
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 124 (2014) 2281–2321
www.elsevier.com/locate/spa

Second-order BSDEs with general reflection and game
options under uncertainty

Anis Matoussia,b,c,∗, Lambert Piozinb, Dylan Possamaı̈d
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Abstract

The aim of this paper is twofold. First, we extend the results of Matoussi et al. (2013) concerning
the existence and uniqueness of second-order reflected 2BSDEs to the case of two obstacles. Under some
regularity assumptions on one of the barriers, similar to the ones in Crépey and Matoussi (2008), and
when the two barriers are completely separated, we provide a complete wellposedness theory for doubly
reflected second-order BSDEs. We also show that these objects are related to non-standard optimal stopping
games, thus generalizing the connection between DRBSDEs and Dynkin games first proved by Cvitanić and
Karatzas (1996). More precisely, we show under a technical assumption that the second order DRBSDEs
provide solutions of what we call uncertain Dynkin games and that they also allow us to obtain super
and subhedging prices for American game options (also called Israeli options) in financial markets with
volatility uncertainty.
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1. Introduction

The theory of Backward Stochastic Differential Equations (BSDEs for short) was initiated
by Bismut in [6], where their linear version appeared as an equation for the adjoint process in
the stochastic version of Pontryagin maximum principle. This notion was then generalized by
Pardoux and Peng in [35], where they were the first to consider these equations in their full
generality. Since then BSDEs have been widely used in stochastic control and especially in
mathematical finance, as any pricing problem by replication can be written in terms of linear
BSDEs, or non-linear BSDEs when portfolios constraints are taken into account as in El Karoui,
Peng and Quenez [17].

On a filtered probability space (Ω ,F, (Ft )0≤t≤T ,P) carrying a Brownian motion B, solving
a BSDE consists in finding a couple (Y, Z) of progressively measurable processes such that

Yt = ξ +

 T

t
fs(Ys, Zs)ds −

 T

t
Zsd Bs, t ∈ [0, T ],P-a.s.,

where f (also called the generator) is progressively measurable and ξ (the terminal condition)
is a FT -measurable random variable. When f satisfies a uniform Lipschitz assumption and both
f and ξ are square-integrable, Pardoux and Peng [35] obtained a wellposedness theory for these
equations.

A few years later, the five authors El Karoui, Kapoudjian, Pardoux, Peng and Quenez in [15],
introduced the notion of reflected BSDEs (RBSDEs for short). Now, in addition to the generator
f and the terminal condition ξ , they also consider another progressively measurable process S
which will play the role of a barrier. In that framework, we look for a triple of progressively
measurable processes (Y, Z , K ), where K is furthermore non-decreasing, such that

Yt = ξ +

 T

t
fs(Ys, Zs)ds + KT − Kt −

 T

t
Zsd Bs, t ∈ [0, T ], P-a.s.

Yt ≥ St , t ∈ [0, T ], P-a.s. T

0
(Yt − St )d Kt = 0, P-a.s.

The role of the process K here is to push upward Y in order to keep it above the barrier S.
The last condition is known as the Skorohod condition and guarantees that the process K acts
in a minimal way, that is to say only when the process Y reaches the lower barrier S. The
development of RBSDEs has been motivated by the problem of pricing American contingent
claim by replication, especially in constrained markets (see [16,14] for more details), and for
their natural connection with variational inequalities and the obstacle problem for deterministic
and/or stochastic quasilinear PDEs (see [1,15,32]).

Building upon these results, Cvitanić and Karatzas [11] have then introduced the notion of
BSDEs with two reflecting barriers. Roughly speaking, in [11] (see also [14,25] to name but a
few) the authors have looked for a solution to a BSDE whose Y component is forced to stay
between two prescribed processes L and U , (L ≤ U ). More precisely, they were looking for
a quadruple of progressively measurable processes (Y, Z , K +, K −), where K + and K − are in
addition non-decreasing such that

Yt = ξ +

 T

t
fs(Ys, Zs)ds + K −

T − K −
t − K +

T + K +
t −

 T

t
Zsd Bs,

t ∈ [0, T ], P-a.s.
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L t ≤ Yt ≤ Ut , t ∈ [0, T ], P-a.s. T

0
(Yt − L t )d K −

t =

 T

0
(Ut − Yt )d K +

t = 0, P-a.s.

These BSDEs have been developed especially in connection with Dynkin games, mixed
differential games and recallable options (see [14,23,24,21]). It is now established that under
quite general assumptions, including in models with jumps, existence of a solution to a (simply)
reflected BSDE is guaranteed under mild conditions, whereas existence of a solution to a doubly
reflected BSDE (DRBSDE for short) is equivalent to the so-called Mokobodski condition. This
condition essentially postulates the existence of a quasimartingale between the barriers (see
in particular [22]). As for uniqueness of solutions, it is guaranteed under mild integrability
conditions (see e.g. [22, Remark 4.1]). However, for practical purposes, existence and uniqueness
are not the only relevant results and may not be enough. For instance, one can consider the
problem of pricing convertible bonds in finance using the DRBSDE theory (see [4,5,10]). In
this case, the state-process (first component) Y may be interpreted in terms of an arbitrage price
process for the bond. As demonstrated in [5], the mere existence of a solution to the related
DRBSDE is a result with important theoretical consequences in terms of pricing and hedging the
bond. Yet, in order to give further developments to these results in Markovian set-ups, Crépey
and Matoussi [10] have established bound and error estimates and comparison theorem for
DRBSDE, which require more regularity assumptions on the barriers.

More recently, motivated by numerical methods for fully non-linear PDEs, second order BS-
DEs (2BSDEs for short) were introduced by Cheridito, Soner, Touzi and Victoir in [9]. Then
Soner, Touzi, Zhang [41] proposed a new formulation and obtained a complete theory of exis-
tence and uniqueness for such BSDEs. The main novelty in their approach is that they require that
the solution verifies the equation P-a.s. for every probability measure P in a non-dominated set.
Their approach therefore shares many connections with the deep theory of quasi-sure analysis
initiated by Denis and Martini [12] and the G-expectations developed by Peng [38].

Intuitively speaking (we refer the reader to [41] for more details), the solution to a 2BSDE
with generator F and terminal condition ξ can be understood as a supremum in some sense of the
classical BSDEs with the same generator and terminal condition, but written under the different
probability measures considered. Following this intuition, a non-decreasing process K is added
to the solution and it somehow pushes (in a minimal way) the solution so that it stays above the
solutions of the classical BSDEs.

Following these results and motivated by the pricing of American contingent claims in markets
with volatility uncertainty, Matoussi, Possamaı̈ and Zhou [31] used the methodology of [41] to
introduce a notion of reflected second order BSDEs, and proved existence and uniqueness in
the case of a lower obstacle. The fact that they consider only lower obstacles was absolutely
crucial. Indeed, as mentioned above, in that case, the effects due to the reflection and the second
order act in the same direction, in the sense that they both force the solution to stay above
some processes. One therefore only needs to add a non-decreasing process to the solution of
the equation. However, as soon as one tries to consider upper obstacles, the two effects start
to counterbalance each other and the situation changes drastically. This case was thus left open
in [31]. On a related note, we would like to refer the reader to the very recent article [13], which
gives some specific results for the optimal stopping problem under a non-linear expectation
(which roughly corresponds to a 2RBSDE with generator equal to 0). However, since it is a
“sup–sup” problem, it is only related to the lower reflected 2BSDEs. Even more recently and
after the completion of this paper, Nutz and Zhang [33] managed to treat the same problem of
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optimal stopping under non-linear expectations but now with an “inf–sup” formulation, which,
as shown by Proposition 3.10, is related to upper reflected 2BSDEs.

The first aim of this paper is to extend the results of [31] to the case of doubly reflected second-
order BSDEs when we assume enough regularity on one of the barriers (as in [10]) and that the
two barriers are completely separated (as in [20,22]). In that case, we show that the right way
to define a solution is to consider a 2BSDE where we add a process V which has only bounded
variations (see Definition 2.11). Our next step towards a theory of existence and uniqueness is
then to understand as much as possible how and when this bounded variation process acts. Our
key result is obtained in Proposition 3.5, and allows us to obtain a special Jordan decomposition
for V , in the sense that we can decompose it into the difference of two non-decreasing processes
which never act at the same time. Thanks to this result, we are then able to obtain a priori
estimates and a uniqueness result. Next, we reuse the methodology of [31] to construct a solution.

We also show that these objects are related to non-standard optimal stopping games, thus
generalizing the connection between DRBSDEs and Dynkin games first proved by Cvitanić
and Karatzas [11]. Finally, we show that the second order DRBSDEs allow to obtain super and
subhedging prices for American game options (also called Israeli options) in financial markets
with volatility uncertainty and that, under a technical assumption, they provide solutions of what
we call uncertain Dynkin games.

The paper is organized as follows. After recalling some notations and definitions, in Section 2,
we treat the problem of uniqueness in Section 3. Section 4 is then devoted to the pathwise
construction of a solution, thus solving the existence problem. Finally, we investigate in Section 5
the aforementioned game theoretical and financial applications. The Appendix is devoted to some
technical results used throughout the paper.

2. Definitions and notations

2.1. The stochastic framework

Let Ω :=

ω ∈ C([0, T ],Rd) : ω0 = 0


be the canonical space equipped with the uniform

norm ∥ω∥∞ := sup0≤t≤T |ωt |, B the canonical process, P0 the Wiener measure, F := {Ft }0≤t≤T

the filtration generated by B, and F+
:=


F +
t


0≤t≤T the right limit of F. A probability measure
P will be called a local martingale measure if the canonical process B is a local martingale
under P. Then, using results of Bichteler [3] (see also Karandikar [27] for a modern account),
the quadratic variation ⟨B⟩ and its densitya can be defined pathwise, and such that they coincide
with the usual definitions under any local martingale measure.

With the intuition of modeling volatility uncertainty, we let P W denote the set of all local
martingale measures P such that

⟨B⟩ is absolutely continuous in t anda takes values in S>0
d , P-a.s., (2.1)

where S>0
d denotes the space of all d × d real valued positive definite matrices.

However, since this set is too large for our purpose (in particular there are examples of
measures in P W which do not satisfy the martingale representation property, see [43] for more
details), we will concentrate on the following subclass PS consisting of

Pα := P0 ◦ (Xα)−1 where Xαt :=

 t

0
α

1/2
s d Bs, t ∈ [0, T ],P0-a.s., (2.2)
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for some F-progressively measurable process α taking values in S>0
d with

 T
0 |αt |dt < +∞,

P0-a.s.
This subset has the convenient property that all its elements do satisfy the martingale

representation property and the Blumenthal 0–1 law (see [43] for details), which are crucial
tools for the BSDE theory.

2.2. Generator and measures

We consider a map Ht (ω, y, z, γ ) : [0, T ] × Ω × R × Rd
× DH → R, where DH ⊂ Rd×d

is a given subset containing 0, whose Fenchel transform w.r.t. γ is denoted by

Ft (ω, y, z, a) := sup
γ∈DH


1
2

Tr(aγ )− Ht (ω, y, z, γ )


for a ∈ S>0

d ,

Ft (y, z) := Ft (y, z,at ) and F0
t := Ft (0, 0).

We denote by DFt (y,z) := {a, Ft (ω, y, z, a) < +∞} the domain of F in a for a fixed (t, ω, y, z).
As in [41] we fix a constant κ ∈ (1, 2] and restrict the probability measures in Pκ

H ⊂ P S .

Definition 2.1. Pκ
H consists of all P ∈ P S such that

aP
≤a ≤ āP, dt × dP-a.s. for some aP, āP

∈ S>0
d , and φ2,κ

H < +∞,

where

φ
2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P


EH,P
t

 T

0
|F̂0

s |
κds

 2
κ

 .
Definition 2.2. We say that a property holds Pκ

H -quasi-surely (Pκ
H -q.s. for short) if it holds P-a.s.

for all P ∈ Pκ
H .

We now state the main assumptions on the function F which will be our main interest in the
sequel.

Assumption 2.3. (i) The domain DFt (y,z) = DFt is independent of (ω, y, z).
(ii) For fixed (y, z, a), F is F-progressively measurable in DFt .

(iii) We have the following uniform Lipschitz-type property in y and z

∀(y, y′, z, z′, t, a, ω),
Ft (ω, y, z, a)− Ft (ω, y′, z′, a)


≤ C

y − y′
+ a1/2 z − z′

 .
(iv) F is uniformly continuous in ω for the ∥ · ∥∞ norm.
(v) Pκ

H is not empty.

Remark 2.4. Assumptions (ii), (iii) are completely standard in the BSDE literature since the
paper [35]. Similarly, (i) was already present in the first paper on 2BSDEs in a quasi-sure
formulation [41] and is linked to the fact that one does not know how to treat coupled second-
order FBSDEs. The last hypothesis (iv) is also proper to the second order framework, and allows
us to not only give a pathwise construction for the solution to the 2RBSDE, but to recover the
very important dynamic programming property. We refer the reader to Section 4 for more details.
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2.3. Quasi-sure norms and spaces

The following spaces and the corresponding norms will be used throughout the paper. With
the exception of the space Lp,κ

H , they all are immediate extensions of the usual spaces to the
quasi-sure setting.

For p ≥ 1, L p,κ
H denotes the space of all FT -measurable scalar r.v. ξ with

∥ξ∥
p
L p,κ

H
:= sup

P∈Pκ
H

EP 
|ξ |p < +∞.

