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Abstract

We investigate a class of quadratic–exponential growth BSDEs with jumps. The quadratic structure
introduced by Barrieu & El Karoui (2013) yields the universal bounds on the possible solutions. With local
Lipschitz continuity and the so-called AΓ -condition for the comparison principle to hold, we prove the
existence of a unique solution under the general quadratic–exponential structure. We have also shown that
the strong convergence occurs under more general (not necessarily monotone) sequence of drivers, which
is then applied to give the sufficient conditions for the Malliavin’s differentiability.
c⃝ 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The backward stochastic differential equations (BSDEs) have been subjects of strong interest
of many researchers since they were introduced by Bismut (1973) [6] and generalized later by
Pardoux & Peng (1990) [36]. This is particularly because they provide a truly probabilistic
approach to stochastic control problems, which has been soon recognized as a very powerful
tool for both theoretical and numerical issues in many important applications.
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More recently, there has appeared an acute interest in quadratic-growth BSDEs because
of their various fields of applications such as, risk sensitive control problems, dynamic risk
measures and indifference pricing in an incomplete market. The first breakthrough was made
by Kobylanski (2000) [29] in a Brownian filtration with a bounded terminal condition. The
result was then extended by Briand & Hu (2006, 2008) [9,10] to unbounded solutions. Direct
convergence based on a fixed-point theorem was proposed by Tevzadze (2008) [42]. Various
extensions/applications can be found in, for example, Hu, Imkeller & Muller (2005) [20], Mania
& Tevzadze (2006) [32], Morlais (2009) [33], Hu & Schweizer (2011) [21], Delbaen, Hu &
Richou (2011) [13].

In contrast to the diffusion setup, the number of researches on quadratic BSDEs with jumps
has been rather small. Morlais (2010) [34] deals with a particular BSDE appearing in the
exponential utility optimization with jumps, and Antonelli & Mancini (2016) [2] study the setup
with local Lipschitz continuity with different assumptions. Both of them adopt Kobylanski’s
approach making use of a weakly converging subsequence. Cohen & Elliott (2015) [11]
and also Kazi-Tani, Possamai & Zhou (2015) [28] have adopted the fixed-point approach of
Tevzadze [42]. See also Becherer (2006) [5] as an earlier attempt for utility optimization with
different restrictions on the driver.

Recently, Barrieu & El Karoui (2013) [4] have proposed a new approach based on the stability
of quadratic semimartingales by introducing a so-called quadratic structure condition. They
have shown the existence of a solution, without the uniqueness, under the minimal assumption
allowing the unbounded terminal condition in a continuous setup. Their result has been extended
to the exponential utility optimization in a market with counterparty default risks by generalizing
quadratic structure condition to a quadratic–exponential (Qexp) structure condition in Ngoupeyou
(2010) [35] (see also Jeanblanc, Matoussi & Ngoupeyou (2013) [23] and El Karoui, Matoussi &
Ngoupeyou (2016) [24]).

The current work, with local Lipschitz continuity and the so-called AΓ -condition for the
comparison principle to hold, proves the existence of a unique bounded solution under the
general Qexp-structure condition. Let us emphasize that the assumptions are more general
than those used [11,28,34,2] where the existence of a unique solution is proved. [11,28]
additionally require the second-order differentiability of the driver. [34,2] are using a special
form of the driver, in particular, it is bounded by a linear (not quadratic) function of |z| from
below, and the sign of the quadratic terms is prefixed. These features are inherited from the
utility optimization problem in [34] and is explicitly assumed in [2]. These assumptions play
an important role for constructing a monotone sequence of drivers by simply truncating the
quadratic terms. In the current work, new regularization of the driver inspired by [30,12,24]
provides a rather streamlined proof for the convergence under the general Qexp-structure.
Moreover, the uniqueness alone is proved without using the comparison principle by the new
stability result.

The specific monotone sequence of drivers used in the proof for the existence is not useful
for other purposes. By generalizing Theorem 2.8 [29], we prove the strong convergence under
more general (not necessary monotone) sequence of drivers. The result is then used to achieve the
convergence of globally-Lipschitz BSDEs constructed by a sequence of simply truncated drivers.
The sufficient conditions for the Malliavin’s differentiability of the Qexp-growth BSDEs are
then obtained by exploiting the properties of locally Lipschitz BSDEs with H2

B M O -coefficients.
This extends the work of Ankirchner, Imkeller & Dos Reis (2007) [1] on the Malliavin’s
differentiability in the diffusion setup. The obtained representation theorem will be useful for
the optimal hedging problems in financial applications, investigations on the path regularity
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necessary for numerical as well as analytical issues, and also for the development of an
asymptotic expansion for the quadratic BSDEs.1

