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We prove existence and uniqueness of solutions to the martingale problem for this operator under
appropriate conditions on the a;,b;, and Z;. The process corresponding to . solves an infinite
dimensional stochastic differential equation similar to that for the infinite dimensional Ornstein—
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1. Introduction

Let 2; be a sequence of positive reals tending to infinity, let ¢;; and b; be functions defined
on a suitable Hilbert space which satisfy certain continuity and non-degeneracy conditions,
and let W' be a sequence of independent one-dimensional Brownian motions. In this paper
we consider the countable system of stochastic differential equations

dX =" oy(X)dW, — ib(X DX |dt, i=1.2,..., (1.1)
Jj=1

and investigate sufficient conditions for weak existence and weak uniqueness to hold. Note
that when the ¢; and b; are constant, we have the stochastic differential equations
characterizing the infinite-dimensional Ornstein—Uhlenbeck process.

We approach the weak existence and uniqueness of (1.1) by means of the martingale
problem for the corresponding operator

S0 =1 a0
ij=1

o*f e of
2 00~ 2 b () (12)

operating on a suitable class of functions, where a;(x) = > ;2 ou(x)oj(x). Our main
theorem says that if the a; are nondegenerate and bounded, the b; are bounded above and
below, and the a; and b; satisfy appropriate Holder continuity conditions, then existence
and uniqueness hold for the martingale problem for .#; see Theorem 5.7 for a precise
statement.

There has been considerable interest in infinite dimensional operators whose coefficients
are only Holder continuous. For perturbations of the Laplacian, see Cannarsa and Da
Prato [6], where Schauder estimates are proved using interpolation theory and then applied
to Poisson’s equation in infinite dimensions with Hoélder continuous coefficients (see also
[14]).

Similar techniques have been used to study operators of the form (1.2). In finite
dimensions see [17-19,12]. For the infinite dimensional case see [7-11,14,23]. Common to
all of these papers is the use of interpolation theory to obtain the necessary Schauder
estimates. In functional analytic terms, the system of equations (1.1) is a special case of the
equation

dX, = (B(X )X, + F(X,))dt + Va(X,) dW,, (1.3)

where a is a mapping from a Hilbert space H to the space of bounded nonnegative self-
adjoint linear operators on H, b is a mapping from H to the nonnegative self-adjoint linear
operators on H (not necessarily bounded), F is a bounded operator on H, and b(x)x
represents the composition of operators. Previous work on (1.3) has concentrated on the
following cases: where « is constant, b is Lipschitz continuous, and F = 0; where a and b
are constant and F is bounded; and where F is bounded, b is constant and « is a
perturbation of a constant operator by means of a Holder continuous nonnegative self-
adjoint operator. We also mention the paper [13] where weak solutions to (1.3) are
considered. In our paper we consider Eq. (1.3) with the a and b satisfying certain Hoélder
conditions and F = 0. There would be no difficulty introducing bounded F(X,)d¢ terms,
but we chose not to do so.
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The paper most closely related to this one is that of Zambotti [23]. Our results
complement those of [23] as each has its own advantages. We were able to remove the
restriction that the a;’s be given by means of a perturbation by a bounded nonnegative
operator which in turn facilitates localization, but at the expense of working with respect to
a fixed basis and hence imposing summability conditions involving the off-diagonal a;;.
See Remark 5.10 for a further discussion in light of a couple of examples and our explicit
hypotheses for Theorem 5.7.

There are also martingale problems for infinite dimensional operators with Hdélder
continuous coefficients that arise from the fields of superprocesses and stochastic partial
differential equations (SPDE). See [20] for a detailed introduction to these. We mention
[15], where superprocesses in the Fleming—Viot setting are considered, and [4], where
uniqueness of a martingale problem for superprocesses on countable Markov chains with
interactive branching is shown to hold. These latter results motivated the present approach
as the weighted Hoélder spaces used there for our perturbation bounds coincide with the
function spaces S* used here (see Section 2), at least in the finite-dimensional setting

(see [1]).
Consider the one dimensional SPDE
Ou 1 8%u .
&(Z,X) ZE@(X, t)+A(M)dW, (15)

where W is space-time white noise. If one sets
2n
X =/ ePu(x, f)dx, j=0,4£1,42,...,
0

then the collection {X'}?° _ can be shown to solve system (1.1) with Z; = %, the b;
constant, and the a; defined in an explicit way in terms of 4. Our original interest in the
problem solved in this paper was to understand (1.5) when the coefficients 4 were bounded
above and below but were only Hélder continuous as a function of u. The results in this
paper do not apply to (1.5) and we hope to return to this in the future.

The main novelties of our paper are the following.

(1) C* estimates (i.e., Schauder estimates) for the infinite dimensional Ornstein—Uhlenbeck
process. These were already known (see [14]), but we point out that in contrast to using
interpolation theory, our derivation is quite elementary and relies on a simple real
variable lemma together with some semigroup manipulations.

(2) Localization. We use perturbation theory along the lines of Stroock—Varadhan to
establish uniqueness of the martingale problem when the coefficients are sufficiently
close to constant. We then perform a localization procedure to establish our main
result. In infinite dimensions localization is much more involved, and this argument
represents an important feature of this work.

(3) A larger class of perturbations. Unlike much of the previous work cited above, we do
not require that the perturbation of the second order term be bounded by an operator
that is nonnegative. The price we pay is that we require additional conditions on the
off-diagonal g;;’s.

After some definitions and preliminaries in Section 2, we establish the needed Schauder
estimates in Section 3. Section 4 contains the proof of existence and Section 5 the
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uniqueness. Section 5 also contains some specific examples where our main result applies.
This includes coefficients a; which depend on a finite number of local coordinates near (i, )
in a Holder manner.

We use the letter ¢ with or without subscripts for finite positive constants whose value is
unimportant and which may vary from proposition to proposition. o« will denote a real
number between 0 and 1.

