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Abstract

In this work we are going to show weak convergence of probability measures. The measure corre-
sponding to the solution of the following one dimensional nonlinear stochastic heat equation ∂

∂t ut (x) =

κ
2

∂2

∂x2 ut (x) + σ(ut (x))ηα with colored noise ηα will converge to the measure corresponding to the solu-
tion of the same equation but with white noise η, as α ↑ 1. Function σ is taken to be Lipschitz and the
Gaussian noise ηα is assumed to be colored in space and its covariance is given by E [ηα(t, x)ηα(s, y)] =

δ(t − s) fα(x − y) where fα is the Riesz kernel fα(x) ∝ 1/ |x |α . We will work with the classical notion of
weak convergence of measures, that is convergence of probability measures on a space of continuous func-
tion with compact domain and sup–norm topology. We will also state a result about continuity of measures
in α, for α ∈ (0, 1).
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this work we will consider the following one-dimensional heat equation

∂

∂t
uα,t (x) =

κ

2
∂2

∂x2 uα,t (x) + σ(uα,t (x))ηα, x ∈ R, t ≥ 0, (1)

uα,0 = w(x),
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with κ > 0 and Gaussian space time colored noise ηα [6]. The noise ηα is assumed to have a
particular covariance structure

E [ηα(t, x)ηα(s, y)] = δ(t − s) fα(x − y), (2)

where [6, Ex. 1]

fα(x) = c1−αgα(x) = ĝ1−α(x), gα(x) =
1

|x |
α for α ∈ (0, 1), (3)

and the constant cα is [9, (12) on pg. 173]

cα = 2
sin


απ
2


Γ (1 − α)

(2π)1−α
. (4)

The function ĝ1−α denotes the Fourier of function g1−α . For F ∈ L1(R), we will take
F̂(ξ) =


R e−2πξ x F(x)dx . The initial condition, w(x) is taken to be bounded and ϱ-Hölder

continuous. We will also assume σ to be Lipschitz continuous, there exists K ≥ 0 such that
|σ(x) − σ(y)| ≤ K |x − y| and |σ(x)| ≤ K (1 + |x |). Stochastic PDEs such as (1) have been
studied in [6,14,2,13,5] and others.

The function fα can be thought of as an ‘approximation’ to the delta function in the following
special sense, we know that one-dimensional Fourier transform of g1−α , denoted by ĝ1−α , is
equal to fα . We also know that the Fourier transform of a constant is δ distribution. Observe that
g1−α converges pointwise to 1 as α ↑ 1. We will study the solution of (1) as a function of α.
This arises noticeably in [1, Sec. 7] where the authors have shown that L2(P) norm of uα,t (x)

converges to L2(P) norm of the solution to (5) as α ↑ 1 for every t > 0, x ∈ R and σ(x) = x .
The main question that has motivated this work, is whether the solution of (1) converges in the

appropriate sense to the solution of the same equation, but with white noise η instead of colored
noise ηα as α ↑ 1. By that we mean, the solution to

∂

∂t
ut (x) =

κ

2
∂2

∂x2 ut (x) + σ(ut (x))η, x ∈ R, t ≥ 0, (5)

u0(x) = w(x),

where η denotes white noise. We will state the main theorem in terms of measures corresponding
to solutions. Let C = C([0, T ] × [−N , N ]) be the space of continuous functions on [0, T ] ×

[−N , N ] ⊂ R+
× R with supremum norm. Denote by Pα , the measure corresponding to uα

restricted to D = [0, T ] × [−N , N ],

Pα(A) :=


P

uα ∈ A◦


for α ∈ (0, 1),

P

u ∈ A◦


for α = 1,

for any Borel set A of space C. By A◦, we denote the embedding of the set A in a larger space
C(R+ × R), that is

A◦
= { f ∈ C(R+ × R) : f restricted to [0, T ] × [−N , N ] is in A}.

Here is the main theorem:

Theorem 1. Measure Pα is continuous in α, for α ∈ (0, 1]. We precisely mean that Pα converges
weakly to P1 as α ↑ 1 and Pα converges weakly to Pα0 as α → α0 for any α0 ∈ (0, 1).

The notion of weak convergence in Theorem 1 is the classical one [4]. Theorem 1 gives us
a new way of thinking about the stochastic heat equation with white noise. Instead of studying
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the solution to (5) we can study the solution to (1) for α ≈ 1. Also note, that the noise with
Riesz kernel spatial covariance produces noise which is less regular. We like to think that this
‘roughness’ better captures properties of the stochastic heat equation with white noise.