The organization of the paper is as follows: Section 2 gives preliminaries including some
important results on the BMO martingales. Section 3 explains the setup of Qexp-growth BSDEs
with jumps and gives the uniqueness result. Section 4 proves the existence of a solution by
using the monotone sequence and the comparison principle. Section 5 deals with the Malliavin’s
differentiability of the Qexp-growth BSDEs, which is then applied to a forward–backward system
to obtain a representation theorem on the martingale components in Section 6. Appendix A is a
simple generalization of the results by Ankirchner, Imkeller & Dos Reis (2007) [1] and Briand
& Confortola (2008) [8] on the locally Lipschitz BSDEs with BMO coefficients to the setup
with jumps. Appendix B gives some results regarding the comparison principle. Appendix C
gives a detailed proof for the Malliavin’s differentiability of the Lipschitz BSDEs with jumps,
which generalizes the result of Delong & Imkeller (2010) [15] and Delong (2013) [14] to local
(instead of global) Lipschitz continuity for the Malliavin derivative of the driver, which becomes
necessary to investigate a forward–backward system driven by a Markovian forward process.
Finally, Appendix D gives the technical details of the proof for Theorem 5.1 omitted in the main
text.

2. Preliminaries

2.1. General setting

Let us first state the general setting to be used throughout the paper. T > 0 is some
bounded time horizon. The space (ΩW ,FW ,PW ) is the usual canonical space for a d-dimensional
Brownian motion equipped with the Wiener measure PW . We also denote (Ωµ,Fµ,Pµ) as a
product of canonical spaces Ωµ := Ω1

µ × · · · × Ω k
µ, Fµ := F1

µ × · · · × F k
µ and P1

µ × · · · × Pk
µ

with some constant k ≥ 1, on which each µi is a Poisson measure with a compensator νi (dz)dt .
Here, νi (dz) is a σ -finite measure on R0 = R \ {0} satisfying

∫
R0

|z|2νi (dz) < ∞. Throughout
the paper, we work on the filtered probability space (Ω ,F ,F = (Ft )t∈[0,T ],P), where the
space (Ω ,F ,P) is the product of the canonical spaces (ΩW × Ωµ,FW × Fµ,PW × Pµ), and
that the filtration F = (Ft )t∈[0,T ] is the canonical filtration completed for P and satisfying
the usual conditions. In this construction, (W, µ1, . . . , µk) are independent. We use a vector
notation µ(ω, dt, dz) := (µ1(ω, dt, dz1), . . . , µk(ω, dt, dzk)) and denote the compensated
Poisson measure as µ̃ := µ− ν. We represent the F-predictable σ -field on Ω × [0, T ] by P .

Remark 2.1. We have chosen the above setting mainly because that it is known to guarantee
the weak property of predictable representation and also because there exists an established
Malliavin’s differential rule. The contents up to Section 4 can be easily extendable to P ⊗ E-
measurable random compensator νt (dx) as long as (W, µ − ν) is assumed to have the weak
property of predictable representation (see Chapter XIII in [19]). For the general topics regarding
stochastic calculus with random measures, see also [22].

1 Recently, we have proposed an analytic approximation method of the Lipschitz BSDEs with jumps in Fujii &
Takahashi (2015) [17], which is based on the small-variance asymptotic expansion (see, Takahashi (2015) [41] as a
general review). Its extension to the Qexp-growth BSDEs is now ready to be investigated using the new results obtained
here, which will be pursued in a different opportunity.
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2.2. Notation

We denote a generic constant by C , which may change line by line, is sometimes associated
with several subscripts (such as CK ,T ) showing its dependence when necessary. T T

0 denotes the
set of F-stopping times τ ∈ [0, T ].

Let us introduce a sup-norm for a Rr -valued function x : [0, T ] → Rr as

∥x∥[a,b] := sup{|xt |, t ∈ [a, b]}

and write ∥x∥t := ∥x∥[0,t]. We use the following spaces for stochastic processes for p ≥ 2:
• Sp

r [s, t] is the set of Rr -valued adapted càdlàg processes X such that

∥X∥Sp
r [s,t] := E

[
∥X∥

p
[s,t]

]1/p
< ∞ .

• S∞
r is the set of Rr -valued essentially bounded càdlàg processes X such that

∥X∥S∞
r :=

 sup
t∈[0,T ]

|X t |


∞
< ∞.

• Hp[s, t] is the set of progressively measurable Rd -valued processes Z such that

∥Z∥Hp[s,t] := E
[(∫ t

s
|Zu |

2du
) p

2
] 1

p
< ∞.

• Jp[s, t] is the set of k-dimensional functions ψ = {ψ i , 1 ≤ i ≤ k}, ψ i
: Ω × [0, T ] ×R0 → R

which are P × B(R0)-measurable and satisfy

∥ψ∥Jp[s,t] := E
[( k∑

i=1

∫ t

s

∫
R0

|ψ i
u(x)|

2
νi (dx)du

) p
2
] 1

p
< ∞.

