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Abstract

We consider the operator

Lf ðxÞ ¼
1

2

X1
i;j¼1

aijðxÞ
q2f

qxiqxj

ðxÞ �
X1
i¼1

lixibiðxÞ
qf

qxi

ðxÞ.

We prove existence and uniqueness of solutions to the martingale problem for this operator under

appropriate conditions on the aij ; bi, and li. The process corresponding to L solves an infinite

dimensional stochastic differential equation similar to that for the infinite dimensional Ornstein–

Uhlenbeck process.
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1. Introduction

Let li be a sequence of positive reals tending to infinity, let sij and bi be functions defined
on a suitable Hilbert space which satisfy certain continuity and non-degeneracy conditions,
and let W i

t be a sequence of independent one-dimensional Brownian motions. In this paper
we consider the countable system of stochastic differential equations

dX i
t ¼

X1
j¼1

sijðX tÞdW i
t � libiðX tÞX

i
t dt; i ¼ 1; 2; . . . , (1.1)

and investigate sufficient conditions for weak existence and weak uniqueness to hold. Note
that when the sij and bi are constant, we have the stochastic differential equations
characterizing the infinite-dimensional Ornstein–Uhlenbeck process.
We approach the weak existence and uniqueness of (1.1) by means of the martingale

problem for the corresponding operator

Lf ðxÞ ¼
1

2

X1
i;j¼1

aijðxÞ
q2f

qxiqxj

ðxÞ �
X1
i¼1

lixibiðxÞ
qf

qxi

ðxÞ (1.2)

operating on a suitable class of functions, where aijðxÞ ¼
P1

k¼1 sikðxÞsjkðxÞ. Our main
theorem says that if the aij are nondegenerate and bounded, the bi are bounded above and
below, and the aij and bi satisfy appropriate Hölder continuity conditions, then existence
and uniqueness hold for the martingale problem for L; see Theorem 5.7 for a precise
statement.
There has been considerable interest in infinite dimensional operators whose coefficients

are only Hölder continuous. For perturbations of the Laplacian, see Cannarsa and Da
Prato [6], where Schauder estimates are proved using interpolation theory and then applied
to Poisson’s equation in infinite dimensions with Hölder continuous coefficients (see also
[14]).
Similar techniques have been used to study operators of the form (1.2). In finite

dimensions see [17–19,12]. For the infinite dimensional case see [7–11,14,23]. Common to
all of these papers is the use of interpolation theory to obtain the necessary Schauder
estimates. In functional analytic terms, the system of equations (1.1) is a special case of the
equation

dX t ¼ ðbðX tÞX t þ F ðX tÞÞdtþ
ffiffiffiffiffiffiffiffiffiffiffi
aðX tÞ

p
dW t, (1.3)

where a is a mapping from a Hilbert space H to the space of bounded nonnegative self-
adjoint linear operators on H, b is a mapping from H to the nonnegative self-adjoint linear
operators on H (not necessarily bounded), F is a bounded operator on H, and bðxÞx

represents the composition of operators. Previous work on (1.3) has concentrated on the
following cases: where a is constant, b is Lipschitz continuous, and F � 0; where a and b

are constant and F is bounded; and where F is bounded, b is constant and a is a
perturbation of a constant operator by means of a Hölder continuous nonnegative self-
adjoint operator. We also mention the paper [13] where weak solutions to (1.3) are
considered. In our paper we consider Eq. (1.3) with the a and b satisfying certain Hölder
conditions and F � 0. There would be no difficulty introducing bounded F ðX tÞdt terms,
but we chose not to do so.
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The paper most closely related to this one is that of Zambotti [23]. Our results
complement those of [23] as each has its own advantages. We were able to remove the
restriction that the aij ’s be given by means of a perturbation by a bounded nonnegative
operator which in turn facilitates localization, but at the expense of working with respect to
a fixed basis and hence imposing summability conditions involving the off-diagonal aij .
See Remark 5.10 for a further discussion in light of a couple of examples and our explicit
hypotheses for Theorem 5.7.

There are also martingale problems for infinite dimensional operators with Hölder
continuous coefficients that arise from the fields of superprocesses and stochastic partial
differential equations (SPDE). See [20] for a detailed introduction to these. We mention
[15], where superprocesses in the Fleming–Viot setting are considered, and [4], where
uniqueness of a martingale problem for superprocesses on countable Markov chains with
interactive branching is shown to hold. These latter results motivated the present approach
as the weighted Hölder spaces used there for our perturbation bounds coincide with the
function spaces Sa used here (see Section 2), at least in the finite-dimensional setting
(see [1]).

Consider the one dimensional SPDE

qu

qt
ðt; xÞ ¼

1

2

q2u
qx2
ðx; tÞ þ AðuÞd _W , (1.5)

where _W is space-time white noise. If one sets

X
j
t ¼

Z 2p

0

eijxuðx; tÞdx; j ¼ 0;�1;�2; . . . ,

then the collection fX ig1i¼�1 can be shown to solve system (1.1) with li ¼ i2, the bi

constant, and the aij defined in an explicit way in terms of A. Our original interest in the
problem solved in this paper was to understand (1.5) when the coefficients A were bounded
above and below but were only Hölder continuous as a function of u. The results in this
paper do not apply to (1.5) and we hope to return to this in the future.

The main novelties of our paper are the following.
(1)
 Ca estimates (i.e., Schauder estimates) for the infinite dimensional Ornstein–Uhlenbeck

process. These were already known (see [14]), but we point out that in contrast to using
interpolation theory, our derivation is quite elementary and relies on a simple real
variable lemma together with some semigroup manipulations.
(2)
 Localization. We use perturbation theory along the lines of Stroock–Varadhan to
establish uniqueness of the martingale problem when the coefficients are sufficiently
close to constant. We then perform a localization procedure to establish our main
result. In infinite dimensions localization is much more involved, and this argument
represents an important feature of this work.
(3)
 A larger class of perturbations. Unlike much of the previous work cited above, we do
not require that the perturbation of the second order term be bounded by an operator
that is nonnegative. The price we pay is that we require additional conditions on the
off-diagonal aij’s.
After some definitions and preliminaries in Section 2, we establish the needed Schauder

estimates in Section 3. Section 4 contains the proof of existence and Section 5 the
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uniqueness. Section 5 also contains some specific examples where our main result applies.
This includes coefficients aij which depend on a finite number of local coordinates near ði; jÞ
in a Hölder manner.
We use the letter c with or without subscripts for finite positive constants whose value is

unimportant and which may vary from proposition to proposition. a will denote a real
number between 0 and 1.
2. Preliminaries

We use the following notation. If H is a separable Hilbert space and f : H ! R, Dwf ðxÞ

is the directional derivative of f at x 2 H in the direction w; we do not require w to be a unit
vector. The inner product in H is denoted by h�; �i, and j � j denotes the norm generated by
this inner product. Cb ¼ CbðHÞ is the collection of R-valued bounded continuous
functions on H with the usual supremum norm. Let C2

b be the set of functions in Cb for
which the first and second order partials are also in Cb. For a 2 ð0; 1Þ, set

jf jCa ¼ sup
x2H;ha0

jf ðxþ hÞ � f ðxÞj

jhja

and let Ca be the set of functions in Cb for which kf kCa ¼ kf kCb
þ jf jCa is finite.

