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Abstract

Particle filters are numerical methods for approximating the solution of the filtering problem which
use systems of weighted particles that (typically) evolve according to the law of the signal process.
These methods involve a corrective/resampling procedure which eliminates the particles that become
redundant and multiplies the ones that contribute most to the resulting approximation. The correction is
applied at instances in time called resampling/correction times. Practitioners normally use certain overall
characteristics of the approximating system of particles (such as the effective sample size of the system)
to determine when to correct the system. As a result, the resampling times are random. However, in the
continuous time framework, all existing convergence results apply only to particle filters with deterministic
correction times. In this paper, we analyse (continuous time) particle filters where resampling takes place
at times that form a sequence of (predictable) stopping times. We prove that, under very general conditions
imposed on the sequence of resampling times, the corresponding particle filters converge. The conditions
are verified when the resampling times are chosen in accordance to the effective sample size of the system
of particles, the coefficient of variation of the particles’ weights and, respectively, the (soft) maximum of the
particles’ weights. We also deduce central-limit theorem type results for the approximating particle system
with random resampling times.
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1. Introduction

The filtering problem involves the estimation of the current state of an evolving dynamical
system based on partial observation. The evolution of the dynamical system is customarily
modelled by a stochastic process X = {X t , t ≥ 0} called the signal process, where the temporal
parameter t runs over the positive half line [0, ∞). The signal process X cannot be measured
directly. However, a partial measurement of the signal can be obtained. This measurement is
modelled by another continuous time process Y = {Yt , t ≥ 0} which is called the observation
process. The observation process is a function of X and a measurement noise. The measurement
noise is modelled by a stochastic process W = {Wt , t ≥ 0}. Hence,

Yt = ft (X t , Wt ) t ∈ [0, ∞).

Let Y = {Yt , t ≥ 0} be the filtration generated by the observation process Y ; namely,
Yt = σ (Ys, s ∈ [0, t]), for t ≥ 0. Then the filtering problem consists in computing πt , the
conditional distribution of X t given Yt . The process π = {πt , t ≥ 0} is a Yt -adapted probability
measure valued process, so that

E [ϕ(X t ) | Yt ] =


ϕ(x)πt (dx),

for all statistics ϕ for which both terms of the above identity make sense. Generally speaking, the
filtering problem cannot be solved analytically: an explicit formula cannot be obtained for the
conditional distribution πt . This is not true only in specific cases such as the Kalman–Bucy filter
and the Benes filter (see, e.g. Chapter 6 in [1]). Numerical methods, of which particle filters are
an example, are thus employed to obtain approximations to the solution of the filtering problem.

Particle filters1 are numerical methods that produce an approximation of πt using empirical
distributions of systems of evolving weighted particles. They are currently one of the most
successful methods used to approximate the solution of the filtering problem (see [7] or Chapter
VIII in [4] for an overview). The particles evolve according to the law of the signal process X
and carry a weight proportional with the likelihood of their recent position/trajectory given the
observation data. As time progresses, some of the weights diminish and so the corresponding
particles essentially contribute less to the approximation process. In order to counter this
phenomenon known as sample degeneracy, a correction procedure is introduced at particular
times to cull the redundant particles and multiply the particles that contribute more significantly
to the approximation process. This correction procedure is known as resampling and it was first
introduced in the papers by Gordon et al. [10,11], Kitagawa [14]. These resampling/correction
times are chosen in an adaptive manner and are usually determined by certain overall
characteristics of the approximating particle system. One such characteristic (for which the
results from below apply) is the effective sample size of the approximating particle system.

In the last fifteen years we have witnessed a rapid development of the theory of particle filters.
The discrete time framework has been extensively studied and a multitude of convergence and
stability results have been proved. A comprehensive description of these developments in the
wider context of approximations of Feynman–Kac formulae can be found in Del Moral [5].
Results concerning particle filters for the continuous time filtering problem are far fewer than
their discrete counterparts. For an up-to-date overview of these results, see Chapter VIII in [4].

1 These methods are also known under the name of Sequential Monte Carlo Methods in the Statistics and the
Engineering literature.
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1.1. Contribution of the paper

This paper studies particle filters that use a standard resampling procedure in a continuous
time setting. It investigates the convergence of these approximations to the solution of the filtering
problem. In contrast with existing results in the published literature which cover only particle
filters with deterministic correction times,2 we assume that the approximating particle system has
random resampling times. This is the current practice in the area: for example, the resampling
times can be chosen to be the times at which the effective sample size of the systems falls below
a desired threshold. The paper produces the theoretical justification for such practice, hence it
addresses this gap in the literature.

We prove in this paper that the empirical distribution of the system converges to πt (see
Theorem 1) if resampling times occur at times that form a sequence of (predictable) stopping
times and satisfy a mild integrability assumption. The proof of the result is a lot harder than the
proof of the convergence of particle filters with deterministic stopping time. The difficulty stems
from the fact that the randomness of the resampling times prevents us from using the standard
approach based on the dual of the conditional distribution process. We circumvented this by
developing first an abstract convergence criterion for measure-valued processes; see Theorem 8.
This result may be of interest independently of the current application. The conditions under
which Theorem 1 holds are verified for the case when the resampling times are chosen in
accordance to the effective sample size of the system of particles, or equivalently the coefficient
of variation of the particles’ weights and, respectively, in accordance to the (soft) maximum of
the particles’ weights. We emphasize that we do not require that the resampling times converge.
This is particularly important as, usually, the times depend on the approximation itself and so we
cannot assume a priori that they converge.

We also analyse the fluctuations of adaptive particle filters. Under an additional integrability
condition and after assuming that resampling times converge (as a result of the convergence
of the approximations), we show that a central-limit theorem type result is obtained for the
approximating system; see Theorem 2. The conditions are again checked for the effective sample
size and, respectively, the maximum of the particles’ weights criteria. The central-limit theorem
will enable us to perform a comparative analysis of adaptive particle filters. This and other issues
related to the implementation of particle filters with random resampling times (time discretization
of the particles’ motion and particles’ weights, computational effort, etc.) will be discussed in
sequel to this paper.3

The following is a summary of the contents of the paper.
In the next section, the filtering framework and the filtering problem are formally introduced

and defined. Some background and preliminary results of stochastic filtering theory will also
be covered. Key among these results is the Zakai equation, a linear equation which describes
the evolution of an unnormalized version of the conditional distribution of the signal. The
Zakai equation, as will be seen throughout this paper, plays a fundamental role in allowing
approximations of the solution of the filtering problem to be obtained. This is because it provides
us with an indirect and relatively easier method, due to its linear form, of obtaining convergence
results for the normalized conditional distribution of X . We also state the main results of the
paper and the conditions under which they hold.

2 A similar result has been proved in the discrete time setting. See [6] for more details and the next section for a
comparison with the results presented here.

3 Crisan, Obanubi, Threshold Inferences and Numerical Results Concerning Random Time Resampling for the
Effective Sample Size.
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In Section 3, the class of particle approximations is introduced and discussed. Details of the
approximating particle system and how resampling times are determined are given. We discuss
the suitability of choosing the resampling times to be determined by various measures of sample
degeneracy: the essential sample size, the coefficient of variation, entropy and the maximum
weight.

The next two sections contain the proofs for the main results of the paper. In Section 4, the
evolution equations of the approximating measures are derived and used to show the almost sure
convergence of the approximations to the true solutions under certain conditions. In Section 5,
we get central limit theorem type results. The error between the approximations and the true
solutions are recalibrated and shown to form a tight sequence and their limit in distribution found.

The paper is concluded with an Appendix that collates a number of useful lemmatas and
results used throughout the paper.

1.2. Notation

In the following we will use the following notation:

• Rd — the d-dimensional Euclidean space
• Rd — the one-point compactification of Rd formed by adding a single point at infinity to Rd

• B(Rd) — the space of bounded Borel measurable functions from Rd to R
• Cb(Rd) — the space of bounded continuous functions on Rd

• C m
b (Rd) — the space of bounded continuous functions on Rd with bounded derivatives up to

order m ∈ N.
• C m

0


Rd


— the space of continuous functions on Rd , vanishing at infinity with continuous
partial derivatives up to order m ∈ N

• C∞

0


Rd


— the space of smooth functions on Rd vanishing at infinity
• ∥ · ∥∞ — the supremum norm; for ϕ : Rd

→ R, ∥ϕ∥∞ = supx∈Rd |ϕ(x)|

• ∥ · ∥m,∞ — the norm such that for m ∈ N and a function ϕ on Rd

∥ϕ∥m,∞ =


|α|≤m

sup
x∈Rd

|Dαϕ(x)|,

where α = (α1, . . . , αd) is a multi-index and Dαϕ = (∂1)
α1

· · · (∂d)α
d
ϕ

• M F (Rd) — the set of finite measures on Rd

• M F (Rd) — the set of finite measures on Rd

• DM F (Rd )[0, T ] — the space of càdlàg functions f : [0, T ] → M F (Rd)

• DM F (Rd )[0, ∞) — the space of càdlàg functions f : [0, ∞) → M F (Rd).

2. The filtering problem and related results

2.1. The filtering framework

Let (Ω , F , (Ft )t≥0, P) be a complete filtered probability space which satisfies the usual
conditions. Within (Ω , F , (Ft )t≥0, P) we consider an Ft -adapted d-dimensional signal process
X = {X t : t ≥ 0} which solves the stochastic differential equation:

X i
t = X i

0 +

 t

0
f i (Xs) ds +

p
j=1

 t

0
σ i j (Xs) dV j

s i = 1, . . . , d, (2.1)
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where V = (V j )
p
j=1 is a p-dimensional Brownian motion. We assume that f = ( f i )d

i=1 :

Rd
→ Rd and σ = (σ i j )i=1,...,d, j=1,...,p : Rd

→ Rd×p are globally Lipschitz. Let A be the
infinitesimal generator associated with X , that is

A =

d
i=1

f i ∂

∂xi
+

d
i, j=1

ai j ∂2

∂xi∂x j
, (2.2)

and ai j
=

1
2

p
k=1 σ ikσ jk

=
1
2 (σσ⊤)i j for all i, j = 1, . . . , d . We denote by D(A) the

domain of A. Next, let W be a standard Ft -adapted m-dimensional Brownian motion defined on
(Ω , F , (Ft )t≥0, P) independent of X , and let Y be the process satisfying the following evolution
equation

Yt =

 t

0
h(Xs) ds + Wt , (2.3)

where h = (hi )
m
i=1 : Rd

→ Rm is globally Lipschitz. Let {Yt : t ≥ 0} be the usual augmentation
with null sets of the filtration associated with the process Y . The filtering problem consists of
determining the conditional distribution process πt of the signal X t given the filtration Yt , that is

πt (ϕ) = E [ϕ(X t )|Yt ], ϕ ∈ B(Rd). (2.4)

Then we have

πt (ϕ) =
ρt (ϕ)

ρt (1)
, ϕ ∈ B(Rd), (2.5)

where ρt (ϕ) is an Yt -adapted measure-valued process which satisfies the Zakai equation:

ρt (ϕ) = π0(ϕ) +

 t

0
ρs(Aϕ) ds +

m
i=1

 t

0
ρs(ϕhi ) dY i

s , ϕ ∈ D(A). (2.6)

Formula (2.5) is called the Kallianpur–Striebel formula and the process ρ = {ρt , t ≥ 0} is called
the unnormalized conditional distribution of the signal. The Zakai equation can also be written
in mild form (see, for example, [25]):

ρt (ϕ) = ρ0(Ptϕ) +

 t

0
ρr (Pt−rϕh⊤) dYr , P̃-a.s. ∀t ≥ 0. (2.7)

(Pr )r≥0 is the Markov C0-semigroups of contractions whose infinitesimal generator is the oper-
ator A as defined in (2.2). The mild form of the Zakai equation holds true for any ϕ ∈ Cb(Rd).
We will assume throughout the paper that the coefficients σ and f in (2.1) are bounded and con-
tinuously differentiable with bounded partial derivatives and h in (2.3) is bounded and Lipschitz.

