7, imply the result. O

3. Uniqueness

In this section we prove the uniqueness of solutions of the nonlinear martingale
problems.

In the sequel we will always assume that ¥ € M,(S), 7 > 0 and v : [0,+00) —
(M(S),d) is continuous and satisfies sup, ¢, < 7 ST P V(L)) < oo. Let (qx,y(¢))x ves
denote the Q-matrix determined by L}, - Then we have

Lemma 3.1. For all s,t € [0,4+00), X,Y € 8, the minimal nonnegative solutions of
the following two equations

o8, X;0,Y)= 6{Y}(X)efv qx.x(t)dt

¢ a
+ / S x2(0)d(0, Z;1, Y ) 97O, (3.1)
s Z#X
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d’(s,X;z,Y):g{y}(X)eﬁ gy () dr
t l )
+ Z ¢(SoX, g, Z)qZ, Y(o')ej; qy,y(1) Ido', (32)
s Z#Y

exist and are, in fact, the same.

Proof. First we show the existence of minimal nonnegative solutions of (3.1) and
(3.2). For every n>1, let

Pl(s,X; tL,Y)= 5{y}(X)efx q.»(.\'(t)dr’
t a
Pthl(S’X; t, Y) = Z qX,Z(G)P"(O',Z; ‘ Y)ej; (],\’.X(T)deO_;
s Z#X
P‘(s,X;t,Y)za{y}(X)eﬁ a0
t

Pl s, X;1Y) = S PY(s,X;0,Z)qz, y(a)efa arr(@dry
s Z#Y

o0
P(s,X;,Y)= > P'(s,X;t,Y),
n=1

- m -
P(s,X;t,Y) =Y P'(s,X;t,Y).

n=|

Then P(s,X;t,Y) and P(s,X;t,Y) are nonnegative solutions of Eqs. (3.1) and (3.2),
respectively.

Let ¢(s,X;t,Y) and J)(s,X ;,Y) be any two nonnegative solutions of (3.1) and (3.2),
respectively. Then it is obvious that

G, X;,YY2PU(s, X;0Y), (s, X;t,Y)=2P' (s, X;1,Y).
By induction it is not hard to check that
A, X, Y)V2P(s,X;1Y), Os,X;,Y)=P(s,X;8Y).

Thus, P(s,X;t,Y) and P(s,X;t,Y) are in fact minimal nonnegative solutions of
Egs. (3.1) and (3.2), respectively.
To finish the proof it suffices to verify that for each n>1,

P'(s,X;t.Y) = P"(s,X;1,Y). (3.3)

This can be done by induction. For n = 1 the result is obvious. For n = 2 we have
that for X = Y, P(s,X;t,X) = P*(s,X;t,X)=0; for X £ Y

! o
PZ(S,X; t, Y) - ; qx,z(O')Pl(O',Z; ¢, Y)ej; qX"X(T)deO',
s Z#X

{ 1 4
= [ Saxa@pin @l 0tel w0y,
s Z#X

t , .
:/ qX,Y(O’)Cfﬂqu(T)dTej; qX‘X(r)drdO_
8§
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and

‘ t
PZ(SaX; [ Y) = Z Pl(S,X; J’Z)qZ. y(o')efa qY‘Y(T)dtdo-,
s Z#Y
t , .
= ; 5{X}(Z)efv qz.z(t)drqz’y(o_)ej; qr. y(r)drda,
s Z#Y

t , .
:/ Q)(,Y(O')Cfﬂ qY.Y(T)d‘Ee‘L qxx(l)drdo_’
N

which implies that (3.3) is true for n = 2.
Now we assume that (3.3) holds for n — 1 and n. For n + 1 we have
t T
P, X;6Y)= | 3 qxz(0)P"(0,Z;1, Y)efs arx@drg
s Z#X
t _ . ;
= > qx.z(6)P"(0,Z;t, y)ej; gx.x(7) "do,
s Z#X
H

= [ Saratore) 10
s Z#X

t t
< [ 5 P0,2:0. 20z 10 el 7O o
a Z'#Y

t t c
=/da{/ > qx,z(o)qzcy(a’)efs axx(r)de

ZAX,Z'HY

ej:/ qY.Y(T)dTPn——l(O_’ Z, O_I’Zl)do_l}

and
14 1
P X )= [ X Ps.Xi0 2 )z (0 )ele 7O o
s Z'#Y

t '
=/ S PU(s.X:0, 2 )z, 1(0 el 7O ag!
s Z'#Y

! '
= g Y(af)ef,, grr@dug
s Z'#Y '