Let V : DðV Þ ! H be a (densely defined) self-adjoint nonnegative definite operator such
that

V�1 is a trace class operator on H. (2.1)

Then there is a complete orthonormal system f�n : n 2 Ng of eigenvectors of V�1 with
corresponding eigenvalues l�1n , ln40, satisfyingX1

n¼1

l�1n o1; ln " 1; V�n ¼ ln�n

(see, e.g. Section 120 in [21]). Let Qt ¼ e�tV be the semigroup of contraction operators on
H with generator �V . If w 2 H, let wn ¼ hw; �ni and we will write Dif and Dijf for D�i

f and
D�i

D�j f , respectively.
Assume a : H ! LðH;HÞ is a mapping from H to the space of bounded self-adjoint

operators on H and b : H ! LðDðV Þ;HÞ is a mapping from H to self-adjoint nonnegative
definite operators on DðV Þ such that f�ng are eigenvectors of bðxÞ for all x 2 H. If aijðxÞ ¼

h�i; aðxÞ�ji and bðxÞð�iÞ ¼ libiðxÞ�i, we assume that for some g40

g�1jzj2X
X

i;j

aijðxÞzizjXgjzj2; x; z 2 H,

g�1XbiðxÞXg; x 2 H ; i 2 N. (2.2)

We consider the martingale problem for the operator L which, with respect to the
coordinates hx; �ii, is defined by

Lf ðxÞ ¼
1

2

X1
i;j¼1

aijðxÞDijf ðxÞ �
X1
i¼1

lixibiðxÞDif ðxÞ. (2.3)
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Let T be the class of functions in C2
b that depend on only finitely many coordinates and

T0 be the set of functions inT with compact support. More precisely, f 2T if there exists
n and f n 2 C2

bðR
nÞ such that f ðx1; . . . ; xn; . . .Þ ¼ f nðx1; . . . ;xnÞ for each point ðx1;x2; . . .Þ

and f 2T0 if, in addition, f n has compact support. Let X t denote the coordinate maps on
the space Cð½0;1Þ;HÞ of continuous H-valued paths. We say that a probability measure P
on Cð½0;1Þ;HÞ is a solution to the martingale problem for L started at x0 if PðX 0 ¼

x0Þ ¼ 1 and f ðX tÞ � f ðX 0Þ �
R t

0 Lf ðX sÞds is a martingale for each f 2T.
The connection between systems of stochastic differential equations and martingale

problems continues to hold in infinite dimensions; see, for example, [16, pp. 166–168].
We will use this fact without further mention.

There are different possible martingale problems depending on what class of functions
we choose as test functions. Since existence is the easier part for the martingale problem
(see Theorem 4.2) and uniqueness is the more difficult part, we will get a stronger and more
useful theorem if we have a smaller class of test functions. The collection T is a reasonably
small class. When aðxÞ � a0 and bðxÞ � V are constant functions, the process associated
with L is the well-known H-valued Ornstein–Uhlenbeck process. We briefly recall the
definition; see Section 5 of [1] for details. Let ðW t; tX0Þ be the cylindrical Brownian
motion on H with covariance a. Let Ft be the right continuous filtration generated by
W. Consider the stochastic differential equation

dX t ¼ dW t � VX t dt. (2.4)

There is a pathwise unique solution to (2.4) whose laws fPx;x 2 Hg define a unique
homogeneous strong Markov process on the space of continuous H-valued paths (see, e.g.
Section 5.2 of [16]). fX t; tX0g is an H-valued Gaussian process satisfying

EðhX t; hiÞ ¼ hX 0;Qthi for all h 2 H, (2.5)

and

CovðhX t; gihX t; hiÞ ¼

Z t

0

hQt�sh; aQt�sgids. (2.6)

The law of X started at x solves the martingale problem for

L0f ðxÞ ¼
1

2

X1
i;j¼1

a0
ijDijf ðxÞ �

X1
i¼1

lixiDif ðxÞ. (2.7)

We let Ptf ðxÞ ¼ Exf ðX tÞ be the semigroup corresponding to L0, and Rl ¼
R1
0 e�lsPs ds

be the corresponding resolvent. We define the semigroup norm k � kSa for a 2 ð0; 1Þ by

jf jSa ¼ sup
t40

t�a=2kPtf � f kCb
(2.8)

and

kf kSa ¼ kf kCb
þ jf jSa .

Let Sa denote the space of measurable functions on H for which this norm is finite.
For x 2 H and b 2 ð0; 1Þ define jxjb ¼ supk jhx; �kijl

b=2
k and

Hb ¼ fx 2 H : jxjbo1g. (2.9)
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3. Estimates

We start with the following real variable lemma.

Lemma 3.1. Let A40;B40. Assume K : CbðHÞ ! CbðHÞ is a bounded linear operator such

that

kKf kCb
pAkf kCb

; f 2 CbðHÞ, (3.1)

and there exists v 2 H such that

kKf kCb
pBkDvf kCb

, (3.2)

for all f such that Dvf 2 CbðHÞ. Then for each a 2 ð0; 1Þ there is a constant c1 ¼ c1ðaÞ such

that

kKf kCb
pc1jvj

ajf jCaBaA1�a for all f 2 Ca.
Proof. Assume (3.1) and (3.2), the latter for some v 2 H. Let fpt : tX0g be the standard
Brownian density on R. If f 2 Ca, set

pe � f ðxÞ ¼

Z
R

f ðxþ zvÞpeðzÞdz; x 2 H.

Since a change of variables shows that

pe � f ðxþ hvÞ � pe � f ðxÞ ¼

Z
R

f ðxþ zvÞpeðz� hÞdz�

Z
R

f ðxþ zvÞpeðzÞdz,

it follows that

Dvðpe � f ÞðxÞ ¼ �

Z
f ðxþ zvÞp0eðzÞdz;

this is in CbðHÞ and

jDvðpe � f ÞðxÞj ¼ �

Z
f ðxþ zvÞp0eðzÞdz

���� ����
¼

Z
ðf ðxþ zvÞ � f ðxÞÞp0eðzÞdz

���� ����
pjf jCa jvja

Z
jzja
jzj

e
peðzÞdz

¼ c2jf jCa jvjaeða�1Þ=2,

where c2 ¼
R
jzjaþ1p1ðzÞdz. We therefore obtain from (3.2) that

kKðpe � f ÞkCb
pc2Bjf jCa jvjaeða�1Þ=2. (3.3)

Next note that

jpe � f ðxÞ � f ðxÞjp
Z
jf ðxþ zvÞ � f ðxÞjpeðzÞdz

pjf jCa jvja
Z
jzjapeðzÞdz

¼ c3jf jCa jvjaea=2,
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where c3 ¼
R
jzjap1ðzÞdz. By (3.1)

kKðpe � f � f ÞkCb
pc3Ajf jCa jvjaea=2. (3.4)

Let c4 ¼ c2 _ c3 and e ¼ B2=A2. Combining (3.3) and (3.4) we have

kKf kCb
pc4jf jCa jvjaea=2½Aþ Be�1=2�

¼ 2c4jf jCa jvjaBaA1�a: &

Set

hðuÞ ¼
ð2uÞ=ðe2u � 1Þ; ua0;

1; u ¼ 0;

(
and

jwjt ¼
X

i

w2
i hðlitÞ

 !1=2

pjwj.

Recall

Qtw ¼
X1
i¼1

e�li twiei.