Before we begin the proof of Theorem 1, let us recall the rigorous definition of the noises ηα, η

as well as the form of [mild] solutions to (1) and (5). The noises ηα and η are L2(P) (random
variables with finite second moment) valued set functions such that [6,7,12]

ηα([0, t] × B) and ηα([0, t] × B) for t ≥ 0, B bounded Borel set,

are mean zero Gaussian random variables. If A is another bounded Borel set, then the covariance
of noises ηα and η will be

E [ηα([0, t] × A)ηα([0, t] × B)] = t


R


R
1A(x) fα(x − y)1B(y)dxdy,

E [η([0, t] × A)η([0, t] × B)] = t


R
1A(x)1B(x)dx .

We often talk about Martingale valued measure, since ηα([0, t] × A) and ηα([0, t] × A) are set
functions, which are L2(P) martingales in t . We refer the reader to [6,7,12] for more details.

The mild solutions are interpreted as solutions of the following integral equations [6,7,12]

uα,t (y) = (uα,0 ∗ pt )(y) +

 t

0


R

pt−s(x − y)σ (uα,s(x))ηα(ds, dx),

ut (y) = (u0 ∗ pt )(y) +

 t

0


R

pt−s(x − y)σ (us(x))η(ds, dx),

where pt is the heat kernel

pt (x) =
1

√
2πκt

exp


−
x2

2κt


,

and ∗ denotes the convolution of two function ( f ∗ g(x) =


R f (y)g(x − y)dy).

2. Proof of Theorem 1

We will only show the first part of the theorem, Pα converges weakly to P1 as α ↑ 1. This
is the worst case scenario. The second statement of Theorem 1 follows almost directly from the
proof in this section.

The proof of the upcoming Theorem 2 uses coupling, which allows us to put both noises ηα

and η on the same probability space. This idea was introduced in [5] and lets us write our noise
ηα , for every α ∈ (0, 1) in terms of one white noise η with covariance

E [η(t, x)η(s, y)] = δ(t − s)δ(x − y).

The idea of coupling, or smoothing the noise in the spatial variable is not new. Authors in [3]
smoothed the noise in the spatial variable by an infinitely differentiable function with compact
support. They have showed that this kind of smoothing converges to the heat equation with
white noise as our smoothing function converges to δ distribution. By coupling we mean that the
martingale measure ηα will be defined as

ηα([0, t] × A) =

 t

0


R
(1A ∗ hα)(x)η(ds, dx), (6)
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where

hα(x) = c 1−α
2

g 1+α
2

(x) = ĝ 1−α
2

(x).

This choice of hα produces correct fα in (2), that is

fα(x) = (hα ∗ hα)(x), (7)

since

g1−α(ξ) = g 1−α
2

(ξ) · g 1−α
2

(ξ).

The typical stochastic Fubini theorem (see [5, pg. 492] or [12, pg. 14, pg. 50]) which would
allow us to write (6), requires that hα ∈ L2(R). One might notice that hα ∉ L2(R), but ηα is a
well defined martingale measure, we refer the reader to [5] for more details. Before we state the
main theorem of this section, let us state a technical lemma and define the following norms [12]

Nγ,k(u) = sup
t∈[0,T ]

sup
x∈R


e−γ t

∥ut (x)∥Lk (P)


, γ > 1, k ≥ 2.

The norm ∥ · ∥Lk (P) in the definition of Nγ,k stands for Lk norm on a probability space. For a
random variable X it is defined as ∥X∥Lk (P) = E[|X |

k
]
1/k . We will often write ∥ · ∥k instead of

∥ · ∥Lk (P).

Lemma 1 ([11, 3.478]). The following equality holds for s > 0 and β ∈ [0, 1)
R

|x |
−β e−s4π2x2

dx =


1

s4π2

−(β−1)/2

Γ (−β/2 + 1/2). (8)

In the rest of this section, we will prove the following main theorem.

Theorem 2. For every k ≥ 2 we can find γ such that

lim
α↑1

Nγ,k(uα − u) = 0.

Take the constant T that appears in Theorem 1 and the definition of the norm Nγ,k to be fixed
throughout the whole proof. We will start our proof with Picard iterations for both noises ηα

and η

u(n+1)
t (y) = (u0 ∗ pt )(y) +

 t

0


R

pt−s(x − y)σ (u(n)
s (x))η(ds, dx)

u(n+1)
α,t (y) = (u0 ∗ pt )(y) +

 t

0


R

pt−s(x − y)σ (u(n)
α,s(x))ηα(ds, dx),

which is equivalent to the following, thanks to [5, Sec. 3.2]:

u(n+1)
t (y) = (u0 ∗ pt )(y) +

 t

0


R
(pt−s(· − y)σ (u(n)

s (·)) ∗ δ)(x)η(ds, dx)

u(n+1)
α,t (y) = (u0 ∗ pt )(y) +

 t

0


R
(pt−s(· − y)σ (u(n)