2. Preliminaries

We use the following notation. If H is a separable Hilbert space and f : H — R, D,,f(x)
is the directional derivative of f'at x € H in the direction w; we do not require w to be a unit
vector. The inner product in H is denoted by (-,-), and | - | denotes the norm generated by
this inner product. C, = Cp(H) is the collection of R-valued bounded continuous
functions on H with the usual supremum norm. Let C; be the set of functions in Cj for
which the first and second order partials are also in Cj. For o € (0, 1), set

f(x+h) -/l

xeH h#0 7]

fle =

and let C” be the set of functions in Cj for which ||[f | = [Ifll¢, + [f]c= is finite.
Let V : 2(V) — H be a (densely defined) self-adjoint nonnegative definite operator such
that

V! is a trace class operator on H. 2.1

Then there is a complete orthonormal system {g, : n € N} of eigenvectors of V! with
corresponding eigenvalues /1;1, An >0, satisfying

o0

=1 )
E Ay <00, Ay P oo, Ve, =g,
n=1

(see, e.g. Section 120 in [21]). Let Q, = e~*" be the semigroup of contraction operators on
H with generator — V. If w € H, let w, = (w, &,) and we will write D;f and D;f for D,,f and
D.,D.f, respectively.

Assume a: H — L(H,H) is a mapping from H to the space of bounded self-adjoint
operators on H and b : H — L(2(V), H) is a mapping from H to self-adjoint nonnegative
definite operators on Z(}’) such that {e,} are eigenvectors of b(x) for all x € H. If a;;(x) =
(&, a(x)e;) and b(x)(e;) = A;bi(x)e;, we assume that for some y>0

72D ap(0ziz =P, Xz e H,
ij
y I >bi(x)>y, xeH, ieN. (2.2)
We consider the martingale problem for the operator ¥ which, with respect to the
coordinates (x, ¢;), is defined by

00

L100 =5 @D ()~ 3 xb (DS (). 23)
i=1

ij=1
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Let 7 be the class of functions in C2 that depend on only finitely many coordlnates and
T be the set of functions in .7~ with compact support. More precisely, / € 7 if there exists
n and fa€ Cz([R{”) such that f(xi,...,Xp,...) =f,(x1,...,x,) for each point (x,x2,...)
and f € 7 if, in addition, f,, has compact support. Let X, denote the coordinate maps on
the space C([0, 00), H) of continuous H-valued paths. We say that a probability measure P
on C([0,00), H) is a solution to the martingale problem for .# started at x, if P(X( =
x0) = L and f(X,) — f(Xy) — fé Lf(X,)ds is a martingale for each f € 7

The connection between systems of stochastic differential equations and martingale
problems continues to hold in infinite dimensions; see, for example, [16, pp. 166-168].
We will use this fact without further mention.

There are different possible martingale problems depending on what class of functions
we choose as test functions. Since existence is the easier part for the martingale problem
(see Theorem 4.2) and uniqueness is the more difficult part, we will get a stronger and more
useful theorem if we have a smaller class of test functions. The collection .7 is a reasonably
small class. When a(x) = a° and b(x) = V are constant functions, the process associated
with ¥ is the well-known H-valued Ornstein—Uhlenbeck process. We briefly recall the
definition; see Section 5 of [1] for details. Let (W,,t>0) be the cylindrical Brownian
motion on H with covariance a. Let %, be the right continuous filtration generated by
W. Consider the stochastic differential equation

dX, =dwW, — VX, dt. (2.4)

There is a pathwise unique solution to (2.4) whose laws {P*,x € H} define a unique
homogeneous strong Markov process on the space of continuous H-valued paths (see, e.g.
Section 5.2 of [16]). {X,, >0} is an H-valued Gaussian process satisfying

E(X,, h) = (X0, Q) forallhe H, (2.5)
and

Covg) ) = [ 10, heaQ, ) 2.6)
The law of X started at x solves the martingale problem for

& ) o
Lof () =5 Zl ) Dyf (x) — Z: AixiDif (x). (2.7)
INES =
We let P,f(x) = E¥f(X,) be the semigroup corresponding to %, and R; = f(fo e M Pyds

be the corresponding resolvent. We define the semigroup norm || - ||s» for o € (0,1) by

fls: = sup *2|Pf ~fllc, (2.8)

t>0

and

Iflls = Ifllc, + fIs~

Let S* denote the space of measurable functions on H for which this norm is finite.
For x € H and € (0, 1) define |x|g = sup; [(x, ek)u and

Hp={x€ H : |x|g<oo}. 2.9)
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3. Estimates

We start with the following real variable lemma.

Lemma 3.1. Let A>0,B>0. Assume K : Cp(H) — Cy(H) is a bounded linear operator such
that

1K e, <Alfllc,, [ € Co(H), (3.1
and there exists v € H such that
1K llc, <BIDf |l c,» (3.2)

for all f such that D.f € Cyp(H). Then for each o € (0, 1) there is a constant ¢; = ci(o) such
that

IKf Il e, <cilvol|f|c»B*A'™*  for all f € C*.

Proof. Assume (3.1) and (3.2), the latter for some v € H. Let {p, : =0} be the standard
Brownian density on R. If " € C*, set

p.*xf(x) = /Rf(x + zo)p,(2)dz, xe H.
Since a change of variables shows that

Pexf(x 4+ hv)—p, = f(x) = /Rf(x + zv)p,(z — h)dz — /Rf(x + zv)p,(z)dz,
it follows that

Dup )0 == [ fx+ pi0)dz:
this is in Cp(H) and

IDy(p, * f)X)] = ’—/f(X+Zv)P2(Z)dZ

=MVWHWJ®M@@

<tieir [ 2y
= oof e lo|*e™ D2,
where ¢ = [ |z|*"!p,(z) dz. We therefore obtain from (3.2) that
1K, *llc, <e2Blf = lol*e™ V72, (3.3)
Next note that

mwurﬂmsfw»HWJmM@@
<www/m%@w

L a0/2
= a3lf | =o€,
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where ¢3 = [ |z|°p,(z)dz. By (3.1)

1K, *f = Nlic, <cAlf | |o]*e*. (3.4)
Let c4 =cyVesand e = B2/A2. Combining (3.3) and (3.4) we have

IKS llc, <ealfleolol”e**[4 + Be™' /2]

= 2¢4lf |+ 0)*B* A O
Set

2u .
Hay — {(IZu)/(e 1), Zioo

and

1/2
[w], = (Z w?h(i,-t)) <|wl.