We have the following by Propositions 5.1 and 5.2 of [1]:

Proposition 3.2. (a) For all w 2 H, f 2 CbðHÞ, and t40, DwPtf 2 CbðHÞ and

kDwPtf kCb
p
jwjtkf kCbffiffiffiffi

gt
p . (3.5)

(b) If tX0, w 2 H, and f : H ! R is in CbðHÞ such that DQtwf 2 CbðHÞ, then

DwPtf ðxÞ ¼ PtðDQtwf ÞðxÞ; x 2 H.

In particular,

kDwPtf kCb
pkDQtwf kCb

. (3.6)

We now prove:

Corollary 3.3. Let f 2 Ca, u;w 2 H. Then for all t40, DwPtf and DuDwPtf are in CbðHÞ

and there exists a constant c1 ¼ c1ða; gÞ independent of t such that

kDwPtf kCb
pc1jwjtjf jCa tða�1Þ=2pc1jwj jf jCa tða�1Þ=2 (3.7)

and

kDuDwPtf kCb
pc1jQt=2ujt=2jwjt=2jf jCat

a
2�1pc1jujt=2jwjt=2jf jCat

a
2�1

pc1jujjwjjf jCat
a
2�1. ð3:8Þ
Proof. That DwPtf is in CbðHÞ is immediate from Proposition 3.2(a). By (3.5) and (3.6) we
may apply Lemma 3.1 to K ¼ DwPt with v ¼ Qtw, A ¼ jwjtðgtÞ�1=2 and B ¼ 1 to conclude
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for f 2 Ca

kDwPtf kCb
pc2jQtwj

ajf jCa jwj1�at ðgtÞ�ð1�aÞ=2

pc2gða�1Þ=2jwjtjf jCatða�1Þ=2. ð3:9Þ

This gives (3.7).
By Proposition 3.2, DwDuPtf ¼ DwPt=2DQt=2uPt=2f , and the latter is seen to be in CbðHÞ

by invoking Proposition 3.2(a) twice. Using (3.5) and then (3.9) we have

kDwDuPtf kCb
¼ kDwPt=2DQt=2uPt=2f kCb

pjwjt=2ðgt=2Þ�1=2kDQt=2uPt=2f kCb

pjwjt=2ðgt=2Þ�1=2c2gða�1Þ=2jQt=2ujt=2jf jCa ðt=2Þða�1Þ=2.

This gives (3.8). &

Remark 3.4. We often will use the fact that there exists c1 such that

kf kCapc1kf kSa . (3.10)

This is (5.20) of [1].

Corollary 3.5. There exists c1 ¼ c1ða; gÞ such that for all l40, f 2 Ca, ipj, we have

DiRlf ;DijRlf 2 Cb, and

kDiRlf kCb
pc1ðlþ liÞ

�ðaþ1Þ=2
jf jCa , (3.11)

kDijRlf kCb
pc1ðlþ ljÞ

�a=2
jf jCa , (3.12)

kDiRlf kCapc1ðlþ liÞ
�1=2
kf kCa , (3.13)

kDijRlf kCapc1kf kCa . (3.14)

Proof. Corollary 3.3 is exactly the same as Proposition 5.4 in [1], but with the Sa norms
replaced by Ca norms. We may therefore follow the proofs of Theorem 5.6 and Corollary
5.7 in [1] and then use (3.10) to obtain our result. However, the proofs in [1] can be
streamlined, so for the sake of clarity and completeness we give a more straightforward
proof.
From (3.7) and (3.8) we may differentiate under the time integral and conclude that the

first and second order partial derivatives of Rlf are continuous. To derive (3.12), note first
that by (3.8),

kDijPtf kCb
¼ kDjiPtf kCb

pc2jQt=2�jjj�ijjf jCa t
a
2�1

¼ c2e
�lj t=2jf jCa t

a
2�1. ð3:15Þ

Multiplying by e�lt and integrating over t from 0 to 1 yields (3.12).
Next we turn to (3.14). Recall the definition of the Sa norm from (2.8). In view of (3.10)

it suffices to show

kDijRlf kSapc3kf kCa .
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Since

kPtDijRlf �DijRlf kCb
p2kDijRlf kCb

pc1jf jCa ðlþ ljÞ
�a=2

by (3.12), we need only consider tpðlþ ljÞ
�1.

Use Proposition 3.2(b) to write

PtDijRlf �DijRlf ¼ ½e�li te�lj tDijPtRlf �DijPtRlf �

þ ½DijPtRlf �DijRlf �. ð3:16Þ

Recalling that liplj, we see that the first term is bounded in absolute value by

c4ðlj tÞ
a=2
kDijPtRlf kCb

pc5ta=2
Z 1
0

la=2j e�lskDijPtþsf kCb
ds

pc5ta=2jf jCa ,

using (3.15).
The second term in (3.16) is equal, by the semigroup property, toZ 1

0

e�lsDijPtþsf ds�

Z 1
0

e�lsDijPsf ds

¼ ðelt � 1Þ

Z 1
0

e�lsDijPsf ds� elt

Z t

0

e�lsDijPsf ds.

Since ltp1, then elt � 1pc6ðltÞa=2 and the bound for the second term in (3.16) now
follows by using (3.15) to bound the above integrals, and recalling again that ltp1.

The proofs of (3.11) and (3.13) are similar but simpler, and are left to the reader (or refer
to [1]). &

4. Existence

Before discussing existence, we first need the following tightness result.

Lemma 4.1. Suppose Y is a real-valued solution of

Y t ¼ y0 þMt � l
Z t

0

Y r dr, (4.2)

where Mt is a martingale such that for some c1,

hMit � hMispc1ðt� sÞ; spt. (4.3)

Let T40, e 2 ð0; 1Þ. Let Zt ¼
R t

0 e�lðt�sÞ dMs. Then Zt ¼ Y t � e�lty0 and for each q4e�1,
there exists a constant c2 ¼ c2ðe; q;TÞ such that for all d 2 ð0; 1�,

E sup
s;tpT ;jt�sjpd

jZt � Zsj
2q

" #
pc2ðe; q;TÞ

deq�1

lð1�eÞq
. (4.4)

Proof. Some elementary stochastic calculus shows that

Y t ¼ e�lty0 þ

Z t

0

e�lðt�sÞ dMs,

which proves the first assertion about Z.
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Fix s0ot0pT . Let

Kt ¼ ½e
�lðt0�s0Þ � 1�e�ls0

Z t

0

elr dMr

and

Lt ¼ e�lt0

Z t

s0

elr dMr.

Note

Zt0 � Zs0 ¼ Ks0 þ Lt0 .

Then

hKis0 ¼ ½e
�lðt0�s0Þ � 1�2e�2ls0

Z s0

0

e2lr dhMir

pc3½e
�lðt0�s0Þ � 1�2e�2ls0

e2ls0 � 1

2l
pc3½e

�lðt0�s0Þ � 1�2l�1

pc3
ð1 ^ lðt0 � s0ÞÞ

l
.

Considering the cases lðt0 � s0Þ41 and p1 separately, we see that for any e 2 ð0; 1Þ this is
less than

c4ðeÞ
ðt0 � s0Þ

e

l1�e
.

Now applying the Burkholder–Davis–Gundy inequalities, we see that

EjKs0 j
2qpc5ðe; qÞ

ðt0 � s0Þ
eq

lð1�eÞq
; q41. (4.5)

Similarly,

hLit0pc6
1� e�2lðt0�s0Þ

2l
pc6ðl

�1
^ ðt0 � s0ÞÞ

¼ c6
ð1 ^ lðt0 � s0ÞÞ

l
.