In the following we will analyse a particle filter with multinomial resampling times (T n
k )k≥0

that form a strictly increasing sequence of predictable stopping times.4 We give details of the
particle filter in the following section. We denote by πn

= {πn
t , t ≥ 0} the process consisting of

the empirical distribution of the particle system and by N n
t , the number of resampling instances

that occur before time t . The convergence of πn is stated in the following.

4 That is for each T n
k , there exists an announcing sequence of stopping times (T n,m

k )m≥1 such that T n,m
k is increasing,

T n,m
k < T n

k on {T n
k > 0}, for all m, and limm→∞ T n,m

k = T n
k . See, for example, Chapter III Section 2 in [20] for more

on predictable stopping times.
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Theorem 1. If there exists p > 1 such that for all t > 0, we have

sup
n>0

E[(N n
t )p

] < ∞ (2.8)

then, for any r < p, there exists a constant α = α(T, r), independent of n, such that for any
ϕ ∈ C 1

b(Rd), we have

sup
t∈[0,T ]

E

(πn

t (ϕ) − πt (ϕ))r 
≤

α

n p ∥ϕ∥
r
1,∞. (2.9)

A few remarks regarding Theorem 1 are in order. Once again, we emphasize that we do not
assume that the resampling times converge as typically they will depend on πn and therefore
their convergence cannot be a priori assumed.

Condition (2.8) implies that limk→∞ T n
k = ∞. In particular, there are only a finite number of

resampling times in any finite interval. It is trivially satisfied for any sequence of deterministic
times that converge to ∞. Therefore, Theorem 1 generalizes existing convergence results for
(non-adaptive) particle filters. In addition, condition (2.8) is satisfied for the case when the
resampling times are chosen in accordance to the effective sample size of the system of particles,
or, equivalently, the coefficient of variation of the particles’ weights. This is the most popular
resampling criteria among the practitioners. It is also satisfied for the case when the resampling
times are chosen in accordance to the (soft) maximum of the particles’ weights.

In [6], a similar convergence result has been proved for the particle filters in a discrete-time
framework. The result in [6] relies on a ingenious coupling argument. The particle filter with
random resampling times (T n

k )k≥0 is coupled with one with resampling times (T̄k)k≥0 where
(T̄k)k≥0 can be any deterministic times or times that could depend on the observation process
only (and not on the current state of the particle filter). The authors show that, as n increases, T n

k
are exponentially close to T̄k . Since time runs discreetly, they must be equal with high probability
and the convergence result follows by analysing the particle filter with observation dependent
resampling times. Of course this argument cannot be applied in a continuous-time framework. In
continuous time, the corresponding equivalent of T n

k and T̄k can be different no matter how close
they are. It would be interesting to see if the argument presented here can be adapted to cover
the discrete framework. Condition (2.8) is trivially satisfied when time runs discretely: obviously
N n

t ≤ t , with the maximum achieved when one resamples at any time instance. An adaptation
of the proof presented here would, perhaps, solve the additional constraint imposed in [6] on the
T n

k ’s that involve the use of certain randomized criteria thresholds (see Section 5.2 in [6]).
Condition (2.8) offers a control on the number of resampling times in any finite interval.

Heuristically speaking, there must not be “too many of them”. In the case when condition (2.8)
is not satisfied, the convergence might be slower or, even worse, the particle filter might diverge
as the number of particles increases. Theorem 1 is also valid under the following alternative to
condition (2.8), see [19] for details: there exists p > 1 such that for all t > 0, we have

sup
n>0

∞
k=1

P(T n
k ≤ t)1/p < ∞.

In addition, to the convergence of πn we also study its fluctuations around the limiting measure π .
In particular, if Ū n

= {Ū n
t , t ≥ 0} is the measure-valued process defined as Ū n

=
√

n(πn
− π),

then we deduce the following central limit type theorem.
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Theorem 2. Assume that for any k ≥ 0, limn→∞ T n
k = Tk , where (Tk)k≥0 is a strictly increasing

sequence of Yt -adapted predictable stopping times. If (2.8) is satisfied and also there exists
p > 1 such that for all t > 0, we have

lim
δ→0

sup
n>0

E


sup

s∈[0,t]
E[(N n

s+δ − N n
s )p

|Fs]


= 0, (2.10)

then there exists a measure valued process Ū = {Ūt , t ≥ 0} such that Ū n converges in distribu-
tion to Ū .

Observe that Theorem 2 requires the convergence of the resampling times in order to hold true.
If the criteria for choosing the resampling times are functions of πn then their convergence can be
deduced from Theorem 1. Condition (2.10) (the tightness condition) plays the central role in con-
trolling the oscillation of the paths of the converging processes. Heuristically, it says that the re-
sampling times cannot accumulate locally. Condition (2.10) is, again, satisfied for the case when
the resampling times are chosen in accordance to the effective sample size of the system of par-
ticles, or, equivalently, the coefficient of variation of the particles’ weights and for the case when
the resampling times are chosen in accordance to the (soft) maximum of the particles’ weights.

3. The approximating particle system

The particle system consists initially of n particles each with weight 1/n and position
vn

j (0), j = 1, . . . , n. The positions of the particles are chosen to be independent, identically
distributed (i.i.d.) random variables with common distribution π0 which is the law of X0 the
signal at time 0. Hence, the approximating measure at time 0 is

πn
0 =

1
n

n
j=1

δvn
j (0).

Let {T n
k }k∈N be a strictly increasing sequence of predictable stopping times. For ease of notation,

we write Tk instead of T n
k unless when necessary to emphasize the dependency of the predictable

stopping times on the sample size, n.
During the random time intervals [Tk, Tk+1), the particles move with the same law as the

signal X ; that is for any stopping time T ∈ [Tk, Tk+1)

vn
j (T ) = vn

j (Tk) +

 T

Tk

f (vn
j (s)) ds +

 T

Tk

σ(vn
j (s)) dV ( j)

s , j = 1, . . . , n, (3.1)

where (V ( j))n
j=1 are mutually independent Ft -adapted p-dimensional Brownian motions which

are independent of Y and independent of all other random variables in the system. Each particle
is assigned a normalized weight ān

j (T ), j = 1, . . . , n, for arbitrary stopping time T ∈ [Tk, Tk+1)

given by

ān
j (T ) :=

an
j (T )

n
k=1

an
k (T )

where

an
j (T ) = exp

 T

Tk

h(vn
j (s))

⊤ dYs −
1
2

 T

Tk

∥h(vn
j (s))∥

2 ds


. (3.2)
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For T ∈ [Tk, Tk+1), define

πn
T =

n
j=1

ān
j (T )δvn

j (T ).

At the end of the (random) interval [Tk, Tk+1), the correction procedure is implemented, the
particles are re-indexed and their weight reinitialized to 1.

We will now address the questions concerning when and how to resample. A measure or
indicator of the extent of sample degeneracy is required to inform us when to resample. The
effective sample size (see [8,12,15]) of the system is the most popular measure for the sample
degeneracy of our approximating particle system. The effective sample size (or ESS or ne f f )
cannot be calculated analytically and instead an estimate, given by

n̂e f f =
1

n
j=1

(ān
j (T ))2

, (3.3)

is used. The interpretation of the effective sample size is that any inference based on a weighted
sample of size n will be approximately as accurate as one based on an independent sample whose
size is the effective sample size. An application of the Cauchy–Schwarz inequality leads us to
the (intuitive) conclusion that n̂e f f ≤ n. That is, the effective sample size cannot be larger than
the actual sample size. Since the worst case scenario one can have is all the weight concentrated
on one particle, it follows that the lower bound for ne f f is 1.

Resampling occurs when the ESS falls below a selected threshold nthres and clearly from
above, we must have nthres ≤ n. We will, however, only consider the cases where nthres ∈ (0, n),
excluding the trivial cases where nthres = 0 (i.e. resampling never occurs: this is the Monte Carlo
Method) and nthres = n (i.e. resampling occurs continuously). The threshold is set to be of the
form λthresn where λthres ∈ (0, 1).

For 1 ≤ k ∈ N define

Tk := inf{t ≥ Tk−1 : ne f f ≤ λthresn}. (3.4)

Consequently, Tk is the first time after the previous resampling time, Tk−1, that the ESS falls
below the chosen threshold. Put differently, Tk is the kth-resampling time and [Tk−1, Tk) is the
time interval between the (k − 1)th and kth resampling times where the system particles evolve
according to the prescribed signal law.

Before discussing how resampling is actually carried out, we give a heuristic argument to
highlight the motivation behind choosing the random resampling times to be predictable stopping
times. In between resampling the newly acquired information is stored in the particle weights.
As long as the information remains limited or inaccurate, the weights will remain roughly
equal (in particular the ESS will be close to n). In this case resampling does not make sense
as it introduces additional randomness in the system and would not compensate for this by
significantly improving the system. However as soon as the information becomes ‘reasonable’
(thus allowing us to be able to better distinguish between particles in the ‘right’ and ‘wrong’
regions) and the weights subsequently become sufficiently uneven, resampling is then desirable
to keep the particles in the ‘right’ region. By resampling at random times rather than, say, at
regular (deterministic) time intervals, we resample only when the information is ‘reasonable’
enough (as determined by the ESS) and do not unnecessarily introduce redundant randomness
into the system. Put differently, the resampling procedure is adjusted to the information being
received and is not a priori fixed.
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The predictability of the resampling times based on the ESS is immediate. Recall that, by
definition, a stopping time T is predictable if there exists an announcing sequence of stopping
times (T m)m≥1 such that T m is increasing, T m < T on the set {T > 0}, and limm→∞ T m

=

T . So, if for example, nthres is set to n/3, an announcing sequence can be (T m
k )m≥1

where

T m
k := inf


t > Tk−1 : n̂e f f < n/(3 − 1/m)


.

The predictability property of the resampling time is used to give a useful characterization of the
σ -algebra of events that occur up to but not including the stopping time itself. In particular, for
any predictable stopping time T and any announcing sequence, (Tr ), of T we have (see Chapter
III Theorem 6 of [20])

FT − =:


r≥1

FTr = σ


r≥1

FTr


.

Heuristically, this means that we can express the information immediately prior to any predictable
stopping time in terms of the information generated by events leading up to it.

We will now discuss on how the resampling is performed. Recall that at the end of the interval
[Tk−1, Tk) the resampling (or correction) procedure is implemented, the particles are re-indexed
and their weights reinitialized to 1. During the implementation, each particle is replaced by a
random number of particles (possibly zero) with each offspring inheriting the spatial position of
their parents. The question which then arises is how to replace the parent particles with offspring
particles. Posed differently, what should the offspring distribution of the parent particles be? A
possible answer to this question is the following.

Let O( j)
T , j = 1, . . . , n be the random variables representing the number of offsprings

produced by the j th parent particle during resampling. Let on,T
j ∈ {1, . . . , n}, j = 1, . . . , n

be the particular values of these random variables. Then one possible offspring distribution is the
multinomial distribution with (respective) probabilities taken to be the normalized weight of the
j th parent particle, that is, ān

j (T ), so that we have

P


O(1)
T = on,T

1 , . . . , O(n)
T = on,T

n


=

n!

n
j=1

on,T
j !

n
j=1


ān

j (T )
on,T

j
. (3.5)

The multinomial sampling algorithm essentially states that, at correction or resampling times,
we should sample n-times (with replacement) from the population of particles with positions
vn

j (T ), j = 1, . . . , n according to the probability distribution given by the corresponding

normalized weights ān
j (T ), j = 1, . . . , n. on

j ≡ on,T
j therefore is the number of times the particle

with position vn
j (T ) is chosen.