Recall
2,3 "
Qtw=§ e " we;.
i=1

We have the following by Propositions 5.1 and 5.2 of [1]:
Proposition 3.2. (a) For all we H, f € Cy(H), and t>0, D,,P,f € Cy(H) and

wlfllc,
v
(b)If t=0,we H,and [ : H— R is in Cp(H) such that Dg,f € Cy(H), then
D, Pf(x)=P(Dg,f)x), xeH.

"DWPLfHC/, < (35)

In particular,

IDwPflc, <l Doufllc,- (3.6)

We now prove:

Corollary 3.3. Let f € C*, u,w € H. Then for all t>0, D,P,f and D,D,Pf are in Cp(H)
and there exists a constant ¢ = ci(a,y) independent of t such that

1Dy Pf Nl o, <cilwl|f] I l)/2<cl|w| | A /2 3.7
Cp tVlc C
and

Z_1 z_
IDuDywPif e, < cllQppptl i fpIWlifolf 7" < crlul oIl o lf 1 o2 22
<cilulwl|f 7" (3:8)

Proof. That D,,P,f is in C,(H) is immediate from Proposition 3.2(a). By (3.5) and (3.6) we
may apply Lemma 3.1 to K = D,,P, withv = Q,w, 4 = |w|,(yl)_l/2 and B =1 to conclude
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for f e C*
IDWPf Il c, < 2l Qwl*If | cxIwll = (yr) =179/
<Cz“/(“_l)/z|W|[lf|C"t(1_l)/2- (39)

This gives (3.7).
By Proposition 3.2, D,,D,P,f = DwP,/zDQ,/zuPt/zf, and the latter is seen to be in Cy(H)
by invoking Proposition 3.2(a) twice. Using (3.5) and then (3.9) we have

IDwDuPif ¢, = IDwPij2Do,,uPi/of e,
<IWlp(1/2) 2IDg, wPipof lic,
< |W|;/2(W/2)_1/26'2?(“_1)/2|Qf/z“|z/z fle(t/2) D2,
This gives (3.8). O

Remark 3.4. We often will use the fact that there exists ¢; such that

il <erllflls= (3.10)
This is (5.20) of [1].

Corollary 3.5. There exists ¢y = ci(a,y) such that for all 2.>0, f e C*, i<j, we have
DiR)_f,D,']‘RM (S C[,, and

IDiRf Nl e, <er(G+ ) TV f |, (3.11)
1D RS llc, <1+ 2) P | =, (3.12)
IDiRf = <1+ 2 P If ll e (3.13)
DR fllcx<cillf - (3.14)

Proof. Corollary 3.3 is exactly the same as Proposition 5.4 in [1], but with the S$* norms
replaced by C* norms. We may therefore follow the proofs of Theorem 5.6 and Corollary
5.7 in [1] and then use (3.10) to obtain our result. However, the proofs in [1] can be
streamlined, so for the sake of clarity and completeness we give a more straightforward
proof.

From (3.7) and (3.8) we may differentiate under the time integral and conclude that the
first and second order partial derivatives of R;f are continuous. To derive (3.12), note first
that by (3.8),

IDiPf e, = I1DiPf |l c, <2l Oy ot el |f | o= £
= e HP|f |87 (3.15)

Multiplying by e * and integrating over ¢ from 0 to oo yields (3.12).
Next we turn to (3.14). Recall the definition of the $* norm from (2.8). In view of (3.10)
it suffices to show

1D Rif Il s+ < sllf ll -
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Since
1P Dy Rf — DyRif llc, <2IDyRif o, <cilf | (A + ij)_“/z

by (3.12), we need only consider < (4 + ij)*l.
Use Proposition 3.2(b) to write

P.DyR;f — DyR;f = [e™"'e™"'DyP.R;f — DyiP,R;f]
+[DyiP.R;f — DyR;f]. (3.16)

Recalling that 4;<4;, we see that the first term is bounded in absolute value by
0]
A P IDP R f ¢, <5t / 22 DyPyof N, ds
0

< C5la/zlf|cxa

using (3.15).
The second term in (3.16) is equal, by the semigroup property, to

o0 oo )
/ e M D;Pyf ds — / e M DyPf ds
0 0

[e’e] t
= (e — 1)/0 e S DyPf ds — ei’/o e D;Pf ds.

Since Ar<1, then e* — 1<c6()yt)“/ 2 and the bound for the second term in (3.16) now
follows by using (3.15) to bound the above integrals, and recalling again that Ar<1.

The proofs of (3.11) and (3.13) are similar but simpler, and are left to the reader (or refer
to[1]). O

4. Existence

Before discussing existence, we first need the following tightness result.

Lemma 4.1. Suppose Y is a real-valued solution of
t
Y[=y0+M[_;L/ Yrdr, (4.2)
0

where M, is a martingale such that for some cy,

(M), — (M), <ci(t—s), s<t. 4.3)
Let T>0,6€(0,1). Let Z, = f(; e =9dM;. Then Z, = Y, — e "y, and for each q>¢7",
there exists a constant ¢; = c3(¢,q, T) such that for all 6 € (0, 1],

cq—1
<alsq, T)A(IT‘)"' (4.4)

st < T,|t—s|<0

fE[ sup  |Z,— Z,M

Proof. Some elementary stochastic calculus shows that
t
Y, =e My, + / e =9 dMy,
0

which proves the first assertion about Z.
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Fix so<to<T. Let

t
K, = [e /00 — q]e / ¢ dM,
0

and
t
L, = ¢ o / e’ dM,.
S0
Note
ZfO _— ZSO = KS(] + LI(]'
Then

S0
(K)so — [e—l(to—s‘o) _ 1]26—22&0 / eer d(M)r
0

2)..3‘0 _ 1

< —At0=s0) _ {Pa—24%0 €
cile Ie 7
ch[e—ﬂv(fo—é‘o) 1]2 1—1

(1 A Aty — s0))
<c3 —

Considering the cases A(fy) — s9)> 1 and <1 separately, we see that for any ¢ € (0, 1) this is
less than

(to — 50)°

cy(e)———— ;1 —.