This leads to

EjLt0 j
2qpc7ðe; qÞ

ðt0 � s0Þ
eq

lð1�eÞq
; q41. (4.6)

Combining (4.5) and (4.6) we get

EjZt0 � Zs0 j
2qpc8ðe; qÞ

jt0 � s0j
eq

lð1�eÞq
.

It is standard to obtain (4.4) from this; cf. the proof of Theorem I.3.11 in [2]. &

Recall the definition of Hb from (2.9).
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Theorem 4.2. Assume aij : H ! R is continuous for all i; j, bi is continuous for all i, (2.2)
holds, and for some p41 and positive constant c1

lkXc1k
p; kX1. (4.7)

Then for every x0 2 H, there is a solution P to the martingale problem for L starting at x0.
Moreover if b 2 ð0; 1Þ, then any such solution has supeptpe�1 jX tjbo1 for all e P-a.s. If in

addition x0 2 Hb for some b 2 ð0; 1Þ, then any solution P to the martingale problem for L
starting at x0 will satisfy

sup
tpT

jX tjbo1 for all T40; P� a.s. (4.8)

Proof. This argument is standard and follows by making some minor modifications to the
existence result in Section 5.2 of [16]. We give a sketch and leave the details to the reader.
Fix x0 in H. Using the finite dimensional existence result, we may construct a solution
X n

t ¼ ðX
n;k
t : k 2 NÞ of

X n;k
t ¼ x0ðkÞ þ 1ðkpnÞ �

Z t

0

lkX n;k
s bkðX

n
s Þdsþ

Xn

j¼1

Z t

0

sn
k;jðX

n
s ÞdW j

s

" #
.

Here fW jg is a sequence of independent one-dimensional standard Brownian motions and
snðxÞ is a symmetric positive definite square root of ðaijðxÞÞi;jpn which is continuous in
x 2 H (see Lemma 5.2.1 of [22]). Then X n

t ¼
Pn

k¼1 X n;k
t �k has paths in Cð½0;1Þ;HÞ and we

next verify this sequence of processes is relatively compact in this space. Once one has
relative compactness, it is routine to use the continuity of the aij and bi on H to show that
any weak limit point of fX ng will be a solution to the martingale problem for L starting
at x0.

By our assumptions on bk, each bk is bounded above by g�1 and below by g. We perform
a time change on X n;k

t : let An;k
t ¼

R t

0
bkðX

n
s Þds, let tn;k

t be the inverse of An;k
t , and let

Y n;k
t ¼ X n;k

tn;k
t

. Then Y n;k
t solves the stochastic differential equation

Y n;k
t ¼ x0ðkÞ þ 1ðkpnÞ �

Z t

0

lkY n;k
s dsþMn;k

t

� �
,

where Mn;k
t is a martingale satisfying jhMn;kit � hM

n;kisjpc2jt� sj, and c2 is a constant not
depending on n or k.

We may use stochastic calculus to write

Y n;k
t ¼ xn;kðtÞ þ Zn;k

t ,

where

xn;kðtÞ ¼ ½1ðkpnÞe
�lkt þ 1ðk4nÞ�x0ðkÞ

and

Zn;k
t ¼ 1ðkpnÞ

Z t

0

e�lkðt�sÞ dMn;k
s .
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Let T40 and sptpT . Choose e 2 ð0; 1� 1
p
Þ and q42=e. By Lemma 4.1 we have for

kpn and any d 2 ð0; g�,

E sup
u;vpg�1T ;ju�vjpdg�1

jZn;k
v � Zn;k

u j
2q

" #
pc2ðe; q; g�1TÞg�eqþ1

deq�1

lð1�eÞqk

.

Hence, undoing the time change tells us that

E sup
s;tpT ;js�tjpd

j eX n;k
t �

eX n;k
s j

2q

" #
p1ðkpnÞc3ðe; q; g;TÞ

deq�1

lð1�eÞqk

,

where

eX n;k
t ¼ 1ðkpnÞðX

n;k
t � e

�lk

R t

0
bkðX

n
r Þ dr

x0ðkÞÞ þ 1ðk4nÞx0ðkÞ,

so that ~X
n;k

tn;k
t
¼ Zn;k

t . Now for 0ps; tpT and jt� sjpg,

ðEj eX n
t �

eX n
s j
2qÞ

1=q
¼ kj eX n

t �
eX n

s j
2kq ¼

X
k

j eX n;k
t �

eX n;k
s j

2

�����
�����

q

p
X

k

kj eX n;k

t �
eX n;k

s j
2kq ¼

X
k

ðEj eX n;k
t �

eX n;k
s j

2qÞ
1=q

pc3ðe; q; g;TÞ
1=q
X

k

jt� sje�1=q

l1�ek

,

where k � kq is the usual LqðPÞ norm.
By our choice of e this is bounded by c4ðe; q; g;TÞjt� sje=2, and hence

sup
n

Ej eX n
t �

eX n
s j
2qpc

q
4jt� sjeq=2; s; tpT ; js� tjpg.

It is well known ([5]) that this implies the relative compactness of eX n in CðRþ;HÞ.
We may write

X n
t ¼

eX n
t �UnðtÞ, (4.9)

where

UnðtÞ ¼
Xn

k¼1

e
�lk

R t

0
bkðX

n
r Þ dr

x0ðkÞek.

If sot, then

jUnðtÞ �UnðsÞj2 ¼
Xn

k¼1

e
�lk

R t

0
bkðX

n
r Þ dr
� e
�lk

R s

0
bkðX

n
r Þ dr

� �2
x0ðkÞ

2

p
Xn

k¼1

ððl2kg
�2jt� sj2Þ ^ 1Þx0ðkÞ

2
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p
X1
k¼1

1ðlkpgjt�sj�1Þl
2
kx0ðkÞ

2g�2jt� sj2

þ
X1
k¼1

1ðlk4gjt�sj�1Þx0ðkÞ
2. ð4:10Þ

Fix e40. First choose N so that
P1

k¼N x0ðkÞ
2oe, and then d40 so thatX1

k¼1

1
ðlk4gd�1Þx0ðkÞ

2oe

and

XN

k¼1

l2kx0ðkÞ
2g�2d2oe.

If 0ot� sod, then use the above bounds in (4.10) to conclude that

jUnðtÞ �UnðsÞj2p
XN

k¼1

l2kx0ðkÞ
2g�2d2 þ

X1
k¼N

x0ðkÞ
2

þ
X1
k¼1

1
ðlk4gd�1Þx0ðkÞ

2

o3e.

This and the fact that Unð0Þ ! x0 in H prove that fUng is relatively compact in CðRþ;HÞ.
The relative compactness of fX ng now follows from (4.9).

Assume now P is any solution to the martingale problem for L starting at x0 2 H and
let X i

t denote hX t; �ii. Fix b 2 ð0; 1Þ and T41. Choose e 2 ð0; 1� bÞ. Using a time change
argument as above but now with no parameter n and d ¼ 1, we may deduce for any q41=e
and k 2 N

P sup
tpT

jX k
t � e

�lk

R t

0
bkðX sÞ ds

x0ðkÞj4l�b=2k

� �
pc5ðe; q;T=gÞl

bq�qð1�eÞ
k .