Hp,κ
H denotes the space of all F+-progressively measurable Rd -valued processes Z with

∥Z∥
p
Hp,κ

H
:= sup

P∈Pκ
H

EP

 T

0
|a1/2

t Z t |
2dt

 p
2

 < +∞.

Dp,κ
H denotes the space of all F+-progressively measurable R-valued processes Y with

Pκ
H -q.s. càdlàg paths, and ∥Y∥

p
Dp,κ

H
:= sup

P∈Pκ
H

EP


sup
0≤t≤T

|Yt |
p


< +∞,

where càdlàg is the French acronym for “right-continuous with left-limits”.
Ip,κ

H denotes the space of all F+-progressively measurable R-valued processes K null at 0
with

Pκ
H -q.s., càdlàg and non-decreasing paths, and ∥K∥

p
Ip,κ

H
:= sup

P∈Pκ
H

EP (KT )
p < +∞.

Vp,κ
H denotes the space of all F+-progressively measurable R-valued processes V null at 0 with

paths which are Pκ
H -q.s. càdlàg and of bounded variation, and such that

∥V ∥
p
Vp,κ

H
:= sup

P∈Pκ
H

EP Var0,T (V )
p

< +∞.

For each ξ ∈ L1,κ
H , P ∈ Pκ

H and t ∈ [0, T ] denote

EH,P
t [ξ ] := ess supP

P′∈Pκ
H (t

+,P)
EP′

t [ξ ] where Pκ
H (t

+,P) :=

P′

∈ Pκ
H : P′

= P on F +
t


.

Here EP
t [ξ ] := EP

[ξ |Ft ]. Then we define for each p ≥ κ ,

Lp,κ
H :=


ξ ∈ L p,κ

H : ∥ξ∥Lp,κ
H
< +∞


where ∥ξ∥

p
Lp,κ

H
:= sup

P∈Pκ
H

EP


ess sup
0≤t≤T

P

EH,P

t [|ξ |κ ]
 p
κ


.

We denote by UCb(Ω) the collection of all bounded and uniformly continuous maps ξ : Ω → R
with respect to the ∥·∥∞-norm, and we let

L p,κ
H := the closure of UCb(Ω) under the norm ∥·∥Lp,κ

H
, for every 1 ≤ κ ≤ p.

Finally, for every P ∈ Pκ
H , and for any p ≥ 1, L p(P), Hp(P), Dp(P), Ip(P) and Vp(P) will

denote the corresponding usual spaces when there is only one measure P.
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2.4. Obstacles and definition

First, we consider a process S which will play the role of the upper obstacle. We will always
assume that S verifies the following properties.

Assumption 2.5. (i) S is F-progressively measurable and càdlàg.

(ii) S is uniformly continuous in ω in the sense that for all t

|St (ω)− St (ω)| ≤ ρ (∥ω −ω∥t ) , ∀(ω,ω) ∈ Ω2,

for some modulus of continuity ρ and where we define ∥ω∥t := sup0≤s≤t |ω(s)|.

(iii) S is a semimartingale for every P ∈ Pκ
H , with the decomposition

St = S0 +

 t

0
Psd Bs + AP

t , P-a.s., for all P ∈ Pκ
H , (2.3)

where the AP are bounded variation processes with Jordan decomposition AP,+
− AP,− and

ζ
2,κ
H := sup

P∈Pκ
H


EP


ess supP

0≤t≤T
EH,P

t

 T

t

a1/2
s Ps

2 ds

κ/2
+


AP,+

T

κ2

< +∞.

(iv) S satisfies the following integrability condition

ψ
2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P


EH,P

t


sup

0≤s≤T
|Ss |

κ

 2
κ

 < +∞.

Remark 2.6. We assumed here that S was a semimartingale. This is directly linked to the fact
that this is one of the conditions under which existence and uniqueness of solutions to standard
doubly reflected BSDEs with upper obstacle S are guaranteed. More precisely, this assumption
is needed for us in the proof of Lemma A.11, and it will be also crucial in order to obtain a priori
estimates for 2BSDEs with two obstacles. This assumption is at the heart of our approach, and
our proofs no longer work without it. Notice however that such an assumption was not needed
for the lower obstacles considered in [31]. This is the first manifestation of an effect that we will
highlight throughout the paper, namely that there is absolutely no symmetry between lower and
upper obstacles in the second-order framework.

Remark 2.7. The decomposition (2.3) is not restrictive. Indeed, with the integrability assump-
tion (iv), we know that for each P ∈ Pκ

H , there exists a P-martingale MP and a bounded variation
process AP such that

St = S0 + MP
t + AP

t , P-a.s.

Then, using the martingale representation theorem, there exists some PP
t ∈ H2(P) such that

MP
t =

 t

0
PP

s d Bs .
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Then, since S is càdlàg, by Karandikar [27], we can aggregate the family (PP)P∈Pκ
H

into a
universal process P , which gives us the decomposition (2.3).

Next, we also consider a lower obstacle L which will be assumed to verify the following.

Assumption 2.8. (i) L is a F-progressively measurable càdlàg process.

(ii) L is uniformly continuous in ω in the sense that for all t and for some modulus of
continuity ρ

|L t (ω)− L t (ω)| ≤ ρ (∥ω −ω∥t ) , ∀(ω,ω) ∈ Ω2.

(iii) For all t ∈ [0, T ], we have

L t < St and L t− < St− , Pκ
H -q.s.

(iv) We have the following integrability condition

ϕ
2,κ
H := sup

P∈Pκ
H

EP

ess sup
0≤t≤T

P


EH,P
t


sup

0≤s≤T
(Ls)

+

κ 2
κ

 < +∞. (2.4)

Remark 2.9. Unlike for S, we did not assume here that L was a semimartingale, and we cannot
interchange the roles of S and L , that is to say that the wellposedness results do not hold if we
assume that L is a semimartingale instead of S.

We shall consider the following second order doubly reflected BSDE (2DRBSDE for short)
with upper obstacle S and lower obstacle L

Yt = ξ +

 T

t

Fs(Ys, Zs)ds −

 T

t
Zsd Bs + VT − Vt , 0 ≤ t ≤ T,Pκ

H -q.s. (2.5)

In order to give the definition of the 2DRBSDE, we first need to introduce the corresponding
standard doubly reflected BSDEs. Hence, for any P ∈ Pκ

H , F-stopping time τ , and Fτ -
measurable random variable ξ ∈ L2(P), let

(yP, zP, kP,+, kP,−) := (yP(τ, ξ), zP(τ, ξ), kP,+(τ, ξ), kP,−(τ, ξ)),

denote the unique solution to the following standard DRBSDE with upper obstacle S and lower
obstacle L (existence and uniqueness have been proved under these assumptions in [10] among
others)

yP
t = ξ +

 τ

t

Fs(y
P
s , zP

s )ds −

 τ

t
zP

s d Bs + kP,−
τ − kP,−

t − kP,+
τ + kP,+

t ,

0 ≤ t ≤ τ,P-a.s.
L t ≤ yP

t ≤ St , P-a.s. t

0


yP

s− − Ls−


dkP,−

s =

 t

0


Ss− − yP

s−


dkP,+

s = 0, P-a.s., ∀t ∈ [0, T ].

(2.6)
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Remark 2.10. Notice that the assumption that L t < St and L t− < St− implies that the non-
decreasing processes kP,+ and kP,− never act at the same time. This will be important later. This
hypothesis is already present in [20,22].

Everything is now ready for the following.

Definition 2.11. We say (Y, Z) ∈ D2,κ
H × H2,κ

H is a solution to the 2DRBSDE (2.5) if

• YT = ξ , Pκ
H -q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P-a.s.

V P
t := Y0 − Yt −

 t

0

Fs(Ys, Zs)ds +

 t

0
Zsd Bs, 0 ≤ t ≤ T,P-a.s. (2.7)

• We have the following minimum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess infP

P′∈P H (t+,P)
EP′

t


V P′

T + kP′,+
T − kP′,−

T


,

P-a.s.,∀P ∈ Pκ
H . (2.8)

• L t ≤ Yt ≤ St , Pκ
H -q.s.

Moreover, if there exists an aggregator for the family (V P)P∈Pκ
H

, that is to say a progressively
measurable process V such that for all P ∈ Pκ

H ,

Vt = V P
t , t ∈ [0, T ],P-a.s.,

then we say that (Y, Z , V ) is a solution to the 2DRBSDE (2.5).

Remark 2.12. Definition 2.11 differs from the rest of the 2BSDE literature. Indeed, unlike
in [41] for instance, the process V P that we add in the definition of the 2BSDE is no longer non-
decreasing, but is only assumed to have finite variation. This is mainly due to two competing
effects. On the one hand, exactly as with standard RBSDEs with an upper obstacle, a non-
increasing process has to be added to the solution in order to maintain it below the upper obstacle.
But in the 2BSDE framework, another non-decreasing process also has to be added in order to
push the process Y to stay above all the yP (as is shown by the representation formula proved
below in Theorem 3.1). This emphasizes once more that in the second-order framework, which
is fundamentally non-linear, there is no longer any symmetry between a reflected 2BSDE with
an upper or a lower obstacle. Notice that this was to be expected, since 2BSDEs are a natural
generalization of the G-expectation introduced by Peng [38], which is an example of sublinear
(and thus non-linear) expectation. We also would like to refer the reader to the recent paper by
Pham and Zhang [39], whose problematics are strongly connected to ours. They study some norm
estimates for semimartingales in the context of linear and sublinear expectations, and point out
that there is a fundamental difference between non-linear submartingales and supermartingales
(see their Section 4.3). Translated in our framework, and using the intuition from the classical
RBSDE theory, when the generator is equal to 0, a 2RBSDE with a lower obstacle should be
a non-linear supermartingale, while a 2RBSDE with an upper obstacle should be a non-linear
submartingale. In this sense, our results are a first step in the direction of the conjecture in Section
4.3 of [39].
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2.5. DRBSDEs as a special case of 2DRBSDEs

In this subsection, we show how we can recover the usual theory. If H is linear in γ , that is to
say

Ht (y, z, γ ) :=
1
2

Tr

a0

t γ


− ft (y, z),

where a0
: [0, T ] × Ω → S>0

d is F-progressively measurable and has uniform upper and lower
bounds, then as in [41], we no longer need to assume any uniform continuity in ω in this case.
Besides, the domain of F is restricted to a0 and we haveFt (y, z) = ft (y, z).

If we further assume that there exists some P ∈ P S such that a and a0 coincide P-a.s. and
EP
 T

0 | ft (0, 0)|2 dt

< +∞, then Pκ

H = {P}.

Then, we know that V P
+ kP,+

t − kP,−
t is a P-martingale with finite variation. Since P satisfy

the martingale representation property, this martingale is also continuous, and therefore it is null.
Thus we have

0 = kP,+
t − kP,−

t + V P, P-a.s.,

and the 2DRBSDE is equivalent to a standard DRBSDE. In particular, we see that V P now
becomes a finite variation process which decreases only when Yt− = St− and increases only
when Yt− = L t− . This implies that V P satisfies the usual Skorohod conditions. We would like
to emphasize this fact here, since it will be useful later on to have a deeper understanding of the
structure of the processes


V P

P∈Pκ
H

.

3. Uniqueness, estimates and representations

3.1. A representation inspired by stochastic control

We have similarly as in Theorem 4.4 of [41].

Theorem 3.1. Let Assumption 2.3 hold. Assume ξ ∈ L2,κ
H and that (Y, Z) is a solution to the

2DRBSDE (2.5). Then, for any P ∈ Pκ
H and 0 ≤ t1 < t2 ≤ T ,

Yt1 = ess supP

P′∈Pκ
H (t

+

1 ,P)
yP′

t1 (t2, Yt2), P-a.s. (3.9)

Consequently, the 2DRBSDE (2.5) has at most one solution in D2,κ
H × H2,κ

H .

Proof. The proof is exactly the same as the proof of Theorem 3.1 in [31], so we will only
sketch it. First, from the minimal condition (2.8), we deduce that for any P ∈ Pκ

H , the process

V P
+ kP,+

t − kP,−
t is a P-submartingale. By the Doob–Meyer decomposition and the martingale

representation property, its martingale part is continuous with finite variation and therefore null.
Hence V P

+ kP,+
t − kP,−

t is a non-decreasing process. Then, the inequality

Yt1 ≥ ess supP

P′∈Pκ
H (t

+

1 ,P)
yP′

t1 (t2, Yt2), P-a.s.,



A. Matoussi et al. / Stochastic Processes and their Applications 124 (2014) 2281–2321 2291

is a simple consequence of a classical comparison theorem. The reverse inequality is then
obtained by standard linearization techniques using the Lipschitz properties of F , see [31] for
the details. �

Remark 3.2. Let us now justify the minimum condition (2.8). Assume for the sake of clarity
that the generator F is equal to 0. By the above theorem, we know that if there exists a solution
to the 2DRBSDE (2.5), then the process Y has to satisfy the representation (3.9). Therefore, we
have a natural candidate for a possible solution of the 2DRBSDE. Now, assume that we could
construct such a process Y satisfying the representation (3.9) and which has the decomposition
(2.5). Then, taking conditional expectations in Y − yP, we end up with exactly the minimum
condition (2.8).

Finally, the following comparison theorem follows easily from the classical one for DRBSDEs
(see for instance [30]) and the representation (3.9).

Theorem 3.3. Let (Y, Z) and (Y ′, Z ′) (resp. (yP, zP, k+,P, k−,P) and (y′P, z′P, k′+,P, k′−,P))
be the solutions of the 2DRBSDEs (resp. DRBSDEs) with terminal conditions ξ and ξ ′, upper
obstacles S and S′, lower obstacles L and L ′ and generators F and F ′ respectively. Assume that
they both verify Assumption 2.3, that Pκ

H ⊂ Pκ
H ′ and that we have Pκ

H -q.s.