Now applying the Burkholder—Davis—Gundy inequalities, we see that
50)

N (4.5)

Similarly,
1 _ e—2)~(t0—so)
<L>ro <66

22

<es(A7N A (t0 — 50))

(I A Aty — o))
2 '

This leads to
(to — s0)*

|E|Lto |2(] < C7(8’ q) ;L(l_s)q 5

g>1. (4.6)

Combining (4.5) and (4.6) we get

[t — so1*

IElzl‘() - Z‘Y0|2q<C8(87 Q) /l(],g)q

It is standard to obtain (4.4) from this; cf. the proof of Theorem 1.3.11 in [2]. O
Recall the definition of Hg from (2.9).
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Theorem 4.2. Assume a; : H — R is continuous for all i,j, b; is continuous for all i, (2.2)
holds, and for some p>1 and positive constant c|

le=ck?, k>=1. 4.7)

Then for every xo € H, there is a solution P to the martingale problem for & starting at xo.
Moreover if B € (0,1), then any such solution has sup,<,<.-1 |X|g<oo for all ¢ P-a.s. If in
addition xy € Hpg for some f € (0,1), then any solution P to the martingale problem for &
starting at xo will satisfy

sup |X,|g<oo forall T>0, P—a.s. 4.8)
(<T

Proof. This argument is standard and follows by making some minor modifications to the
existence result in Section 5.2 of [16]. We give a sketch and leave the details to the reader.
Fix xo in H. Using the finite dimensional existence result, we may construct a solution
X" = (X" : k e N) of

X;”k = X()(k) + 1(k<n) [_/ /Lan kbk(Xn) ds + Z / O-Ic,/ X”)dWI]
0

Here { W/} is a sequence of independent one-dimensional standard Brownian motions and
0"(x) is a symmetric positive definite square root of (a;(x));;<, which is continuous in
x € H (see Lemma 5.2.1 of [22]). Then X7 = > _, X”ksk has paths in C([0, 00), H) and we
next verify this sequence of processes is relatively compact in this space. Once one has
relative compactness, it is routine to use the continuity of the a; and b; on H to show that
any weak limit point of {X”} will be a solution to the martingale problem for % starting
at xg.

By our assumptions on by, each by is bounded above by y~* and below by y. We perform
a time change on X”k let A”k fo bir(X)ds, let r”k be the inverse of A” , and let
Y;’k X ",,li Then Y”k solves the stochastic differential equation

-1

¢
Y';’k = xo(k) + Like<n) l:— / Ak Yf’k ds + M?’k R
0

where M is a martingale satisfying |(M™F), — (M™*) | <c,|t — s, and ¢, is a constant not
! g ying t s

depending on 7 or k.
We may use stochastic calculus to write

Y;l,k — xn,k([) + Zrtl,k’
where

X0 = Mgeeme ™ 4 Lg=n]xo(k)

and

t
7" = 1< /0 e M) Mk,
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Let T>0 and s<¢<T. Choose ¢ € (0,1 —%) and ¢>2/¢. By Lemma 4.1 we have for
k<n and any ¢ € (0,y],

cq—1
<ele g,y Tyt

El sup |Zmk — Zzmk |2

<y~ 1T Ju—v|<oy~!

0=

Hence, undoing the time change tells us that

_ _ eqg—1
E [ sup |X;l’k - X’;’k|2q] <lge<nes(e g, 7, T)W’
k

s,1<Tls—1| <o
where
T = L@ — eI MO0 0) 4 1ot
so that )N(Z/Z = Z;”k. Now for 0<s,t<T and |t — 5| <7,
Z Xk k2
k

~nk ~nk Sn Snk
<Y NXT =X Pl = Z(EIX,”‘ — Xpk Pyl
k

(EIX" — X"PHY = | |X" — X", =

uﬁwm
<C3(8 q,7, )l/qz 77

k

where || - ||, is the usual LI(P) norm.

By our choice of ¢ this is bounded by cy4(¢, q,y, T)|t — s|7/?

, and hence

sup [E|/\~’;1—/\~’§,’|2q<c3|t—s|”"/2, s, t<T, |s—1t<y.
n

It is well known ([5]) that this implies the relative compactness of X" in C(Ry, H).
We may write

X" =X"— U"(1), (4.9)

where
n ' "
U= &b D o,
k=1
If s<1t, then

n s 2
|U™(t) — Un(S)|2 — Z { 7/cf b(X7)dr e*lkj; br(X7) dr X()(k)2

k=

Z«Az e =) A Dixo(k)?
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S Z 1(Aksylt—sr‘)ﬁXO(k)zV*zV — s
k=1
o0
2
Y L sty ¥0(R)°. (4.10)
k=1

Fix ¢>0. First choose N so that 33> \ xo(k)* <e, and then §>0 so that

NgE

2
l(lk >W57|)X()(k) <é

~
Il

1

and
N
> ixokyy T2 <e.
k=1
If 0<t — s<9, then use the above bounds in (4.10) to conclude that
N 0
\U"(1) = U< Y Zgxo(k)?’y 207 + ) xolk)?
k=1 k=N

o0
+ 3 Lgs s yXolk)’
k=1
<3e.

This and the fact that U"(0) — x( in H prove that {U"} is relatively compact in C(R,, H).
The relative compactness of {X"} now follows from (4.9).