The right-hand side is summable over k by our choice of e and (4.7). The Borel–Cantelli
lemma therefore implies that

sup
tpT

jX k
t � e

�lk

R t

0
bkðX sÞ ds

x0ðkÞjpl�b=2k for k large enough; a.s. (4.11)

If x0 2 Hb, this implies that with probability 1, for large enough k,

sup
tpT

jX k
t jl

b=2
k p1þ x0ðkÞl

b=2
k p1þ jx0jb,

and hence

sup
tpT

jX tjbo1 a:s.
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For general x0 2 H, (4.11) implies

sup
T�1ptpT

jX k
t jl

b=2
k p1þ e�lkgT�1lb=2k jx0jpc6ðg;T ; b;x0Þ for large enough k; a.s.

This implies supT�1ptpT jX tjbo1 a.s. and so completes the proof. &

5. Uniqueness

We continue to assume that ðaijÞ and ðbiÞ are as in Section 2 and in particular will satisfy
(2.2). Let y0 2 H and let P be any solution to the martingale problem for L started at y0.
For any bounded function f define

Slf ¼ E

Z 1
0

e�lsf ðX sÞds.

Fix z0 2 H and define

L0f ðxÞ ¼
1

2

X1
i; j¼1

aijðz0ÞDijf ðxÞ �
X1

i

lixibiðz0ÞDif ðxÞ. (5.1)

Set B ¼L�L0 and let Rl be the resolvent for L0 as in Section 2.
To make this agree with the definition of L0 in Section 2 we must replace li by bli ¼

biðz0Þli and set a0
ij ¼ aijðz0Þ. As gpbiðz0Þpg�1, and the constants in Corollary 3.5 may

depend on g, we see that the bounds in Corollary 3.5 involving the original li remain valid
for Rl. We also will use the other results in Section 3 with bli in place of li without further
comment. In addition, if we simultaneously replace bi by bbi ¼ bi=biðz0Þ, then

Lf ðxÞ ¼
1

2

X1
i; j¼1

aijðxÞDijf ðxÞ �
X1
i¼1

blixi
bbiðxÞDif ðxÞ,

L0f ðxÞ ¼
1

2

X1
i; j¼1

aijðz0ÞDijf ðxÞ �
X1
i¼1

blixiDif ðxÞ,

and bbiðz0Þ ¼ 1 for all i.

In Propositions 5.1 and 5.2 we will simply assume biðz0Þ ¼ 1 for all i without loss of
generality, it being understood that the above substitutions are being made. In each case it
is easy to check that the hypotheses on ðbi; liÞ carry over to ðbbi;bliÞ and as the conclusions
only involve L, L0, Rl, and our solution X, which remain unaltered by these substitu-
tions, this reduction is valid.
Let

Z ¼ sup
x

X1
i; j¼1

jaijðxÞ � aijðz0Þj. (5.2)

Set

BiðxÞ ¼ xiðbiðxÞ � 1Þ.

As before, a will denote a parameter in ð0; 1Þ.
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Proposition 5.1. AssumeX
ipj

jaijjCal�a=2j o1, (5.3)

X
i

l1=2i kBikCb
o1, (5.4)

and X
i

lð1�aÞ=2i jBijCao1. (5.5)

There exists c1ðlÞ ! 0 as l!1 and c2 ¼ c2ða; gÞ such that for all f 2 Ca, we have BRlf 2

Ca and

kBRlf kCapðc1ðlÞ þ c2ZÞkf kCa .
Proof. We have

jBRlf ðxÞjp
X

i;j

jaijðxÞ � aijðz0ÞjjDijRlf ðxÞj

þ
X

i

lijxijjbiðxÞ � 1jjDiRlf ðxÞj

pZc3jf jCa þ c4ðlÞjf jCa , ð5:6Þ

where c4ðlÞ ! 0 as l!1 by (5.4) and (3.11). In particular, the series defining BRlf is
absolutely uniformly convergent.

Let baijðxÞ ¼ aijðxÞ � aijðz0Þ. If h 2 H, then

jBRlf ðxþ hÞ �BRlf ðxÞj ¼
X

i;j

½baijðxþ hÞDijRlf ðxþ hÞ � baijðxÞDijRlf ðxÞ�

�����
þ
X

i

li½Biðxþ hÞDiRlf ðxþ hÞ � BiðxÞDiRlf ðxÞ�

�����
p
X

i;j

baijðxþ hÞðDijRlf ðxþ hÞ �DijRlf ðxÞÞ

�����
�����

þ
X

i;j

ðbaijðxþ hÞ � baijðxÞÞDijRlf ðxÞ

�����
�����

þ
X

i

liBiðxþ hÞðDiRlf ðxþ hÞ �DiRlf ðxÞÞ

�����
�����

þ
X

i

liðBiðxþ hÞ � BiðxÞÞDiRlf ðxÞ

�����
�����

¼ S1 þ S2 þ S3 þ S4. ð5:7Þ
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Use (3.14) to see that

S1pc5
X

i;j

jbaijðxþ hÞjjf jCa jhja

pc6Zjf jCa jhja. ð5:8Þ

By (3.12)

S2p
X

i;j

jaijðxþ hÞ � aijðxÞj jDijRlf ðxÞj

pc7
X
ipj

jaijjCa jhjaðlþ ljÞ
�a=2
jf jCa

pc8ðlÞjf jCa jhja, ð5:9Þ

where (5.3) and dominated convergence imply liml!1 c8ðlÞ ¼ 0. By (3.13)

S3pc9
X

i

lijBiðxþ hÞjðlþ liÞ
�1=2
jf jCa jhjapc10ðlÞjf jCa jhja, (5.10)

where c10ðlÞ ! 0 as l!1 by (5.4) and dominated convergence. By (3.11)

S4pc11
X

i

lijBijCaðlþ liÞ
�ð1þaÞ=2

jf jCa jhjapc12ðlÞjf jCa jhja, (5.11)

where again c12ðlÞ ! 0 as l!1 by (5.5). Combining (5.8)–(5.11) yields

jBRlf jCap½c13ðlÞ þ c14Z�jf jCa .

This and (5.6) complete the proof. &

Let Ca
n denote those functions in Ca which only depend on the first n coordinates. Note

that T0 �
S

n Ca
n. Note also that Slf is a real number while Rlf is a function.

Proposition 5.2. If f 2
S

n Ca
n, then

Slf ¼ Rlf ðy0Þ þ SlBRlf . (5.12)

Proof. Fix z0 2 H. Suppose h 2T. Since hðX tÞ � hðX 0Þ �
R t

0
LhðX sÞds is a martingale,

taking expectations we have

EhðX tÞ � hðy0Þ ¼ E

Z t

0

LhðX sÞds.

Multiplying by e�lt and integrating over t from 0 to 1, we obtain

Slh�
1

l
hðy0Þ ¼ E

Z 1
0

e�lt

Z t

0

LhðX sÞdsdt

¼
1

l
E

Z 1
0

e�lsLhðX sÞds ¼
1

l
SlLh.

This can be rewritten as

lSlh� SlL0h ¼ hðy0Þ þ SlBh. (5.13)
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Define

Ln
0f ðxÞ ¼

Xn

i;j¼1

aijðz0ÞDijf ðxÞ �
Xn

i¼1

lixiDif ðxÞ.