ξ ≤ ξ ′, Ft (y
′P
t , z′P

t ) ≤ F ′
t (y

′P
t , z′P

t ), L t ≤ L ′
t and St ≥ S′

t .

Then Y ≤ Y ′, Pκ
H -q.s.

Remark 3.4. Unlike in the classical framework, even if the upper obstacles S and S′ and the
lower obstacles L and L ′ are identical, we cannot compare the processes V P and V ′P. This is due
to the fact that these processes are not assumed to satisfy a Skorohod-type condition. This point
was already mentioned in [31].

3.2. A priori estimates

We will now try to obtain a priori estimates for the 2DRBSDEs. We emphasize immediately
that the fact that the process V P are only of finite variation makes the task a lot more difficult
than in [31]. Indeed, we are now in a case which shares some similarities with standard doubly
reflected BSDEs for which it is known that a priori estimates cannot be obtained without some
regularity assumptions on the obstacles (for instance if one of them is a semimartingale). We
assumed here that S was a semimartingale, a property which will be at the heart of our proofs.
Nonetheless, even before this, we need to understand the fine structure of the processes V P. This
is the object of the following proposition.

Proposition 3.5. Let Assumption 2.3 hold. Assume ξ ∈ L2,κ
H and (Y, Z) ∈ D2,κ

H × H2,κ
H is a

solution to the 2DRBSDE (2.5). Let

(yP, zP, k+,P, k−,P)


P∈Pκ

H
be the solutions of the corre-

sponding DRBSDEs (2.6). Then we have the following results for all t ∈ [0, T ] and for all P
∈ Pκ

H

(i) V P,+
t :=

 t
0 1yP

s−
<Ss−

dV P
s is a non-decreasing process, P-a.s.

(ii) V P,−
t :=

 t
0 1yP

s−
=Ss−

dV P
s = −kP,+

t , P-a.s., and is therefore a non-increasing process.
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Proof. Let us fix a given P ∈ Pκ
H .

(i) Let τ1 and τ2 be two F-stopping times such that for all t ∈ [τ1, τ2), yP
t− < St− , P-a.s.

(ii) Then, we know from the usual Skorohod condition that the process kP,+ does not increase
between τ1 and τ2. Now, we remind the reader that we showed in the proof of Theorem 3.1,
that the process V P

+ k+,P
− k−,P is always non-decreasing. This necessarily implies that

V P must be non-decreasing between τ1 and τ2. Hence the first result.
(iii) Let now τ1 and τ2 be two F-stopping times such that for all t ∈ [τ1, τ2), yP

t− = St− , P-a.s.

First, since the two obstacles are separated, we necessarily have yP
t− > L t− , P-a.s. for every

t ∈ [τ1, τ2), which in turn implies that kP,− does not increase. Next, by the representation
formula (3.9), we necessarily have Yt− ≥ yP

t− , P-a.s. for all t . Moreover, since we also have
Yt ≤ St by definition, this implies, since all the processes here are càdlàg, that we must have

Yt− = yP
t− = St− , t ∈ [τ1, τ2),P-a.s.

Using the fact that Y and yP solve respectively a 2BSDE and a BSDE, we also have P-a.s.

St− + ∆Yt = Yt = Yu +

 u

t

Fs(Ys, Zs)ds −

 u

t
Zsd Bs + V P

u − V P
t , τ1 ≤ t ≤ u < τ2

St− + ∆yP
t = yP

t = yP
u +

 u

t

Fs(y
P
s , zP

s )ds −

 u

t
zP

s d Bs − kP,+
u + kP,+

t ,

τ1 ≤ t ≤ u < τ2.

Identifying the martingale parts above, we obtain that Zs = zP
s , ds × P − a.e. Then, identifying

the finite variation parts, we have

Yu − ∆Yt +

 u

t

Fs(Ys, Zs)ds + V P
u − V P

t

= yP
u − ∆yP

t +

 u

t

Fs(y
P
s , zP

s )ds − kP,+
u + kP,+

t . (3.10)

Now, we clearly have u

t

Fs(Ys, Zs)ds =

 u

t

Fs(y
P
s , zP

s )ds,

since Zs = zP
s , dt × P − a.e. and Ys− = yP

s− = Ss− for all s ∈ [t, u]. Moreover, since
Ys− = yP

s− = Ss− for all s ∈ [t, u] and since all the processes are càdlàg, the jumps of Y
and yP are equal to the jumps of S. Therefore, (3.10) can be rewritten

V P
u − V P

t = −kP,+
u + kP,+

t ,

which is the desired result. �

The above proposition is crucial for us. Indeed, we have actually shown that

V P
t = V P,+

t − kP,+
t , P-a.s.,

where V P,+ and kP,+ are two non-decreasing processes which never act at the same time.
Hence, we have obtained a Jordan decomposition for V P. Moreover, we can easily obtain
a priori estimates for kP,+ by using the fact that it is part of the solution of the DRBSDE
(2.6). Notice that these estimates hold only because we assumed that the corresponding upper
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obstacle S was a semimartingale. This is this decomposition which will allow us to obtain the
estimates.

Remark 3.6. The above result is enough for us to obtain the desired a priori estimates. However,
we can go further into the structure of the bounded variation processes V P. Indeed, arguing as in
Proposition 3.2 in [31], we could also show that

1Yt−=L t−
dV P

t = 1Yt−=L t−
dkP,−

t .

Notice however that we, a priori, cannot say anything about V P when L t− = yP
t− < Yt− , even

though we showed that it could be known explicitly when St− = yP
t− . This emphasizes once more

the fact that the upper and the lower obstacle in our context do not play a symmetric role.

We can now prove the following theorem.

Theorem 3.7. Let Assumptions 2.3, 2.5 and 2.8 hold. Assume ξ ∈ L2,κ
H and (Y, Z) ∈ D2,κ

H ×H2,κ
H

is a solution to the 2DRBSDE (2.5). Let

(yP, zP, kP,+, kP,−)


P∈Pκ

H
be the solutions of the

corresponding DRBSDEs (2.6). Then, there exists a constant Cκ depending only on κ , T and
the Lipschitz constant of F such that

∥Y∥
2
D2,κ

H
+ ∥Z∥

2
H2,κ

H
+ sup

P∈Pκ
H

yP
2

D2(P)
+

zP
2

H2(P)

+ EP


Var0,T


V P
2

+


kP,+

T

2
+


kP,−

T

2


≤ Cκ


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


.

Proof. First of all, since we assumed that S was a semimartingale, we can argue as in [10] to
obtain that

dkP,+
t ≤ F+

t (St , Pt )dt + d AP,+
t ≤ C

F0
t

+ |St | +

a1/2
t Pt

 dt + d AP,+
t .

Hence,

EP
t


kP,+

T

κ
≤ CκEP

t

 T

t

F0
s

κ ds +

 T

t
|a 1

2
s Ps |

2 ds

κ/2

+ sup
t≤s≤T

|Ss |
κ

+


AP,−

T

κ

≤ Cκ


ζ

2,κ
H

1/2
+ EP

t

 T

t

F0
s

κ ds + sup
t≤s≤T

|Ss |
κ


.

Let us now define

ξ̃ := ξ − kP,+
T , ỹP

= yP
− kP,+, F̃t (y, z) := Ft


y + kP,+

t , z

.

Then, it is easy to see that (ỹP, zP, kP,+) is the solution of the lower reflected BSDE with terminal
condition ξ̃ , generator F̃ and obstacle L − kP,+. We can then once again apply Lemma 2 in [26]
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to obtain that there exists a constant Cκ depending only on κ , T and the Lipschitz constant of F ,
such that for all PyP

t

 ≤ CκEP
t

ξ̃ κ +

 T

t

F̃0
s

κ ds + sup
t≤s≤T


Ls − kP,+

s

+
κ

≤ CκEP
t


|ξ |κ +

 T

t

F0
s

κ ds + sup
t≤s≤T


L+

s

κ
+


kP,+

T

κ

≤ Cκ


ζ

2,κ
H

1/2
+ EP

t


|ξ |κ +

 T

t

F0
s

κ ds + sup
t≤s≤T

|Ss |
κ

+ sup
t≤s≤T


L+

s

κ
.

(3.11)

This immediately provides the estimate for yP. Now by definition of the norms, we obtain from
(3.11) and the representation formula (3.9) that

∥Y∥
2
D2,κ

H
≤ Cκ


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


. (3.12)

Now apply Itô’s formula to
yP2 under P. We get as usual for every ϵ > 0

EP
 T

0

a1/2
t zP

t

2 dt


≤ CEP


|ξ |2 +

 T

0

yP
t

 F0
t

+ yP
t

+ a1/2
t zP

t

 dt


+ EP

 T

0

yP
t

 d


kP,+
t + kP,−

t


≤ C


∥ξ∥L2,κ

H
+ EP


sup

0≤t≤T

yP
t

2 +


kP,−

T

2

+

 T

0

F0
t

 dt

2
+ ϵEP

 T

0

a1/2
t zP

t

2 dt +

kP,+
T

2

+
C2

ε
EP


sup
0≤t≤T

yP
t

2 . (3.13)

Then by definition of the DRBSDE (2.6), we easily have

EP
kP,+

T

2 ≤ C0EP

|ξ |2 + sup

0≤t≤T

yP
t

2 +


kP,−

T

2

+

 T

0

a 1
2
t zP

t

2 dt +

 T

0

F0
t

 dt

2
, (3.14)

for some constant C0, independent of ϵ. Now set ϵ := (2(1 + C0))
−1 and plug (3.14) in (3.13).

We obtain from the estimates for yP and kP,−

sup
P∈Pκ

H

zP


H2(P)
≤ C


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


.

Then the estimate for kP,+ comes from (3.14). Now that we have obtained the desired estimates
for yP, zP, kP,+, kP,− and Y , we can proceed further.
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Exactly as above, we apply Itô’s formula to |Y |
2 under each P ∈ Pκ

H . We have once more for
every ϵ > 0 and using Proposition 3.5

EP
 T

0
|a 1

2
t Z t |

2 dt


≤ CEP


|ξ |2 +

 T

0
|Yt |

F0
t

+ |Yt | + |a 1
2
t Z t |


dt


+ EP

 T

0
Yt dV P,+

t −

 T

0
Yt dkP,+

t


≤ C


∥ξ∥L2,κ

H
+ EP


sup

0≤t≤T
|Yt |

2
+

 T

0

F0
t

 dt

2

+ ϵEP
 T

0
|a 1

2
t Z t |

2 dt +

kP,+
T

2 +

V P,+
T

2
+

C2

ε
sup

0≤t≤T
|Yt |

2


. (3.15)

Then by definition of our 2DRBSDE, we easily have

EP
V P,+

T

2 ≤ C0EP

|ξ |2 + sup

0≤t≤T
|Yt |

2
+

 T

0
|a 1

2
t Z t |

2 dt +

kP,+
T

2
+

 T

0
|F0

t |dt

2
, (3.16)

for some constant C0, independent of ϵ.
Now set ϵ := (2(1 + C0))

−1 and plug (3.16) in (3.15). One then gets

EP
 T

0

a1/2
t Z t

2 dt


≤ CEP


|ξ |2 + sup

0≤t≤T
|Yt |

2
+

kP,+
T

2 +

 T

0

F0
t

 dt

2
.

From this and the estimates for Y and kP,+, we immediately obtain

∥Z∥H2,κ
H

≤ C


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


.

Moreover, we deduce from (3.16) that

sup
P∈Pκ

H

EP


V P,+
T

2


≤ C


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


. (3.17)

Finally, we have by definition of the total variation and the fact that the processes V P,+ and kP,+

are non-decreasing

EP


Var
0,T


V P
2


≤ CEP


Var
0,T


V P,+

2
+ Var

0,T


kP,+

2


= CEP


V P,+
T

2
+


kP,+

T

2


≤ C


∥ξ∥2

L2,κ
H

+ φ
2,κ
H + ψ

2,κ
H + ϕ

2,κ
H + ζ

2,κ
H


,

where we used the estimate for kP,+ and (3.17) for the last inequality. �
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Theorem 3.8. Let Assumptions 2.3, 2.5 and 2.8 hold. For i = 1, 2, let (Y i , Z i ) be the solutions
to the 2DRBSDE (2.5) with terminal condition ξ i , upper obstacle S and lower obstacle L. Then,
there exists a constant Cκ depending only on κ , T and the Lipschitz constant of F such thatY 1

− Y 2


D2,κ
H

≤ C
ξ1

− ξ2


L2,κ
HZ1

− Z2
2

H2,κ
H

+ sup
P∈Pκ

H

EP


sup
0≤t≤T

V P,+,1
t − V P,+,2

t

2 + sup
0≤t≤T

V P,−,1
t − V P,−,2

t

2

≤ C
ξ1

− ξ2


L2,κ
H

ξ1


L2,κ
H

+

ξ1


L2,κ
H

+ (φ
2,κ
H )1/2

+ (ψ
2,κ
H )1/2 + (ϕ

2,κ
H )1/2 + (ζ

2,κ
H )1/2


.

Remark 3.9. We emphasize that in Theorem 3.8, we control the norm of both V P,+,1
t − V P,+,2

t

and V P,−,1
t − V P,−,2

t . This is crucial in our main existence Theorem 4.5.