Assume now P is any solution to the martingale problem for . starting at xo € H and
let X! denote (X, ¢;). Fix f € (0,1) and T>1. Choose ¢ € (0,1 — f). Using a time change
argument as above but now with no parameter n and 0 = 1, we may deduce for any ¢>1/¢
and k € N

P(Sup |X1; — C_Akfl‘» bk(/\/;)('lsx()(k)| >;L1:/)v/2)

(<T
<es(enq. T/p)ig! "7,
The right-hand side is summable over k by our choice of ¢ and (4.7). The Borel-Cantelli

lemma therefore implies that

sup |X’; _eh Jo oo dSxo(k)| <X;ﬁ/2 for k large enough, a.s. 4.11)

t<T

If xo € Hpg, this implies that with probability 1, for large enough k,

sup (X502 <1+ xo() A2 <1+ |xol,

(<T
and hence

sup [X|g<oo as.
1<T
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For general xo € H, (4.11) implies

sup |X’f|iﬁ/2<l + e_z’("T712£/2|x0| <c(y, T, p,x9) for large enough k, a.s.
T-'<i<T

This implies supy-1 ., <7 |X/|g<00 a.s. and so completes the proof. [
5. Uniqueness

We continue to assume that (a;) and (b;) are as in Section 2 and in particular will satisfy
(2.2). Let y, € H and let [® be any solution to the martingale problem for .# started at y,,.
For any bounded function f define

S;f=E /0 h e “f(X,)ds.

Fix zp € H and define
L =3 acDf )~ Y Fxibiz)Df (). (5.1)
ij=1 i

Set # =¥ — ¥ and let R; be the resolvent for #, as in Section 2. R

To make this agree with the definition of %, in Section 2 we must replace 4; by 4; =
bi(z0)%; and set af = ay(z0). As y<bi(z0)<y~', and the constants in Corollary 3.5 may
depend on y, we see that the bounds in Corollary 3.5 involving the original 4; remain valid
for R;. We also will use the other results in Section 3 with /; in place of 4; without further
comment. In addition, if we simultaneously replace b; by b; = b;/bi(zp), then

o)

1 NN
LI =35>, @)D () = Y 2ixibi(x)Df (x),
i=1

i,j=1

o0

L0 =3 acDf )~ Y FxiDf ().

i,j=1 i=1
and
bi(zo) =1 for all i.
In Propositions 5.1 and 5.2 we will simply assume b;(zg) = 1 for all i without loss of
generality, it being understood that the above substitutions are being made. In each case it
is easy to check that the hypotheses on (b;, 4;) carry over to (b,, },) and as the conclusions
only involve ¥, %, R;, and our solution X, which remain unaltered by these substitu-

tions, this reduction is valid.
Let

n=sup Y lay(x) — ag(zo)l. (5.2)
X =1

Set
Bi(x) = xi(bi(x) — 1).

As before, o will denote a parameter in (0, 1).
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Proposition 5.1. Assume

S lagle 2 <0, (5.3)
i<j
S AP IBile, < oo, (5.4)
and
SR B ¢ < 00, (5.5)
i

There exists ¢1 () — 0 as . — oo and ¢; = cy(a,y) such that for all f € C*, we have BR,f €
C* and

IBRf = < (e1() + o -
Proof. We have
ARSI D lai(x) = ai(z0)] D RAf ()
+JZ Zilxillbi(x) = TIDiRf (x)]

<naslfler + ca(DIf 1=, (5.6)

where ¢4(4) — 0 as 4 — oo by (5.4) and (3.11). In particular, the series defining ZR;f is
absolutely uniformly convergent.
Let a;(x) = a;(x) — a;i(z0). If h € H, then

|BR,f (x + h) — BRS(X)| = | > [a@y(x + DDy R,f (x + h) — Gy(x)DyR;f (x)]

iy

+ > A[Bi(x + WD;R;f (x + h) = B{(x)D;R;f (x)]

<

> ay(x + h)(DyR;f (x + h) — DyR;f (x)

i

+ 1) @y + h) = @(x) Dy Rif (x)

i

+ D LiBix + h)(DiRf (x + h) — DiRif (x)

+ Z 2i(Bi(x + h) — B{(x))D;R,f (x)

=S +S5+ S5+ 54 (5.7)
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Use (3.14) to see that
S1<cs Z ay(x + W)I|f | c=1h|*
ij

<cenlf|chl™.

By (3.12)
S2< Y lag(x + h) — ay(0)] |Dy R/ ()|

ij
<er Y laglesh* (4 7))~ f |

i<j
<D e lhl”

where (5.3) and dominated convergence imply lim;_, o, cg(4) = 0. By (3.13)

S3<¢g Z il Bi(x + M+ 207 P | e B < croOIf | eV,

where ¢jo(4) — 0 as A — oo by (5.4) and dominated convergence. By (3.11)
Sy<cnn Z il BilexCo4 1) R f | el < eoa(DIf | I,
i

where again ¢j2(4) — 0 as 1 — oo by (5.5). Combining (5.8)—(5.11) yields

IBRf | <[c13(4) + cran]lf | =
This and (5.6) complete the proof. [

(5.8)

(5.9

(5.10)

(5.11)

Let C? denote those functions in C* which only depend on the first n coordinates. Note

that 7 C |J, C;. Note also that S,/ is a real number while R;f" is a function.
Proposition 5.2. If f € |J, C;,., then

Sif = Rof vy) + SiBR;f .

(5.12)

Proof. Fix zy € H. Suppose h € 7. Since h(X,) — h(Xy) — f(; Lh(X,)ds is a martingale,

taking expectations we have

ER(X,) — h(yy) = E /0 t Lh(X)ds.

Multiplying by e=* and integrating over ¢ from 0 to oo, we obtain

1 [e%e] t
S;h —jh(yo) = / e M / Ph(X,)dsdt
v 0 0
Y / e N Lh(X)ds = ls;;fh.
2 Jo pi

This can be rewritten as

AS;h — S;Loh = h(y,) + S, Bh.