α,s(·)) ∗ hα)(x)η(ds, dx).
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First, let us estimate the Lk(P) norm of the difference of Picard iterates u(n+1)
α,t (y)−u(n+1)

t (y),

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k = E
 t

0


R


(pt−s(· − y)σ (u(n)

α,s) ∗ hα)(x)

− (pt−s(· − y)σ (u(n)
s ) ∗ δ)(x)


η(ds, dx)

k . (9)

Adding and subtracting the following term, (pt−s(· − y)σ (u(n)
s ) ∗ hα)(x) inside the integral and

using the inequality |a − b|
k

≤ 2k
|a|

k
+ 2k

|b|
k yields

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k
≤ 2k E

 t

0


R
(pt−s(· − y)(σ (u(n)

α,s) − σ(u(n)
s )) ∗ hα)(x)η(ds, dx)

k


+ 2k E

 t

0


R
(pt−s(· − y)σ (u(n)

s ) ∗ (hα − δ))(x)η(ds, dx)

k


.

The next series of steps will be used multiple times throughout this work. First we will use
Burkholder–Davis–Gundy inequality and Minkowski integral inequality. Burkholder–Davis–
Gundy (BDG) inequality (see for example [12, Thm. B.1]) states that for any continuous L2

martingale Mt and k ≥ 2 we have ∥Mt∥
2
k ≤ 4k∥⟨M⟩t∥k/2, where ⟨M⟩t denotes the quadratic vari-

ation of M . Applying this inequality and evaluating the quadratic variation term [7, Thm. 5.26]
on both terms gives us

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k
≤ const · E


[0,t]×R2

pt−s(x − y)v(n)
s (x, z) fα(x − z)pt−s(z − y)dsdxdz

k/2


+ const · E


[0,t]×R2

pt−s(x − y)(z)σ (u(n)
s (x)) ( fα − 2hα + δ) (x − z)

× pt−s(z − y)σ (u(n)
s (z))dsdxdz

k/2


,

where

v(n)
s (x, z) = (σ (u(n)

α,s) − σ(u(n)
s ))(x)(σ (u(n)

α,s) − σ(u(n)
s ))(z).

Minkowski integral inequality states that (

(


f dµ)kdν)1/k
≤


(


f kdν)1/kdµ for any
σ -finite measures µ, ν and jointly measurable (µ×ν) positive function f . We use this inequality
on the first term in to order to obtain

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k ≤ const · An,α + const · Bn,α,

where

An,α =


[0,t]×R2

pt−s(x − y)v(n)
s (x, z) fα(x − z)pt−s(z − y)dxdzds

k/2
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Bn,α = E


[0,t]×R2
pt−s(x − y)(z)σ (u(n)

s (x)) ( fα − 2hα + δ) (x − z)

× pt−s(z − y)σ (u(n)
s (z))dxdzds

k/2
and v

(n)
s denotes

v(n)
s (x, z) = E

(σ (u(n)
α,s) − σ(u(n)

s ))(x)

k/2 (σ (u(n)
α,s) − σ(u(n)

s ))(z)
k/2

2/k

.

Ultimately, we would like to show that uα is close to u as α ↑ 1.
For term An,α we use Cauchy–Schwarz inequality and take supremum over the term involving

expectation, which yields

An,α ≤

 t

0
sup
x∈R

E
(σ (u(n)

α,s) − σ(u(n)
s ))(x)

k2/k

×


R2

pt−s(x − y) fα(x − z)pt−s(z − y)dxdzds

k/2

.

The following identity holds
R


R

ϕ(x) fα(x − y)ϕ(y)dxdy =


R

fα(x)(ϕ ∗ ϕ̃)(x)dx =


R

g1−α(ξ)|F ϕ(ξ)|2dξ,

(10)

for any ϕ from Schwartz space S(R) of rapidly decreasing test functions, where ϕ̃(x) = ϕ(−x).
This is a consequence of elementary properties of Fourier transform [6, pg. 6], [10, pg. 151,152].
We can further rewrite An,α , using identity (10) and the assumption that σ is Lipschitz continuous
(there exists K ≥ 0, such that |σ(x) − σ(y)| ≤ K |x − y| and |σ(x)| ≤ K (1 + |x |)), as

An,α ≤

 t

0
sup
x∈R

E
(σ (u(n)

α,s) − σ(u(n)
s ))(x)

k2/k 
R

g1−α(ξ)
 p̂t−s(ξ)

2 dξds

k/2

≤ K k

 t

0
sup
x∈R

E
(u(n)

α,s − u(n)
s )(x)

k2/k 
R

g1−α(ξ)
 p̂t−s(ξ)

2 dξds

k/2

.