Proof. As in the previous proposition, we can follow the proof of Lemma 3 in [26], to obtain
that there exists a constant Cκ depending only on κ , T and the Lipschitz constant of F , such that
for all PyP,1

t − yP,2
t

 ≤ CκEP
t

ξ1
− ξ2

κ . (3.18)

Now by definition of the norms, we get from (3.18) and the representation formula (3.9) thatY 1
− Y 2

2

D2,κ
H

≤ Cκ
ξ1

− ξ2
2

L2,κ
H

. (3.19)

Next, the estimate for V P,−,1
t − V P,−,2

t is immediate from the usual estimates for DRBSDEs (see
for instance Theorem 3.2 in [10]), since we actually have from Proposition 3.5

V P,−,1
t − V P,−,2

t = kP,+,2
− kP,+,1

t .

Applying Itô’s formula to
Y 1

− Y 2
2, under each P ∈ Pκ

H , leads to

EP
 T

0

a 1
2
t (Z

1
t − Z2

t )

2 dt


≤ CEP

ξ1
− ξ2

2

+ EP
 T

0
(Y 1

t − Y 2
t )d(V

P,1
t − V P,2

t )


+ CEP

 T

0

Y 1
t − Y 2

t

  Y 1
t − Y 2

t


+ |a 1

2
t (Z

1
t − Z2

t )|


dt


≤ C

ξ1
− ξ2

2

L2,κ
H

+

Y 1
− Y 2

2

D2,κ
H


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+
1
2

EP
 T

0

a1/2
t (Z1

t − Z2
t )

2 dt



+ C
Y 1

− Y 2


D2,κ
H


EP


2
i=1

Var0,T


V P,i

2
 1

2

.

The estimate for (Z1
− Z2) is now obvious from the above inequality and the estimates of

Theorem 3.7. Finally, we have by definition for any t ∈ [0, T ]

EP


sup
0≤t≤T

V P,+,1
t − V P,+,2

t

2 ≤ EP
ξ1

− ξ2
2 + sup

0≤t≤T

 Y 1
t − Y 2

t

2
+

 T

t
(Z1

s − Z2
s )d Bs

2


+ EP
 T

0

Fs(Y
1
s , Z1

s )− Fs(Y
2
s , Z2

s )

2 ds

+ sup
0≤t≤T

V P,−,1
t − V P,−,2

t

2
≤ C

ξ1
− ξ2

2

L2,κ
H

+

Y 1
− Y 2

2

D2,κ
H

+

Z1
− Z2

2

H2,κ
H


,

where we used the BDG inequality for the last step.
By all the previous estimates, this finishes the proof. �

3.3. Some properties of the solution

Now that we have proved the representation (3.9) and the a priori estimates of Theorems 3.7
and 3.8, we can show, as in the classical framework, that the solution Y of the 2DRBSDE is
linked to some kind of Dynkin game. We emphasize that such a connection with games was
already conjectured in [31]. After that, Bayraktar and Yao [2] showed in a purely Markovian
context, that the value function of stochastic zero-sum differential game could be linked to the
notion of 2DRBSDEs, even though these objects were not precisely defined in the paper (see
their Section 5.2). For any t ∈ [0, T ], denote Tt,T the set of F-stopping times taking values in
[t, T ].

Proposition 3.10. Let (Y, Z) be the solution to the above 2DRBSDE (2.5). For any (τ, σ ) ∈

T0,T , define

Rστ := Sτ1τ<σ + Lσ1σ≤τ,σ<T + ξ1τ∧σ=T .

Then for each t ∈ [0, T ], for all P ∈ Pκ
H , we have P-a.s.

Yt = ess supP

P′∈Pκ
H (t

+,P)
ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′

t

 τ∧σ

t

Fs(y
P′

s , zP′

s )ds + Rστ


= ess supP

P′∈Pκ
H (t

+,P)
ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′

t

 τ∧σ

t

Fs(y
P′

s , zP′

s )ds + Rστ


.
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Moreover, for any γ ∈ [0, 1], we have P-a.s.

Yt = ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP
t

 τ∧σ

t

Fs(Ys, Zs)ds + K P,γ
τ∧σ − K P,γ

t + Rστ


= ess sup

σ∈Tt,T

ess inf
τ∈Tt,T

EP
t

 τ∧σ

t

Fs(Ys, Zs)ds + K P,γ
τ∧σ − K P,γ

t + Rστ


,

where

K P,γ
t := γ

 t

0
1yP

s−
<Ss−

dV P
s + (1 − γ )

 t

0
1Ys−>Ls−

dV P
s .

Furthermore, for any P ∈ Pκ
H , the following stopping times are ε-optimal

τ
ε,P
t := inf


s ≥ t, yP

s ≥ Ss − ε, P-a.s.


and

σ εt := inf

s ≥ t, Ys ≤ Ls + ε, Pκ

H -q.s.

.

Remark 3.11. Notice that the optimal stopping rules above are different in nature. Indeed, τ ε,Pt
depends explicitly on the probability measures P, because it depends on the process yP, while
σ εt only depends on Y . This situation shed once more light on the complete absence of symmetry
between lower and upper obstacles in the second-order framework.

Remark 3.12. The second result in the proposition above may seem peculiar at first sight
because of the degree of freedom introduced by the parameter γ . However, as shown in the
proof below, we can find stopping times which are ε-optimizer for the corresponding stochastic
game, and which roughly correspond (as expected) to the first hitting times of the obstacles.
Since the latter are completely separated, we know from Proposition 3.5 that before hitting S,

dV P
t = 1yP

t−
<St−

,

and that before hitting L ,

dV P
t = 1Yt−>L t−

.

Thanks to this result, it is easy to see that we can change the value of γ as we see fit. In particular,
if there is no upper obstacle, that is to say if S = +∞, then taking γ = 0, we recover the result
of Proposition 3.1 in [31].

Proof. By Proposition 3.1 in [30], we know that for all P ∈ Pκ
H , P-a.s.

yP
t = ess inf

τ∈Tt,T

ess sup
σ∈Tt,T

EP
t

 τ∧σ

t

Fs(y
P
s , zP

s )ds + Rστ


= ess sup

σ∈Tt,T

ess inf
τ∈Tt,T

EP
t

 τ∧σ

t

Fs(y
P
s , zP

s )ds + Rστ


.

Then the first equality is a simple consequence of the representation formula (3.9). For the second
one, we proceed exactly as in the proof of Proposition 3.1 in [30]. Fix some P ∈ Pκ

H and some

t ∈ [0, T ] and some ε > 0. It is then easy to show that for any s ∈ [t, τ ε,Pt ], we have yP
s− < Ss− .

In particular this implies that

dV P
s = 1yP

s−
<Ss−

dV P
s , s ∈ [t, τ ε,Pt ].
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Let now σ ∈ Tt,T . On the set {τ
ε,P
t < σ }, we have σ∧τ

ε,P
t

t

Fs(Ys, Zs)ds + Rσ
τ
ε,P
t

=

 τ
ε,P
t

t

Fs(Ys, Zs)ds + S
τ
ε,P
t

≤

 τ
ε,P
t

t

Fs(Ys, Zs)ds + yP
τ
ε,P
t

+ ε

≤

 τ
ε,P
t

t

Fs(Ys, Zs)ds + Y
τ
ε,P
t

+ ε

= Yt +

 τ
ε,P
t

t
Zsd Bs −

 τ
ε,P
t

t
1yP

s−
<Ss−

dV P
s + ε.

Then, notice that the process (1yP
s−
<Ss−

−1Ys−>Ls−
)dV P

s is non-decreasing. Therefore, we deduce

 σ∧τ
ε,P
t

t

Fs(Ys, Zs)ds + Rσ
τ
ε,P
t

≤ Yt +

 τ
ε,P
t

t
Zsd Bs −

 τ
ε,P
t

t
1yP

s−
<Ss−

dV P
s

+ (1 − γ )

 τ
ε,P
t

t


1yP

s−
<Ss−

− 1Ys−>Ls−


dV P

s + ε

= Yt +

 τ
ε,P
t

t
Zsd Bs − (K γ

τ
P,ε
t

− K γ
t )+ ε.

Similarly on the set {τ
ε,P
t ≥ σ }, we have σ∧τ

ε,P
t

t

Fs(Ys, Zs)ds + Rσ
τ
ε,P
t

≤

 σ

t

Fs(Ys, Zs)ds + ξ1σ=T + Yσ1σ<T

= Yt +

 σ

t
Zsd Bs −

 σ

t
1yP

s−
<Ss−

dV P
s ≤ Yt +

 σ

t
Zsd Bs − (K γ

σ − K γ
t ).

With these two inequalities, we therefore have

EP
t

 σ∧τ
ε,P
t

t

Fs(Ys, Zs)ds + Rσ
τ
ε,P
t

+ K γ

σ∧τ
P,ε
t

− K γ
t


− ε ≤ Yt , P-a.s. (3.20)

We can prove similarly that for any τ ∈ Tt,T

EP
t

 σ
ε,P
t ∧τ

t

Fs(Ys, Zs)ds + R
σ
ε,P
t
τ + K γ

σ
P,ε
t ∧τ

− K γ
t


+ ε ≥ Yt , P-a.s. (3.21)

Then, we can use Lemma 5.3 of [30] to finish the proof. �

Then, if we have more information on the obstacle S and its decomposition (2.3), we can give a
more explicit representation for the processes V P, just as in the classical case (see Proposition
4.2 in [16]).

Assumption 3.13. S is a semimartingale of the form

St = S0 +

 t

0
Usds +

 t

0
Psd Bs + Ct , Pκ

H -q.s.
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where C is càdlàg process of integrable variation such that the measure dCt is singular with
respect to the Lebesgue measure dt and which admits the following decomposition Ct = C+

t
− C−

t , where C+ and C− are non-decreasing processes. Besides, U and V are respectively R
and Rd -valued Ft progressively measurable processes such that T

0
(|Ut | + |Pt |

2)dt + C+

T + C−

T ≤ +∞, Pκ
H -q.s.

Proposition 3.14. Let Assumptions 2.3, 2.5, 3.13 and 2.8 hold. Let (Y, Z) be the solution to the
2DRBSDE (2.5), then for all P ∈ Pκ

H

Z t = Pt , dt × P-a.s. on the set {Yt− = St−} , (3.22)

and there exists a progressively measurable process (αP
t )0≤t≤T such that 0 ≤ α ≤ 1 and

−1yP
t−

=St−
dV P

t = αP
t 1yP

t−
=St−

Ft (St , Pt )+ Ut
+

dt + dC+
t


.

Proof. First, for all P ∈ Pκ
H , the following holds P-a.s.

St − Yt = S0 − Y0 +

 t

0

Fs(Ys, Zs)+ Us


ds −

 t

0
(Zs − Ps)d Bs + V P

t + C+
t − C−

t .

Now if we denote L t the local time at 0 of St − Yt , then by Itô–Tanaka formula under P

(St − Yt )
+

= (S0 − Y0)
+

+

 t

0
1Ys−<Ss−

Fs(Ys, Zs)+ Us


ds

−

 t

0
1Ys−<Ss−

(Zs − Ps)d Bs +

 t

0
1Ys−<Ss−

d(V P
t + C+

t − C−
t )+

1
2

L t

+


0≤s≤t

(Ss − Ys)
+

− (Ss− − Ys−)+ − 1Ys−<Ss−
∆(Ss − Ys).

However, we have (St − Yt )
+

= St − Yt , hence by identification of the martingale part

1Yt−=St−
(Z t − Pt )d Bt = 0, Pκ

H -q.s.,

from which the first statement is clear. Identifying the finite variation part, we obtain

1Ys−=Ss−

Fs(Ys, Zs)+ Us


ds + 1Ys−=Ss−
d(V P

s + C+
s − C−

s )

=
1
2

Ls +

(Ss − Ys)

+
− (Ss− − Ys−)+ − 1Ys−<Ss−

∆(Ss − Ys)

.

By Proposition 3.5, we know that 1yP
s−

=Ss−
dV P

s is a non-increasing process, while 1yP
s−
<Ss−

dV P
s

is a non-decreasing process. Furthermore, we have

1Ys−=Ss−
dV P

s = 1yP
s−

=Ss−
dV P

s + 1yP
s−
<Ys−=Ss−

dV P
s .

Since we also know that the jump part, L and C− are non-decreasing processes, we obtain

−1yP
s−

=Ss−
dV P

s ≤ 1yP
s−

=Ss−

Fs(Ys, Zs)+ Us


ds + dC+
s


+ 1yP

s−
<Ys−=Ss−

Fs(Ys, Zs)+ Us


ds + dC+
s + dV P

s


.
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Since, 1yP
s−

=Ss−
dV P

s and 1yP
s−
<Ys−=Ss−

Fs(Ys, Zs)+ Us


ds + dC+
s + dV P

s


never act at the

same time by definition, the second statement follows easily. �

Remark 3.15. If we assume also that L is a semimartingale, then we can obtain exactly the same
type of results as in Corollary 3.1 in [31], using the exact same arguments.

4. A constructive proof of existence

We have shown in Theorem 3.1 that if a solution exists, it will necessarily verify the
representation (2.8). This gives us a natural candidate for the solution as a supremum of solutions
to standard DRBSDEs. However, since those DRBSDEs are all defined on the support of
mutually singular probability measures, it seems difficult to define such a supremum, because
of the problems raised by the negligible sets. In order to overcome this, Soner, Touzi and Zhang
proposed in [41] a pathwise construction of the solution to a 2BSDE. Let us describe briefly their
strategy.