’
a

x > CIX,Z(G)ef»f wx&pn=5 7.6/, 7'y do
s Z#X

¢ s - d
:/ d“'{/ Y axz(0)gz.r(o))els wrOE

ZHAX,Z' Y

eJn "Odipn-i(5 7.6, 2") da}

1 t o
d
=/ d"{/ Zz#x,z';éyqxz(a)qzaY(U,)ef‘ ax(e)de

ej;/ q)’.Y(T)dTPn—l(O,,Z; G’,Z’)do’l},
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where the last step is obtained by changing the order of integration. Thus, we get the
result. 0O

Remark. The uniqueness of the minimal nonnegative solutions of Egs. (3.1) and (3.2)
follows from the definition of minimal nonnegative solution.

Lemma 3.2. For any (5,X) € [0,4+00) x S, let P™"(s,X;-,-) denote the minimal
nonnegative solution of Egs. (3.1) and (3.2). Then for every t=s we have

- 5
€

Proof. For any n>1, >0 and X,Y € §, let S, = {0,1,...,n}" and g% ,(u) =
I5,(X)qx.y(u). Then g% y(u) is uniformly bounded on any finite interval [0, 7] for any
n. Let PM"(s,X;¢,Y) denote the minimal nonnegative solution of Eqgs. (3.1) and (3.2)
with gx y(u) being replaced by g ,(u), Prin(s, X;1,8) = Yoves PMn(s,X;t,Y). Then a
direct calculation, combined with the uniformly boundedness of g% y(u) and Fubini’s
theorem, gives

Pin(s, X 1,8) = e Trde (3.5)
t

+2 EP;“i“(Sina,Z)q},y(a)efa Gy
YesJs z#Y

which implies that

dPTn(s, X3 1,8 ¥ .
P X505) _ o (e % 5 s pmings vy 23an (1)
dt YES ZAY
t

+2 | ZPreXie 2 oyl B8 1y de
€ g

=3 Y PINs, X, Z)q (1)
ZES Y#2 ’

+2ovesdry, Y(l){é{y}()()ef,. gy y(1)dt

t .
+/ ZP'Tin(s,X;a,Z)qg’y(a)ef" qy_y(l’)drdo_}
A

Z#Y
= PN XL YYY gy () + Y PR (s, X4 Y )y (1)
YES ZAY YES
=0, ae. int (3.6)

The last equality holds because of the conservativity of the Q-matrix (q}’y(t))x‘ye 5.
Since dP™Mn(s,X;¢,S)/dt is continuous in ¢, we conclude that

A TRORE 67
Yes

By Fatou’s lemma and Theorem 2.6 in Chen (1992) we have
lim PM(s,X;2,8,) = P™(s,X;1,9). (3.8)
n—oo
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Hence, to finish the proof it suffices to verify that
lim PM"(s,X;,5%) = 0. (3.9)
n—oc
By condition (1.12), we have that for any s,z € [0, T]
> dxy (Y|P = (C(T) — gy x (£))1X |7 <0,
Y#X
or equivalently

Sibxire LOMRa a5 g oy LD o
Y#X

Integrating from s to ¢ and then multiplying on both sides by eC("=9) we get
‘g y(d ' "y x(0)d
CTN=9)|x|P 3 x [P Tx(Ddr +/ S g f0)Z|PeCTN—e ), hrt ¥y
s Z#X

Noting that P™"(s,X;#,Y) is the minimal nonnegative solution of Eq. (3.1) with
qgx.y(u) being replaced by g% y(u), then Theorem 2.12 of Chen (1992) implies that
the minimal nonnegative solution of equation

h(s, X, 1) = |x|Pel. (o
1

+ [ g J0)h(a. Z )yl B9,
s Z#X ’

is Y yes PMn(s,X;1,Y)|Y|?. Using the comparison theorem again we get

ZP:,nin(S,X; t Y)|y,P SeC(T)(t_S)P(I‘D
Yes§

which implies (3.9) and thus the result. O

Lemma 3.3. Under assumptions (1.11) and (1.12)(i), the time inhomogeneous mar-
tingale problem [u,L ),y ] with initial distribution u is well-posed.