Multiply by term e−kγ t and obtain Nγ,k norm in the estimate

e−kγ tAn,α ≤ K k

 t

0
e−2γ s sup

x∈R
E
(u(n)

α,s − u(n)
s )(x)

k2/k

e−2γ (t−s)

×


R

g1−α(ξ)
 p̂t−s(ξ)

2 dξds

k/2

≤ K k Nγ,k(u
(n)
α − u(n))k

 t

0
e−2γ (t−s)


R

g1−α(ξ)
 p̂t−s(ξ)

2 dξds

k/2

≤ K k Nγ,k(u
(n)
α − u(n))k

 t

0
e−2γ (t−s)


R

1

|ξ |
1−α

e−(t−s)κ4π2ξ2
dξds

k/2

.

(11)
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Later on, we will see that we can make the integral on right hand side arbitrarily small. The
estimate for Bn,α uses a similar technique as the estimate for An,α , but some extra work is
required because of the term ( fα − 2hα + δ) inside the integral is not a positive function. Thanks
to [6], [8, Cor. 3.4] identity (10) extends to a much broader class of functions. We will use this
identity to bound term Bn,α . Quantity σ(u(n)

s (·))pt−s(· − y) ∈ L2(R) ∩ L1(R) almost surely,
because

E

∥σ(u(n)

s (·))pt−s(· − y)∥2
L2(R)


≤ 2K 2(1 + Nγ,2(u

(n))2)∥pt−s(·)∥
2
L2(R)

,

and Nγ,2(u(n)) is bounded uniformly (in n, γ ) for every n ∈ N and all γ > γ1 [12, proof of
Thm. 5.5]. The constant γ1 depends on K , κ and supx w(x) [12, Thm. 5.5]. A similar reasoning
applies for ∥ · ∥L1(R). We can write

E


[0,t]×R2

pt−s(x − y)σ (u(n)
s (x)) ( fα − 2hα + δ) (x − z)

× pt−s(z − y)σ (u(n)
s (z))dxdzds

k/2


= E


[0,t]×R

(g1−α − 2g 1−α
2

+ 1)(ξ)

F


pt−s(· − y)σ (u(n)
s (·))


(ξ)

2 dξds

k/2


.

Split this integral into two parts, and use inequality |a − b|
k/2

≤ 2k/2 |a|
k/2

+ 2k/2 |b|
k/2 to get

E


[0,t]×R

(g1−α − 2g(1−α)/2 + 1)(ξ)

F


pt−s(· − y)σ (u(n)
s (·))


(ξ)

2 dξds

k/2


≤ const · (Cn,α + Dn,α),

where

Cn,α = E

 t

0

 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)

×

F


pt−s(· − y)σ (u(n)
s (·))


(ξ)

2 dξds

k/2


Dn,α = E

 t

0


R\[−1,1]

(g1−α − 2g 1−α
2

+ 1)(ξ)

×

F


pt−s(· − y)σ (u(n)
s (·))


(ξ)

2 dξds

k/2


.

Properties of Fourier transform and Lipschitz continuity of σ(x) give usF (pt−s(· − y)σ (u(n)
s (·)))(ξ)

2 ≤ ∥pt−s(· − y)σ (u(n)
s (·))∥2

L1(R)

≤ K 2
∥pt−s(· − y)(1 + |u(n)

s (·)|)∥2
L1(R)

≤ K 2(2 + 2∥pt−s(· − y)u(n)
s (·)∥2

L1(R)
) (12)
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for the term inside of Cn,α . Splitting the term (12) inside of the integral into two yields

Cn,α ≤ E

 t

0

 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)K 2

× (2 + 2∥pt−s(· − y)u(n)
s (·)∥2

L1(R)
)dξds

k/2


≤ Cα + const · E

 t

0

 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)

× ∥pt−s(· − y)u(n)
s (·)∥2

L1(R)
dξds

k/2
 ,

where Cα denotes

Cα = const

 t

0

 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)dξds

k/2

.

Term Cα can be made as small as we like, due to the dominated convergence theorem. We use
Minkowski integral inequality and get

Cn,α ≤ Cα + const

 t

0
sup
x∈R

E
u(n)

s (x)

k2/k  1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)dξds

k/2

≤ Cα + const

 t

0
e−kγ s sup

x∈R
E
u(n)

s (x)

k2/k

× ekγ s
 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)dξds

k/2

≤ Cα + const · Nγ,k(u
(n))k

 t

0
ekγ s

 1

−1
(g1−α − 2g 1−α

2
+ 1)(ξ)dξds

k/2

.

From the general theory of stochastic partial differential equations [12, proof of Thm. 5.5] we
know that the term Nγ,k(u(n)) is bounded uniformly in n and γ for every n ∈ N and γ > γ2
where γ2 again depends on K , κ and supx∈R w(x). The integral term bounding Cn,α can be
made arbitrarily small, again from the dominated convergence theorem. Overall, we get that
Cn,α converges uniformly in n to zero as α ↑ 1.