The first step is to define pathwise the solution to a standard BSDE. For simplicity, let us
consider first a BSDE with a generator equal to 0. Then, we know that the solution is given by
the conditional expectation of the terminal condition. In order to define this solution pathwise,
we can use the so-called regular conditional probability distribution (r.p.c.d. for short) of Stroock
and Varadhan [44]. In the general case, the idea is similar and consists of defining BSDEs on a
shifted canonical space.

Finally, we have to prove measurability and regularity of the candidate solution thus obtained,
and the decomposition (2.5) is obtained through a non-linear Doob–Meyer decomposition. Our
aim in this section is to extend this approach in the presence of obstacles. We emphasize that most
of the proofs are now standard, and we will therefore only sketch them, insisting particularly on
the new difficulties appearing in the present setting.

4.1. Shifted spaces

For the convenience of the reader, we recall below some of the notations introduced in [41].

• For 0 ≤ t ≤ T , denote by Ω t
:=

ω ∈ C


[t, T ],Rd


, w(t) = 0


the shifted canonical space,

Bt the shifted canonical process, Pt
0 the shifted Wiener measure and Ft the filtration generated

by Bt .
• For 0 ≤ s ≤ t ≤ T and ω ∈ Ω s , define the shifted path ωt

∈ Ω t

ωt
r := ωr − ωt , ∀r ∈ [t, T ].

• For 0 ≤ s ≤ t ≤ T and ω ∈ Ω s , ω ∈ Ω t define the concatenation path ω⊗t ω ∈ Ω s by

(ω⊗t ω)(r) := ωr 1[s,t)(r)+ (ωt +ωr )1[t,T ](r), ∀r ∈ [s, T ].

• For 0 ≤ s ≤ t ≤ T and a F s
T -measurable random variable ξ on Ω s , for each ω ∈ Ω s , define

the shifted F t
T -measurable random variable ξ t,ω on Ω t by

ξ t,ω(ω) := ξ(ω⊗t ω), ∀ω ∈ Ω t .

Similarly, for an Fs-progressively measurable process X on [s, T ] and (t, ω) ∈ [s, T ] × Ω s ,
the shifted process


X t,ω

r , r ∈ [t, T ]


is Ft -progressively measurable.
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• For a F-stopping time τ , the r.c.p.d. of P (denoted Pωτ ) is a probability measure on FT such
that

EP
τ [ξ ](ω) = EPωτ [ξ ], for P-a.e. ω.

It also induces naturally a probability measure Pτ,ω (that we also call the r.c.p.d. of P) on F τ(ω)
T

which in particular satisfies that for every bounded and FT -measurable random variable ξ

EPωτ [ξ ] = EPτ,ω ξ τ,ω .
• We define similarly as in Section 2 the set P̄ t

S , by restricting to the shifted canonical space Ω t ,
and its subset P t

H .
• Finally, we define the “shifted” generatorF t,ω

s (ω, y, z) := Fs(ω⊗t ω, y, z,at
s(ω)), ∀(s,ω) ∈ [t, T ] × Ω t .

Notice that thanks to Lemma 4.1 in [42], this generator coincides for P-a.e. ω with the shifted
generator as defined above, that is to say Fs(ω⊗t ω, y, z,as(ω⊗t ω)). The advantage of the
chosen “shifted” generator is that it inherits the uniform continuity in ω under the L∞ norm
of F .

4.2. A first existence result when ξ is in UCb(Ω)

Let us define for all ω ∈ Ω , Λ∗ (ω) := sup0≤s≤t Λs (ω) , where

Λ2
t (ω) := sup

P∈P t
H

EP
 ξ t,ω

2 +

 T

t
|F t,ω

s (0, 0) |2 ds

+ sup
t≤s≤T

St,ω
s

2 + sup
t≤s≤T


(L t,ω

s )+
2

.

By Assumption 2.8, we can check directly that

Λt (ω) < ∞ for all (t, ω) ∈ [0, T ] × Ω . (4.23)

To prove existence, we define the following value process X t pathwise

X t (ω) := sup
P∈P t

H

Y P,t,ω
t (T, ξ) , for all (t, ω) ∈ [0, T ] × Ω , (4.24)

where, for any (t1, ω) ∈ [0, T ] × Ω , P ∈ P t1
H , t2 ∈ [t1, T ], and any Ft2 -measurable η ∈ L2 (P),

we denote Y P,t1,ω
t1 (t2, η) := yP,t1,ω

t1 , where

yP,t1,ω, zP,t1,ω, kP,+,t1,ω, kP,−,t1,ω


is the solution of

the following DRBSDE with upper obstacle St1,ω and lower obstacle L t1,ω on the shifted space
Ω t1 under P

yP,t1,ω
s = ηt1,ω +

 t2

s

F t1,ω
r


yP,t1,ω

r , zP,t1,ω
r


dr

−

 t2

s
zP,t1,ω

r d Bt1
r − kP,+,t1,ω

t2 + kP,+,t1,ω
t1

+ kP,−,t1,ω
t2 − kP,−,t1,ω

t1 , P-a.s. (4.25)

L t1,ω
t ≤ yP,t1,ω

t ≤ St1,ω
t , P-a.s.
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t1


St1,ω

s− − yP,t1,ω
s−


dkP,+,t1,ω

s =

 t2

t1


yP,t1,ω

s− − L t1,ω
s−


dkP,−,t1,ω

s = 0, P-a.s. (4.26)

Notice that since we assumed that S was a P-semimartingale for all P ∈ Pκ
H , then for all

(t, ω) ∈ [0, T ] × Ω , St,ω is also a P-semimartingale for all P ∈ P t,κ
H . Furthermore, we have

the decomposition

St,ω
s = St,ω

t +

 s

t
P t,ω

u d Bt
u + AP,t,ω

s , P-a.s., for all P ∈ P t,κ
H , (4.27)

where AP,t,ω is a bounded variation process under P. Besides, we have by Assumption 2.8

ζ
t,ω
H := sup

P∈P t,κ
H


EP


ess supP

t≤s≤T
EH,P

t

 T

t

(at
s)

1/2 P t,ω
s

2 ds +


AP,t,ω,+

T

2
1/2

< +∞.

In view of the Blumenthal zero–one law, Y P,t,ω
t (T, ξ) is constant for any given (t, ω) and

P ∈ P t
H . Let us now answer the question of measurability of the process X .

Lemma 4.1. Let Assumptions 2.3 and 2.8 hold and consider some ξ in UCb(Ω). Then for all
(t, ω) ∈ [0, T ] × Ω we have |X t (ω)| ≤ C(1 + ζ

t,ω
H + Λt (ω)). Moreover, for all


t, ω, ω′


∈

[0, T ]×Ω2,
X t (ω)− X t


ω′
 ≤ Cρ

ω − ω′


t


. Consequently, Vt is Ft -measurable for every

t ∈ [0, T ].

Proof. (i) For each (t, ω) ∈ [0, T ] × Ω , since St,ω is a semimartingale with decomposition
(4.27), we know that we have

dkP,+,t,ω
s ≤

F t,ω
s (St,ω

s , P t,ω
s )

+
ds + d AP,t,ω,+

s

≤ C
F t,ω

s (0)
+ St,ω

s

+ (at
s)

1/2 P t,ω
s

 ds + d AP,t,ω,+
s .

Hence,

EP


kP,+,t,ω
T

2


≤ C


ζ

t,ω
H + EP

 T

t

F t,ω
s (0)

2 ds + sup
t≤s≤T

St,ω
s

2 .
Let now α be some positive constant which will be fixed later and let η ∈ (0, 1). By Itô’s formula
we have using (4.26)

eαt
yP,t,ω

t

2 +

 T

t
eαs

(at
s)

1/2zP,t,ω
s

2 ds ≤ eαT
ξ t,ω

2
+ 2C

 T

t
eαs

yP,t,ω
s

 F t,ω
s (0)

 ds + 2C
 T

t

yP,t,ω
s

 yP,t,ω
s

+ (at
s)

1/2zP,t,ω
s

 ds

− 2
 T

t
eαs yP,t,ω

s− zP,t,ω
s d Bt

s + 2
 T

t
eαs St,ω

s− dkP,+,t,ω
s − 2

 T

t
eαs L t,ω

s− dkP,−,t,ω
s

−α

 T

t
eαs

yP,t,ω
s

2 ds

≤ eαT
ξ t,ω

2 +

 T

t
eαs

F t,ω
s (0)

2 ds − 2
 T

t
eαs yP,t,ω

s− zP,t,ω
s d Bt

s
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+ η

 T

t
eαs

(at
s)

1/2zP,n
s

2 ds +


2C + C2

+
C2

η
− α

 T

t
eαs

yP,t,ω
s

2 ds

+ 2 sup
t≤s≤T

eαs
St,ω

s

 (kP,+,t,ω
T − kP,+,t,ω

t )+ 2 sup
t≤s≤T

eαs(L t,ω
s )+(kP,−,t,ω

T − kP,−,t,ω
t ).

Now choose α such that ν := α − 2C − C2
−

C2

η
≥ 0. We obtain for all ϵ > 0

eαt
yP,t,ω

t

2 + (1 − η)

 T

t
eαs

(at
s)

1/2zP,t,ω
s

2 ds ≤ eαT
ξ t,ω

2
+

 T

t
eαs

F t,ω
s (0, 0)

2 ds +
1
ϵ


sup

t≤s≤T
eαs(L t,ω

s )+

2

+ ϵ(kP,−,t,ω
T − kP,−,tω

t )2

+


sup

t≤s≤T
eαs

St,ω
s

2

+ (kP,+,t,ω
T − kP,+,tω

t )2 − 2
 T

t
eαs yP,t,ω

s− zP,t,ω
s d Bt

s . (4.28)

Taking expectation and using (4.28) yields with η small enoughyP,t,ω
t

2 + EP
 T

t
|(at

s)
1
2 zP,t,ω

s |
2 ds


≤ C


Λ2

t (ω)+

ζ

t,ω
H

2
+ ϵEP


(kP,−,t,ω

T − kP,−,t,ω
t )2


.

Now by definition, we also have for some constant C0 independent of ϵ

EP

(kP,−,t,ω

T − kP,−,t,ω
t )2


≤ C0


Λ2

t (ω)+

ζ

t,ω
H

2
+ EP

 T

t

yP,t,ω
s

2 ds


+ C0EP

 T

t

(at
s)

1/2zP,t,ω
s

2 ds


.

Choosing ϵ =
1

2C0
, Gronwall inequality then implies |yP,t,ω

t |
2

≤ C(1 + Λt (ω)). The result then
follows by arbitrariness of P.

(ii) The proof is exactly the same as above, except that one has to use uniform continuity in ω
of ξ t,ω, F t,ω, St,ω and L t,ω. Indeed, for each (t, ω) ∈ [0, T ] × Ω and P ∈ P t,κ

H , let α be some
positive constant which will be fixed later and let η ∈ (0, 1). By Itô’s formula we have, since F
is uniformly Lipschitz

eαt
yP,t,ω

t − yP,t,ω′

t

2 +

 T

t
eαs

(at
s)

1/2(zP,t,ω
s − zP,t,ω′

s )

2 ds ≤ eαT
ξ t,ω

− ξ t,ω′
2

+ 2C
 T

t
eαs

yP,t,ω
s − yP,t,ω′

s

 yP,t,ω
s − yP,t,ω′

s

+ (at
s)

1
2 (zP,t,ω

s − zP,t,ω′

s )

 ds

+ 2C
 T

t
eαs

yP,t,ω
s − yP,t,ω′

s

 F t,ω
s (yP,t,ω

s , zP,t,ω
s )− F t,ω′

s (yP,t,ω
s , zP,t,ω

s )

 ds

+ 2
 T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d


kP,−,t,ω
s − kP,−,t,ω′

s − kP,+,t,ω
s + kP,+,t,ω′

s


−α

 T

t
eαs

yP,t,ω
s − yP,t,ω′

s

2 ds − 2
 T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )d Bt
s
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≤ eαT
ξ t,ω

− ξ t,ω′
2 +

 T

t
eαs

F t,ω
s (yP,t,ω

s , zP,t,ω
s )− F t,ω′

s (yP,t,ω
s , zP,t,ω

s )

2 ds

+


2C + C2

+
C2

η
− α

 T

t
eαs

yP,t,ω
s − yP,t,ω′

s

2 ds

+ η

 T

t
eαs

(at
s)

1
2 (zP,t,ω

s − zP,t,ω′

s )

2 ds

− 2
 T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )d Bt
s

+ 2
 T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d


kP,−,t,ω
s − kP,−,t,ω′

s − kP,+,t,ω
s + kP,+,t,ω′

s


.

By the Skorohod condition (4.26), we also have T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )d


kP,−,t,ω
s − kP,−,t,ω′

s − kP,+,t,ω
s + kP,+,t,ω′

s


≤

 T

t
eαs(L t,ω

s− − L t,ω′

s− )d(kP,−,t,ω
s − kP,−,t,ω′

s )

−

 T

t
eαs(St,ω

s− − St,ω′

s− )d(kP,+,t,ω
s − kP,+,t,ω′

s ).