After carrying out the correction procedure, the unnormalized weights of the particles
are re-initialized to 1. A particle filter with this choice of offspring distribution is called a
bootstrap filter or the Sampling Importance Resampling algorithm (SIR algorithm). It can
be traced back to the papers by Gordon et al. [10,11], Kitagawa [14]. The bootstrap filter
is popular among practitioners because it is quick and easy to implement and amenable to
parallelization.
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3.1. Predictable stopping times for other measures of sample degeneracy

Before proceeding further, we will give examples of predictable stopping times with other
measures of sample degeneracy. First, the coefficient of variation or CV (see [15]) where

CV :=


1
n

n
j=1


nān

j (t)
2
− 1

2
 1

2

(3.6)

is closely related to the effective sample size. Indeed,

CV =


n

ne f f
− 1

 1
2

.

We observe that CV is
√

n − 1, its maximum value, when all the normalized weights of the
particles save one are zero — the worst case of sample degeneracy. It is 0, its minimum value,
when all the normalized weights are equal (that is ān

j (t) =
1
n , j = 1 . . . , n). The greater the

value of CV, the greater the extent of sample degeneracy. Consequently the resampling times, in
the case of CV, are determined when CV > α, where α ∈


0,

√
n − 1


.

This is equivalent to resampling when ne f f < ᾱ where ᾱ :=
n

(α2+1)
∈ (1, n). Consequently

predictable stopping times for the coefficient of variation are defined similarly to how they are
defined for the effective sampling size and all results deduced for predictable stopping times for
the effective sampling size also apply to predictable stopping times that use the CV as a measure
of nondegeneracy.

The entropy of the approximating particle system at time t is defined as:

Et = −

n
j=i

ān
j (t) log ān

j (t) (3.7)

where the convention limx→0+ x log x = 0 is used. Observe that

0 ≤ Et ≤ log n (3.8)

and the value of the system’s entropy decreases as sample degeneracy worsens so that we
resample when the entropy of the system is less than or equal to a constant, β say, with
β ∈ [0, log n]. Hence the predictable stopping times for the entropy measure are defined for
1 ≤ k ∈ N by

Tk := inf{t ≥ Tk−1 : Et ≤ β}. (3.9)

Another measure of sample degeneracy is the maximum of the unnormalized weights.5 Recall
from (3.2) the unnormalized weights take the form exp(w j ), where

w j :=

 T

Tk

h(vn
j (s))

⊤ dYs −
1
2

 T

Tk

∥h(vn
j (s))∥

2 ds, j = 1, . . . , n.

An obvious choice of a measure of sample degeneracy is the function

f (w1, . . . , wn) = max
1≤ j≤n

w j (3.10)

5 The same analysis and results also apply to the minimum of the unnormalized weights.
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that is, the maximum of the log of the un-normalized weights. This function however is not easy
to deal with and therefore a proxy called the soft maximum is employed. The soft maximum is
defined as

f (w1, . . . , wn, r) =

log
n

j=1
exp(r w j )

r
, (3.11)

where r ∈ N. In particular

lim
r→∞

log
n

j=1
exp(r w j )

r
= max

1≤ j≤n
w j . (3.12)

For the purpose of our analysis, the parameter r plays no rôle, so we will focus, for convenience,
on the case where r = 1 in (3.11) that is, f (W1, . . . , Wn, 1) where

f (W1, . . . , Wn, 1) = log
n

j=1

exp(W j ) = log
n

j=1

an
j (t). (3.13)

When using the soft maximum we resample when f (W1, . . . , Wn, 1) ≥ α, α ∈ [0, ∞). We thus
define the kth predictable stopping time as

Tk := inf


t ≥ Tk−1 :

1
n

n
j=1

an
j (t) ≥

exp(α)

n



= inf


t ≥ 0 : ξ

n,∞
t ≥


exp(α)

n

k


,

where ξn,∞
= {ξ

n,∞
t : t ≥ 0} is the process defined as

ξ
n,∞
t :=

∞
i=1

1
n

n
j=1

an,i
j (t) (3.14)

with

an,i
j (t) := exp

 Ti ∧t

Ti−1∧t
h(vn

j (s))
⊤ dYs −

1
2

 Ti ∧t

Ti−1∧t
∥h(vn

j (s))∥
2 ds


. (3.15)

4. Convergence results

The convergence of the approximating process πn
= {πn

t : t ≥ 0} relies on the convergence
of an unnormalized version of πn to the solution of the Zakai equation. To this end we introduce
the measure-valued process ρn

= {ρn
t : t ≥ 0} to be defined by

ρn
t := ξ

n,∞
t πn

t , t ≥ 0,

where ξn,∞
= {ξ

n,∞
t : t ≥ 0} is the process defined in (3.14). In the following, for ease of

notation we write ξn
t to denote ξ

n,∞
t . In particular if T ∈


Tk−1, Tk),
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ρn
T =

ξn
Tk−1

n

n
j=1

an
j (T )δvn

j (T ).

In the following, we will use the bounds

max
j=1,...,n

sup
n≥0

E


sup

s∈[0,t]
(an

j (s))
p


≤ ct,p

0 , (4.1)

sup
n≥0

E


sup

s∈[0,t]
(ξn

s )p


≤ ct,p

1 , (4.2)

max
j=1,...,n

sup
n≥0

E


sup

s∈[0,t]
(ξn

s ān
j (s))

p


≤ ct,p

2 , (4.3)

where ct,p
0 , ct,p

1 and ct,p
2 are constants which depend on maxi=1,...,m∥hi∥0,∞. In (4.3), the weights

ān
j (s) are the normalized versions of an

j (s) as defined in (3.15). The proof of these estimates is
standard; see Lemma 31 in the Appendix.

Lemma 3. We have the following control on the mass of the measure-valued process ρn: for any
T ≥ 0 and p ≥ 0, we have

sup
n≥0

sup
t∈[0,T ]

E


ρn
t (1)

p
< ∞. (4.4)

Proof. Since πn is a probability measure-valued process, we have that ρn
t (1) = ξn

t and (4.4) is
immediate from (4.2). �

Proposition 4. The measure-valued process ρn satisfies the following evolution equation

ρn
t (ϕ) = πn

0 (ϕ) +

 t

0
ρn

s (Aϕ) ds + S̄n,ϕ
t + M̄n,ϕ

t +

m
k=1

 t

0
ρn

s (hkϕ) dY k
s , (4.5)

for any ϕ ∈ C 2
b(Rd). In (4.5), S̄n,ϕ

= {S̄n,ϕ
t : t ≥ 0} is the Ft -adapted martingale

S̄n,ϕ
t :=

1
n

∞
k=1

n
j=1

 Tk∧ t

Tk−1∧ t
ξn

Tk−1
an

j (s)((∇ϕ)⊤σ)(vn
j (s)) dV ( j)

s

and M̄n,ϕ
= {M̄n,ϕ

t : t ≥ 0} is the Ft -adapted martingale

M̄n,ϕ
t :=

∞
k=1

1[0,t](Tk)(ρ
n
Tk

(ϕ) − ρn
Tk−

(ϕ)).

Proof. Observe that for any t ≥ 0 and ϕ ∈ C 2
b(Rd),

ρn
t (ϕ) = πn

0 (ϕ) +

∞
k=1

1[0,t](Tk)(ρ
n
Tk

(ϕ) − ρn
Tk−

(ϕ)) +

∞
k=1

ρn
Tk−∧t (ϕ) − ρn

Tk−1∧t (ϕ)



1344 D. Crisan, O. Obanubi / Stochastic Processes and their Applications 122 (2012) 1332–1368

and

ρn
Tk−∧t (ϕ) − ρn

Tk−1∧t (ϕ) =

 Tk∧t

Tk−1∧t

ξn
Tk−1

n

n
j=1

d an
j (s)ϕ(vn

j (s)), k ∈ N.

The proof then follows by a straightforward application of Itô’s formula. The fact that M̄n,ϕ is
an Ft -adapted martingale is proved in the Appendix (See Proposition 33). �

We remark that one can deduce the corresponding result for the evolution equation for πn . We
do not state it here as it plays no rôle in what follows. The mild version of (4.5) is given by

ρn
s (ϕ) = ρn

0 (Ptϕ) +

 t

0
ρn

r (Pt−rϕh⊤) dYr + M̄n,ϕ
t + S̄n,ϕ

t (4.6)

where

S̄n,ϕ
t :=

1
n

∞
k=1

n
j=1

 Tk∧ t

Tk−1∧ t
ξn

Tk−1
an

j (r)

(∇(Pt−rϕ))⊤σ


(vn

j ) dV j
r

and

M̄n,ϕ
t :=

∞
k=1

1[0,t](Tk)

ρn

Tk
(Pt−Tk ϕ) − ρn

Tk−
(Pt−Tk ϕ)


.

Note that (4.6) holds true for any ϕ ∈ C 1
b(Rd). The error between the approximate measure and

the target measure is thus given by

δρn
t (ϕ) = δρn

0 (Ptϕ) +

 t

0
δρn

r (Pt−rϕh⊤) dYr + S̄n,ϕ
t + M̄n,ϕ

t , (4.7)

where δρn = ρn
t − ρt . Being able to control the terms on the right hand side of (4.7) therefore

is key to obtaining relevant bounds on the error terms which hopefully will lead to information
about the rate of convergence of the approximations.

Lemma 5. For any T ′
≥ 0 and any p ≥ 1 there exists a constant, βT ′,p independent of n such

that, for any ϕ ∈ C 1
b(Rd), we have

E

 sup
t∈[0,T ′]

|S̄n,ϕ
t |

2p
 ≤

βT ′,p

n p ∥∇ϕ∥
2p
∞ . (4.8)

Proof. For t ≥ 0 we note that

S̄n,ϕ
t =

n
j=1

 t

0
ξn

r ān
j (r)((∇(Pt−rϕ))⊤σ)(vn

j (r)) dV j
r . (4.9)

By the Burkholder–Davis–Gundy and Jensen inequalities it follows for p ≥ 1 and T ′
≥ 0 that

E

 sup
t∈[0,T ′]

|S̄n,ϕ
t |

2p
 ≤ C p E[⟨S̄n,ϕ

⟩
p
T ′ ]
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= C p E


n

j=1

 T ′

0
(ξn

r ān
j (r))2


(∇ PT ′−rϕ)⊤σσ⊤(∇ PT ′−rϕ)


(vn

j (r)) dr

p

≤ C pn p−1T ′ p−1d̃
n

j=1

 T ′

0
E[(ξn

r )4p
]

1
2 E[(ān

j (r))4p
]

1
2 ∥∇ PT ′−rϕ∥

2p
∞ dr (4.10)

and since there exists CT ′ such that for any ϕ ∈ C 1
b(Rd) we have ∥∇ PT ′−rϕ∥∞ ≤ CT ′∥∇ϕ∥∞

(see Remark 4.5 in [19]), we get that (4.8) holds true with

βT ′,p = C pT ′ pd̃(cT ′,4p
2 )

1
2 C2p

T ′ d2p. �

Lemma 6. For any k ∈ N and ϕ ∈ Cb(Rd) there exists a constant Ck independent of n such that

E[(πn
0 (Ptϕ) − π0(Ptϕ))2k

] ≤
Ck∥ϕ∥

2k
∞

nk . (4.11)

Proof. Let ζ j ≡ Ptϕ(vn
j (0)) − π0(Ptϕ) so that

1
n

n
j=1

ζ j =
1
n

n
j=1

(Ptϕ(vn
j (0)) − π0(Ptϕ)) ≡ πn

0 (Ptϕ) − π0(Ptϕ).