• J∞ is the space of functions which are dP ⊗ ν(dz) essentially bounded i.e.,

∥ψ∥J∞ :=
 sup

t∈[0,T ]
∥ψt∥L∞(ν)


∞
< ∞,

where L∞(ν) is the space of Rk-valued measurable functions ν(dz)-a.e. bounded endowed with
the usual essential sup-norm.
• Kp[s, t] is the set of functions (Y, Z , ψ) in the space Sp[s, t] × Hp[s, t] × Jp[s, t] with the
norm defined by

∥(Y, Z , ψ)∥Kp[s,t] :=
(
∥Y∥

p
Sp[s,t] + ∥Z∥

p
Hp[s,t] + ∥ψ∥

p
Jp[s,t]

) 1
p .

For notational simplicity, we use (E, E) = (Rk
0,B(R0)k) and denote the maps {ψ i , 1 ≤ i ≤ k}

defined above as ψ : Ω × [0, T ] × E → Rk and say ψ is P ⊗ E-measurable without referring to
each component. We also use the notation such that∫ t

s

∫
E
ψu(x)µ̃(du, dx) :=

k∑
i=1

∫ t

s

∫
R0

ψ i
u(x)µ̃i (du, dx)

for simplicity. The similar abbreviation is used also for the integrals with respect to µ and ν.
When we use E and E , one should always interpret it in this way so that the integral with the
k-dimensional Poisson measure does make sense. On the other hand, when we use the range R0
with the integrators (µ̃, µ, ν), for example,∫

R0

ψu(x)ν(dx) :=

(∫
R0

ψ i
u(x)νi (dx)

)
1≤i≤k

we interpret it as a k-dimensional vector.
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We frequently omit the subscripts specifying the dimension r and the time interval [s, t] when
they are unnecessary or obvious in the context. We use

(
Θs, s ∈ [0, T ]

)
as a collective argument

Θs =
(
Ys, Zs, ψs

)
to lighten the notation. We use the notation of partial derivatives such that for

x ∈ Rd

∂x = (∂x1 , . . . , ∂xd ) =

( ∂

∂x1
, . . . ,

∂

∂xd

)
and for Θ , ∂Θ =

(
∂y, ∂z, ∂ψ

)
. We use the similar notations for every higher order derivative

without a detailed indexing. We suppress the obvious summation of indexes throughout the paper
for notational simplicity.

2.3. BMO-martingale and its properties

The properties of the BMO-martingales play a crucial role throughout this work. This section
summarizes the necessary facts used in the following discussions.

Definition 2.1. Let M be a square integrable martingale. When it satisfies

∥M∥
2
B M O := sup

τ∈T T
0

E[
(MT − Mτ−1τ>0)2

|Fτ
]

∞

< ∞

then M is called a BMO-martingale and denoted by M ∈ B M O .

Lemma 2.1. Suppose M is a square integrable martingale with initial value M0 = 0. If M is
a BMO-martingale, then its jump component is essentially bounded ∆M ∈ S∞. On the other
hand, if ∆M ∈ S∞ and supτ∈T T

0

E[
⟨M⟩T − ⟨M⟩τ |Fτ

]
∞

< ∞, then M is a BMO-martingale.

Proof. From Lemma 10.7 in [19], we have

∥M∥
2
B M O = sup

τ∈T T
0

E[
[M]T − [M]τ |Fτ

]
+ M2

0 1τ=0 + (∆Mτ )2


∞

= sup
τ∈T T

0

E[
⟨M⟩T − ⟨M⟩τ |Fτ

]
+ (∆Mτ )2


∞

.

Thus,

sup
τ∈T T

0

E[
⟨M⟩T − ⟨M⟩τ |Fτ

]
∞

∨ ∥∆M∥
2
S∞ ≤ ∥M∥

2
B M O

≤ sup
τ∈T T

0

E[
⟨M⟩T − ⟨M⟩τ |Fτ

]
∞

+ ∥∆M∥
2
S∞

and hence the claim is proved. □

Let us introduce the following spaces. H2
B M O is the set of progressively measurable Rd -valued

functions Z satisfying2

∥Z∥
2
H2

B M O
:=

∫
·

0 ZsdWs

2

B M O
= sup

τ∈T T
0

E[∫ T

τ

|Zs |
2ds|Fτ

]
∞

< ∞.

2 We sometimes include a scalar function satisfying the rightmost inequality also in H2
B M O . By multiplying a d-

dimensional unit vector, one can always connect to it the BMO norm if necessary.
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J2
B M O and J2

B are the sets of P ⊗ E-measurable functions ψ : Ω × [0, T ] × E → Rk satisfying

∥ψ∥
2
J2

B M O
:=

∫
·

0

∫
E ψs(x)µ̃(ds, dx)

2

B M O

= sup
τ∈T T

0

E[∫ T

τ

∫
E

|ψs(x)|2µ(ds, dx)|Fτ
]

+ (∆Mτ )2


∞

< ∞ ,

where ∆Mτ is a jump of M =
∫

·

0

∫
E ψs(x)µ̃(ds, dx) at time τ .