All we have left to do is find the estimate for Dn,α . Add and subtract the term σ(us(x)) inside
the Fourier transform, split into two integrals and obtain

Dn,α ≤ const · D(1)
n,α + const · D(2)

n,α,

where

D(1)
n,α = E

 t

0


R\[−1,1]

(g1−α − 2g 1−α
2

+ 1)(ξ)·F


pt−s(· − y)

σ(u(n)

s (·)) − σ(us(·))


(ξ)

2 dξds

k/2
,
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D(2)
n,α = E

 t

0


R\[−1,1]

(g1−α − 2g 1−α
2

+ 1)(ξ)

× |F (pt−s(· − y)σ (us(·))) (ξ)|2 dξds

k/2


.

Term D
(1)
n,α converges to zero as n ↑ ∞, uniformly in α ∈ (0, 1). Use Plancherel’s theorem

and the fact that (g1−α − 2g 1−α
2

+ 1) is bounded by a constant on R \ [−1, 1], uniformly for all
α ∈ (0, 1) to write

D(1)
n,α ≤ E

 t

0


R


pt−s(x − y)


σ(u(n)

s (x)) − σ(us(x))
2

dxdt

k/2


.

From the convergence of Picard’s iterations and theory of SPDEs [12, proof of Thm. 5.5] we get
convergence of D

(1)
n,α to zero as n → ∞, uniformly in α ∈ (0, 1). For ϵ > 0, we can find n0(ϵ)

such that for every n > n0 we have D
(1)
n,α < ϵ/2. If n ≤ n0, we can find αn such that D

(1)
n,α < ϵ/2

for α ∈ (αn, 1), by dominated convergence theorem. Do not forget that (g1−α − 2g 1−α
2

+ 1)(ξ)

converges pointwise to zero. If we apply dominated convergence theorem to D
(2)
n,α , we get that for

α ∈ (α0, 1), D
(2)
n,α < ϵ/2. Altogether we have that for every ϵ > 0 there is αϵ := max0≤n≤n0 αn

such that Dn,α < ϵ for α ∈ (αϵ, 1) and every n ∈ N. Therefore Dn,α converges uniformly in n
to zero as α ↑ 1.

We have shown that

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k ≤ const · An,α + const · Cn,α + const · Dn,α,

where Cn,α+Dn,α converges to zero as α ↑ 1, uniformly in n. For ϵ > 0, we can pick αϵ such that

E
u(n+1)

α,t (y) − u(n+1)
t (y)

k ≤ const · An,α + ϵ,

for α ∈ (αϵ, 1). Multiply the previous line by e−kγ t and use (11) to arrive at

e−kγ t E
u(n+1)

α,t (y) − u(n+1)
t (y)

k
≤ const · Nγ,k(u

(n)
α − u(n))k

 t

0
e−2γ (t−s)


R

1

|ξ |
1−α

e−(t−s)κ4π2ξ2
dξds

k/2

+ ϵ,

where γ ≥ 1. We use Lemma 1 to evaluate the term inside the integral. A straightforward calcu-
lation yields, for 1 > α > αϵ > 0,

e−kγ t E
u(n+1)

α,t (y) − u(n+1)
t (y)

k
≤ const · Nγ,k(u

(n)
α − u(n))k

 t

0
e−2γ (t−s)(t − s)−α/2ds

k/2

+ ϵ

≤ const · Nγ,k(u
(n)
α − u(n))k


1
γ

1−α/2
k/2

+ ϵ

≤ const · Nγ,k(u
(n)
α − u(n))k


1
γ

k/4

+ ϵ.
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We can take supremum over y ∈ R and t ∈ [0, T ] to get

Nγ,k(u
(n+1)
α − u(n+1))k

≤ a · Nγ,k(u
(n)
α − u(n))k

+ ϵ, (13)

where a = const


1
γ

k/4
. The constant in a depends only on K , k and choice of αϵ . It can be

made explicit by tracking constants in front of An,α together with a constant dependent on αϵ ,
which comes from Lemma 1. The dependency on αϵ comes only from constant that appears in
Lemma 1 and can be bounded from above as long as αϵ is bounded away from zero. We can
always pick αϵ > 1/2 and get rid of dependency in αϵ . Eq. (13) defines a convergent geometric
series assuming that the coefficient a < 1 and γ > max(γ1, γ2). We have

Nγ,k(u
(n+1)
α − u(n+1))k

≤ an Nγ,k(u
(1)
α − u(1))k

+

n−1
i=1

aiϵ,

and

Nγ,k(u
(n+1)
α − u(n+1))k

≤
ϵ

1 − a
.