Note that ζ j , j = 1, . . . , n, are independent identically distributed random variables with mean
0. The bound (4.11) then follows from

E[(πn
0 (Ptϕ) − π0(Ptϕ))2k

] = E

1
n

n
j=1

ζ j

2k


=
1

n2k
E

 
α1,...,αn

α j ≠1


2k

α1, . . . , αn


[ζ

α1
1 · · · ζαn

n ]


≤

1

n2k


α1,...,αn

α j ≠1


2k

α1, . . . , αn


E

|ζ1|

α1 · · · |ζn|
αn


≤
Ck∥ϕ∥

2k
∞

nk (4.12)

where the sum is taken all over the multi-indices (α1, . . . , αn) ∈ Nn satisfying α j ≠ 1 for

j = 1, . . . , n subject to the condition that
n

j=1 α j = 2k and


2k
α1,...,αn


:=

2k!

α1!,...,αn !
. The

inequality (4.12) follows since the largest coefficient that can be obtained from the preceding
inequality is of order nk . �

Lemma 7. Assume that there exists p > 1 such that for all t > 0, condition (2.8) holds true.
Then for any r < p and any ϕ ∈ Cb(Rd) there exists a constant CT ′,4 such that

E


sup

t∈[0,T ′]

|M̄n,ϕ
t |

2r


≤

CT ′,2r∥ϕ∥
2r
∞

nr . (4.13)
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Proof. Observe, by the Burkholder–Davis–Gundy inequality and Fatou’s lemma, that

E


sup

t∈[0,T ′]

|M̄n,ϕ
t |

2r


≤ C lim

m
E


m

k=1

1[0,T ′](Tk)E[(ρn
Tk

(ϕ) − ρn
Tk−

(ϕ))2
|FTk−]

r

= C lim
m

E


m

k=1

1[0,T ′](Tk)(ξ
n
Tk

)2E[(πn
Tk

(ϕ) − πn
Tk−

(ϕ))2
|FTk−]

r 
. (4.14)

Now observe that

πn
Tk

(ϕ) − πn
Tk−

(ϕ) =
1
n

n
j=1

(ϕ(vn
α j

(Tk)) − E[πn
Tk

(ϕ)|FTk−]) =:
1
n

n
j=1

ζα j (4.15)

where we have used the fact that πn
Tk

(ϕ) =
1
n

n
j=1 ϕ(vn

α j
(Tk)) where (α j )

n
j=1 is a random index

of 1, . . . , n so that vn
α j

(Tk) = vn
j ′(Tk) for some j ′ ∈ {1, . . . , n} with probability ān,Tk

j ′ . Since

E[ϕ(vn
α j

(Tk))|FTk−] =

n
j ′=1

ān,Tk
j ′ ϕ(vn

j ′(Tk)) = E[πn
Tk

(ϕ)|FTk−],

E

ζα j


= E


E

ζα j |FTk−


= 0 (4.16)

and hence,

E

πn

Tk
(ϕ) − E[πn

Tk
(ϕ)|FTk−]


= 0.

By the conditional independence property of sampling with replacement it follows from (4.16)
(and similar to (4.12)) that

E

(πn

Tk
(ϕ) − πn

Tk−
(ϕ))2

|FTk−


= E

1
n

n
j=1

ζα j

2
FTk−


=

1

n2 E


n

j=1

ζ 2
α j

FTk−


≤

C2∥ϕ∥
2
∞

n
. (4.17)

Hence, by the Hölder and Jensen inequalities,

lim
m

E


m

k=1

1[0,T ′](Tk)E[(ρn
Tk

(ϕ) − ρn
Tk−

(ϕ))2
|FTk−]

r

≤
C ′

∥ϕ∥
2r
∞

nr E

 sup
s∈[0,t]

ξn
s

2r

(N n
t )r


≤

C ′
∥ϕ∥

2r
∞

nr E

(N n

t )pr/p E

 sup
s∈[0,t]

ξn
s

2r(p−r)/p
p/p−r

.

(4.13) now follows as a result of the condition on the family of stopping times {Tk}k and
(4.2). �
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The convergence results of the paper rely on general convergence criteria.
Let U := {Ut : t ≥ 0} be a continuous Rd -valued semi-martingale with the property that, for

any t > 0 there exists a constant Ct such that

E


sup

r∈[0,t]

 m
k=1

 r

0
ξ k

s dU k
s


p

≤ Ct

m
k=1

E
 t

0
|ξ k

s |
pds


(4.18)

for any progressively measurable Ft -adapted Rd -valued process ξ := {ξt : t ≥ 0}. Let µn
:=

{µn
t : t ≥ 0} be a measure-valued process such that for any ϕ ∈ C 1

b(Rd) we have

µn
t (ϕ) = µn

0(at (ϕ)) + mn,ϕ
t +

m
k=1

 t

0
µn

s (ak
s,t (ϕ)) dU k

s (4.19)

where mn,ϕ
:= {mn,ϕ

t : t ≥ 0} is a martingale and at , ak
s,t : C 1

b(Rd) → C 1
b(Rd) are bounded linear

operators with bounds c and Ck, k = 1, . . . , m, respectively. That is, ∥at (ϕ)∥1,∞ ≤ c∥ϕ∥1,∞ and
∥ak

s,t (ϕ)∥1,∞ ≤ Ck∥ϕ∥1,∞, k = 1, . . . , m.
In the following, the notation |ν| denotes the total variation of a measure ν.

Theorem 8. If for any T ′ > 0 there exist constants γ1, γ2 such that for t ∈ [0, T ′
] and p ≥ 2

E

|mn,ϕ

t |
p

≤
γ1

n p/2 ∥ϕ∥
p
1,∞; and E


|µn

0(at (ϕ))|p <
γ2

n p/2 ∥ϕ∥
p
1,∞, (4.20)

and

d := sup
t∈[0,T ′]

E


|µn
t |(1)

p
< ∞, (4.21)

then for any t ∈ [0, T ′
]

∥µn
t (ϕ)∥

p
p := E


|µn

t (ϕ)|p
≤

α

n p/2 ∥ϕ∥
p
1,∞ (4.22)

where α = α(t) is a constant independent of n.

Proof. Observe, by a combination of the Jensen and Burkholder–Davis–Gundy inequalities, that

∥µn
t (ϕ)∥p ≤ ∥µn

0(at (ϕ))∥p + ∥mn,ϕ
t ∥p +


E

 m
k=1

 t

0
µn

s (ak
s,t (ϕ)) dU k

s


p 1

p

≤ 2
 γ

n p/2 ∥ϕ∥
p
1,∞

 1
p

+


K m p−1t

p
2 −1

m
k=1

 t

0
E

|µn

s (ak
s,t (ϕ))|p


ds

 1
p

,

where γ := max{γ1, γ2}.
Let

Ak
s,t :=

 t

0
E

|µn

s (ak
s,t (ϕ))|p


ds =

 t

0
∥µn

s (ak
s,t (ϕ))∥

p
p ds

then

∥µn
t (ϕ)∥

p
p ≤ 2p−12p γ

n p/2 ∥ϕ∥
p
1,∞ + 2p−1 K m p−1t

p
2 −1

m
k=1

Ak
s,t . (4.23)
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It thus follows using the fact that for k = 1, . . . , m, ak
s,t is a bounded operator and appealing to

(4.21) that

∥µn
t (ϕ)∥

p
p ≤ 2p−12p γ

n p/2 ∥ϕ∥
p
1,∞ + 2p−1 K m p−1t

p
2 −1

m
k=1

C p
k ∥ϕ∥

p
1,∞dt

≤ 2p−12p γ

n p/2 ∥ϕ∥
p
1,∞ + 2p−1 K m pC p

∥ϕ∥
p
1,∞dt

p
2 (4.24)

where C := max{C1, . . . , Cm}. From (4.24) it follows for k = 1, . . . , m, that

Ak
s,t ≤ 2p−12p γ

n p/2 C p
k ∥ϕ∥

p
1,∞t + 2p−1 K m pC pC p

k ∥ϕ∥
p
1,∞d

t
p
2 +1

(p/2 + 1)

≤ 2p−12p γ

n p/2 C p
∥ϕ∥

p
1,∞t + 2p−1 K m pC2p

∥ϕ∥
p
1,∞d

t
p
2 +1

(p/2 + 1)
.

(4.23) therefore becomes

∥µn
t (ϕ)∥

p
p ≤ δ


1 + βptκ


+ β2

pd∥ϕ∥
p
1,∞

t2κ

(κ + 1)
(4.25)

where δ = 2p−12p γ

n p/2 ∥ϕ∥
p
1,∞; βp = 2p−1 K m pC p and κ = p/2. In turn, (4.25) now gives us

that

Ak
s,t ≤ δC pt + δβpC p tκ+1

(κ + 1)
+ β2

pC pd∥ϕ∥
p
1,∞

t2κ+1

(2κ + 1)(κ + 1)

hence

∥µn
t (ϕ)∥

p
p ≤ δ


1 + βptκ + β2

p
t2κ

(κ + 1)


+ β3

pd∥ϕ∥
p
1,∞

t3κ

(2κ + 1)(κ + 1)
. (4.26)

So in general with ∥µn
t (ϕ)∥

p,(k)
p denoting the kth-iteration, it follows by an induction argument

that

∥µn
t (ϕ)∥

p,(k)
p ≡ ∥µn

t (ϕ)∥
p
p

≤ δ


1 + βptκ + β2

p
t2κ

(κ + 1)
+ · · · + βk−1

p
t (k−1)κ

((k − 2)κ + 1) · · · (κ + 1)



+ βk
pd∥ϕ∥

p
1,∞

tkκ

((k − 1)κ + 1)((k − 2)κ + 1) · · · (κ + 1)

and as k → ∞,

∥µn
t (ϕ)∥

p
p ≤ δ


1 + βptκ

∞
j=0

β
j
p

t jκ

κ j j !



= δ


1 + βptκe

βptκ

κ


= 22p−1


1 + βptκe

βptκ

κ


γ

n p/2 ∥ϕ∥
p
1,∞.

Hence (4.22) follows with α := 22p−1


1 + βptκe
βptκ

κ


γ . �
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Remark 9. If the norms in the bounds (4.20) can be replaced with ∥ · ∥∞ that is

E

|mn,ϕ

t |
p

≤
γ1

n p/2 ∥ϕ∥
p
∞; and E


|µn

0(at (ϕ))|p <
γ2

n p/2 ∥ϕ∥
p
∞, (4.27)

then by defining at and ak
s,t to be bounded linear operators on Cb(Rd), we can reach a similar

conclusion as in Theorem 8 for ϕ ∈ Cb(Rd).

We also have the following almost sure convergence result.

Corollary 10. Under the same conditions as Theorem 8 but with the exception that p > 2 there
exists a positive random variable, cµ,ε, almost surely finite, such that

|µn
t (ϕ)| ≤

cµ,ε

nε
(4.28)

where ε ∈


0, 1

2 −
1
p


.

That is

µn
t (ϕ) → 0 P̃-a.s. (4.29)

as n → ∞.

Proof. Recall from (4.22) in Theorem 8 that

∥µn
t (ϕ)∥

p
p := E


|µn

t (ϕ)|p
≤

α

n p/2 ∥ϕ∥
p
1,∞ (4.30)

where α = α(t) is a constant independent of n.