∥ψ∥
2
J2

B
:= sup

τ∈T T
0

E[∫ T

τ

∫
E

|ψs(x)|2ν(dx)ds|Fτ
]

∞

< ∞,

respectively. Note that (∥ψ∥
2
J2

B
∨ ∥ψ∥

2
J∞ ) ≤ ∥ψ∥

2
J2

B M O
≤ ∥ψ∥

2
J2

B
+ ∥ψ∥

2
J∞ from the proof of

Lemma 2.1.

Lemma 2.2 (Energy Inequality). Let Z ∈ H2
B M O and ψ ∈ J2

B M O . Then, for any n ∈ N,

E
[(∫ T

0
|Zs |

2ds
)n]

≤ n!
(
∥Z∥

2
H2

B M O

)n
,

E
[(∫ T

0

∫
E

|ψs(x)|2µ(ds, dx)
)n]

≤ n!
(
∥ψ∥

2
J2

B M O

)n
,

E
[(∫ T

0

∫
E

|ψs(x)|2ν(dx)ds
)n]

≤ n!
(
∥ψ∥

2
J2

B

)n
≤ n!

(
∥ψ∥

2
J2

B M O

)n
.

Proof. See proof of Lemma 9.6.5 in [12]. □

Let E(M) be a Doléan-Dade exponential of M .

Lemma 2.3 (Reverse Hölder Inequality). Let δ > 0 be a positive constant and M be a BMO-
martingale satisfying ∆Mt ≥ −1 + δ P-a.s. for all t ∈ [0, T ]. Then,

(
Et (M), t ∈ [0, T ]

)
is a

uniformly integrable martingale, and for every stopping time τ ∈ T T
0 , there exists some p > 1

such that E [ET (M)p
|Fτ ] ≤ C p,MEτ (M)p with some positive constant C p,M depending only on

p and ∥M∥B M O .

Proof. See Kazamaki (1979) [26], and also Remark 3.1 of Kazamaki (1994) [27]. □

Note here that the condition ∆Mt ≥ −1 + δ is the very reason why one needs a stronger
assumption than the Lipschitz continuity for the comparison principle to hold for the BSDEs
with jumps (see Proposition 2.6 in Barles et al. (1997) [3]). The following properties of the
continuous BMO martingales by Kazamaki [27] are very useful.

Lemma 2.4. Let M be a square integrable continuous martingale and M̂ := ⟨M⟩ − M. Then,
M ∈ B M O(P) if and only if M̂ ∈ B M O(Q) with dQ/dP = ET (M). Furthermore, ∥M̂∥B M O(Q)
is determined by some function of ∥M∥B M O(P) and vice versa.

Proof. See Theorem 3.3 and Theorem 2.4 in [27]. □

Remark 2.2. For continuous martingales, Theorem 3.1 [27] also tells that there exists some
decreasing function Φ(p) with Φ(1+) = ∞ and Φ(∞) = 0 such that if ∥M∥B M O(P) satisfies
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∥M∥B M O(P) < Φ(p) then E(M) satisfies the reverse Hölder inequality with power p. This implies
together with Lemma 2.4, one can take a common positive constant r̄ satisfying 1 < r̄ ≤ r∗ such
that both of the E(M) and E(M̂) satisfy the reverse Hölder inequality with power r̄ under the
respective probability measure P and Q. Furthermore, the upper bound r∗ is determined only by
∥M∥B M O(P) (or equivalently by ∥M∥B M O(Q)).

3. Qexp-growth BSDEs with jumps

3.1. Universal bound

We now introduce, for t ∈ [0, T ], the quadratic–exponential (Qexp) growth BSDE;

Yt = ξ +

∫ T

t
f (s, Ys, Zs, ψs)ds −

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx) , (3.1)

where ξ : Ω → R, f : Ω × [0, T ] × R × Rd
× L2(E, ν;Rk) → R and denote Z and ψ as row

vectors for simplicity.
Let us introduce the quadratic–exponential structure condition proposed by Barrieu & El

Karoui (2013) [4] and extended to a jump diffusion case by Ngoupeyou (2010) [35]. See also El
Karoui et al. (2016) [24].

Assumption 3.1. (i)The map (ω, t) ↦→ f (ω, t, ·) is F-progressively measurable. For every
(y, z, ψ) ∈ R × Rd

× L2(E, ν;Rk), there exist two constants β ≥ 0 and γ > 0 and a positive
F-progressively measurable process (lt , t ∈ [0, T ]) such that

−lt − β|y| −
γ

2
|z|2 −

∫
E

jγ (−ψ(x))ν(dx)

≤ f (t, y, z, ψ) ≤ lt + β|y| +
γ

2
|z|2 +

∫
E

jγ (ψ(x))ν(dx)

dt ⊗ dP-a.e. (ω, t) ∈ Ω × [0, T ], where jγ (u) :=
1
γ

(
eγ u

− 1 − γ u
)
.