Now choose α such that ν := α − 2C − C2
−

C2

η
≥ 0. We obtain for all ϵ > 0

eαt
yP,t,ω

t − yP,t,ω′

t

2 + (1 − η)

 T

t
eαs

(at
s)

1/2(zP,t,ω
s − zP,t,ω′

s )

2 ds

≤ eαT
ξ t,ω

− ξ t,ω′
2 +

 T

t
eαs

F t,ω
s (yP,t,ω

s , zP,t,ω
s )− F t,ω′

s (yP,t,ω
s , zP,t,ω

s )

2 ds

+
1
ϵ


sup

t≤s≤T
eαs(L t,ω

s − L t,ω′

s )+

2

+ ϵ(kP,−,t,ω
T − kP,−,t,ω′

T − kP,−,tω
t + kP,−,t,ω′

t )2

+
1
ϵ


sup

t≤s≤T
eαs

St,ω
s − St,ω′

s

2

+ ϵ(kP,+,t,ω
T − kP,+,t,ω′

T − kP,+,tω
t + kP,+,t,ω′

t )2

− 2
 T

t
eαs(yP,t,ω

s− − yP,t,ω′

s− )(zP,t,ω
s − zP,t,ω′

s )d Bt
s . (4.29)

The end of the proof is then similar to the previous step, using the uniform continuity in ω of ξ ,
F and S. �

Then, we show the same dynamic programming principle as Proposition 4.7 in [42] and Propo-
sition 4.1 in [31]. The proof being exactly the same, we omit it.

Proposition 4.2. Under Assumptions 2.3, 2.8 and for ξ ∈ UCb(Ω), we have for all 0 ≤ t1 <
t2 ≤ T and for all ω ∈ Ω

X t1(ω) = sup
P∈P t1,κ

H

Y P,t1,ω
t1 (t2, X t1,ω

t2 ).
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Define now for all (t, ω), the F+-progressively measurable process

X+
t := lim

r∈Q∩(t,T ],r↓t
Xr . (4.30)

We have the following result whose proof is the same as the one of Lemma 4.2 in [31].

Lemma 4.3. Under the conditions of the previous proposition, we have

X+
t = lim

r∈Q∩(t,T ],r↓t
Xr , Pκ

H -q.s.

and thus X+ is càdlàg Pκ
H -q.s.

Proceeding exactly as in Steps 1 and 2 of the proof of Theorem 4.5 in [42], we can then prove
that X+ is a strong doubly reflected F-supermartingale (in the sense of Definition A.6 in the
Appendix). Then, using the Doob–Meyer decomposition proved in the Appendix in Theorem A.8

for all P, we know that there exists a unique (P-a.s.) process Z
P

∈ H2(P) and unique non-
decreasing càdlàg square integrable processes AP, BP and CP such that

• X+
t = X+

0 −
 t

0
Fs(X+

s , Z
P
s )ds +

 t
0 Z

P
s d Bs + BP

t − AP
t + CP

t ,P-a.s.,∀P ∈ Pκ
H .

• L t ≤ X+
t ≤ St ,P-a.s.,∀P ∈ Pκ

H .

•
 T

0


St− − X+

t−


d AP
t =

 T
0


X+

t− − L t−


d BP
t = 0,P-a.s.,∀P ∈ Pκ

H .

We then define V P
:= AP

− BP
− CP. By Karandikar [27], since X+ is a càdlàg

semimartingale, we can define a universal process Z which aggregates the family


Z
P
,P ∈ Pκ

H


.

We next prove the representation (3.9) for X and X+.

Proposition 4.4. Assume that ξ ∈ UCb(Ω) and that Assumptions 2.3 and 2.8 hold. Then we
have

X t = ess supP

P′∈Pκ
H (t,P)

Y P′

t (T, ξ) and X+
t = ess supP

P′∈Pκ
H (t

+,P)
Y P′

t (T, ξ), P-a.s.,∀P ∈ Pκ
H .

Proof. The proof for the representations is the same as the proof of Proposition 4.10 in [42],
since we also have a stability result for RBSDEs under our assumptions. �

Finally, we have to check that the minimum condition (2.8) holds. However, this can be done
exactly as in [31], so we refer the reader to that proof.

4.3. Main result

We are now in a position to state the main result of this section.

Theorem 4.5. Let ξ ∈ L2,κ
H and let Assumptions 2.3, 2.5 and 2.8 hold. Then

(1) There exists a unique solution (Y, Z) ∈ D2,κ
H × H2,κ

H of the 2DRBSDE (2.5).
(2) Moreover, if in addition we choose to work under either of the following model of set theory

(we refer the reader to [19] for more details)
(i) Zermelo–Fraenkel set theory with axiom of choice (ZFC) plus the Continuum Hypothesis

(CH).
(ii) ZFC plus the negation of CH plus Martin’s axiom.

Then there exists a unique solution (Y, Z , V ) ∈ D2,κ
H × H2,κ

H × V2,κ
H of the 2DRBSDE (2.5).
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Proof. The proof of the existence part follows the lines of the proof of Theorem 4.7 in [41], using
the estimates of Theorem 3.8, so we only insist on the points which do not come directly from
the proofs mentioned above. The idea is to approximate the terminal condition ξ by a sequence
(ξn)n≥0 ⊂ UCb(Ω). Then, we use the estimates of Theorem 3.8 to pass to the limit as in the
proof of Theorem 4.6 in [41]. The main point in this context is that for each n, if we consider the
Jordan decomposition of V P,n into the non-decreasing process V P,+,n and the non-increasing
process V P,−,n , then the estimates of Theorem 3.8 ensure that these processes converge to some
V P,+ and V P,−, which are respectively non-decreasing and non-increasing. Hence we are sure
that the limit V P has indeed bounded variation.

Concerning the fact that we can aggregate the family

V P

P∈Pκ
H

, it can be deduced as follows.

First, if ξ ∈ UCb(Ω), we know, using the same notations as above that the solution verifies

X+
t = X+

0 −

 t

0

Fs(X
+
s , Z s)ds +

 t

0
Z sd Bs − K P

t , P-a.s.,∀P ∈ Pκ
H .

Now, we know from (4.30) that X+ is defined pathwise, and so is the Lebesgue integral t

0

Fs(X
+
s , Z s)ds.

In order to give a pathwise definition of the stochastic integral, we would like to use the recent
results of Nutz [33]. However, the proof in this paper relies on the notion of medial limits, which
may or may not exist depending on the model of set theory chosen. They exists in the model (i)
above, which is the one considered by Nutz, but we know from [19] (see statement 22O(l) page
55) that they also do in the model (ii). Therefore, provided we work under either one of these
models, the stochastic integral

 t
0 Z sd Bs can also be defined pathwise. We can therefore define

pathwise

Vt := X+

0 − X+
t −

 t

0

Fs(X
+
s , Z s)ds +

 t

0
Z sd Bs,

and V is an aggregator for the family

V P

P∈Pκ
H

, that is to say that it coincides P-a.s. with V P,

for every P ∈ Pκ
H .

In the general case when ξ ∈ L2,κ
H , the family is still aggregated when we pass to the

limit. �

Remark 4.6. For more discussions on the axioms of the set theory considered here, we refer the
reader to Remark 4.2 in [31].

5. Applications: Israeli options and Dynkin games

5.1. Game options

We first recall the definition of an Israeli (or game) option, and we refer the reader to [28,
21] and the references therein for more details. An Israeli option is a contract between a broker
(seller) and a trader (buyer). The specificity is that both can decide to exercise before the maturity
date T . If the trader exercises first at a time t then the broker pays him the (random) amount L t .
If the broker exercises before the trader at time t , the trader will be given from him the quantity
St ≥ L t , and the difference St − L t as to be understood as a penalty imposed on the seller
for canceling the contract. In the case where they exercise simultaneously at t , the trader payoff
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is L t and if they both wait till the maturity of the contract T , the trader receives the amount
ξ . In other words, this is an American option which has the specificity that the seller can also
“exercise” early. This therefore a typical Dynkin game. We assume throughout this section that
the processes L and S satisfy Assumptions 3.13 and 2.8.

To sum everything up, if we consider that the broker exercises at a stopping time τ ≤ T and
the trader at another time σ ≤ T then the trader receive from the broker the following payoff:

H(σ, τ ) := Sτ1τ<σ + Lσ1σ≤τ + ξ1σ∧τ=T .

Remark 5.1. We could have chosen a slightly more general payoff function as in [21], but we
prefer to concentrate here on the uncertainty context.

Before introducing volatility uncertainty, let us first briefly recall how the fair price and the
hedging of such an option is related to DRBSDEs in a classical financial market. We fix a
probability measure P, and we assume that the market contains one riskless asset, whose price is
assumed w.l.o.g. to be equal to 1, and one risky asset. We furthermore assume that if the broker
adopts a strategy π (which is an adapted process in H2(P) representing the percentage of his
total wealth invested in the risky asset), then his wealth process has the following expression

XP
t = ξ +

 T

t
b(s, XP

s , π
P
s )ds −

 T

t
πP

s σsdWs, P-a.s.

where W is a Brownian motion under P, b is convex and Lipschitz with respect to (x, π). We
also suppose that the process (b(t, 0, 0))t≤T is square-integrable and (σt )t≤T is invertible and
its inverse is bounded. It was then proved in [28,21] that the fair price and an hedging strategy
for the Israeli option described above can be obtained through the solution of a DRBSDE. More
precisely, we have the following.

Theorem 5.2. The fair price of the game option and the corresponding hedging strategy are
given by the pair (yP, πP) ∈ D2(P)× H2(P) solving the following DRBSDE

yP
t = ξ +

 T

t
b(s, yP

s , π
P
s )ds −

 T

t
πP

s σsdWs + kP
t − kP

t , P-a.s.

L t ≤ yP
t ≤ St , P-a.s. T

0
(yP

t− − L t−)dkP,−
t =

 T

0
(St− − yP

t−)dkP,+
t = 0.

Moreover, for any ε > 0, the following stopping times are ε-optimal after t for the seller and the
buyer respectively

D1,ε,P
t := inf


s ≥ t, yP

s ≥ Ss − ε

, D2,ε,P

t := inf


s ≥ t, yP
s ≤ Ls + ε


.

Let us now extend this result to the uncertain volatility framework. We still consider a financial
market with two assets and assume now that the wealth process has the following dynamic when
the chosen strategy is π

X t = ξ +

 T

t
b(s, Xs, πs)ds −

 T

t
πsd Bs, Pκ

H -q.s.,

where B is the canonical process and b is assumed to satisfy Assumption 2.3, and where ξ
belongs to L2,κ

H . Then, following the ideas of [31], it is natural to consider as a superhedging
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price for the option the quantity

Yt = ess supP

P′∈Pκ
H (t

+,P)
yP′

t .

Indeed, this amount is greater than the price at time t of the same Israeli option under any
probability measure. Hence, if the seller receives this amount, he should always be able to hedge
his position. We emphasize however that we are not able to guarantee that this price is optimal
in the sense that it is the lowest value for which we can find a super-replicating strategy. This
interesting question is left for future research.

Symmetrically, if the seller charges less than the following quantity for the option at time t ,Yt := ess inf
P′∈Pκ

H (t
+,P)

PyP′

t ,

then it will be clearly impossible for him to find a hedge. Y appears then as a subhedging price.
Hence, we have obtained a whole interval of prices, given by [Yt , Yt ], which we can formally

think as arbitrage free, even though a precise definition of this notion in an uncertain market is
outside the scope of this paper. These two quantities can be linked to the notion of second-order
2DRBSDEs. Indeed, this is immediate for Y , and for Y , we need to introduce a “symmetric”
definition for the 2DRBSDEs.

Definition 5.3. For ξ ∈ L2,κ
H , we consider the following type of equations satisfied by a pair of

progressively-measurable processes (Y, Z)

• YT = ξ , Pκ
H -q.s.

• ∀P ∈ Pκ
H , the process V P defined below has paths of bounded variation P-a.s.

V P
t := Y0 − Yt −

 t

0

Fs(Ys, Zs)ds +

 t

0
Zsd Bs, 0 ≤ t ≤ T,P-a.s. (5.31)

• We have the following maximum condition for 0 ≤ t ≤ T

V P
t + kP,+

t − kP,−
t = ess supP

P′∈P H (t+,P)
EP′

t


V P′

T + kP′,+
T − kP′,−

T


,

P-a.s.,∀P ∈ Pκ
H . (5.32)

• L t ≤ Yt ≤ St , Pκ
H -q.s.

This definition is symmetric to Definition 2.11 in the sense that if (Y, Z) solves an equation
as in Definition 5.3, then (−Y,−Z) solves a 2DRBSDE (in the sense of Definition 2.11) with
terminal condition −ξ , generator g̃(y, z) := −g(−y,−z), lower obstacle −S and upper obstacle
−L . With this remark, it is clear that we can deduce a wellposedness theory for the above
equations. In particular, we have the following representation

Yt = ess inf
P′∈Pκ

H (t
+,P)

yP′

t , P-a.s., for any P ∈ Pκ
H . (5.33)

We then have the following result.

Theorem 5.4. The superhedging and subhedging prices Y and Y are respectively the unique
solution of the 2DRBSDE with terminal condition ξ , generator b, lower obstacle L, upper
obstacle S in the sense of Definitions 2.11 and 5.3 respectively. The corresponding hedging
strategies are then given by Z and Z.
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Moreover, for any ε > 0 and for any P, the following stopping times are ε-optimal after t for
the seller and the buyer respectively

D1,ε,P
t := inf


s ≥ t, yP

s ≥ Ss − ε, P-a.s.

,

D2,ε
t := inf


s ≥ t, Ys ≤ Ls + ε,Pκ

H -q.s.

.