By Fatou’s lemma it follows therefore that for ε ∈


0, 1

2 −
1
p


E


∞

n=1

nεp
|µn

t (ϕ)|p


≤ α∥ϕ∥

p
1,∞

∞
n=1

1

n p−2εp
< ∞.

Let cµ,ε :=


∞

n=1 nεp
|µn

t (ϕ)|p
 1

p . Then cµ,ε is integrable and cµ,ε is finite a.s. (4.28) now
follows since

n2εp
|µn

t (ϕ)|2p
≤

∞
n=1

n2εp 
|µn

t (ϕ)|
2p

. �

In the following we will use the notation δρn
t (ϕ) to denote (ρn

t − ρt )(ϕ) and δπn
t (ϕ) to denote

(πn
t − πt )(ϕ). Theorem 1 is proved in the following.

Theorem 11. Assume that there exists p > 1 such that for all t > 0, condition (2.8) holds true.
Then for any T ′

≥ 0 and for any r < p, there exists a constant α = α(T ′), independent of n
such that for any ϕ ∈ C 1

b(Rd), we have

E

((ρn

t − ρt )(ϕ))2r


≤
α

nr ∥ϕ∥
2r
1,∞, t ∈ [0, T ′

] (4.31)

and

E

((πn

t − πt )(ϕ))r 
≤

α

n
r
2
∥ϕ∥

r
1,∞, t ∈ [0, T ′

]. (4.32)
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Proof. (4.31) follows from Theorem 8 by setting:

µn
t (·) := (ρn

t − ρt )(·); µn
0(at (·)) := (ρn

0 − ρ0)(Pt ·);

mn,ϕ
t := S̄n,ϕ

t + M̄n,ϕ
t ; µn

r (ak
r,t (·)) ≡ (ρn

r − ρr )(Pt−r · h⊤), 0 < r ≤ t;

and appealing to Lemmas 5–7. Note that the observation process Y satisfies condition (4.18).
The control on the total mass (4.21) follows from Lemma 3 and the fact that supt∈[0,T ′] E
(ρt (1))p < ∞; see Proposition 4.23 in [1].

In order to prove (4.32), note that πn
t (ϕ)ρn

t (1) = ξn
t πn

t (ϕ) = ρn
t (ϕ). It follows thus that

δπn
t (ϕ) =

1
ρt (1)

δρn
t (ϕ) −

πn
t (ϕ)

ρt (1)
δρn

t (1). (4.33)

One can show that ut :=


E

(ρt (1))−p < ∞ (see for example Exercise 9.16 in [1]).

By a combination of the Jensen and Cauchy–Schwarz inequalities

E

|δπn

t
(ϕ)|p

≤ 2


ut


E

δ

2p
ρn

t
(ϕ)


+ ut∥ϕ∥
2
0,∞


E

δ

2p
ρn

t
(1)


.

(4.32) now follows from (4.31). �

Remark 12. Further to the results in Theorem 11. It can be shown that for 0 < ε < 1
2 −

1
2p and

t ∈ [0, T ′
],

|δρn
t
(ϕ)| ≤

ct,ε

nε
(4.34)

where ct,ε is a positive, almost surely finite random variable and hence (as in Corollary 10),

ρn
t (ϕ) → ρt (ϕ) P-a.s. (4.35)

Hence also πn
t (ϕ) → πt (ϕ) P-a.s.

Remark 13. Under the same conditions as in Theorem 11 with the exception that ϕ ∈ C 3
b(Rd),

one can prove (see [19]) the following stronger results:

E


sup

t∈[0,T ′]

δ2r
ρn

t
(ϕ)


≤

βT ′

nr ∥ϕ∥
2r
3,∞, t ∈ [0, T ′

], (4.36)

E


sup

t∈[0,T ′]

δr
πn

t
(ϕ)


≤

β̃T ′

n
r
2

∥ϕ∥
r
3,∞, t ∈ [0, T ′

].

5. Examples of convergent adaptive particle filters

We show now that the results of the preceding section are valid for the case where the
predictable stopping times are determined by the effective sample size. We will show that for
any p > 1, condition (2.8) holds true. By applications of Itô’s formula we have the following.



D. Crisan, O. Obanubi / Stochastic Processes and their Applications 122 (2012) 1332–1368 1351

Proposition 14. For t ≥ 0 let S̄t :=
n

j=1 ān
j (t)

2 so that S̃t := S̄−1
t ≡ n̂e f f . Then for

t ∈ [Tk′ , Tk′+1), 0 ≤ k′
∈ N,

S̃t = n exp


m

k=1

 t

Tk′

η̃n,k
s dY k

s +

m
k=1

 t

Tk′

ζ̃ n,k
s ds −

1
2

m
k=1

 t

Tk′

(η̃n,k
s )2 ds


where

η̃
n,k
t := 2


πn

t


hk


− π̃n
t


hk


, (5.1)

and

ζ̃
n,k
t := πn

t


hk
2

+ 2πn
t


hk


π̃n
t


hk


− π̃n
t


(hk)2


+ 4π̃n

t


hk
2

, (5.2)

with

ãn
j (t)

2
:= S̄−1

t ān
j (t)

2
=

ān
j (t)

2

n
j=1

ān
j (t)

2
and π̃n

t :=

n
j=1

ãn
j (t)

2δvn
j (t)

. (5.3)

So after the k′th stopping time, it follows that

S̃t = S̃Tk′ +

m
k=1

 t

Tk′

S̃s η̃
n,k
s dY k

s +

m
k=1

 t

Tk′

S̃s ζ̃
n,k
s ds,

where t > Tk′ . In particular for t ∈ [Tk′ , Tk′+1),

S̃t = n exp


m

k=1

 t

Tk′

η̃n,k
s dY k

s +

m
k=1

 t

Tk′

ζ̃ n,k
s ds −

1
2

m
k=1

 t

Tk′

(η̃n,k
s )2 ds


.

Remark 15. For t ∈ [Tk′ , Tk′+1), we can also write

S̃t = n exp(−α
n,k′

t ) (5.4)

where

α
n,k′

t :=

 t

Tk′

βn,k
s dY k

s +

 t

Tk′

γ n,k
s ds (5.5)

is a semimartingale with

βn,k
s = −

m
k=1

η̃n,k
s ; γ n,k

s = −

m
k=1


ζ̃ n,k

s −
1
2


η̃n,k

s

2


, s ∈ [Tk′ , Tk′+1)

where we use the convention that

βn,k
s dY k

s :=

m
k=1

η̃n,k
s dY k

s .
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Recall from (3.4) that the family of predictable stopping times {Tk}k∈N determined by the ESS
is defined for 1 ≤ k′

∈ N by

Tk′ := inf{t ≥ Tk′−1 : ne f f ≤ λthresn} (5.6)

where λthres ∈ (0, 1).
Observe that by (5.4), (5.6) can be rewritten as

Tk′ = inf{t ≥ Tk′−1 : α
n,k′

−1
t ≥ log λ−1

}. (5.7)

Lemma 16. Let t ∈ [Tk−1′ , Tk′), k′
≥ 1 an integer. Then

Tk′ := inf{t ≥ Tk′−1 : ne f f ≤ λn}

can be equivalently rewritten as

Tk′ := inf{t ≥ 0 : αn
t ≥ k′ log λ−1

} (5.8)

where for ease of notation, λ ≡ λthres and using the notation of Remark 15, the semi-martingale
αn

t is defined by

αn
t = α

n,0
T1

+ α
n,1
T2

+ · · · + α
n,k′

−2
Tk′−1

+ α
n,k′

−1
t . (5.9)

That is,

αn
t =

 T1

0
βn,k

s dY k
s +

 T1

0
γ n,k

s ds + · · · +

 Tk−1′

Tk′−2

βn,k
s dY k

s

+

 Tk′−1

Tk′−2

γ n,k
s ds +

 t

Tk′−1

βn,k
s dY k

s +

 t

Tk′−1

γ n,k
s ds

=

 t

0
βn

s dYs +

 t

0
γ n

s ds (5.10)

where for s ∈ [Tp, Tp+1), p = 0, . . . , k − 1′,

βn
s := β

n,p
s ; Ys := Y p

s ; γ n
s := γ

n,p
s .

Proof. The result follows by the definition of αn
t and noting that α

n,k′
−1

t ≥ log λ−1 and for
0 ≤ r ≤ k′

− 2, α
n,r
Tr+1

= log λ−1. �

Proposition 17. We will show that for any p > 1, condition (2.8) holds true, i.e.,

sup
n>0

E[(N n
t )p

] < ∞. (5.11)

Proof. From (5.8)

{Tk ≤ t} ≡


sup

s∈[0,t]
αn

s ≥ k log λ−1


(5.12)
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therefore

N n
t = max{k ≥ 0; Tk ≤ t} = max


k ≥ 0; sup

s∈[0,t]
αn

s ≥ k log λ−1


≤

sup
s∈[0,t]

αn
s

log λ−1 .

By the Jensen and Burkholder–Davis–Gundy inequalities, the fact that
n

j=1 ān
j (t) = 1 =n

j=1 ãn
j (t) and h(vn

j (t)) being bounded for any t ≥ 0, it follows from (5.1) and (5.2) that
E[(βn

s )p
] < ∞ and E[(γ n

s )p
] < ∞ and

E


sup

s∈[0,t]
αn

s

p
≤ E


sup

s∈[0,t]

 s

0
βn

r dYr +

 s

0
γ n

r dr

p


≤ 2p E


sup

s∈[0,t]

 s

0
βn

r dYr

p


+ 2p E


sup

s∈[0,t]

 s

0
γ n

r dr

p


≤ C

where C is a constant independent of the number of particles, n. The claim is proved. �

The following result is now immediate.

Proposition 18. The approximating measure of the signal converges to the true measure in an
L p-sense when the predictable stopping resampling times are determined by the effective sample
size.

Moreover we can also conclude that

Proposition 19. The approximating measure of the signal converges to the true measure in an
L p-sense when the predictable stopping resampling times are determined by the soft maximum.

Proof. Observe that for any t ≥ 0 there exists an M ∈ N such that

ξ
n,∞
t = ξ

n,M
t

:=

M
i=1

1
n

n
j=1

an,i
j (t)

=
1

nM


( j1,..., jM )∈JM

exp


M

i=1

 Ti ∧t

Ti−1∧t
h(vn

ji (s))
⊤ dYs

−
1
2

 Ti ∧t

Ti−1∧t
∥h(vn

ji (s))∥
2 ds


=

1
nM


( j1,..., jM )∈JM

exp
 TM ∧t

0
h(vn

j1,..., jM
(s))⊤ dYs

−
1
2

 TM ∧t

0
∥h(vn

j1,..., jM
(s))∥2 ds


(5.13)

where JM is the set of multi-indices defined by

JM := {( j1, . . . , jM ) : ji ∈ {1, . . . , n}, i = 1, . . . , M}
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and

vn
j1,..., jM

= vn
ji if s ∈ [Ti−1 ∧ t, Ti ∧ t), i = 1, . . . , M.

The claim now follows by using a similar approach to the one employed for the ESS. �

6. A central limit theorem

In the section we will assume throughout that the conditions stated in Theorem 2 hold true.
That is we assume that for any k ≥ 0, limn→∞ T n

k = Tk , where (Tk)k≥0 is a strictly increasing
sequence of Yt -adapted predictable stopping times. We also assume that (2.8) is satisfied and
also there exists p > 2 such that for all t > 0, condition (2.10) holds true. That is

lim
δ→0

sup
n>0

E


sup

s∈[0,t]
E[(N n

s+δ − N n
s )p

|Fs]


= 0.