(ii) |ξ |, (lt , t ∈ [0, T ]) are essentially bounded, i.e., ∥ξ∥∞, ∥l∥S∞ < ∞.

Assumption 3.1 yields useful universal bounds as Lemmas 3.1 and 3.2 for the possible
solutions of (3.1).

Lemma 3.1. Under Assumption 3.1, if there exists a solution (Y, Z , ψ) ∈ S∞
× H2

× J2 to the
BSDE (3.1), then Z ∈ H2

B M O and ψ ∈ J2
B M O (and hence ψ ∈ J∞) and ∥Z∥H2

B M O
, ∥ψ∥J2

B M O
are

bounded by some constant depending only on (γ, β, T, ∥ξ∥∞, ∥l∥S∞ , ∥Y∥S∞ ).

Proof. Since ∥ψ∥J∞ ≤ 2∥Y∥S∞ , it is clear that ψ ∈ J∞. Applying Itô formula to e2γYt and
using the equality 2γ j2γ (x) = (eγ x

− 1)2
+ 2γ jγ (x), one obtains∫ T

τ

e2γYs 2γ 2
|Zs |

2ds +

∫ T

τ

∫
E

e2γYs
(
eγψs (x)

− 1
)2
ν(dx)ds

= e2γYT − e2γYτ + 2γ
∫ T

τ

e2γYs
(

f (s, Ys, Zs, ψs) −

∫
E

jγ (ψs(x))ν(dx)
)

ds

−

∫ T

τ

e2γYs 2γ ZsdWs −

∫ T

τ

∫
E

e2γYs−
(
e2γψs (x)

− 1
)
µ̃(ds, dx) ,
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where τ ∈ T T
0 . Taking a conditional expectation and using Assumption 3.1, one obtains

E
[∫ T

τ

e2γYsγ 2
|Zs |

2ds +

∫ T

τ

∫
E

e2γYs
(
eγψs (x)

− 1
)2
ν(dx)ds

⏐⏐⏐Fτ]
≤ E

[
e2γYT + 2γ

∫ T

τ

e2γYs
(
ls + β|Ys |

)
ds

⏐⏐⏐Fτ]
≤ e2γ ∥Y∥S∞

+ 2γ e2γ ∥Y∥S∞ T
(
β∥Y∥S∞ + ∥l∥S∞

)
.

Thus

E
[∫ T

τ

γ 2
|Zs |

2ds +

∫ T

τ

∫
E

(
eγψs (x)

− 1
)2
ν(dx)ds

⏐⏐⏐Fτ]
≤ e4γ ∥Y∥S∞

+ 2γ e4γ ∥Y∥S∞ T
(
β∥Y∥S∞ + ∥l∥S∞

)
. (3.2)

Similar calculation for e−2γYt yields

E
[∫ T

τ

γ 2
|Zs |

2ds +

∫ T

τ

∫
E

(
e−γψs (x)

− 1
)2
ν(dx)ds

⏐⏐⏐Fτ]
≤ e4γ ∥Y∥S∞

+ 2γ e4γ ∥Y∥S∞ T
(
β∥Y∥S∞ + ∥l∥S∞

)
. (3.3)

Let us mention the fact that (ex
− 1)2

+ (e−x
− 1)2

≥ x2, ∀x ∈ R . Indeed, for g(x) :=

(ex
− 1)2

+ (e−x
− 1)2

− x2, we have g′(x) = 2(ex
− 1)ex

+ 2(1 − e−x )e−x
− 2x which is an odd

function. It is easy to see that g′(x) ≥ 0 for x ≥ 0 and g′(0) = 0. Thus g(x) ≥ g(0) = 0. With
the help of this relation, adding (3.2) and (3.3), and then taking supτ∥ ∥∞ separately for Z and
ψ terms yields

∥Z∥
2
H2

B M O
+ ∥ψ∥

2
J2

B
≤

e4γ ∥Y∥S∞

γ 2

(
3 + 6γ T

(
β∥Y∥S∞ + ∥l∥S∞

))
< ∞.

Since ∥ψ∥J∞ ≤ 2∥Y∥S∞ , one also sees ∥ψ∥J2
B M O

≤ ∥ψ∥J2
B

+ ∥ψ∥J∞ < ∞. □

The following result is an adaptation of Proposition 3.2 in [4] and Proposition 16 in [35] to
our setting. Similar results can be found in [9] for a diffusion setup and in [34,2] with jumps.

Lemma 3.2. Under Assumption 3.1, if there exists a solution (Y, Z , ψ) ∈ S∞
× H2

× J2 to the
BSDE (3.1), it satisfies

|Yt | ≤
1
γ

lnE
[
exp

(
γ eβ(T −t)

|ξ | + γ

∫ T

t
eβ(s−t)lsds

)⏐⏐⏐Ft

]
,

and in particular,

∥Y∥S∞ ≤ eβT (
∥ξ∥∞ + T ∥l∥S∞

)
.