Proof. For any integer n > 1, let v,(¢t) = v([nt]/n). Under assumptions (1.11) and
(1.12), the sequence of operators Ly, satisfies condition (2.4) in Lemma 2.2. By
applying Theorem 2.25 of Chen (1992) and Theorem 3.2 of Zheng and Zheng (1987),
we conclude that for every X € S the martingale problem [J(xy, Loy ] is well-posed.
We denote the unique solution by Py o). For s € [0,+00), let @, : D — D be the
standard shift operator defined by @y(w) = w(s + -). Let Py w0y € P(D,F) be the
unique probability measure satisfying;

Py o X '(1) = 6xy, 0<i<s,
Py © D5 = Pxyo)

It is easy to check that P} ., is a solution of the martingale problem for L) starting
from (s,X). In fact, v(0) can be replaced by any probability measure in M;(S) and
the above result still hold.
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Let Py w0y be defined as

Pu,v(O)(') = /P,\',V(O)u(dX)-
S

By induction we define P, yk+1)m) € Z(D,F ) to be the unique probability measure
satisfying

(1) Pu skt 1ymy = Puvimy o0 F iy, .
(i1) A regular conditional probability of P, v+1)ym) given Fyp is PX/:k/n),v((k )

It is obvious that P, {k/n<t} — 0 as k — co. Thus, by Theorem 1.3.5 of Stroock
and Varadhan (1979), there exists a unique probability measure P € #(D,#) such
that

PZ = Pu,v(k/n) on g;k/n» k= 1,2,... .

From Theorem 6.1.2 of Stroock and Varadhan (1979) we know that P is the solution
of the martingale problem (L), ]- By applying Lemma 2.2 we can show that
{P"},=1.2.. is relatively compact and, by the construction, all the limit points solve the
martingale problem [u, Ly, ]. By a shifting argument we can prove the existence of
solutions of the martingale problem for L, () starting from time s and with initial
distribution .

Now we turn to the proof of uniqueness. In order to do this it suffices to verify that
the solution of the martingale problem for L)) starting from (s,X) is unique. By
Theorem 6.2.3 of Stroock and Varadhan (1979), this is equivalent to showing that any
two solutions of the martingale problem have the same one-dimensional distributions.

Let Ps y be any solution of the martingale problem for L, starting from (s,X).
Then for any ¢ > s and Y € § we have

!
EPwx 1{y}(X(t))—I{Y}(X(S))_/ Lllv(t)lII{Y}(X(T))dT] =0.
Let P(s,X;t,Y) = P, x{X(¢t) = Y}. Then we have
t
P(s,X;8,Y) = 8gyy(X) — EPX U L”v(,)nl{y}(X(r))dr] =0,

By assumption (1.11), we have that |Ljyq/{y}(X(7))| is bounded by a constant
depending on Y. This, combined with Fubini’s theorem, implies

1

P(s,X;6,Y) = o (X) = SN P(s,X;7,Z)qz y(1)d1. (3.10)
s Z€S
Hence
d .
aP(s,X; LY)= > P(s,X;t,Z)gzy(t), ae. int 3.1

yASN
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Now, multiplying both sides of (3.11) by o o

to t we get

and then integrating from s

P(s.X:.Y) = by (el 77
t ¢ d
+/ ZP(S,X;O’,Z)qZ‘y(G')CL @iy (3.12)
s Z#Y
By Lemmas 3.1 and 3.2, the minimal nonnegative solution P™"(s,X;¢,Y) of Eq. (3.2)
exists and satisfies (3.4). Hence, we get that V s, ¢ € [0,+00) and X, Y € S,
P(s,X:t,Y) = P™"(s,X;1,Y).

Since P, y was arbitrarily chosen, we get the result. O

For any u € M,(S), let P, and P, be any two solutions of the nonlinear martingale
problem [u, L] with initial distribution u. Let u(t) = P, o X ~\(¢), u(t) = P, o X~ '(¢).
Then, by Theorem 2.8, both u(¢) and u(¢) are (M(S),d)-valued continuous functions.
By Lemma 3.3, in order to prove the equality P, = P, it suffices to verify that for
every 120, |[u(1)|| = [la(0)].