5.2. A first step towards Dynkin games under uncertainty

It is already known that doubly reflected BSDE are intimately connected to Dynkin games
(see [11] for instance). More generally, since the seminal paper by Fleming and Souganidis [18],
two person zero-sum stochastic differential games have been typically studied through two
approaches. One uses the viscosity theory and aims at showing that the value function of the
game is the unique viscosity solution of the associated HJBI equation, while the other relates the
value function to the solution of a BSDE. We are of course more interested in the second one.
To name but a few of the contributions in the literature, Buckdahn and Li [7] defined precisely
the value function of the game via BSDEs, while more recently Bayraktar and Yao used doubly
reflected BSDEs. Before specializing the discussion to Dynkin games, we would like to refer the
reader to the very recent work of Pham and Zhang [40], which studies a weak formulation of two
person zero-sum game and points out several formal connections with the 2BSDE theory.

We naturally want to obtain the same kind of result with 2DRBSDEs, with an additional un-
certainty component in the game, which will be induced by the fact that we are working simul-
taneously under a family of mutually singular probability measures. We will focus here on the
construction of a game whose upper and lower values can be expressed as a solution of 2DRB-
SDE. We insist that we prove only that a given solution to a 2DRBSDE provides a solution to
the corresponding Dynkin game described below. However, we are not able, as in [11], to con-
struct the solution of the 2DRBSDE directly from the solution of the Dynkin game. Moreover,
we also face a difficult technical problem related to Assumption 5.7, which prevents our result to
be comprehensive.

Let us now describe what we mean precisely by a Dynkin game with uncertainty. Two players
P1 and P2 are facing each other in a game. A strategy of a player consists in picking a stopping
time. Let us say that P1 chooses τ ∈ T0,T and P2 chooses σ ∈ T0,T . Then the game stipulates
that P1 will pay to P2 the following random payoff

Rt (τ, σ ) :=

 τ∧σ

t
gsds + Sτ1τ<σ + Lσ1σ≤τ,σ<T + ξ1τ∧σ=T ,

where g, S and L are F-progressively measurable processes satisfying Assumptions 2.3, 3.13
and 2.8. In particular, the upper obstacle S is a semimartingale.

Then naturally, P1 will try to minimize the expected amount that he will have to pay, but
taking into account the fact that both P2 and the “Nature” (which we interpret as a third player,
represented by the uncertainty that the player has with respect to the underlying probability
measure) can play against him. Symmetrically, P2 will try to maximize his expected returns,
considering that both P1 and the Nature are antagonist players. This leads us to introduce the
following upper and lower values of the robust Dynkin game

V t := ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

ess supP

P′∈Pκ
H (t

+,P)
EP′

t [Rt (τ, σ )], P-a.s.
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V t := ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H (t
+,P)

EP′

t [Rt (τ, σ )], P-a.s.

Remark 5.5. In order to be completely rigorous, we should have made the dependence in P of
the two functions above explicit, because it is not clear that an aggregator exists a priori. Nonethe-
less, we will prove in this section, that they both correspond to the solution of 2DRBSDE, and
therefore that the aggregator indeed exists. Therefore, for the sake of clarity, we will always omit
this dependence.

V is the maximal amount that P1 will agree to pay in order to take part in the game. Symmet-
rically, V is the minimal amount that P2 must receive in order to accept to take part to the game.
Unlike in the classical setting without uncertainty, for which there is only one value on which the
2 players can agree, in our context there is generally a whole interval of admissible values for the
game. Indeed, we have the following easy result.

Lemma 5.6. We have for t ∈ [0, T ]

V t ≥ V t , Pκ
H -q.s.

Therefore the admissible values for the game are the interval [V t , V t ].

Proof. Let t ∈ [0, T ], P ∈ Pκ
H and P′

∈ Pκ
H (t

+,P). For any (τ, σ ) ∈ Tt,T × Tt,T , we have
clearly

ess supP

P′∈Pκ
H (t

+,P)
EP′

t [Rt (τ, σ )] ≥ ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H (t
+,P)

EP′

t [Rt (τ, σ )], P-a.s.

Then we can take the essential supremum with respect to σ on both sides of the inequality, and
the result follows. �

Now, in order to link the solution of the above robust Dynkin game to 2DRBSDEs, we will
need to assume a min–max property which is closely related to the usual Isaacs condition for the
classical Dynkin games. Given the length of the paper, we will not try to verify this assumption.
Nonetheless, we emphasize that a related result was indeed proved in [31] in the context of a
robust utility maximization problem. Even more in the spirit of our paper, Nutz and Zhang [34]
also showed such a result (at least at time t = 0 and under sufficient regularity assumptions, see
their Theorem 3.4) when there is only one player. We are convinced that their results could be
generalized to our framework and leave this interesting problem to future research.

Assumption 5.7. We suppose that the following “min–max” property are satisfied. For any
P ∈ Pκ

H

ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

ess supP

P′∈Pκ
H (t

+,P)
EP′

t [Rt (τ, σ )]

= ess supP

P′∈Pκ
H (t

+,P)
ess inf
τ∈Tt,T

ess sup
σ∈Tt,T

EP′

t [Rt (τ, σ )], P-a.s. (5.34)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

ess infP
P′∈Pκ

H (t
+,P)

EP′

t [Rt (τ, σ )]

= ess infP
P′∈Pκ

H (t
+,P)

ess sup
σ∈Tt,T

ess inf
τ∈Tt,T

EP′

t [Rt (τ, σ )], P-a.s. (5.35)
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It is clear from Proposition 3.10 that the right-hand side of (5.34) can be expressed as the solution
of 2DRBSDE with terminal condition ξ , generator g, lower obstacle L and upper obstacle S. We
deduce immediately the following result.

Theorem 5.8. Let Assumption 5.7 hold. Let (Y, Z) (resp. (Y ,Z)) be a solution to the 2DRBSDE
in the sense of Definition 2.11 (resp. in the sense of Definition 5.3) with terminal condition ξ ,
generator g, lower obstacle L and upper obstacle S. Then we have for any t ∈ [0, T ]

V t = Yt , Pκ
H -q.s.

V t = Yt , Pκ
H -q.s.

Moreover, unless Pκ
H is reduced to a singleton, we have V > V , Pκ

H -q.s.

Proof. The two equalities are obvious. Moreover, if for each P ∈ Pκ
H , we let yP be the solution

of the DRBSDE with terminal condition ξ , generator g, lower obstacle L and upper obstacle S,
we have by (5.33)

V t = ess sup
P′∈Pκ

H (t
+,P)

yP′

t , P-a.s., and V t = ess inf
P′∈Pκ

H (t
+,P)

yP′

t , P-a.s.,

which implies the last result. �
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Appendix A. Doubly reflected g-supersolution and martingales

In this section, we extend some of the results of [36,31] concerning g-supersolution of BSDEs
and RBSDEs to the case of DRBSDEs. Let us note that many of the results below are obtained
using similar ideas as in [36,31], but we still provide most of them since, to the best of our
knowledge, they do not appear anywhere else in the literature. Moreover, we emphasize that we
only provide the results and definitions for the doubly reflected case, because the corresponding
ones for the upper reflected case can be deduced easily. In the following, we fix a probability
measure P.

A.1. Definitions and first properties

Let us be given the following objects.

• A function gs(ω, y, z), F-progressively measurable for fixed y and z, uniformly Lipschitz in

(y, z) and such that EP
 T

0 |gs(0, 0)|2 ds

< +∞.

• A terminal condition ξ which is FT -measurable and in L2(P).
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• Càdlàg processes V , S, L in I2(P) such that S and L satisfy Assumptions 2.5 and 2.8 (in
particular S is a semimartingale with the decomposition (2.3)), and with EPsup0≤t≤T |Vt |

2
< +∞.

We study the problem of finding (y, z, k+, k−) ∈ D2(P)× H2(P)× I2(P)× I2(P) such that

yt = ξ +

 T

t
gs(ys, zs)ds −

 T

t
zsdWs + k−

T − k−
t − k+

T + k+
t + VT − Vt , P-a.s.

L t ≤ yt ≤ St , P-a.s. T

0
(Ss− − ys−) dk+

s =

 T

0
(ys− − Ls−) dk−

s = 0, P-a.s. (A.36)

We first have a result of existence and uniqueness.

Proposition A.1. Under the above hypotheses, there is a unique solution (y, z, k+, k−) ∈

D2(P)× H2(P)× I2(P)× I2(P) to the doubly reflected BSDE (A.36).

Proof. Consider the following penalized RBSDE with lower obstacle L , whose existence and
uniqueness are ensured by the results of Lepeltier and Xu [29]

yn
t = ξ +

 T

t
gs(y

n
s , zn

s )ds −

 T

t
zn

s dWs + kn,−
T − kn,−

t − kn,+
T + kn,+

t + VT − Vt ,

where kn,+
t := n

 t
0 (Ss − yn

s )
−ds. Then, define yn

t := yn
t + Vt , ξ := ξ + VT , zn

t := zn
t ,kn,±

t := kn,±
t ,gt (y, z) := gt (y − V, z) and L t := L t + Vt . Then

yn
t =ξ +

 T

t
gs(yn

s ,zn
s )ds −

 T

t
zn

s dWs +kn,−
T −kn,−

t −kn,+
T +kn,+

t .

Since we know by Lepeltier and Xu [30], that the above penalization procedure con-
verges to a solution of the corresponding RBSDE, existence and uniqueness are then simple
generalization. �

We also have a comparison theorem in this context.

Proposition A.2. Let ξ1 and ξ2 ∈ L2(P), V i , i = 1, 2 be two adapted, càdlàg processes
and gi

s(ω, y, z) two functions, which verify the above assumptions. Let (yi , zi , ki,+, ki,−) ∈

D2(P) × H2(P) × I2(P) × I2(P), i = 1, 2 be the solutions of the following DRBSDEs with
upper obstacle Si and lower obstacle L i

yi
t = ξ i

+

 T

t
gi

s(y
i
s, zi

s)ds −

 T

t
zi

sdWs + ki,−
T − ki,−

t

− ki,+
T + ki,+

t + V i
T − V i

t , P-a.s., i = 1, 2,

respectively. If it holds P-a.s. that ξ1 ≥ ξ2, V 1
− V 2 is non-decreasing, S1

≤ S2, L1
≥ L2 and

g1
s (y

1
s , z1

s ) ≥ g2
s (y

1
s , z1

s ), then we have for all t ∈ [0, T ]

Y 1
t ≥ Y 2

t , P-a.s.

Besides, if S1
= S2 (resp. L1

= L2), then we also have dk1,+
≥ dk2,+ (resp. dk1,−

≤ dk2,−).
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Proof. The first part is classical, whereas the second one comes from the fact that the penalization
procedure converges in this framework, as seen previously. Indeed, with the notations of the proof
of Proposition A.1, we have in the sense of weak limits

ki,+
t = lim

n→+∞
n
 t

0


Ss − yn,i

s

−

ds.

Moreover, using the classical comparison theorem for RBSDEs with the same lower obstacle,
we know that yn,1

≥ yn,2 and dkn,1,−
t ≤ dkn,2,−

t . This implies that dkn,1,+
t ≥ dkn,2,+

t . Passing
to the limit yields the result. �

Of course, all the above still holds if τ is replaced by some bounded stopping time τ . Following
Peng’s original ideas, we now define a notion of doubly reflected g-(super)solutions.

Definition A.3. If y is a solution of a DRBSDE of the form (A.36), then we call y a doubly
reflected g-supersolution on [0, τ ]. If V = 0 on [0, τ ], then we call y a doubly reflected g-
solution.

We have the following proposition concerning the uniqueness of a decomposition of the form
(A.36). Notice that unlike in the lower reflected case considered in [31], the processes V , k+ and
k− are not necessarily unique.

Proposition A.4. Given y a g-supersolution on [0, τ ], there is a unique z ∈ H2(P) and a
unique couple (k+, k−, V ) ∈ (I2(P))3 (in the sense that V − k+

+ k− is unique), such that
(y, z, k+, k−, V ) satisfy (A.36).

Proof. If both (y, z, k+, k−, V ) and (y, z1, k+,1, k−,1, V 1) satisfy (A.36), then applying Itô’s
formula to (yt − yt )

2 gives immediately that z = z1 and thus V − k+
+ k−

= V 1
− k+,1

+ k−,1,
P-a.s. �

Remark A.5. We emphasize once more that the situation here is fundamentally different from
[31], where reflected g-supersolution were defined for lower reflected BSDEs. In our case, in-
stead of having to deal with the sum of two non-decreasing processes, we actually have to add
another non-increasing process. This will raise some difficulties later on, notably when we will
prove a non-linear Doob–Meyer decomposition.

A.2. Doob–Meyer decomposition

We now introduce the notion of doubly reflected g-(super)martingales.

Definition A.6. (i) A doubly reflected g-martingale on [0, T ] is a doubly reflected g-solution
on [0, T ].

(ii) A process (Yt ) such that Yt ≤ St is a doubly reflected g-supermartingale in the strong (resp.
weak) sense if for all stopping time τ ≤ T (resp. all t ≤ T ), we have EP

[|Yτ |2] < +∞

(resp. EP
[|Yt |

2
] < +∞) and if the doubly reflected g-solution (ys) on [0, τ ] (resp. [0, t])

with terminal condition Yτ (resp. Yt ) verifies yσ ≤ Yσ for every stopping time σ ≤ τ (resp.
ys ≤ Ys for every s ≤ t).

Remark A.7. The above definition differs once more from the one given in [31]. Indeed, when
defining reflected g-supermartingale with a lower obstacle, there is no need to precise that Y
is above the barrier L , since it is implied by definition (since y is already above the barrier).
However, with an upper obstacle, this is not the case and this needs to be a part of the definition.
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As usual, under mild conditions, a doubly reflected g-supermartingale in the weak sense
corresponds to a doubly reflected g-supermartingale in the strong sense. Besides, thanks to the
comparison theorem, it is clear that a doubly reflected g-supersolution on [0, T ] is also a doubly
reflected g-supermartingale in the weak and strong sense on [0, T ]. The following theorem
addresses the converse property, which gives us a non-linear Doob–Meyer decomposition.