Let {U n
}n∈N be the family of measure-valued processes defined as

U n
t :=

√
n(ρn

t − ρt ), t ≥ 0. (6.1)

We will show that U n converges in distribution to a certain process U identified as the unique
solution of a certain evolution equation. Both U n and U are viewed as processes with values
in the space M F (Rd) endowed with a vague topology, that is, the weak*-topology on C0(Rd).
It is possible to obtain the same results by endowing M F (Rd) with the weak topology (see
Remark 27 for details).

6.1. The tightness of the sequence U n

Let {Pn} ⊂ P

DM F (Rd )[0, T ]


be the family of associated probability distributions of {U n

}.
Let (ιk)k≥0 be a sequence of functions defined as ι0 ≡ 1 and (ιk)k≥1, a dense sequence in
C∞

0


Rd

. Then by Theorem 2.1 in [22] it follows that {Pn} is tight if the probability distributions

of the sequence U n
t (ιk) are tight. To show this we make use of the following theorem (see

Theorems 8.8 + 8.6 in [9]).

Theorem 20 (Kurtz’s Criteria of Relative Compactness). Let (E, d) be a separable and complete
metric space and let {Xn

}n∈N be a sequence of processes with sample paths in DE [0, ∞).
Suppose that for every η > 0 and rational t , there exists a compact set Γη,t such that

sup
n

P(Xn
t ∉ Γη,t ) ≤ η. (6.2)

Then {Xn
}n∈N is relatively compact if for each T ′ > 0, there exists β > 0 and a family

{γ n(δ) : 0 < δ < 1} of non-negative random variables satisfying

E[(1 ∧ d(Xn
t+u, Xn

t ))β |Ft ] ≤ E[γ n(δ)|Ft ] (6.3)

for 0 ≤ t ≤ T ′, 0 ≤ u ≤ δ and

lim
δ→0

lim sup
n→∞

E[γ n(δ)] = 0. (6.4)

We have the following.
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Theorem 21. Provided that h in (2.3) and the coefficients ai j and f i , 1 ≤ i, j ≤ d,
in (2.2) belong to C 3

b(Rd) then the sequence {U n
}n∈N is relatively compact.

Proof. It suffices to show that {U n(ιk)}n is relatively compact for any k ≥ 0. To show this we use
Theorem 20 with E = R, d the Euclidean metric and {Xn

} = {U n(ιk)}. First note that (6.2) holds
as a consequence of the fact that E[supt (U

n(ιk))
2
] is bounded above by a constant independent

of n which is an immediate consequence of the bound (4.31) (or (4.36)).
We now obtain a suitable family of random variables {γ n(δ) : 0 < δ < 1} that satisfies (6.3).

First observe that, for any 0 ≤ a ≤ b

U n
b (ιk) − U n

a (ιk) = qn,1
a,b + qn,2

a,b +
√

n(S̄n,ιk
b − S̄n,ιk

a ) +
√

n(M̄n,ιk
b − M̄n,ιk

a ), (6.5)

where

qn,1
a,b =

 b

a

√
n(ρn

s (Aιk) − ρs(Aιk)) ds (6.6)

qn,2
a,b =

m
l=1

 b

a

√
n

ρn

s (hl ιk) − ρs(hl ιk)


dY l
s . (6.7)

We find L2r -bounds for each of the terms in (6.5). Observe that, from (4.36), we have that

E


sup

u∈[0,δ]

|qn,1
t,t+u |

r
|Ft


≤ δr nr/2E


sup

s∈[0,T ′+δ]

(ρn
s (Aιk) − ρs(Aιk))

r
|Ft


(6.8)

E


sup

u∈[0,δ]

|qn,2
t,t+u |

r
|Ft


≤ cδr/2nr/2

m
l=1

E


sup

s∈[0,T ′+δ]

(ρn
s (hl ιk) − ρs(hl ιk))

r
|Ft


. (6.9)

Also similar with the proof of the bound (4.8), we have

E


sup

u∈[0,δ]

(
√

n|S̄n,ιk
t+u − S̄n,ιk

t |)r
|Ft


≤ cδr/2

∥∇ik∥
r
∞E


sup

s∈[0,T ′+δ]

(ρn
s (1))r

|Ft


. (6.10)

Finally, similar with the proof of the bound (4.13) we have that for any r < p and any ϕ ∈ Cb(Rd)

E


sup

u∈[0,δ]

√
n|M̄n,ιk

t+u − M̄n,ιk
t |

r
|Ft



≤ CT ′,2r∥ϕ∥
r
∞E


(N n

t+δ − N n
t )r/2 sup

s∈[0,T ′+δ]

(ξn
s (1))r

|Ft


. (6.11)

Hence, following from (6.8)–(6.11), we get that (6.3) holds true with

γ n(δ) = δr nr/2 sup
s∈[0,T ′+δ]

(ρn
s (Aιk) − ρs(Aιk))

r
+ cδr/2nr/2

×

m
l=1

sup
s∈[0,T ′+δ]

(ρn
s (hl ιk) − ρs(hl ιk))

r
+ cδr/2

∥∇ik∥
r
∞ sup

s∈[0,T ′+δ]

(ρn
s (1))r

+ CT ′,2r∥ϕ∥
r
∞ sup

t∈[0,t ′+δ]

E


(N n

t+δ − N n
t )r/2 sup

s∈[0,T ′+δ]

(ξn
s (1))r

|Ft


which in turn satisfy (6.4) following the bounds (4.2), (4.36) and the condition (2.10). �
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6.2. The process U

We start by introducing the process ρ̃ = {ρ̃t , t ≥ 0}.

ρ̃t (ϕ) = ρ̃0(ϕ) +

 t

0


ρs(1)ρs(Aϕ) −

m
r ′=1


ρs(1)ρs(h

r ′

ϕ) − ρs(h
r ′

)ρs(ϕ)


πs(h
r ′

)

+

m
k′=1

πs(ϕ)ρs(h
k′

)2
+ 2

m
k′=1


ρs(h

k′

)ρs(h
k′

ϕ) − ρs(h
k′

)2πs(ϕ)


ds

+

m
k′=1

 t

0


ρs(1)ρs(h

k′

ϕ) + ρs(h
k′

)ρs(ϕ)


dY k′

s .

The following lemma is proved in the same manner as the results in the previous section.

Lemma 22. Let ρ̃n
= {ρ̃n

t , t ≥ 0} be the sequence of processes

ρ̃n
t := (ξn

t )2 n
n

j=1

ān
j (t)

2δvn
j (t)

.

Then ρ̃n
t (ϕ) → ρ̃t (ϕ) P-a.s. for any ϕ ∈ C2

b(Rd) and t ≥ 0.

Let Nϕ be a (Ft ∨ Y)-adapted square-integrable martingale given by

Nϕ
t =

 t

0


Rd


ρ̃s

(∇ϕ)⊤σσ⊤(∇ϕ)


B(dx, ds)

+

∞
k=1

1[0,t](Tk)ρTk (1)


πTk (ϕ

2) − πTk−(ϕ)2Υk (6.12)

where B(dx, ds) is a Brownian sheet or space–time white noise, {Υk}k∈N is a sequence of i.i.d
standard normal random variables mutually independent given the sigma algebra Y .

Proposition 23. If U := {Ut : t ≥ 0} is a DM F (Rd )[0, ∞)-valued process such that for
ϕ ∈ C 2

0(Rd)

Ut (ϕ) = U0(ϕ) +

 t

0
Us(Aϕ) ds + Nϕ

t +

m
k=1

 t

0
Us(h

kϕ) dY k
s (6.13)

then U is pathwise unique.

Proof. Let U and Ũ be two solutions of (6.13). Define Û := U − Ũ . Then Ût satisfies the
following equation

Ût (ϕ) = Û0(ϕ) +

 t

0
Ûs(Aϕ) ds +

m
k=1

 t

0
Ûs(h

kϕ) dY k
s (6.14)

and it follows similarly to Theorem 2.21(i) and Remark 3.4 in [18] or Lemma 4.2 in [17] that
Û = 0. �

Remark 24. That a solution to (6.13) exists will be shown in Theorem 25 where it will be shown
that {U n

}n converges in distribution to U .
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6.3. Convergence in distribution

Theorem 25. {U n
}n converges in distribution to a unique DM F (Rd )[0, ∞)-valued process,

U := {Ut : t ≥ 0}, such that for ϕ ∈ C 2
0(Rd)

Ut (ϕ) = U0(ϕ) +

 t

0
Us(Aϕ) ds + Nϕ

t +

m
k=1

 t

0
Us(h

kϕ) dY k
s (6.15)

where Nϕ is an (Ft ∨ Y)-adapted martingale with quadratic variation

⟨Nϕ
· ⟩t =

 t

0
ρ̃s


(∇ϕ)⊤σσ⊤(∇ϕ)


ds

+

∞
k=1

E

1[0, t](Tk)ρTk (1)2


πTk (ϕ

2) − πTk−(ϕ)2
|FTk−


. (6.16)

Proof. By Proposition 5.3.20 in [13] and its extension to stochastic partial differential equations
and infinitely dimensional stochastic differential equations (see [16,21]) it follows that the
Yamada–Watanabe result applies to (6.15), in other words, pathwise uniqueness implies
uniqueness in law for (6.15). Hence the solution of (6.15) is unique in distribution.

Let {U nr }r be any convergent subsequence of {U n
}n . We denote the limit of {U nr }r by U

and show that it is a solution of (6.15). The result then follows by the uniqueness in law of the
solution of (6.15) since this then implies that the original sequence {U n

} converges to the unique
solution of (6.15). Define

Nϕ
t = Ut (ϕ) − U0(ϕ) −

 t

0
Ur (Aϕ) dr −

m
k=1

 t

0
Us(h

kϕ) dY k
r .

To prove the result it suffices to show that Nϕ is an (Ft ∨ Y)-adapted martingale with
quadratic variation given by (6.16). For this it is enough to show that for all d, d ′

≥ 0,
0 ≤ t1 ≤ t2 · · · ≤ td ≤ s, 0 ≤ t ′1 ≤ t ′2 · · · ≤ t ′d ′ , continuous bounded functions α1, . . . , αd on
M F (Rd) and continuous bounded functions α′

1, . . . , α
′

d ′ on Rm we have

E


Nϕ

t − Nϕ
s

 d
i=1

αi (Uti )

d ′
j=1

α′

j (Yt ′j
)


= 0 (6.17)

and

E


(Nϕ

t − Nϕ
s )2

−

 t

s
ρ̃s


(∇ϕ)⊤σσ⊤(∇ϕ)


ds

−

∞
k=1

1(s,t](Tk)ρTk (1)2

πTk (ϕ

2) − πTk−(ϕ)2
 d

i=1

αi (Uti )

d ′
j=1

α′

j (Yt ′j
)


= 0.

(6.18)

Both (6.17) and (6.18) follow by using the argument in Theorem 4.8.2 of [9]. The approach
used is identical with the proofs of Theorem 4.11 in [3] and Theorem 5.3 in [2] and we omit it
here. �
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Corollary 26. Let Ū n
: {Ū n

t : t ≥ 0} be the process defined as Ū n
t :=

√
n(πn

t −πt ), t ≥ 0. Then
{Ū n

}n converges in distribution to the measure-valued process Ū : {Ūt : t ≥ 0} defined as

Ūt =
1

ρt (1)
(Ut − Ut (1)πt ) , t ≥ 0, (6.19)

where U satisfies (6.15).