(5.13)
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Define

Lo =Y ayz)Dyf (x) = > AixiDif (x).
i=1

ij=1

Let R} be the corresponding resolvent. The corresponding process is an n-dimensional
Ornstein—Uhlenbeck process which starting from x at time ¢ is Gaussian with mean vector
(xie™""),;<, and covariance matrix Cy(f) = a;(zo)(1 — e ") (4; + J;)"'. These para-
meters are independent of n and the distribution coincides with the law of the first n
coordinates (with respect to ¢;) of the process with resolvent R;.

Now take f € C7 and let i(x) = R, f(x) = R} f(x1,...,x,). (Here we abuse our notation
slightly by having f also denote its dependence on the first n variables.) By Corollary 3.5
and (3.10), he J. Moreover, Loh= LR, f =R, f—f =R, f—f. The second
equality is standard since on functions in Clz,, &, coincides with the generator of the
finite-dimensional diffusion. Now substitute this into (5.13) to derive (5.12). O

To iterate (5.12) we will need to extend it to f € C* by an approximation argument.
Recall /1,' = bi(Z(])ii.

b
Notation. Write f, BN fif {f,} converges to f pointwise and boundedly.

Lemma 5.3. (a) If f € C”, then pR,f E>f as p — oo and

sup [IpR,f Il <IIf ¢+
p>0

(b) For p>0 there is a ci(p) such that for any bounded measurable f : H — R, R,f € C”
and ||pR, [l <ci@If llc,-

Proof. (a) Note if /' € C*, then
o0
IPRf e, < /O e IPS e, de<If e,
and
o0
PRI =/ = [ pe (RS ) — () > 0
because P,f(x) gf(x) as t — 0. '
Let X, be the solution to (2.4) (so that X has resolvents (R;)) and let X} = (X, &)e;.
Then X satisfies
X =X3+Mﬁ—z,~/ X'ds, (5.14)
0

where M} is a one-dimensional Brownian motion with Cov(M}, M%) = a;(s A 1). Let X7
denote the solution to (5.14) when X = x;. Then

t
X-;CiJrﬁi,l _ X,txi,z = h; — ii/ (ngh,-,z _ X:;’ial) ds,
0
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and so

X}X[Jrhf’l — X’Ix’l = e’)""hiei.

Hence, if X7 is defined by (X7, &) = X7,

~ |1/2
|X T — X = ‘Z hie™4t| < |hl.
Therefore
|Pf(x+h)— PfOI< |1 E( X = X7 < |f = A1,
and so

PR, f(x +h) — pR, f(X)| < / pe P f(x + ) — P f(x)| de<[f| =A%,
0
e, |pR, flc»<|flc». This proves (a).

(b) As we mentioned above, for any bounded measurable £, [|pR, flc, <I[fllc,.- We also
have

PpR,f —pR, [ = / pe "'[Poif — P f]dt
0
= (e” — 1)/ pe VP fdi—e / pe PP, fdt.
0 0
The right-hand side is bounded by

2(e” = Dlf llc,-

This in turn is bounded by c»(p)s*/? for 0<s<1. Also,

IPspR, [ = PR, flic, <2If llc, <257l llc, for s=>1.
Hence [IpR, flls»<c3(P)IIf ll¢,- Our conclusion follows by (3.10), which holds for the {Z,—}
just as it did for {4;}. O

b
Lemma 5.4. Suppose f, 20 where sup,, |f ,llcx <oo. Then
bp bp ..
DyR;f,— 0 and D;R;f,— 0 asn— oo foralli,j.

Proof. We focus on the second order derivatives as the proof for the first order derivatives
is simpler. We know from Corollary 3.3 that D;;R;f, is uniformly bounded in C* norm, so
in particular, it is uniformly bounded in C; norm and we need only establish the pointwise
convergence. We have from (3.8) that

ID5P S llc, <ctlfull 7. (5.15)
From Proposition 3.2, we have
DiP.f, = DiPixDg, 5 Pyjf - (5.16)
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Fix >0 and w € H. The proof of Proposition 5.2 in [1] shows there exist random variables
R(t,w) and Y, such that

DWPLf(x) = [E[f(th + Yt)R(t’ W)]’ f € Cb(H)a

and

w?

Tyt

E[R(t, w)*]<

Therefore
. bp

(s 1,X) = Do, e, Piyof o(X) = B(f ) (QypX + Y 12)R(1/2, O, 28))) —> 0
by dominated convergence. Moreover Cauchy—Schwarz implies

GG Ol e, <G~ sup Iy llc,
Repeating the above reasoning and using (5.16) we have

bp

DijPy f,(x) = DiPijshn(x) = E(hy(Q;px + Y 2)R(2/2,€)) — O
and

1DPe S lle, <G sup IIf yllc, (5.17)

m

Fix ¢>0. Write

+

|D[,-R;¢fn<x)|<‘ / ' DyP, f,(x)di / e DyP, f() dil;
0 &

by dominated convergence and (5.17) the second term tends to 0, while (5.15) shows the
first term is bounded by

/ ellflle 2 di<es (sup ancy)s“/%
0

m

Therefore

n— o0

lim sup DR, /(9] <cs (sup ufmnc«)s“/z.

Since ¢ is arbitrary,
lim sup [DyR; f,(x)| = 0. O

n—00

Proposition 5.5. Assume (5.4). If f € C*, then
Sif =R, f(vo) + SiBR,.f. (5.18)

b
Proof. We know f, =1 —pR, f 20 as p — oo by Lemma 5.3. This lemma also shows
Ifpllc= <2Ilf llc», and therefore we may use Lemma 5.4, the finiteness of 7, (5.4) (in fact a
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weaker condition suffices here), and dominated convergence to conclude

BR,[,(x) =Y (az(x) — a;(z0))Dy(R;.f,)(x)
if

37 axibix) = B DDIR,S ) >0 as p = oo.

Here we also use the bounds [|D;R; f,lc, <cllfllc+ and ||D,<R;(f],||cb<C/1[_1/2|[f||cx from
(3.11), (3.12) and Lemma 5.3(a). By using dominated convergence it is now easy to take
limits through the resolvents to see that to prove (5.18) it suffices to fix p>0 and verify it
for = pR,h where h € C*. Fix such an h.