For any (X,X) € $? and G € C/(S?) we introduce the following time-inhomogeneous
coupling operator:

2GXX)=QGX,X)+ é{(llui(t)ll — [#OINT(GX + e, X) — GX, X))
+ (@@ - lF O GXX + &) — GX, X))
+ ([ AF O NG + e, X + &) — GLXN}

where
QG(X.X) = > {(qxy — q5.7)"(G(Y.X) - GLX. X))
(V,7)es?, Y—x=¥-X%
+qz, 7 — )G T) - GX X))
+Haxr A gz s (G T) - G X))}
m ~ ~
+2 At = %) (G — e, X) — G(X, X))
i=1
+(E —x) (G X — &) — GX, X))
+0; AT NGX — e, X — &) — G, X))}
Now we are ready to prove the uniqueness.
Proof of Theorem 1.2. It is not hard to check that the (Q-matrix associated with
operator § satisfies assumptions (1.11) and (1.12)(i), and the time inhomogeneous
jump rates in £, are continuous functions of time . Thus, the existence of solutions

of the time-inhomogeneous martingale problem associated with €, follows from an
argument similar to that used in the first part of the proof of Lemma 3.3. Let Q, be
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a solution of the time inhomogeneous martingale problem associated with €2, and with
initial distribution A, defined by

. 0, for X # X,
A( X, X) = .
u(X), forX =2X.

It is obvious that @, has marginal distributions P, and P,.
For every N >1, let Fy(X,X) = p(X, X))y <y 7| <n} (X5 X). For n<N — A define

fn = inf{t20: |X(2)|=n, |X()|=n}.
Then we have
EQ« Fy(X(t A ). X (2 A1)

= EMFy(X(0),X(0)) + E2- / o Q,Fy(X(s), X(s))ds
0

A,

= E2: / o QF (X (5),X(5))ds + EC~ / (8 — DF (X (5),X(5))ds
0 t . 0
< 10 [ e Xenas+2 [ S - [Eds
< (h+ 2)/0[ E%p(X(s),X(s))ds.
In the last inequality we used the following fact:
S O] = [F(Ol| <E®pr ). X)), (3.13)
Letting N — oo and then n — oo, we have
E%p(X(6), X(1))<(h+2) /01 E2p(X(s), X (5)) ds,
which, by Gronwall’s inequality, implies that E p(X (1), X(1)) =0, V £>0.
Hence [[u(¢)|| = ||@(¢)]| for ail ¢=0, and thus the result follows. O

In order to prove Theorem 1.3, we introduce the following stopping times:
= inf{z20: |X(t)| =N}, (3.14)
oy =inf{t=0:|X(0)| =N}, &y =1y Aoy, (3.15)

Let (gx.y(2)) and (gx,y(¢)) denote the J-matrices associated with Lj,(, and Ly,
respectively. For any finite subset 4 of § and X € §, let

Lijwoy XAy = > aqxy(t), Ljgy(X4) = 3 aqxy(®) (3.16)
YEAT#X YEATAX
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and
N A;X()) =#{s: X(s) € 4, X(s) £ X(s—),s<¢t} 3.17)
N(Z,A;X(-)) =N(,A4;X(")) —/O Ly (X(s),4)ds (3.18)
N(t, 4: X () = N(t, 4; X(-)) —/0 Lyasy (X (5), 4)ds. (3.19)

By applying Lemma 3.4(i) in Dawson and Zheng (1991) we can show that for any
S € C(S),

/ FONEAY;X()) = ¥ f(NHNLYX ()
s Yes
and
JIOR@arixe) = £ 0Ny
s Yes
are P,- and P,-martingales, respectively. We also have

Lemma 3.4. For any T > 0, N >1, and u € M(S) satisfying [ elu(dx) < oo, we

have
P sup |[X(6)|=N)<C(c,u,T)e ", (3.20)
0<t<T
P,( sup |X(t)|=N)<C(c,u, T)e™ ", (3.21)
0T

where ¢ is the constant in (1.15), and C(c,u,T) is a constant depending on ¢, u, T.

Proof. For any N >1, let fx(X) = clX|I{pe1 <) (X), f(X) = c|X]. Let
= [ ' JHemLAA) = S0 = DLy (X5 dF ) s
= /Ot yie:s{exp[fN(Y) ~ fNX (=) — 1} gx(s—)r(s)ds,
4= [ t [ (el () = FEG=D] = Do (X5, a7) s

= [ Y A{expl/(Y) — f(X(s—))] — 1}gx(s—).r(s) ds.