Proof. An application of Meyer–Itô formula (Theorem 70 in [38]) yields

d
(
eβs

|Ys |
)

= eβs(β|Ys |ds + d|Ys |
)

= eβs
{
β|Ys |ds + sign(Ys−)

(
− f (s,Θs)ds + ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
+ d LY

s

}
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where LY is a non-decreasing process including a local time of Y at the origin. Let us define the
process (Bs, s ∈ [0, T ]) with B0 = 0 by

d Bs = −sign(Ys) f (s,Θs)ds +

(
ls + β|Ys | +

γ

2
|Zs |

2
+

∫
E

jγ (sign(Ys)ψs(x))ν(dx)
)

ds

which is also a non-decreasing process by Assumption 3.1. Using this process,

d(eβs
|Ys |) = eβs(d Bs + d LY

s ) + eβssign(Ys−)
(

ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−eβs

(
ls +

γ

2
|Zs |

2
+

∫
E

jγ (sign(Ys)ψs(x))ν(dx)
)

ds ,

which is further transformed as

d(eβs
|Ys |) = eβssign(Ys−)

(
ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−
γ

2

⏐⏐eβssign(Ys)Zs
⏐⏐2

ds

−

∫
E

jγ (eβssign(Ys)ψs(x))ν(dx)ds − eβslsds +
γ

2

(
e2βs

|Zs |
2
− eβs

|Zs |
2
)

ds

+

∫
E

(
jγ (eβssign(Ys)ψs(x)) − eβs jγ (sign(Ys)ψs(x))

)
ν(dx)ds + eβs(d Bs + d LY

s ) .

It is easy to confirm that for k ≥ 1,

jγ (kx) − k jγ (x) =
1
γ

(ekγ x
− keγ x

− 1 + k) ≥ 0 .

Thus we obtain

d(eβs
|Ys |) = eβssign(Ys−)

(
ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−
γ

2
|eβssign(Ys)Zs |

2
ds −

∫
E

jγ (eβssign(Ys)ψs(x))ν(dx)ds − eβslsds + dCs,

where C is a non-decreasing process.
Define the process P by Pt := exp

(
γ eβt

|Yt | + γ
∫ t

0 eβslsds
)

. Using another non-decreasing
process C ′, one has

d Pt = Pt−

(
γ eβt sign(Yt )Z t dWt +

∫
E

(
exp

(
γ eβt sign(Yt−)ψt (x)

)
− 1

)
× µ̃(dt, dx) + γ dC ′

t

)
. (3.4)

The boundedness of P and Lemma 3.1 imply that the first two terms of (3.4) are true martingale
and that the last term is an integrable increasing process. Therefore P is a submartingale and it
follows that

exp
(
γ eβt

|Yt | + γ

∫ t

0
eβslsds

)
≤ E

[
exp

(
γ eβT

|ξ | + γ

∫ T

0
eβslsds

)⏐⏐⏐Ft

]
,

for ∀t ∈ [0, T ], and the claim is proved. □

3.2. Stability and uniqueness

We now introduce local Lipschitz conditions to derive the stability and uniqueness result for
a bounded solution.
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Assumption 3.2. For each M > 0, and for every (y, z, ψ), (y′, z′, ψ ′) ∈ R×Rd
×L2(E, ν;Rk)

satisfying

|y|, |y′
|, ∥ψ∥L∞(ν), ∥ψ

′
∥L∞(ν) ≤ M

there exists some positive constant KM possibly depending on M such that⏐⏐ f (t, y, z, ψ) − f (t, y′, z′, ψ ′)
⏐⏐ ≤ KM

(
|y − y′

| + ∥ψ − ψ ′
∥L2(ν)

)
+ KM

(
1 + |z| + |z′

| + ∥ψ∥L2(ν) + ∥ψ ′
∥L2(ν)

)
|z − z′

|

dt ⊗ dP-a.e. (ω, t) ∈ Ω × [0, T ].

Consider the two BSDEs with i ∈ {1, 2} satisfying Assumptions 3.1 and 3.2;

Y i
t = ξ i

+

∫ T

t
f i (s, Y i

s , Z i
s, ψ

i
s )ds −

∫ T

t
Z i

sdWs −

∫ T

t

∫
E
ψ i

s (x)µ̃(ds, dx), (3.5)

for t ∈ [0, T ] and let us denote

δY := Y 1
− Y 2, δZ := Z1

− Z2, δψ := ψ1
− ψ2,

δ f (s) := ( f 1
− f 2)(s, Y 1

s , Z1
s , ψ

1
s ) .