Let Rn
l be the corresponding resolvent. The corresponding process is an n-dimensional

Ornstein–Uhlenbeck process which starting from x at time t is Gaussian with mean vector
ðxie

�li tÞipn and covariance matrix CijðtÞ ¼ aijðz0Þð1� e�ðliþljÞtÞðli þ ljÞ
�1. These para-

meters are independent of n and the distribution coincides with the law of the first n

coordinates (with respect to �i) of the process with resolvent Rl.
Now take f 2 Ca

n and let hðxÞ ¼ Rl f ðxÞ ¼ Rn
l f ðx1; . . . ;xnÞ. (Here we abuse our notation

slightly by having f also denote its dependence on the first n variables.) By Corollary 3.5
and (3.10), h 2T. Moreover, L0h ¼Ln

0R
n
l f ¼ lRn

l f � f ¼ lRl f � f . The second
equality is standard since on functions in C2

b, L
n
0 coincides with the generator of the

finite-dimensional diffusion. Now substitute this into (5.13) to derive (5.12). &

To iterate (5.12) we will need to extend it to f 2 Ca by an approximation argument.
Recall bli ¼ biðz0Þli.

Notation. Write f n�!
bp

f if ff ng converges to f pointwise and boundedly.

Lemma 5.3. (a) If f 2 Ca, then pRp f �!
bp

f as p!1 and

sup
p40

kpRp f kCapkf kCa .

(b) For p40 there is a c1ðpÞ such that for any bounded measurable f : H ! R, Rp f 2 Ca

and kpRp f kCapc1ðpÞkf kCb
.

Proof. (a) Note if f 2 Ca, then

kpRpf kCb
p
Z 1
0

pe�ptkPtf kCb
dtpkf kCb

and

pRpf ðxÞ � f ðxÞ ¼

Z 1
0

pe�ptðPt f ðxÞ � f ðxÞÞdt! 0

because Pt f ðxÞ �!
bp

f ðxÞ as t! 0.
Let X t be the solution to (2.4) (so that X has resolvents ðRlÞ) and let X i

t ¼ hX t; �ii�i.
Then X i

t satisfies

X i
t ¼ X i

0 þMi
t �
bli

Z t

0

X i
s ds, (5.14)

where Mi
t is a one-dimensional Brownian motion with CovðMi

t;M
i
sÞ ¼ aiiðs ^ tÞ. Let X xi ;i

t

denote the solution to (5.14) when X i
0 ¼ xi. Then

X xiþhi ;i
t � X xi ;i

t ¼ hi �
bli

Z t

0

ðX xiþhi ;i
s � X xi ;i

s Þds,
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and so

X xiþhi ;i
t � X x;i

t ¼ e�
bli thi�i.

Hence, if X x
t is defined by hX x

t ; �ii ¼ X xi ;i
t ,

jX xþh
t � X x

t j ¼
X

h2
i e
�2bli t

���� ����1=2pjhj.
Therefore

jPt f ðxþ hÞ � Pt f ðxÞjpjf jCaEðjX xþh
t � X x

t j
aÞpjf jCa jhja,

and so

jpRp f ðxþ hÞ � pRp f ðxÞjp
Z 1
0

pe�ptjPt f ðxþ hÞ � Pt f ðxÞjdtpjf jCa jhja,

i.e., jpRp f jCapjf jCa . This proves (a).
(b) As we mentioned above, for any bounded measurable f, kpRp f kCb

pkf kCb
. We also

have

PspRp f � pRp f ¼

Z 1
0

pe�pt½Psþt f � Pt f �dt

¼ ðeps � 1Þ

Z 1
0

pe�ptPt f dt� eps

Z s

0

pe�ptPt f dt.

The right-hand side is bounded by

2ðeps � 1Þkf kCb
.

This in turn is bounded by c2ðpÞs
a=2 for 0psp1. Also,

kPspRp f � pRp f kCb
p2kf kCb

p2sa=2kf kCb
for sX1.

Hence kpRp f kSapc3ðpÞkf kCb
. Our conclusion follows by (3.10), which holds for the fblig

just as it did for flig. &

Lemma 5.4. Suppose f n�!
bp

0 where supn kf nkCao1. Then

DijRlf n�!
bp

0 and DiRlf n�!
bp

0 as n!1 for all i; j.
Proof. We focus on the second order derivatives as the proof for the first order derivatives
is simpler. We know from Corollary 3.3 that DijRlf n is uniformly bounded in Ca norm, so
in particular, it is uniformly bounded in Cb norm and we need only establish the pointwise
convergence. We have from (3.8) that

kDijPtf nkCb
pc1kf nkCa ta=2�1. (5.15)

From Proposition 3.2, we have

DijPtf n ¼ DiPt=2DQt=2�j Pt=2f n. (5.16)
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Fix t40 and w 2 H. The proof of Proposition 5.2 in [1] shows there exist random variables
Rðt;wÞ and Y t such that

DwPtf ðxÞ ¼ E½f ðQtxþ Y tÞRðt;wÞ�; f 2 CbðHÞ,

and

E½Rðt;wÞ2�p
jwj2

gt
.

Therefore

hnðj; t;xÞ � DQt=2ej
Pt=2f nðxÞ ¼ Eðf nðQt=2xþ Y t=2ÞRðt=2;Qt=2�jÞÞ �!

bp
0

by dominated convergence. Moreover Cauchy–Schwarz implies

khnðj; tÞkCb
pðgtÞ�1=2 sup

m
kf mkCb

.

Repeating the above reasoning and using (5.16) we have

DijPt f nðxÞ ¼ DiPt=2hnðxÞ ¼ EðhnðQt=2xþ Y t=2ÞRðt=2; �iÞÞ �!
bp

0

and

kDijPt f nkCb
pðgtÞ�1 sup

m
kf mkCb

. (5.17)

Fix e40. Write

jDijRl f nðxÞjp
Z e

0

e�ltDijPt f nðxÞdt

���� ����þ Z 1
e

e�ltDijPt f nðxÞdt

���� ����;
by dominated convergence and (5.17) the second term tends to 0, while (5.15) shows the
first term is bounded byZ e

0

c2kf nkCa ta=2�1 dtpc3 sup
m
kf mkCa

� �
ea=2.

Therefore

lim sup
n!1

jDijRl f nðxÞjpc4 sup
m
kf mkCa

� �
ea=2.

Since e is arbitrary,

lim sup
n!1

jDijRl f nðxÞj ¼ 0: &

Proposition 5.5. Assume (5.4). If f 2 Ca, then

Slf ¼ Rl f ðy0Þ þ SlBRl f . (5.18)

Proof. We know f ¼ f � pR f �!
bp

0 as p!1 by Lemma 5.3. This lemma also shows
p p

kf pkCap2kf kCa , and therefore we may use Lemma 5.4, the finiteness of Z, (5.4) (in fact a
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weaker condition suffices here), and dominated convergence to conclude

BRl f pðxÞ ¼
X

i;j

ðaijðxÞ � aijðz0ÞÞDijðRl f pÞðxÞ

þ
X

i

lixiðbiðxÞ � biðz0ÞÞDiðRl f pÞðxÞ �!
bp

0 as p!1.

Here we also use the bounds kDijRl f pkCb
pckf kCa and kDiRl f pkCb

pcl�1=2i kf kCa from
(3.11), (3.12) and Lemma 5.3(a). By using dominated convergence it is now easy to take
limits through the resolvents to see that to prove (5.18) it suffices to fix p40 and verify it
for f ¼ pRph where h 2 Ca. Fix such an h.