0 YeS

By Ito’s formula in Ikeda and Watanabe (1981) and (3.17)—(3.19), we can show that
exp[ fn(X (1)) — An(2)] is a P,-martingale which implies that exp[ /(X (¢)) — A(?)] is a
P,-local martingale and thus a supermartingale. By definition for any >0 and X € §

qxy ifY X ¢ {tesi=1,...,m},
gxy() =1 qxy + |¥'@)|| ifY=X+e, for ic{l,...,m},
qxy + Xi ifY=X—e, foric{l,...,m}.
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By condition (1.15) and the facts that ||u(¢)| is uniformly bounded on [0,7] and x; is
the death rate for i = 1,...,m, we get

sup |A()]<aT.
1€[0.7}

This, combined with Doob’s inequality for supermartingales, implies

Pu( sup [X()|=N) =P,( sup e¥WixeN)

01T 0T

< Pu( sup explf(X(r)) — A(t))= exp[cN — «T))

0<t<€T
< EPeexp[ £(X(0))] exp[—cN + oT])
= C(c,u, Tye ™V,

where C(c,u,T) = e*T [ e¥lu(dX) < oco. The inequality (3.21) can be obtained in
the same way. O

Proof of Theorem 1.3. Let R, be the solution of the time- inhomogeneous martingale
problem for €, with initial distribution A, defined as above. Assume ¢ <1 in the sequel.
By the martingale property we have

ERp(X (8 A EN),X(E A Ex)) = EMp(X(0),X(0))

IACx
+ER / Qp(X(5),X(s))ds
0
tAEN
= ER / Qp(X(s A EN)X(s A Ey))ds
0
INEN
LER / (@, — Q)p(X(s A En ). X(s A Ex)) ds
0
< (2aN + b)ER / P(X(s A EN)LX (s AEx))ds
0

+ER 0 gn ' (s)]| = (i ()]l ] ds. (3.22)

while
0 é[\ I (s) | — @) | [1ds
=t ~ | ~
< / ER"p(X(s),X(s))ds</ ERp(X(s N Ey).X(s A Ey))ds
0 [}

b [ SSIER(r &y <) + ERe(R En <)) ds. (3.23)
0 i=1

By Holder’s inequality, we have for each 1 <i<m

E“’(‘Y)(X,-p)}]/pR,l/q{éN gs}

ER(x;; En<s) <
< A{EYOP) PPty <5) +P ooy <5)]', (3.24)
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E™(%; Ev <) < {EYOGENY PR &y <5}
< A{E"OGY P[Py <5) +P (o <s)1', (3.25)

where 1/p+ 1/g = 1.
Let M = sup,cio 11,1 <icm{ {EYOGI}IVP, {EFC)(%F)}/P}. Then by (3.20) and (3.21)
we have

0 i_":]n )| — [7s)] 11 ds
t
< / ERp(X (s A Ey), X (s A Ey))ds + 2mM[2C(c, u, 1)]Vate= (N
0

which, combined with (3.22), implies
ERp(X(t NEV)LX(t A EN)) < 2mM[2C(c,u, 1)) /e DN

+(2aN +b+ 1) /0 ERp(X(s A EV),X(s A Ey))ds.

By Gronwall’s inequality we get
ERp(X(t N EN)X(t A EN))YS2mM[2C (¢, u, 1)]/4e™ (/DN 28N +b+1) (3.26)

If we choose ¢ small enough such that ¢ > 2tag and let N — oo, then (3.26) implies
that for ¢ € [0,c/2aq) we have

ERp(X(1),X(1)) = 0.

This implies that

- c
ut)=a(t), te€ {0,27@). (3.27)

By a standard argument we conclude that (3.27) is true for all ¢, which gives the
result. 0O

Remark. The proof above does not imply the uniqueness of the trimolecular model
because of the competition between the nonlinear term and the cubic term in generator
€. Noting that the cubic term does not change the total number of particles in the
system, we can introduce the following nonlinear model:

Of (X)=Aa(f(X +e1) ~ (X)) + Ax1(f(X — e1) — f(X))
+ixi(f(X — e +e) — f(X))
+43C'x0(f(X + e —e) — f(X)),

O f(X)=LfX)+ (lu' Ol + 12O + er) — F(X))
+ )X —er) — f(X))
+(lw' O + OIS X + e2) — f(X))
+(x +2)(f(X = e2) — f(X)).
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In this case the cubic term does not change the rates in the nonlinear term. The
model looks like the nonlinear master equation a single type of particle systems and
the uniqueness follows from an argument similar to that used in Feng and Zheng
(1992). But this modified model is essentially different from the trimolecular model.
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