Lbept zn(X) = D0 Xigi + Yo, (20);6s = x as n — oo and define /,(x) = h(z,(x)). Then
h, —> h since h € C*. Recall the definition of R, from the proof of Proposition 5.2; by the
argument there, we see that the function pR,/i,(x) = pRy/iy(x1, ..., x,) depends only on
(x1,...,x,). By Lemma 5.3(b) pR,h, € C* and therefore is in C}. Proposition 5.2 shows
that (5.18) is valid with /' = R,h,. Now pR,h, —>pR has n — oo and sup, [|[pR, /x|l ¢+ <

c1(p) by Lemma 5.3(b). Therefore, if d, = pR,(h, — 1) we may use Lemma 5.4, Corollary 3.5,
and dominated convergence, as before, to conclude

BRid(x) =D (ay(x) — ay(z0) Dy Rid,)(x)
ij
+ 37 Jixi(bilx) = bz DiRidn)(x) —> 0 as n — oc.

I
We may now let n — oo in (5.18) with /' = pR,h, to derive (5.18) with f = pR,h, as
required. O

Theorem 5.6. Assume (2.2), each a; and each b; is continuous, (4.7), (5.3), (5.4), and (5.5)
hold. There exists n, depending only on («,7), such that if n<n,, then for any y, € H there is
a unique solution to the martingale problem for ¥ started at y,.

Proof. Existence follows from Theorem 4.2.
Let P be any solution to the martingale problem and define S; as above. Suppose
f € C*. Then by Proposition 5.5 we have

Sif = Rif (vy) + SiBR;f .
Using Proposition 5.1 we can iterate the above and obtain

k
Sif =R, (Z (@R»")f(yo) + SBR)FY.
i=0

Provided #, = #y(2,7) is small enough, our hypothesis that #<#, and Proposition 5.1
imply that for 2> J¢(a, 7, (a;), (b;)), the operator #R; is bounded on C* with norm strictly
less than 4 »- Therefore Sk 11 (BR;) it converges to 0 and (ZR,)*"'f also converges to 0,
both in C* norm, as k — oco. In particular, they converge to 0 in sup norm, so
R (,@Rz)i)f(yo) and S;(ZR,)*'f both converge to 0 as k — oco. It follows that

Sif =R; (Z (@R»l’)f(yo).
i=0
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This is true for any solution to the martingale problem, so S, is uniquely defined for large
enough . Inverting the Laplace transform and using the continuity of ¢t — Ef(X}), we see
that for every f € C*, Ef(X,) has the same value for every solution to the martingale
problem. It is not hard to see that 7y C C* is dense with respect to the topology of
bounded pointwise convergence in the set of all bounded functions. From here standard
arguments (cf. [3, Section VI.3]) allow us to conclude the uniqueness of the martingale
problem of ¥ starting at y, as long as we have n<y,. O

Set
Opn =1{x€ H:|x[g<N}

Theorem 5.7. Assume (b;) and (ay) are as in Section 2, so that (2.2) holds. Assume also that
o, f € (0,1) satisfy:

(a) There exist p>1 and c¢; >0 such that ;= c\j’.

(b) X2, layle ;™ <oo.

(©) 32,4 <oo. (For example, this holds if B>1/p.)

(d) For all N>0, for all n,>0, and for all x, € Opn there exists 6>0 such that if
|x — xo| <0 and x € Qp y, then

Z la;i(x) — a;(xo)l <ny.

ij
(©) Yo, 4 bl er <00,

Then for all y € Hy there exists a unique solution to the martingale problem for & starting
at y.

Remark. By Theorem 4.2, any solution to the martingale problem for % starting at y € H
will immediately enter H g and remain there a.s. for any f € (0, 1). Hence the spaces H are
natural state spaces for the martingale problem.

Proof. Fix f € (0,1) as in (c) and write Qy for Q4 5. Let P be a solution to the martingale
problem for . By Theorem 4.2 we only need consider uniqueness. If Ty =
inf{t: X,¢Qy}, then by Theorem 4.2 we see that T 1 oo, a.s. and it suffices to show
uniqueness for P(X .7, € ). (c) implies Oy is compact and so as in the proof of Theorem
VI1.4.2 of [3] it suffices to show:

(5.19) for all xo € Qy there exist >0, a;, and g, such that a; = a; and b; = 5, on Oy N
{x € H: |x — xo|<r} and the martingale problem for 7z starting at y has a unique
solution for all y € Q. Here Z is defined analogously to % but with a; and b;
replaced by a; and b, respectively.

Fix xo € Qy, 1,y as in Theorem 5.6. Choose ¢ as in (d). We claim we can choose 1 >3, >0
depending on ¢ and N such that if x € Qy and ||x — xg|l,c <1, then |x — xo| <. Here
1¥[oo = sup; [{x, &)
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To prove the claim, note that || x — x|, <0, implies that for any K

Z(x — xky? Z 01 AN ) <KooT +4AN? DT Uy

k>Kj

So first choose K such that the second term 1s less thdn 0%/2 and then set 6, = 9/+/2K,.
Now let [p;, ;] =[x (31,x’ +o1]N[— N/l b2 N /2] and note p;<q; as xo € Qy. Let
Y; i R— Rbe deﬁned by
x if p;<x<g;,

Yix) = p i x<p;
q; if X>q;.

Define y : H— Oy N{x € H: ||x — Xolloo <01} by
Y =D Yiix e
=1

As 1112, <N?i;",  is well defined by (c).

Take r=0;€(0,1] and set a;(x) =a;(Y(x)). If |x—xo|<r and xe Qy, then
lx — xolloo <7 and therefore (x) = x, which says that a;(x) = a;(x) for all i,j.