Proof. Follows from (4.33) and the fact that ρn
t (ϕ)

a.s
→ ρt (ϕ) and πn

t (ϕ)
a.s
→ πt (ϕ). �

Remark 27. It is possible to obtain the tightness and convergence in distribution of the processes
U n when the space M F (Rd) is endowed with the weak topology in the sense that a sequence of
finite measures {µn}n∈N in M F (Rd) converges to µ ∈ M F (Rd) if and only if µn(ϕ) converges
to µ(ϕ) for all ϕ ∈ Cb(Rd). To do this one introduces the metric

dM : M F (Rd) × M F (Rd) → [0, ∞), dM(µ, ν) =

∞
i=0

|µ(ϕ) − ν(ϕ)|

2i∥ϕ∥∞

where ϕ0 ≡ 1 and {ϕi }i≥0 is a sequence of functions dense in Ck(Rd), the space of continuous
functions with compact support on Rd . Then dM generates the weak topology on M F (Rd). The
main obstacle to obtaining the tightness and convergence in distribution results under this new
metric is that DM F (Rd )[0, ∞) is not complete under dM since the underlying space M F (Rd)

is separable but not complete under dM. This inconvenience is catered for by using the same
approach presented in Section 5 of [2]. The space DM F (Rd )[0, ∞) is embedded into the compact
and separable space DM F


Rd
[0, ∞) by defining a map or projection P such that

µ ∈ M F (Rd)
P
→ µ|Rd ∈ M F (Rd).

Here Rd is the one point compactification Rd . Note that P(M F (Rd)) = M F (Rd). The family of
measures {Pn}n can therefore now be viewed as measures over DM F


Rd
[0, ∞) (and {U n

}n∈N

consequently can be seen as processes with sample paths in DM F


Rd
[0, ∞)). By employing

the strategy outlined above, we can show that {U n
}n∈N converges in distribution to U where U

has sample paths in DM F


Rd
[0, ∞). Finally since the weak topology on M F (Rd) coincides

with the trace topology from M F (Rd) to M F (Rd), it is enough to show that U only takes values
in the space M F (Rd) (i.e. U is indeed a DM F (Rd )[0, ∞)-valued random variable). To do this
we have to show that P(U ) = U . In other words U does not ‘put’ any ‘mass at ∞’. To show
this, we need to prove that for arbitrary t , there exists a sequence of compact sets {K p}p≥0 ∈ Rd

(possibly depending on t) which exhaust Rd such that for all ε > 0,

lim
p→∞

P


sup

s∈[0,t]


Us(1K c

p
)


= 0,

where K c
p denotes the compliment of K p. Consequently it follows that by using the approach

described above, we obtain identical results to the ones obtained under the vague topology for
the weak topology.
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6.4. Tightness and convergence of resampling times in the case of the effective sample size

6.4.1. Tightness condition

Theorem 28. Let {Tk}k∈N be the resampling times as determined by the ESS. Then {Tk}k∈N
satisfies the tightness condition (2.10). In particular for all t > 0, we have

lim
δ→0

sup
n>0

E


sup

s∈[0,t]
E

(N n

s+δ − N n
s )2

|Fs


= 0.

Proof. Since

t < T n
k ≤ t + δ ⇔ αn∗

t < k ≤ αn∗

t+δ

where αn∗
t :=


log λ−1

−1
sups∈[0,t] α

n
s , we get that

E[(N n
s+δ − N n

s )2
|Fs] = E[([αn∗

s+δ] − [αn∗
s ])2

|Fs].

By the tail sum theorem (see Theorems 4.3.11 and 4.3.12 in [24]) we have that for any random
variable X taking integer values,

E


X2


= E [X (X − 1)] + E [X ]

= 2
∞

r=1

(r − 1) P(X ≥ r) +

∞
r=1

P(X ≥ r).

Hence,

E


[αn∗

t+δ] − [αn∗
t ]
2

|Fs


= 2

∞
r=2

(r − 1) P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Fs


+

∞
r=1

P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Fs


. (6.20)

We will use the convention that K p, where p ∈ N is a constant independent of n. Since for r > 1


[αn∗

t+δ] − [αn∗
t ] ≥ r


⊂


sup

s∈[0,δ]

(αn
t+s − αn

t ) ≥ r − 1


it follows by the conditional Markov inequality that

2
∞

r=2

(r − 1) P

[αn∗

t+δ] − [αn∗
t ] ≥ r

Ft


≤ 2
∞

r=2

(r − 1) P


sup

s∈[0,δ]

(αn
t+s − αn

t ) ≥ (r − 1)

Ft



≤ 2
∞

r=2

(r − 1)

E

 sup
s∈[0,δ]

(αn
t+s − αn

t )

3
Ft


(r − 1)3
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= 2 E

 sup
s∈[0,δ]

(αn
t+s − αn

t )

3
Ft

 ∞
r=2

1

(r − 1)2

=
π2

3
E

 sup
s∈[0,δ]

(αn
t+s − αn

t )

3
Ft


≤ K1δ

3
2 . (6.21)

Note that
∞

r=1

P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Ft


= P


[αn∗

t+δ] − [αn∗
t ] ≥ 1|Ft


+

∞
r=2

P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Ft


. (6.22)

Similar to (6.21)

∞
r=2

P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Ft


≤ E

 sup
s∈[0,δ]

(αn
t+s − αn

t )

2
Ft

 ∞
r=2

1

(r − 1)2

≤ K2δ. (6.23)

We will now show that as δ → 0

P

[αn∗

t+δ] − [αn∗
t ] ≥ 1|Ft


≤ c(δ) → 0

where c(δ) is a constant depending only on δ.
For ε > 0 let

Aε
=


r∈N


r − 1, r −

ε

r4


and (Aε)c

:= [0, ∞) \ Aε
=


r∈N


r −

ε

r4 , r


then with B := {[αn∗

t+δ] − [αn∗
t ] ≥ 1},

P(B|Ft ) = P(B ∩ {αn∗
t ∈ Aε

}|Ft ) + P(B ∩ {αn∗
t ∈ (Aε)c

}|Ft )

≤ P(B ∩ {αn∗
t ∈ Aε

}|Ft ) + P({αn∗
t ∈ (Aε)c

}|Ft ).

Note then that since αn
t

a.s.
→ αt and αn∗

t
a.s.
→ α∗

t as n → ∞

P

{αn∗

t ∈ (Aε)c
}|Ft


→ P


{α∗

t ∈ (Aε)c
}|Ft


. (6.24)

Also as ε → 0,

(Aε)c
↘ φ ⇒ P((Aε)c

|Ft ) ↘ 0

and hence,

f (ε) := P({α∗
t ∈ (Aε)}|Ft )

c
→ 0. (6.25)

To control P(B ∩ {αn∗
t ∈ Aε

}) we make use of the conditional Markov inequality and the fact
(see Proposition C.1 in the Appendix in [19]) that

{[αn∗

t+δ] − [αn∗
t ] ≥ 1} ⊆


sup

s∈[0,δ]

(αn
t+s − αn

t ) ≥ 1 − {αn∗
}


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where {·} denotes the fractional part function, to get that

P(B ∩ {αn∗
t ∈ Aε

}|Ft ) = E

1Aε (αn∗

t )1B |Ft


= E

1Aε (αn∗

t )1
[αn∗

t+δ]−[αn∗
t ]≥1

Ft


= 1Aε (αn∗

t )E

1

[αn∗

t+δ]−[αn∗
t ]≥1

Ft


≤ 1Aε (αn∗

t )P


sup

s∈[0,δ]


αn

t+s − αn
t


≥ 1 − {αn∗

t }

Ft



≤

1Aε (αn∗
t )E


sup

s∈[0,δ]


αn

t+s − αn
t
Ft




1 − {αn∗
t }

.

By observing that

∞
r=1

(r − 1)21
r−1,r−

ε

r4

 αn∗
t


≤

∞
r=1

(r − 1)21[r−1,r)


αn∗

t


= [αn∗

t ]
2

≤

αn∗

t

2 (6.26)

and noting similarly that

∞
r=1

(r − 1)1
r−1,r−

ε

r4

 αn∗
t


≤

αn∗

t


(6.27)

and

∞
r=1

1
r−1,r−

ε

r4

 αn∗
t


≤ 1, (6.28)

it follows thus that

E


1Aε (αn∗

t )


sup
s∈[0,δ]


αn

t+s − αn
t
Ft




1 − {αn∗
t }

≤
1

√
ε

∞
r=1

r2E


1

r−1,r−
ε

r4

(αn∗
t )


sup
s∈[0,δ]


αn

t+s − αn
t
Ft



=
1

√
ε

∞
r=1


(r − 1)2

+ 2 (r − 1) + 1


× E


1

r−1,r−
ε

r4

(αn∗
t )


sup

s∈[0,δ]


αn

t+s − αn
t
Ft



≤
1

√
ε


E


αn∗

t

2  sup
s∈[0,δ]


αn

t+s − αn
t
Ft


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+ 2 E


αn∗

t

 
sup

s∈[0,δ]


αn

t+s − αn
t
Ft



+ E


sup

s∈[0,δ]


αn

t+s − αn
t
Ft



≤
1

√
ε

E


sup

s∈[0,δ]


αn

t+s − αn
t

Ft

 1
2 

E


αn∗
t |Ft

4 1
2

+ E


αn∗
t

2
|Ft

 1
2

+ 1


≤
1

√
ε

K3δ
1
2 . (6.29)

Hence it follows from (6.24), (6.25) and (6.29) and choosing ε = δ
1
2 that

P

[αn∗

t+δ] − [αn∗
t ] ≥ 1|Ft


≤

1
√

ε
K3δ

1
2 + f (ε)

≤ K3δ
3
8 + f (δ

1
2 ) (6.30)

and so from (6.21) to (6.23) and (6.30),

E


[αn∗

t+δ] − [αn∗
t ]
2

|Ft


= 2

∞
r=2

(r − 1) P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Ft


+

∞
r=1

P

[αn∗

t+δ] − [αn∗
t ] ≥ r |Ft


≤ K1δ

3
2 + K2δ + K3δ

3
8 + f (δ

1
2 )

≤ K4δ
3
8 + f (δ

1
2 ).

(2.10) now holds as δ → 0. �

6.4.2. Convergence of resampling times
Recall that the predictable stopping times as determined by the ESS are defined by

T n,λ
k+1 ≡ T n

k+1 = inf{t ≥ Tk : α
n,k
t ≥ log λ−1

}. (6.31)

The notation T n,λ
k is used to emphasize the dependence on the threshold λ.

Now define

αk
t :=

m
r=1

 t

0
η̃r

s dY r
s +

m
r=1

 t

0
ζ̃ r

s ds −
1
2

m
r=1

 t

0
(η̃r

s )
2 ds

where η̃r
s := limn η̃

n,r
s and ζ̃ r

s := limn ζ̃
n,r
s with η̃

n,r
s and ζ̃

n,r
s as in (5.1) and (5.2) so that

η̃r
s = 2


πt

hr 

− π̃t

hr  ,

and

ζ̃ r
s = πt


hr 2

+ 2πt

hr  π̃t


hr 

− π̃t


(hr )2


+ 4π̃t


hk
2

.
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We observe that α
n,k
t

a.s.
→ αk

t . Ignoring ‘k’ in α
n,k
t and αk

t , recall that

T n,λ
k ≡ T n

k = inf{t ≥ 0 : αn
t ≥ k log λ−1

}. (6.32)

Now let

T λ
k := inf{t ≥ 0 : αt ≥ k log λ−1

} (6.33)

where αt is defined (and obtained) in a similar manner to αn
t in (5.10). Then clearly for k ∈ NT λ

k
is a stopping time.

Theorem 29. T n,λ
k

a.s.
→ T λ

k .