Let znðxÞ ¼
Pn

i¼1 xi�i þ
P

i4n ðz0Þi�i ! x as n!1 and define hnðxÞ ¼ hðznðxÞÞ. Then

hn�!
bp

h since h 2 Ca. Recall the definition of Rn
p from the proof of Proposition 5.2; by the

argument there, we see that the function pRphnðxÞ ¼ pRn
phnðx1; . . . ;xnÞ depends only on

ðx1; . . . ;xnÞ. By Lemma 5.3(b) pRphn 2 Ca and therefore is in Ca
n. Proposition 5.2 shows

that (5.18) is valid with f ¼ Rphn. Now pRphn�!
bp

pRph as n!1 and supn kpRphnkCap
c1ðpÞ by Lemma 5.3(b). Therefore, if dn ¼ pRpðhn � hÞ we may use Lemma 5.4, Corollary 3.5,
and dominated convergence, as before, to conclude

BRldnðxÞ ¼
X

i;j

ðaijðxÞ � aijðz0ÞÞDijðRldnÞðxÞ

þ
X

i

lixiðbiðxÞ � biðz0ÞÞDiðRldnÞðxÞ �!
bp

0 as n!1.

We may now let n!1 in (5.18) with f ¼ pRphn to derive (5.18) with f ¼ pRph, as
required. &

Theorem 5.6. Assume (2.2), each aij and each bi is continuous, (4.7), (5.3), (5.4), and (5.5)
hold. There exists Z0, depending only on ða; gÞ, such that if ZpZ0, then for any y0 2 H there is

a unique solution to the martingale problem for L started at y0.

Proof. Existence follows from Theorem 4.2.
Let P be any solution to the martingale problem and define Sl as above. Suppose

f 2 Ca. Then by Proposition 5.5 we have

Slf ¼ Rlf ðy0Þ þ SlBRlf .

Using Proposition 5.1 we can iterate the above and obtain

Slf ¼ Rl

Xk

i¼0

ðBRlÞ
i

 !
f ðy0Þ þ SlðBRlÞ

kþ1f .

Provided Z0 ¼ Z0ða; gÞ is small enough, our hypothesis that ZpZ0 and Proposition 5.1
imply that for l4l0ða; g; ðaijÞ; ðbiÞÞ, the operator BRl is bounded on Ca with norm strictly
less than 1

2
. Therefore

P1
i¼kþ1 ðBRlÞ

if converges to 0 and ðBRlÞ
kþ1f also converges to 0,

both in Ca norm, as k!1. In particular, they converge to 0 in sup norm, so
Rlð
P1

i¼kþ1 ðBRlÞ
i
Þf ðy0Þ and SlðBRlÞ

kþ1f both converge to 0 as k!1. It follows that

Slf ¼ Rl

X1
i¼0

ðBRlÞ
i

 !
f ðy0Þ.
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This is true for any solution to the martingale problem, so Sl is uniquely defined for large
enough l. Inverting the Laplace transform and using the continuity of t! Ef ðX tÞ, we see
that for every f 2 Ca, Ef ðX tÞ has the same value for every solution to the martingale
problem. It is not hard to see that T0 � Ca is dense with respect to the topology of
bounded pointwise convergence in the set of all bounded functions. From here standard
arguments (cf. [3, Section VI.3]) allow us to conclude the uniqueness of the martingale
problem of L starting at y0 as long as we have ZpZ0. &

Set

Qb;N ¼ fx 2 H : jxjbpNg.

Theorem 5.7. Assume ðbiÞ and ðaijÞ are as in Section 2, so that (2.2) holds. Assume also that

a;b 2 ð0; 1Þ satisfy:
(a)
 There exist p41 and c140 such that ljXc1j
p.
(b)

P

ipj jaijjCal�a=2j o1.P

(c)
 j l

�b
j o1. (For example, this holds if b41=p.)
(d)
 For all N40, for all Z040, and for all x0 2 Qb;N there exists d40 such that if

jx� x0jod and x 2 Qb;N , thenX
i;j

jaijðxÞ � aijðx0ÞjoZ0.
(e)

P

i l
1=2
i jbijCao1.
Then for all y 2 Hb there exists a unique solution to the martingale problem for L starting

at y.

Remark. By Theorem 4.2, any solution to the martingale problem for L starting at y 2 H

will immediately enter Hb and remain there a.s. for any b 2 ð0; 1Þ. Hence the spaces Hb are
natural state spaces for the martingale problem.

Proof. Fix b 2 ð0; 1Þ as in (c) and write QN for Qb;N . Let P be a solution to the martingale
problem for L. By Theorem 4.2 we only need consider uniqueness. If TN ¼

infft : X teQNg, then by Theorem 4.2 we see that TN " 1, a.s. and it suffices to show
uniqueness for PðX �^TN

2 �Þ. (c) implies QN is compact and so as in the proof of Theorem
VI.4.2 of [3] it suffices to show:
(5.19)
 for all x0 2 QN there exist r40, eaij , and ebi such that aij ¼ eaij and bi ¼
ebi on QN \

fx 2 H : jx� x0jorg and the martingale problem for fL starting at y has a unique

solution for all y 2 QN . Here fL is defined analogously to L but with aij and bi

replaced by eaij and ebi, respectively.
Fix x0 2 QN , Z0 as in Theorem 5.6. Choose d as in (d). We claim we can choose 1Xd140
depending on d and N such that if x 2 QN and kx� x0k1od1, then jx� x0jod. Here
jxj1 ¼ supi jhx; �iij.
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To prove the claim, note that kx� x0k1pd1 implies that for any K0X
k

ðxk � xk
0Þ

2p
X

k

d21 ^ ð4N2l�bk ÞpK0d
2
1 þ 4N2

X
k4K0

l�bk .

So first choose K0 such that the second term is less than d2=2 and then set d1 ¼ d=
ffiffiffiffiffiffiffiffiffi
2K0

p
.

Now let ½pj ; qj� ¼ ½x
j
0 � d1; x

j
0 þ d1� \ ½�Nl�b=2j ;Nl�b=2j � and note pjoqj as x0 2 QN . Let

cj : R! R be defined by

cjðxÞ ¼

x if pjpxpqj ;

pj if xopj ;

qj if x4qj :

8><>:
Define c : H ! QN \ fx 2 H : kx� x0k1od1g by

cðxÞ ¼
X1
j¼1

cjðhx; ejiÞej.

As kcjk
2
1pN2l�bj , c is well defined by (c).

Take r ¼ d1 2 ð0; 1� and set eaijðxÞ ¼ aijðcðxÞÞ. If jx� x0jor and x 2 QN , then
kx� x0k1or and therefore cðxÞ ¼ x, which says that eaijðxÞ ¼ aijðxÞ for all i; j.
Define

rðuÞ ¼

u if jujor;

ð2r� jujÞu=r if rpjujo2r;

0 if 2rpjuj;

8><>:
and set ebiðxÞ ¼ biðx0 þ rðx� x0ÞÞ. If jx� x0jor, then rðx� x0Þ ¼ x� x0 and soebiðxÞ ¼ biðxÞ. Also ebi is clearly continuous as (e) implies that bi is.
We now show that eaij satisfies the hypotheses of Theorem 5.6. For any xX

i;j

jeaijðxÞ � eaijðx0Þj ¼
X

i;j

jaijðcðxÞÞ � aijðx0Þj. (5.20)

Since kcðxÞ � x0k1pr and cðxÞ 2 QN , it follows that jcðxÞ � x0jod. (d) now implies that
the right-hand side of (5.20) is less than Z0. It remains only to check (5.3) for eaij . But

jcjðxÞ � cjðxþ hjÞjpjhjj,

and so

jcðxÞ � cðxþ hÞjpjhj.