Define

u if Jul<r,
p(u) =< Qr—ulu/r if r<|u|<2r,
0 if 2r<|ul,

and set l;(x) bi(xo 4+ p(x — x0)). If |x —xo|<r, then p(x—Xx9)=x—x¢ and so
b; /(x) = bi(x). Also b; is clearly continuous as (e) implies that b; is.
We now show that ag; satisfies the hypotheses of Theorem 5.6. For any x

D fayg(x) — ag(xo)l = Y lag(h(x)) — ay(xo). (5.20)
if ij
Since [|Y/(x) — Xollo <r and Y(x) € Qy, it follows that [(x) — xo| <J. (d) now implies that
the right-hand side of (5.20) is less than #,. It remains only to check (5.3) for @;. But

W, (x) — ¥ (x + Ayl < Iyl
and so
W) = ¥(x+ MI<|Al.
Therefore
la;(x + h) — ay(x)| = lay(Y(x + h)) — az(p(x))|

<lajl e (x + h) — Y(x)*
<lagj| e |h|”,

and so
aij| o <lajlco.

Hence aj; satisfies (5.3) because a;; does.
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If we set Bi(x) = x;(bi(x) — bi(xo)), it is easy to check that B;(x) is 0 for |x — xo|>2r,
I1Billoo S c2lbilc» S calbil e, and |Bilcx S calbilc» S calbilcs, where ¢; may depend on xo.
Therefore (e) implies (b;) satisfies (5.4) and (5.5).

We see then that Theorem 5.6 applies to a; and b; and so (5.19) holds. [

Example 5.8. We discuss a class of examples where the ; = 1 and the a;; are zero unless i
and j are sufficiently close together. Let M € N, o € (0, 1) and Sy/(i, /) be the subspace of H
generated by {e; : |k —i| v |k —j|<M}. Also let I, ; be the projection operator onto
Su(i,j). Assume that a;(x) = a;(x) = (g, a(x)e;) satisfies (2.2) and depends only on
coordinates corresponding to Sy(i,/), that is,

aij(x) = ay(Ils,,;x) forall xe H, i,j e N. (5.21)
In particular, (5.21) implies a;; is constant if |i — j|>2M. Also suppose that

sup |aj|c» = ¢1 <oo. (5.22)
iij

Set b;(x) = 1 for all i, x and also assume
Ajz ey for all j for some p>1, (5.23)

and f € (0, 1) satisfies

00 s
> )uj7+0<oo for some > 0. (5.24)
j=1

For example, (5.24) will hold if p>2 and fo>2/p. We then claim that the hypotheses of
Theorem 5.7 hold and so there is a unique solution to the martingale problem for

Lf(x) = ai(x)Dyf (x) = 3_; 4ixiDif (x), starting at any y € Hg.
We must check conditions (b)—(d) of Theorem 5.7. Note first that

lai(x + h) — a;(0)| < 1gizj <2 laijl =A%,

so that |a;i|c« <1(i—j<2ac3 and hence by (5.24),

S lagled P <@M A+ Des S 47 <oo.

i) J

This proves (b), and (c) is immediate from (5.24). If N>0, x,xo € Qp v, then for small
enough >0,

g |a;i(x) — a;(xo)
ij
o/2

<2 lagles | Y Tge-ivik—i<an (k) = xo(k))*

i<j k
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ir2M 2/2

L2 = x> D D Tgkmin<anlx(k) — xo(k)[P~3/
i j=1 k

<|x — xol°ca(M) Z [x(k) — xo(k)[*~*
=1

00 o

<CS(M)|X _ )C(]|8 Z(2N)773/11(2 (o—e)
k=1

<c(M,N)|x — xol".

We have used (5.22), x,xp € Qg y and (5.24) in the above. This proves (d), as required.

Example 5.9. We give a more specific realization of the previous example. Continue to
assume b; = 1 for all i, (5.23), and (5.24). Let L, N>1 (we can take N = 1, for example)
and for k>1let I = {(k — 1)N + 1,...,kN}. For each k assume a® : R*“+N — & the
space of symmetric positive definite N x N matrices. Assume for all k, for all x € R*:V,
and for all z € RV,

NN
Yo > @z e ylzl Al (5.25)
i=1 j=1

and

®) . )
sup 131fo la;; | ox < o0. (5.26)

Now for x e H, let mx = ({X, &(ek—0)N=L)v1))p—1... 204N € RN and define a: H —

L(H,H) by

.....

(a(x)e;, ) = a;;(x) = a;i(x)

k) P
ai_(k_l)NJ_(k_l)N(nkx) if i,j el k=1,

0 if (,))¢Ure; I x Ix.

Then for all x,z € H,

Z Z ajj(x)ziz; = Z Z a;jj(x)ziz;

=1 l,/Elk

= Z Z ajj (ﬂkx)z(k DN+iZ(k—1)N+j

=1 ij=
€ [ylz% 712

by (5.25), and so (2.2) holds. Note that if i,j € I, then (using the notation of Example 5.8)
SLrn@j) D {k—1)N—-L+1,...,kN + L}, and so (5.21) with M = L + N is immediate
from the above definitions. Also (5.22) is implied by (5.26). The conditions of Example 5.8
therefore hold and so weak existence and uniqueness of solutions hold for the martingale
problem for % with initial conditions in Hg.
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Remark 5.10. The above examples demonstrate the novel features of our results. The
fact that our perturbation need not be nonnegative facilitates the localization argument
(see Remark 9 in [23] for comparison) and the presence of {}t;“/ 2} in condition (b) of
Theorem 5.7 means that the perturbation need not be Holder in the trace class norm. The
latter allows for the possibility of locally dependent Hélder coefficients with just bounded
Holder norms, something that seems not to be possible using other results in the literature.
On the other hand [23] includes an SPDE example which our approach cannot handle in
general unless, for example, the orthonormal basis in the equation diagonalizes the second
derivative operator. This is because he has decoupled the conditions on the drift operator
and noise term, while ours are interconnected. The latter leads to the double summation in
conditions (b) and (d) of Theorem 5.7, as opposed to the trace class conditions in [23]. All
of these approaches seem to still be a long way from resolving the weak uniqueness
problem for the one-dimensional SPDE described in the introduction which leads to much
larger perturbations.
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