Proof. As already indicated in Remark 13 we can show for any p > 0, T > 0 and ϕ ∈ C 3
b(Rd)

that there exist constants cp,t and c̄p,t such that

E


sup

t∈[0,T ′]

δ
2p
ρn

t
(ϕ)


≤

cp,t

n p and E


sup

t∈[0,T ′]

δ
2p
πn

t
(ϕ)


≤

c̄p,t

n p .

Similarly we can show that

E


sup

t∈[0,T ′]

δ
2p
π̃n

t
(ϕ)


≤

c̃p,t

n p ,

where π̃ is as defined in (5.3).
It follows thus that for any p > 0 and T > 0,

E


sup

t∈[0,T ]

|αn
t − αt |

2p


≤

cp,T

n p

which, by choosing p > 1 and appealing to the proof of Lemma 5, implies that

sup
t∈[0,T ]

|αn
t − αt | → 0.

Hence for any ε′ > 0 there exist N ∈ N such that for n > N ,

sup
t∈[0,T ]

|αn
t − αt | < ε′.

Now let ε > 0 be such that (λ + ε) ∈ (0, 1) and let

T λ−ε
k := inf{t ≥ 0 : αt ≥ k log(λ + ε)−1

}

so that for t ∈ [0, T λ−ε
k ], αt ≤ k log(λ + ε)−1.

Also let ε′
=

1
2 min


k

log(λ − ε)−1

− log λ−1

, k

log λ−1

− log(λ + ε)−1


> 0 then for
n > N and t ∈ [0, T λ−ε

k ]:

αn
t = αn

t − αt + αt < k log λ−1

and hence by (6.32) we have that T λ−ε
k ≤ T n,λ

k .

By a similar, symmetric argument we conclude also that T n,λ
k ≤ T λ+ε

k .
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So

T λ−ε
k ≤ T n,λ

k ≤ T λ+ε
k

and hence for k ∈ N, T n,λ
k

a.s.
→ T λ

k as n → ∞. �

Remark 30. That the (soft) maximum also satisfies the tightness condition (2.10) and the
convergence of resampling times (as determined by it) follows using an approach similar to
the case of the effective sample size.
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Appendix

We include below a number of useful lemmas and results used throughout the paper.

Lemma 31. For any t ≥ 0 and p ≥ 1 there exist constants ct,p
0 , ct,p

1 and ct,p
2 which depend on

maxi=1,...,m∥hi∥0,∞ such that the bounds (4.1)–(4.3) hold true.

Proof. Let P̃ be a measure absolutely continuous with respect to P given by

d P̃

d P


Ft

=
1

Z̃ t
,

where Z̃ = {Z̃ t : t ≥ 0} is the process given by

Z̃ t = exp
 t

0
h(X (s))⊤ dYs −

1
2

 T

Tk

∥h(X (s))∥2 ds


t ≥ 0. (A.1)

Under P̃ the process Y is a Brownian motion and both the unnormalized weights and the process
ξn are Ft -adapted martingales. The proof of the estimates (under P̃) then follows by a standard
argument using the Burkholder–Davis–Gundy inequality (see for example Exercise 9.10 in [1]
and [19]). Finally observe that, for example

E


sup

s∈[0,t]
(an

j (s))
p


= Ẽ


sup

s∈[0,t]
(an

j (s))
p Z̃ t


≤

Ẽ


sup

s∈[0,t]
(an

j (s))
2p


Ẽ[Z̃2

t ],

which give us the corresponding bounds under P after observing that Z̃ t has finite second
moment under P̃ . �

Lemma 32. Let S and T be stopping times such that S < T and T is predictable then
FS ⊂ FT −.

Proof. Let (Tn) be an announcing sequence for T . Then (S∨Tn)n is also an announcing sequence
for T . In particular, S ∨ Tn ↗ S ∨ T = T , hence FS ⊂ FS∨T ⊂


n FS∨Tn = FT −. �



D. Crisan, O. Obanubi / Stochastic Processes and their Applications 122 (2012) 1332–1368 1365

Proposition 33. The process M̄n,ϕ
:= {M̄n,ϕ

t : t ≥ 0} is defined by

M̄n,ϕ
t :=

∞
k=1

1[0,t](Tk)(ρ
n
Tk

(ϕ) − ρn
Tk−

(ϕ))

≡

∞
k=1

1[0,t](Tk)ξ
n,∞
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ)) (A.2)

where ϕ ∈ Cb(Rd) is an Ft -adapted martingale provided there exists p > 1 such that
condition (2.8) holds true.

Proof. Let η̄(t) := {η̄m(t) : m ∈ N} and M̄n,ϕ
t ≡ η̄∞(t) where

η̄m(t) :=

m
k=1

1[0,t] (Tk)ξ
n,∞
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ)),

and

η̄∞(t) :=

∞
k=1

1[0,t] (Tk)ξ
n,∞
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ)).

We will show that t → η̄m(t) is an Ft -martingale that is

E[η̄m(t)|Fs] = η̄m(s), ∀s ≤ t.

By linearity it suffices to show for any k ∈ N that

E[1[0,t](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))|Fs] = 1[0,s](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ)) (A.3)

and noting that

1[0,s](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))

is FTk∧s-measurable and hence Fs-measurable. It follows that to obtain (A.3), it now remains to
show that

E[1A1(s,t](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))] = 0, ∀A ∈ Fs .

To this extent note that

E

1A1(s,t](Tk)ξ

n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))


= E

(1A1(s,∞) − 1A1(t,∞))(Tk)ξ

n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))


= E

(1A1(s,∞) − 1A1(t,∞))(Tk)ξ

n
Tk

E[(πn
Tk

(ϕ) − πn
Tk−

(ϕ))|FTk−
]


= 0

since 1A1(s,∞)(Tk) and 1A1(t,∞)(Tk) correspond to the FTk−
-measurable sets A ∩ {s < Tk} and

A ∩ {t < Tk} respectively (see Theorem 7 on pp. 106 of [20]).
We will now show that m → η̄m(t), where t ≥ 0, is an FTm∧t -adapted martingale. That is, for

any m ∈ N,

E[η̄m+1|FTm∧t ] = η̄m(t).
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Since for 1 ≤ k ≤ m

1[0,t](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))

is FTm∧t -measurable, the result will then follow if

E

1A1[0,t](Tm+1)ξ

n
Tm+1

(πn
Tm+1

(ϕ) − πn
Tm+1−

(ϕ))


= 0, ∀A ∈ FTm∧t .

By Lemma 32 and the tower property

E

1A1[0,t](Tm+1)ξ

n
Tk

(πn
Tm+1

(ϕ) − πn
Tm+1−

(ϕ))


= E

1A1[0,t](Tm+1)ξ

n
Tm+1

E[(πn
Tm+1

(ϕ) − πn
Tm+1−

(ϕ))|FTm+1−
]


= 0

and so, (η̄m(t))m is an FTm∧t -adapted martingale.
We now proceed to show that η̄∞(t) ≡ Mn,ϕ

t exists almost surely, is finite, integrable and
(η̄∞(t))t is an Ft -adapted martingale provided condition (2.8) is satisfied. Observe that

sup{|η̄m(t)|, m ≥ 1, |η̄∞(t)}| ≤ ∥ϕ∥0,∞

∞
k=1

1[0,t] (Tk)ξ
n,∞
Tk

≤ ∥ϕ∥0,∞N n
t sup

s∈[0,t]
ξn,∞

s .

Hence η̄(t) := {η̄m(t) : m ∈ N} is bounded in Lr for any r < p (using condition (2.8) and
the Hölder inequality) which implies that η̄(t) is bounded in L1 and is a uniformly integrable
martingale.

The boundedness of η̄(t) in L1 implies the almost sure existence and finiteness of η̄∞(t) (see
II.49, Theorem 49.1 in [23]). By II.50, Theorem 50.1 in [23], we then have that η̄m(t) → η̄∞(t)
in L1, that is, E[|η̄m(t) − η̄∞(t)|] → 0.

Furthermore ∀s ≤ t ,

E [|E[η̄m(t)|Fs] − E[η̄∞(t)|Fs]|] ≤ E [E [|η̄m(t) − η̄∞(t)||Fs]]

= E[|η̄m(t) − η̄∞(t)|] → 0,

that is, E[η̄m(t)|Fs] → E[η̄∞(t)|Fs] in L1 and since E[η̄m(t)|Fs] = η̄m(s) → η̄∞(s) in L1 it
follows that

E[η̄∞(t)|Fs] = η̄∞(s), ∀s ≤ t.

Hence (η̄∞(t))t is an Ft -adapted martingale. We now proceed to show that η̄(t) := {η̄m(t) : m ∈

N} is indeed bounded in L2. We need to first show that η̄m(t) ∈ L2, for all m ∈ N and by II.53,
Theorem 53.3 in [23], the boundedness property follows if and only if

∞
m=1

E[(η̄m(t) − η̄m−1(t))
2
] < ∞. (A.4)

Observe that for any integer k ≥ 2,

η̄k(t) − η̄k−1(t) = 1[0,t](Tk)ξ
n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))
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with η̄0(t) := 0 so that

E[(η̄k(t) − η̄k−1(t))
2
] = E


1[0,t](Tk)ξ

n
Tk

(πn
Tk

(ϕ) − πn
Tk−

(ϕ))2


= E

1[0,t](Tk)ξ

n
Tk

E[(πn
Tk

(ϕ) − πn
Tk−

(ϕ))2
|FTk−

]


= E


1[0,t](Tk)ξ

n
Tk

E

(πn

Tk
(ϕ) − E[πn

Tk
(ϕ)|FTk−

])2
FTk−


. (A.5)

Now,

πn
Tk

(ϕ) − E[πn
Tk

(ϕ)|FTk−
] =

1
n

n
j=1


ϕ(vn

α j
) − E[πn

Tk
(ϕ)|FTk−

]


where α j , j = 1, . . . , n is a random index of 1, . . . , n and vn

α j
(Tk) = vn

l (Tk) for some

l ∈ {1, . . . , n} with probability ān,Tk
l so that

E

ϕ(vα j (Tk))|FTk−


=

n
l=1

ān,Tk
l ϕ(vn

l (Tk)) = E[πn
Tk

(ϕ)|FTk−
]

that is,

E


ϕ(vα j (Tk)) − E[πn
Tk

(ϕ)|FTk−
]


= 0

and so

E


πn
Tk

(ϕ) − E[πn
Tk

(ϕ)|FTk−
]

2
FTk−



= E

 1

n2


n

j=1


ϕ(vn

α j
) − E[πn

Tk
|FTk−

]

2
FTk−


=

1

n2

n
j=1

E

(ϕ(vn

α j
) − E[πn

Tk
|FTk−

])2
FTk



=
1

n2

n
j=1


E

ϕ(vn

α j
)2

|FTk−


−


E[πn

Tk
|FTk−

]

2


≤
1

n2

n
j=1

E

(ϕ(vn

α j
)2

|FTk−
)


≤
∥ϕ∥

2

n
. (A.6)

Using (A.5) and (A.6) we get

∞
k=1

E[(η̄k(t) − η̄k−1(t))
2
] = E


1[0,t](Tk)ξ

n
Tk

E

(πn

Tk
(ϕ) − E[πn

Tk
(ϕ)|FTk−

])2
FTk−


≤

∥ϕ∥
2

n

∞
k=1

E

1[0,t](Tk)ξ

n
Tk


≤

∥ϕ∥
2

n
E


N n

t sup
s∈[0,t]

ξn,∞
s


.

Therefore η̄(t) is a martingale bounded in L2 again by using condition (2.8) and the Hölder
inequality. �
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