Theorem A.8. Let (Yt ) be a right-continuous doubly reflected g-supermartingale on [0, T ] in
the strong sense with

EP


sup
0≤t≤T

|Yt |
2


< +∞.

Then (Yt ) is a doubly reflected g-supersolution on [0, T ], that is to say that there exists a
quadruple (z, k+, k−, V ) ∈ H2(P)× I2(P)× I2(P)× I2(P) such that

Yt = YT +

 T

t
gs(Ys, zs)ds + VT − Vt + k−

T − k−
t − k+

T + k+
t −

 T

t
zsdWs

L t ≤ Yt ≤ St , P-a.s. T

0
(Ss− − Ys−) dk+

s =

 T

0
(Ys− − Ls−) dk−

s = 0.

(A.37)

We then have the following easy generalization of Theorem 3.1 of [37] which will be crucial for
our proof.

Theorem A.9. Consider a sequence of doubly reflected g-supersolutions
ỹn

t = ξ +

 T

t
gs(ỹ

n
s , z̃n

s )ds + Ṽ n
T − Ṽ n

t + k̃n,−
T − k̃n,−

t − k̃n,+
T + k̃n,+

t −

 T

t
z̃n

s dWs

L t ≤ ỹn
t ≤ St T

0


Ss− − ỹn

s−


dk̃n,+

s =

 T

0


ỹn

s− − Ls−


dk̃n,−

s = 0,

(A.38)

where the Ṽ n are in addition supposed to be continuous. Assume furthermore that

• (ỹn)n≥0 increasingly converges to ỹ with EP

sup0≤t≤T |ỹt |

2

< +∞.

• dk̃n,+
t ≤ dk̃ p,+

t for n ≤ p and k̃n,+ converges to k̃+ with EP


k̃+

T

2

< +∞.

• dk̃n,−
t ≥ dk̃ p,−

t for n ≤ p and k̃n,− converges to some k̃−.
• (z̃n)n≥0 weakly converges in H2(P) (along a subsequence if necessary) to z̃.

Then ỹ is a doubly reflected g-supersolution, that is to say that there exists Ṽ ∈ I2(P) such that
ỹt = ξ +

 T

t
gs(ỹs, z̃s)ds + ṼT − Ṽt + k−

T − k−
t − k̃+

T + k̃+
t −

 T

t
z̃sdWs, P-a.s.

ỹt ≤ St , P-a.s. T

0
(Ss− − ỹs−) dk̃s = 0, P-a.s.,∀t ∈ [0, T ].

Besides, z̃ is strong limit of z̃n in Hp(P) for p < 2 and Ṽt is the weak limit of Ṽ n
t in L2(P).
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Proof. All the convergences are proved exactly as in Theorem 3.1 of [37], using the fact that
the sequence of added increasing process k̃n,− is decreasing. Moreover, since the sequence yn is
increasing it is clear that we have

L t ≤ ỹt ≤ St , t ∈ [0, T ],P-a.s.

We now want to show that we also recover the Skorohod conditions. The proofs being similar,
we will only show one of them. We have

0 ≤

 T

0
(Ss− − ỹs−) dk̃s =

 T

0


Ss− − ỹn

s−


dk̃s +

 T

0


ỹn

s− − ỹs−


dk̃s

=

 T

0


Ss− − ỹn

s−


d


k̃s − k̃n
s


+

 T

0


ỹn

s− − ỹs−


dk̃s

≤

 T

0


Ss− − ỹ0

s−


d


k̃s − k̃n
s


+

 T

0


ỹn

s− − ỹs−


dk̃s .

By the convergences assumed on ỹn and k̃n , the right-hand side above clearly goes to 0 as n goes
to +∞, which gives us the desired result. �

Let now Y be a given doubly reflected g-supermartingale. We follow again [36] and we will
apply the above theorem to the following sequence of DRBSDEs

yn
t = YT +

 T

t


gs(y

n
s , zn

s )+ n(yn
s − Ys)

−


ds + kn,−
T − kn,−

t

− kn,+
T + kn,+

t −

 T

t
zn

s dWs

L t ≤ yn
t ≤ St T

0


Ss− − yn

s−


dkn,+

s =

 T

0


yn

s− − Ls−


dkn,−

s = 0.

(A.39)

Our first result is the following.

Lemma A.10. For all n, we have Yt ≥ yn
t .

Proof. The proof is exactly the same as the proof of Lemma 3.4 in [36], so we omit it. �

We will now prove some estimates which will allow us to apply Theorem A.9.

Lemma A.11. There exists a constant C > 0 independent of n such that the processes defined
in (A.39) verify

EP


sup
0≤t≤T

yn
t

2 +

 T

0

zn
s

2 ds + (V n
T )

2
+ (kn,+

T )2 + (kn,−
T )2


≤ C.

Proof. First of all, let us define (ȳ, z̄, k̄+, k̄−) the unique solution of the DRBSDE with terminal
condition YT , generator g, upper obstacle S and lower obstacle L (once again, existence and
uniqueness are ensured by the results of [10] or [30]). By the comparison Proposition A.2, it is
clear that we have for all n ≥ 0

yn
t ≥ ȳt , t ∈ [0, T ],P-a.s.
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Consider now (ỹ, z̃, k̃+, k̃−) the unique solution of the doubly reflected BSDE with terminal
condition YT , generator g, upper obstacle S and lower obstacle Y , that is to say

ỹt = YT +

 T

t
gs(ỹs, z̃s)ds + k̃−

T − k̃−
t − k̃+

T + k̃+
t −

 T

t
z̃sdWs,

Yt ≤ ỹt ≤ St , T

0
(Ss− − ỹs−) dk̃+

s =

 T

0
(ỹs− − Ys−) dk̃−

s = 0.

(A.40)

Notice that since the upper obstacle S is a semimartingale satisfying

EP


sup
0≤t≤T


(St )

−
2

< +∞,

we know from the results of Crépey and Matoussi [10] (see Theorem 3.2 and Proposition 5.2)
that the above doubly reflected BSDE has indeed a unique solution and that we have for some
constant C > 0

EP


k̃+

T

2


≤ C.

Moreover, it is clear that since ỹs ≥ Ys , we also have

ỹt = YT +

 T

t
gs(ỹs, z̃s)ds + n

 T

t
(ỹs − Ys)

−ds

+ k̃−

T − k̃−
t − k̃+

T + k̃+
t −

 T

t
z̃sdWs . (A.41)

Notice also that since Y is a doubly reflected g-supermartingale, we have y ≥ L . Thus we can
use now the comparison theorem of Proposition A.2 for doubly reflected BSDEs with the same
upper obstacles. We deduce that

yn
t ≤ ỹt , and dkn,+

t ≤ dk̃+
t .

Hence, this implies immediately that for some constant C independent of n

EP


sup
0≤t≤T

yn
t

2 +


kn,+

T

2


≤ EP


sup
0≤t≤T

|ȳt |
2
+ sup

0≤t≤T
|ỹt |

2
+


k̃+

T

2


≤ C. (A.42)

Define then V n
t := n

 t
0


yn

s − Ys
− ds. We have

V n
T + kn,−

T = yn
0 − yn

T −

 T

0
gs(y

n
s , zn

s )ds + kn,+
T +

 T

0
zn

s dWs

≤ C


sup

0≤t≤T

yn
t

+  T

0

zn
s

 ds +

 T

0
|gs(0, 0)| ds + kn

T +

 T

0
zn

s dWs



.

(A.43)

Using (A.42) and BDG inequality, we obtain from (A.43)

EP

(V n

T )
2
+ (kn,−

T )2


≤ C0


1 + EP

 T

0
|gs(0, 0)|2 ds +

 T

0

zn
s

2 ds


. (A.44)
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Then, using Itô’s formula, we obtain classically for all ϵ > 0

EP
 T

0

zn
s

2 ds


≤ EP


(yn

T )
2
+ 2

 T

0
yn

s gs(y
n
s , zn

s )ds

+ 2
 T

0
yn

s−d(V n
s − kn,+

s + kn,−
s )


≤ EP


C(1 + sup

0≤t≤T

yn
t

2)+

 T

0

zn
s

2
2

ds

+ ϵ(|V n
T |

2
+ |kn,+

T |
2
+ |kn,−

T |
2)


.

Then, from (A.44), we obtain by choosing ϵ =
1

4C0
that

EP
 T

0

zn
s

2 ds


≤ C.

Reporting this in (A.44) ends the proof. �

Finally, we can now prove Theorem A.8.

Proof of Theorem A.8. We first notice that since Yt ≥ yn
t for all n, by the comparison theorem

for DRBSDEs, we have

yn
t ≤ yn+1

t , dkn,−
t ≥ dkn+1,−

t and dkn,+
t ≤ dkn+1,+

t .

By the a priori estimates of Lemma A.11, they therefore converge to some processes y, k+ and
k−. Moreover, since zn is bounded uniformly in n in the Banach H2(P), there exists a weakly
convergent subsequence, and the same holds for gt (yn

t , zn
t ). Hence, all the conditions of Theo-

rem A.9 are satisfied and y is a doubly reflected g-supersolution on [0, T ] of the form

yt = YT +

 T

t
gs(ys, zs)ds + VT − Vt − k+

T + k+
t + k−

T − k−
t −

 T

t
zsdWs,

where Vt is the weak limit of V n
t := n

 t
0 (y

n
s − Ys)

−ds. From Lemma A.11, we have

EP
[(V n

T )
2
] = n2EP

 T

0

(yn
s − Ys)

−
2 ds


≤ C.

It then follows that Yt = yt (since we already had Yt ≥ yn
t for all n), which ends the proof. �

A.3. Time regularity of doubly reflected g-supermartingales

In this section we prove a downcrossing inequality for doubly reflected g-supermartingales
in the spirit of the one proved in [8]. We use the same notations as in the classical theory of
g-martingales (see [8,36] for instance).

Theorem A.12. Assume that g(0, 0) = 0. Let (Yt ) be a positive reflected g-supermartingale in
the weak sense and let 0 = t0 < t1 < · · · < ti = T be a subdivision of [0, T ]. Let 0 ≤ a < b,
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then there exists C > 0 such that Db
a [Y, n], the number of downcrossings of [a, b] by


Yt j


,

verifies

E −µ
[Db

a [Y, n]] ≤
C

b − a
Eµ[Y0 ∧ b],

where µ is the Lipschitz constant of g.

Proof. Consider for all i = 0 .. n the following DRBSDEs with upper obstacle S and lower
obstacle L on [0, ti ]

yi
t = Yti −

 T

t


µ

yi
s

+ µ

zi
s

 ds + ki,−
ti − ki,−

t − ki,+
ti + ki,+

t −

 ti

t
zi

sdWsP-a.s.

L t ≤ yi
t ≤ St , P-a.s. ti

0


yi

s− − Ls−


dki,−

s =

 ti

0


Ss− − yi

s−


dki,+

s = 0, P-a.s.

By the comparison theorem of Proposition A.2, we know that we have for all i , yi
t ≥ ỹi

t for
t ∈ [0, ti ], where (ỹi , z̃i , k̃i ) is the unique solution of the RBSDE on [0, ti ] with the same
generator and terminal condition as above and upper obstacle S, that is to say

ỹi
t = Yti −

 T

t
(µ

ỹi
s

+ µ

z̃i
s

)ds − k̃i
ti + k̃i

t −

 ti

t
z̃i

sdWsP-a.s.

ỹi
t ≤ St , P-a.s. ti

0


Ss− − ỹi

s−


dk̃i

s = 0, P-a.s.

We define ai
s := −µ sgn(zi

s)1t j−1<s≤t j and as :=
n

i=0 ai
s . Let Qa be the probability measure

defined by

dQa

dP
= E

 T

0
asdWs


.

We then have easily that yi
t ≥ 0 since Yti ≥ 0. We next define ŷi

:= ỹi
− ki , Ŷ i

:= Y − ki .
Then, (ŷi , zi ) solves the following BSDE on [0, ti ]

ŷi
t = Ŷ i

ti −

 ti

t
µ


ŷi
s + ki

s


+ µ

zi
s

 ds −

 ti

t
zi

sdWs .

It is then easy to solve this BSDE to obtain

ŷi
t = EQa

t


e−µ(ti −t)Ŷ i

ti − µ

 ti

t
e−µ(s−t)ki

sds


.

Define now the following càdlàg process kt :=
n

i=i ki
t 1ti−1≤t<ti and Ŷ := Y − k. We clearly

have for t = ti−1

ŷi
ti−1

= EQa

ti−1


e−µ(ti −ti−1)Ŷti − µ

 ti

ti−1

e−µ(s−ti−1)ksds


.

Now, since Y is a doubly reflected g-supermartingale (and thus also a doubly reflected g−µ-
supermartingale where g−µ

s (y, z) := −µ(|y| + |z|) by a simple application of the comparison
theorem), we have

ŷi
≤ yi

− ki
≤ Ŷ .
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Hence, we have obtained

EQa

ti−1


e−µ(ti −ti−1)Ŷti − µ

 ti

ti−1

e−µ(s−ti−1)ksds


≤ Ŷti−1 .

This actually implies that the process X := (X ti )0≤i≤n where

X ti := e−µti Ŷti − µ

 ti

0
e−µsksds,

is a Qa-supermartingale. Then we can finish the proof exactly as in the proof of Theorem 6
in [8]. �
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