Let n go to infinity and conclude the proof.

2.1. Continuity in Nγ,k norm

Our proof of Theorem 2 also implies continuity in α for α ∈ (0, 1). We will only comment on
how the proof would change in Section 2.

Theorem 3. For every k ≥ 2 and α0 ∈ (0, 1) we can find γ such that

lim
α→α0

Nγ,k(uα − uα0) = 0.

The proof of Theorem 3 follows the same general direction of the proof of Theorem 2 with
the following changes. We need to replace ut (x) with uα0,t (x) and change ( fα − 2hα + δ)

in the estimate for Bn,α to


fα − 2 f α+α0
2

+ fα0


and change


g1−α − 2g 1−α

2
+ 1


to

g1−α − 2g1−
α+α0

2
+ g1−α0


. We will also need an existence of γ0 such that for every γ > γ0

norms Nγ,k(uα0), Nγ,k(u
(n)
α0 ), Nγ,2(uα0), Nγ,2(u

(n)
α0 ) are finite, uniformly in n ∈ N and γ . This

can be obtained from [5, Prep. 9.1].
One can notice in both Theorems 2 and 3, the coefficient e−γ t in Nγ,k norm served only as

a helping hand to make part of the term An,α in (11) small. Let us summarize our effort in the
following corollary.

Corollary 1. Define u1,t (x) ≡ ut (x), then for all α0 ∈ (0, 1] we have

lim
α→α0

sup
t∈[0,T ]

sup
x∈R

E
uα,t (x) − uα0,t (x)

k = 0.

2.2. Convergence of finite dimensional distributions

Theorem 2 also states that the solution uα converges to u in L2(P) norm for every t ∈ [0, T ]

and x ∈ R. This implies weak convergence of finite dimensional distributions of uα to finite
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dimensional distributions of u. The easiest way to see that is to show convergence in probability
for a finite number of pairs (ti , xi ) ∈ [0, T ] × [−N , N ], which implies weak convergence
of finite dimensional distribution. By Chebyshev’s inequality, we have for xi ∈ [−N , N ] and
ti ∈ [0, T ]

P


l

i=1

(uα,ti (xi ) − uti (xi ))
2 > ϵ2


≤

l
i=1

E

(uα,ti (xi ) − uti (xi ))

2


ϵ2 . (14)

Right hand side of (14) converges to zero by Theorem 2, which also means that we have a
convergence in probability of random vectors

(uα,t1(x1), . . . , uα,tl (xl)) to (ut1(x1), . . . , utl (xl)).

From convergence in probability of finite dimensional distributions, we can conclude the weak
convergence of finite dimensional distributions [4, pg. 27, pg. 207].

2.3. Estimates for Kolmogorov’s continuity theorem and tightness

We will prove tightness (and thus weak convergence) from Kolmogorov’s continuity theorem
[12, pg. 107]. Before we begin the proof, we will need the following two lemmas.

Lemma 2 ([5, Lemma 6.4]). For all t > 0 and x ∈ R
R

|pt (y − x) − pt (y)| dy ≤ const ·


|x |
√

κt
∧ 1


,

where the implied constant does not depend on (t, x).

Lemma 3. For all t, ϵ > 0 we have
R

|pt+ϵ(y) − pt (y)| dy ≤ const · ((log(t + ϵ) − log(t)) ∧ 1) .

Proof. Direct computation gives us
R

|pt+ϵ(y) − pt (y)| dy =


R

 t+ϵ

t
ṗs(y)ds

 dy

=


R

 t+ϵ

t


−

1
2s

+
y2

2s2κ


ps(y)ds

 dy

≤

 t+ϵ

t


R


1
2s

+
y2

2s2κ


ps(y)dyds

=

 t+ϵ

t

1
s

ds = (log(t + ϵ) − log(t)) .

In addition, we have that
R

|pt+ϵ(y) − pt (y)| dy ≤ 2. �
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Lemma 4 ([15, pg. 314]). Let w be a bounded ϱ-Hölder continuous function, then there exists
C > 0 such that for every t > 0, δ > 0, x ∈ R, z ∈ R we have

R
(pt (x − y) − pt (z − y)) w(y)dy ≤ C · |x − z|ϱ ,

R
(pt+δ(x − y) − pt (x − y)) w(y)dy ≤ C · δϱ.

2.3.1. Difference in the spatial variable

Denote

Iα,t (x) =

 t

0


R

(pt−s(x − z) − pt−s(y − z)) σ (uα,s(z))ηα(ds, dz), (15)

which is the stochastic integral for the mild solution. We will estimate the spatial and the time
difference of the stochastic integral I in this and next subsection. The estimates of differences of
the solution uα will be obtained by combining Lemma 4 and estimates on I .