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold for the two BSDEs (3.5) with i ∈ {1, 2}.
Then, if there exists a solution (Y i , Z i , ψ i ) ∈ S∞

×H2
×J2, i ∈ {1, 2} to the BSDEs, the following

inequalities are satisfied;

(a) ∥δZ∥H2
B M O

+ ∥δψ∥J2
B M O

≤ C
(
∥δY∥S∞ + ∥δξ∥∞ + sup

τ∈T T
0

E [∫ T

τ

|δ f (s)|ds
⏐⏐⏐Fτ] 

∞

)
(b)

(δY, δZ , δψ)
p
Kp[0,T ] ≤ C ′

(
E

[
|δξ |pq̄2

+

(∫ T

0
|δ f (s)|ds

)pq̄2]) 1
q̄2
,

∀p ≥ 2, ∀q̄ ≥ q∗.

Here, C and q∗ (> 1) are positive constants depending only on (KM , γ, β, T, ∥ξ∥∞, ∥l∥S∞ ) and
the constant M is chosen such that ∥Y i

∥S∞ , ∥ψ i
∥J∞ ≤ M for both i ∈ {1, 2}. C ′ is a positive

constant depending only on (p, q̄, KM , γ, β, T, ∥ξ∥∞, ∥l∥S∞ ).

Proof. Proof for (a)
Firstly, due to the universal bounds, it is obvious that one can choose M such that ∥Y i

∥S∞ ≤ M
and ∥ψ i

∥J∞ ≤ M for both i ∈ {1, 2}. For ∀τ ∈ T T
0 , one has

|δYτ |2 +

∫ T

τ

|δZs |
2ds +

∫ T

τ

∫
E

|δψs(x)|2µ(ds, dx)

= |δξ |2 +

∫ T

τ

2δYs

(
δ f (s) + f 2(s,Θ1

s ) − f 2(s,Θ2
s )

)
ds

−

∫ T

τ

2δYsδZsdWs −

∫ T

τ

∫
E

2δYs−δψs(x)µ̃(ds, dx) .
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Taking the conditional expectation, one obtains

|δYτ |2 + E
[∫ T

τ

|δZs |
2ds|Fτ

]
+ E

[∫ T

τ

∫
E

|δψs(x)|2µ(ds, dx)
⏐⏐⏐Fτ]

= E
[
|δξ |2 +

∫ T

τ

2δYs

(
δ f (s) + f 2(s,Θ1

s ) − f 2(s,Θ2
s )

)
ds

⏐⏐⏐Fτ] .
Taking supτ∈T T

0
for each term in the left gives

∥δZ∥
2
H2

B M O
+ ∥δψ∥

2
J2

B
≤ 2∥δξ∥2

∞

+ 4∥δY∥S∞ sup
τ∈T T

0

E [∫ T

τ

(
|δ f (s)| + KM

(
|δYs | + ∥δψs∥L2(ν) + Hs |δZs |

))
ds

⏐⏐⏐Fτ] 
∞

,

where the process H is defined by Hs := 1+
∑2

i=1

(
|Z i

s |+∥ψ i
s∥L2(ν)

)
. It is clear that H ∈ H2

B M O
whose norm is dominated by the universal bounds given in Lemma 3.1. One can see

sup
τ∈T T

0

E [∫ T

τ

Hs |δZs |ds
⏐⏐⏐Fτ] 

∞

≤ sup
τ∈T T

0

E[∫ T

τ

|Hs |
2ds

⏐⏐⏐Fτ] 1
2 

∞

sup
τ∈T T

0

E[∫ T

τ

|δZs |
2ds

⏐⏐⏐Fτ] 1
2 

∞

≤ ∥H∥H2
B M O

∥δZ∥H2
B M O

.

Thus, with an arbitrary positive constant ϵ > 0,

∥δZ∥
2
H2

B M O
+ ∥δψ∥

2
J2

B
≤ 2∥δξ∥2

∞
+ 2 sup

τ∈T T
0

E [∫ T
τ
|δ f (s)|ds

⏐⏐⏐Fτ] 2

∞

+ ∥δY∥
2
S∞

(
2 + 4KM T +

4K 2
M

ϵ
+

4K 2
M

ϵ
∥H∥

2
H2

B M O

)
+ ϵ

(
∥δZ∥

2
H2

B M O
+ ∥δψ∥

2
J2

B

)
.

Choosing ϵ < 1 and noticing the fact that ∥δψ∥J2
B M O

≤ ∥δψ∥J2
B

+ 2∥δY∥S∞ , one obtains the
desired result.

Proof for (b)
Define a d-dimensional F-progressively measurable process (bs, s ∈ [0, T ]) by

bs :=
f 2(s, Y 1

s , Z1
s , ψ

1
s ) − f 2(s, Y 1

s , Z2
s , ψ

1
s )

|δZs |
2 1δZs ̸=0δZs

and also the map f̃ : Ω × [0, T ] × R × L2(E, ν;Rk) → R by

f̃ (ω, s, ỹ, ψ̃) := δ f (ω, s) − f 2(ω, s,Θ2
s ) + f 2(ω, s, ỹ + Y 2

s , Z2
s , ψ̃ + ψ2

s

)
.