Therefore

jeaijðxþ hÞ � eaijðxÞj ¼ jaijðcðxþ hÞÞ � aijðcðxÞÞj

pjaijjCa jcðxþ hÞ � cðxÞja

pjaijjCa jhja,

and so

jeaijjCapjaijjCa .

Hence eaij satisfies (5.3) because aij does.
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If we set BiðxÞ ¼ xið
ebiðxÞ � ebiðx0ÞÞ, it is easy to check that BiðxÞ is 0 for jx� x0jX2r,

kBik1pc2jebijCapc2jbijCa , and jBijCapc2jebijCapc2jbijCa , where c1 may depend on x0.

Therefore (e) implies ðebiÞ satisfies (5.4) and (5.5).
We see then that Theorem 5.6 applies to eaij and ebi and so (5.19) holds. &
Example 5.8. We discuss a class of examples where the bi ¼ 1 and the aij are zero unless i

and j are sufficiently close together. Let M 2 N, a 2 ð0; 1Þ and SM ði; jÞ be the subspace of H

generated by f�k : jk � ij _ jk � jjpMg. Also let PSM ði;jÞ be the projection operator onto
SMði; jÞ. Assume that ajiðxÞ ¼ aijðxÞ ¼ h�i; aðxÞ�ji satisfies (2.2) and depends only on
coordinates corresponding to SMði; jÞ, that is,

aijðxÞ ¼ aijðPSM ði;jÞxÞ for all x 2 H; i; j 2 N. (5.21)

In particular, (5.21) implies aij is constant if ji � jj42M. Also suppose that

sup
i;j
jaijjCa ¼ c1o1. (5.22)

Set biðxÞ ¼ 1 for all i, x and also assume

ljXc2jp for all j for some p41, (5.23)

and b 2 ð0; 1Þ satisfies

X1
j¼1

l
�ba
2 þd

j o1 for some d40. (5.24)

For example, (5.24) will hold if p42 and ba42=p. We then claim that the hypotheses of
Theorem 5.7 hold and so there is a unique solution to the martingale problem for
Lf ðxÞ ¼

P
i;j aijðxÞDijf ðxÞ �

P
i lixiDif ðxÞ, starting at any y 2 Hb.

We must check conditions (b)–(d) of Theorem 5.7. Note first that

jaijðxþ hÞ � aijðxÞjp1ðji�jjp2MÞjaijjCa jhja,

so that jaijjCap1ðji�jjp2MÞc3 and hence by (5.24),X
ipj

jaijjCal�a=2j pð2M þ 1Þc5
X

j

l�a=2j o1.

This proves (b), and (c) is immediate from (5.24). If N40, x; x0 2 Qb;N , then for small
enough e40,X

i;j

jaijðxÞ � aijðx0Þj

p2
X
ipj

jaijjCa

X
k

1ðjk�ij_jk�jjpMÞðxðkÞ � x0ðkÞÞ
2

" #a=2



ARTICLE IN PRESS
S.R. Athreya et al. / Stochastic Processes and their Applications 116 (2006) 381–406404
p2jx� x0j
e
X

i

Xiþ2M

j¼1

X
k

1ðjk�ijpMÞjxðkÞ � x0ðkÞj
2�ð2e=aÞ

" #a=2

pjx� x0j
ec4ðMÞ

X1
k¼1

jxðkÞ � x0ðkÞj
a�e

pc5ðMÞjx� x0j
e
X1
k¼1

ð2NÞa�el
�b
2 ða�eÞ

k

pcðM;NÞjx� x0j
e.

We have used (5.22), x;x0 2 Qb;N and (5.24) in the above. This proves (d), as required.

Example 5.9. We give a more specific realization of the previous example. Continue to
assume bi ¼ 1 for all i, (5.23), and (5.24). Let L;NX1 (we can take N ¼ 1, for example)
and for kX1 let Ik ¼ fðk � 1ÞN þ 1; . . . ; kNg. For each k assume aðkÞ : R2LþN !SþN , the

space of symmetric positive definite N �N matrices. Assume for all k, for all x 2 R2LþN ,

and for all z 2 RN ,

XN

i¼1

XN

j¼1

a
ðkÞ
ij ðxÞzizj 2 ½gjzj2; g�1jzj2� (5.25)

and

sup
k

max
1pi;jpN

ja
ðkÞ
ij jCao1. (5.26)

Now for x 2 H, let pkx ¼ ðhx; �ðð‘þk�1ÞN�LÞ_1iÞ‘¼1;...;2LþN 2 R
2LþN and define a : H !

LðH;HÞ by

haðxÞ�i; �ji ¼ aijðxÞ ¼ ajiðxÞ

¼
a
ðkÞ
i�ðk�1ÞN ;j�ðk�1ÞN ðpkxÞ if i; j 2 Ik; kX1;

0 if ði; jÞe
S1

k¼1 Ik � Ik:

8<:
Then for all x; z 2 H,X

i

X
j

aijðxÞzizj ¼
X1
k¼1

X
i;j2Ik

aijðxÞzizj

¼
X1
k¼1

XN

i;j¼1

a
ðkÞ
ij ðpkxÞzðk�1ÞNþizðk�1ÞNþj

2 ½gjzj2; g�1jzj2�

by (5.25), and so (2.2) holds. Note that if i; j 2 Ik, then (using the notation of Example 5.8)
SLþN ði; jÞ 	 fðk � 1ÞN � Lþ 1; . . . ; kN þ Lg, and so (5.21) with M ¼ LþN is immediate
from the above definitions. Also (5.22) is implied by (5.26). The conditions of Example 5.8
therefore hold and so weak existence and uniqueness of solutions hold for the martingale
problem for L with initial conditions in Hb.
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Remark 5.10. The above examples demonstrate the novel features of our results. The
fact that our perturbation need not be nonnegative facilitates the localization argument
(see Remark 9 in [23] for comparison) and the presence of fl�a=2j g in condition (b) of
Theorem 5.7 means that the perturbation need not be Hölder in the trace class norm. The
latter allows for the possibility of locally dependent Hölder coefficients with just bounded
Hölder norms, something that seems not to be possible using other results in the literature.
On the other hand [23] includes an SPDE example which our approach cannot handle in
general unless, for example, the orthonormal basis in the equation diagonalizes the second
derivative operator. This is because he has decoupled the conditions on the drift operator
and noise term, while ours are interconnected. The latter leads to the double summation in
conditions (b) and (d) of Theorem 5.7, as opposed to the trace class conditions in [23]. All
of these approaches seem to still be a long way from resolving the weak uniqueness
problem for the one-dimensional SPDE described in the introduction which leads to much
larger perturbations.
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Birkhäuser, Basel, 2003, pp. 127–139.

[11] G. Da Prato, A new regularity result for Ornstein–Uhlenbeck generators and applications, J. Evolution

Equations 3 (2003) 485–498.

[12] G. Da Prato, A. Lunardi, On the Ornstein–Uhlenbeck operator in spaces of continuous functions, J. Funct.

Anal. 131 (1995) 94–114.
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