Let us estimate the difference in the spatial variable is

E
Iα,t (x) − Iα,t (y)

k
= E

 t

0


R

(pt−s(x − z) − pt−s(y − z)) σ (uα,s(z))ηα(ds, dz)

k


,

and denote

Bs(z) = (pt−s(x − z) − pt−s(y − z)) ,

As(x, y) = σ(uα,s(x))σ (uα,s(y)).

We will proceed just as in Section 2. We use Burkholder–Davis–Gundy inequality, Minkowski
integral inequality, Cauchy–Schwarz inequality and take the absolute value inside the integral
and get

E
Iα,t (x) − Iα,t (y)

k
≤ const · E

 t

0


R


R

fα(z − w)Bs(z)Bs(w)As(x, y)dsdzdw

k/2


≤ const

 t

0
sup
x∈R

∥σ(uα,s(x))∥2
k


R


R

fα(z − w) |Bs(z)| |Bs(w)| dsdzdw

k/2

≤ const

 t

0
sup
x∈R

∥σ(uα,s(x))∥2
k( fα ∗ pt−s)(0)


R

|pt−s(x − z) − pt−s(y − z)| dsdz

k/2

≤ const(1 + Nγ,k(uα)k)

 t

0
( fα ∗ pt−s)(0)


R

|pt−s(x − z) − pt−s(y − z)| dzds

k/2

≤ const(1 + Nγ,k(uα)k)

 t

0
( fα ∗ pt−s)(0)


|x − y|

√
κ(t − s)

∧ 1
k/2

,
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where the last inequality is due to Lemma 2. We also used the fact that
R

fα(z − w) |pt−s(x − w) − pt−s(y − w)| dw ≤ 2 ( fα ∗ pt−s) (0). (16)

The previous line (16) can be easily checked by the use of the triangle inequality and maximiza-
tion over variables. The inequality r ∧ 1 ≤ r2a for a ∈ (0, 1/2) gives us

E
Iα,t (x) − Iα,t (y)

k
≤ const(1 + Nγ,k(uα)k) |x − y|

ak
 t

0
( fα ∗ pt−s)(0) · (t − s)−ads

k/2

. (17)

It remains to show that the integral on the right hand side is bounded for all α ∈ (α0, 1),
α0 > 0. To show this, we will need an explicit form of fα . The result is stated in the next lemma.

Lemma 5. For every 1 > α > α0 > 0 we have

fα ∗ ps(0) ≤ const · s−α/2,

where the constant depends only on our choice of α0.

Proof. By direct computation and (8) we get

( fα ∗ ps)(0) = c1−α


R

1
|x |

α ps(x)dx

= 2
sin


(1−α)π
2


Γ (α)

(2π)α
2−α/2Γ


1 − α

2


s−α/2π−1/2.

The boundedness of constant

2
sin


(1−α)π
2


Γ (α)

(2π)α
2−α/2Γ


1 − α

2


π−1/2

can be concluded from Euler’s reflection formula (Γ (1 − z)Γ (z) = π/ sin(π z)) for z =

(1 − α)/2. �

Because of the lemma above, the integral on the right hand side of (17) is finite as long as
α/2 + a < 1. Since α ∈ (0, 1), we can always take a ∈ (0, 1/2). In [5, proof of Prep. 6.5],
authors also get (17), but some extra effort is required to show that (17) holds with one constant
on right hand side for α ∈ (α0, 1), α0 > 0.

2.3.2. Difference in the time variable
The difference in the time variable is going to be, for δ > 0

E
Iα,t+δ(x) − Iα,t (x)

k
= const · E

 t

0


R

(pt+δ−s(x − z) − pt−s(x − z)) σ (uα,s(z))ηα(ds, dz)

k


+ const · E

 t+δ

t


R

pt+δ−s(x − z)σ (uα,s(z))ηα(ds, dz)

k


.
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Let us estimate the second integral, we can use the same technique as in the case of the spatial
variable and write

E

 t+δ

t


R

pt+δ−s(x − z)σ (uα,s(z))ηα(ds, dz)

k


≤ const
 t+δ

t
sup

x
E
σ(uα,s(x))

k2/k


R

1

|ξ |
1−α

 p̂t+δ−s(ξ)
2 dξds

k/2

≤ const(1 + Nγ,k(uα)k)

 t+δ

t
(t + δ − s)−α/2ds

k/2

≤ const(1 + Nγ,k(uα)k) |δ|k(2−α)/4
≤ const(1 + Nγ,k(uα)k) |δ|k/4 .

The estimate for the second integral will be

E

 t

0


R

(pt+δ−s(x − z) − pt−s(x − z)) σ (uα,s(z))ηα(ds, dz)

k


≤ const
 t

0
sup
x∈R

E
σ(uα,s(x))

k2/k
( fα ∗ pt−s)(0)

×


R

|pt+δ−s(z) − pt−s(z)| dzds

k/2

≤ const(1 + Nγ,k(uα)k)

 t

0
( fα ∗ pt−s)(0)


R

|pt+δ−s(z) − pt−s(z)| dzds

k/2

≤ const(1 + Nγ,k(uα)k)

 t

0
s−1/2 (log(s + δ) − log(s)) ds

k/2

≤ const(1 + Nγ,k(uα)k)


4
√

δ atan


t

δ


+ 2

√
t log(1 + δ/t)

k/2

, (18)

by using a similar technique as in the case for the spatial variable and Lemma 3. The first step in
(18) uses that ( fα ∗ |pt+δ−s − pt−s |)(z) ≤ fα ∗ pt+δ−s(0) + fα ∗ pt−s(0) ≤ 2 fα ∗ pt−s(0). The
last step in (18) can be verified by differentiating function 4

√
δ atan(

√
t/δ) + 2

√
t log(1 + δ/t).

The inequality log(1 + ζ ) <
√

ζ for all ζ > 0 gives us

E

 t

0


R

(pt+δ−s(x − z) − pt−s(x − z)) σ (uα,s(z))η(ds, dz)

k


≤ const


1 + Nγ,k(uα)k


δk/4. (19)

We can combine both estimates (18) and (19) to finally get

E
Iα,t+δ(x) − Iα,t (x)

k = const ·


1 + Nγ,k(uα)k


δk/4. (20)

Estimates similar to Sections 2.3.2 and 2.3.1 can be found in numerous places in the literature,
for example [16]. Authors in [16] use a different technique and investigate noise with more
general covariance structure. We do not know of continuity estimates which take into account α

as a variable, thus our estimates in Sections 2.3.2 and 2.3.1 are novel in that sense.
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2.4. Kolmogorov’s continuity theorem and tightness

Let us mention that Nk,γ (uα) is uniformly bounded in γ, γ > 0 and α ∈ (α0, 1) where
α0 > 0. This follows from Corollary 1 and it is important for bounds on differences in Sec-
tions 2.3.2 and 2.3.1. We have that for every 1 > α > α0 > 0 and (s, x), (t, y) from
D := [0, T ] × [−N , N ] ⊂ R+

0 × R the following holds for k ≥ 2

E
uα,s(x) − uα,t (y)

k ≤ const |x − y|
ka

+ const |t − s|kb ,

where a ∈ (0, 1
2 ∧ ϱ) and b ∈ (0, 1

4 ∧ ϱ), thanks to our estimates from Sections 2.3.1, 2.3.2 and
Lemma 4. Denote ρ(t, x) = |x |

a
+ |t |b, then Kolmogorov’s continuity theorem states that there

is a modification of uα,s(x) such that (see for example [12, pg. 107])

E


sup

(s,x),(t,y)∈D

uα,s(x) − uα,t (y)

ρ(s − t, x − y)q

k


< Λ < +∞ (21)

for every α ∈ (α0, 1) and q ∈ (0, 1 − H/k) where H = 1/a + 1/b. By Markov’s inequality and
(21), we can write

P

 sup
(s,x),(t,y)∈D
ρ(s−t,x−y)<δ

uα,s(x) − uα,t (y)
 > ϵ

 <
Λ
ϵk δkq ,

which implies

lim
δ→0

sup
α∈(α0,1)

P

 sup
(s,x),(t,y)∈D
ρ(s−t,x−y)<δ

uα,s(x) − uα,t (y)
 > ϵ

 = 0, (22)

for every ϵ > 0. We established both convergence of finite dimensional distributions [17, Thm.
2 (i)] and tightness (22) for measures Pα on C [17, Thm. 2 (ii)]. The tightness of Pα can be seen
by adapting [4, Thm. 7.3] to a setting of two dimensional continuous functions with compact
domain and supremum norm. We can conclude [17, Thm. 2] that the measure Pα corresponding
to uα restricted to D converges weakly as α ↑ 1 to a measure P1 corresponding to u restricted to
D. We can also conclude weak convergence of Pα to P1 as α ↑ 1 by adapting [4, Chapter 2] to
the two dimensional setting.

The second part of the main theorem, that is weak convergence of Pα to Pα0 as α → α0 ∈

(0, 1) also follows from the current section. We have tightness for this claim, but we are missing
convergence of finite dimensional distributions. Little modification of Section 2.2 would give us
that.
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[15] Marta Sanz-Solé, Mònica Sarrà, Path properties of a class of Gaussian processes with applications to SPDE,

in: Canadian Mathematical Society, Conference Proceedings, vol. 28, 2000, pp. 303–316.
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