Then, (δY, δZ , δψ) can be interpreted as the solution to the BSDE

δYt = δξ +

∫ T

t

(
f̃ (s, δYs, δψs) + bs · δZs

)
ds −

∫ T

t
δZsdWs

−

∫ T

t

∫
E
δψs(x)µ̃(ds, dx). (3.6)

Since |bs | ≤ KM (1 + |Z1
s | + |Z2

s | + 2∥ψ1
s ∥L2(ν)), the process b belongs to H2

B M O . Furthermore,
f̃ satisfies the linear growth property | f̃ (s, ỹ, ψ̃)| ≤ |δ f (s)| + KM (|̃y| + ∥ψ̃∥L2(ν)). Thus, the
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BSDE (3.6) satisfies Assumption A.1 with g = |δ f |. One obtains the desired result by applying
Lemma A.1. The dependency of the constants C ′, q∗ is obtained from the universal bounds in
Lemmas 3.1 and 3.2, as well as the properties of the reverse Hölder inequality in Lemma 2.3 and
the remarks that follow. □

We now gives the uniqueness result:

Proposition 3.1. Suppose the BSDE (3.1) satisfies Assumptions 3.1 and 3.2. Then, if there exists
a solution (Y, Z , ψ) ∈ S∞

× H2
× J2 to (3.1), it is unique in the space S∞

× H2
B M O × J2

B M O .

Proof. By Lemmas 3.2 and 3.1, if there exists such a solution it satisfies (Y, Z , ψ) ∈ S∞
×

H2
B M O × J2

B M O . Firstly, by Lemma 3.3(b), the solution is unique in the space Kp[0, T ] for
∀p ≥ 2. Since Y ∈ S∞, the uniqueness of Y in Sp gives the uniqueness of Y also in the space
S∞. This can be easily shown from an argument of contradiction by assuming ∥Y 1

− Y 2
∥

p
Sp = 0

but not equal in S∞. □

4. Existence of solution to a Qexp-growth BSDE

In this section, we prove the existence of the solution to the BSDE (3.1). Although one
may use the stability of quadratic semimartingales as [24], we provide a concrete, less abstract
strategy similar to that of Kobylanski [29]. We need another assumption so that we can apply the
comparison principle.

Assumption 4.1 (AΓ -condition). For all t ∈ [0, T ], M > 0, y ∈ R, z ∈ Rd , ψ,ψ ′
∈

L2(E, ν;Rk) with |y|, ∥ψ∥L∞(ν), ∥ψ
′
∥L∞(ν) ≤ M , there exists a P ⊗ E-measurable process

Γ y,z,ψ,ψ ′

satisfying dt ⊗ dP-a.e.

f (t, y, z, ψ) − f (t, y, z, ψ ′) ≤

∫
E
Γ

y,z,ψ,ψ ′

t (x)
[
ψ(x) − ψ ′(x)

]
ν(dx) (4.1)

and C1
M (1 ∧ |x |) ≤ Γ

y,z,ψ,ψ ′

t (x) ≤ C2
M (1 ∧ |x |) with two constants C1

M ,C2
M . Here, C1

M > −1
and C2

M > 0 depend on M . (Hereafter, we frequently omit the superscripts y, z to lighten the
notation.)3

Let us introduce a sequence of smooth truncation functions ϕm : R → R with m ∈ N with
the following properties:

ϕm(x) =

⎧⎨⎩−(m + 1) for x ≤ −(m + 2)
x for |x | ≤ m
m + 1 for x ≥ m + 2

(4.2)

3 AΓ -condition implies M-dependent local Lipschitz continuity with respect to ψ , which is known to be satisfied in
the case of the exponential utility optimization [34].
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and |∂xϕm(x)| ≤ 1 uniformly in x ∈ R.4 We denote f := f ∨ 0, f := f ∧ 0 and introduce the
following regularization of the driver:

f
n
(t, y, z, ψ) := inf

w∈Rd
{ f (t, y, w,ψ) + n|z − w|}

f m(t, y, z, ψ) := sup
w∈Rd

{ f (t, y, w,ψ) − m|z − w|}

f
n,k

(t, y, z, ψ) := f
n
(t, ϕk(y), z, ϕk(ψ))

f m,k(t, y, z, ψ) := f m(t, ϕk(y), z, ϕk(ψ))

and f n,m
:= f

n
+ f m , f n,m,k

:= f
n,k

+ f m,k . For ψ , the mollifier ϕk should be applied
component-wise.

Lemma 4.1. For a driver f satisfying Assumptions 3.1, 3.2 and 4.1, we have
(i) f

n
, f m, f

n,k
, f m,k, f n,m, f n,m,k satisfy the structure condition of Assumption 3.1 uniformly

in n,m, k ∈ N.
(ii) f

n
, f m and f n,m satisfy AΓ -condition (4.1) uniformly in n,m ∈ N.

(iii) f
n,k
, f m,k, f n,m,k are globally Lipschitz continuous for each n,m, k ∈ N.

Proof. (i) One can easily confirm the assertion from the fact that 0 ≤ f
n

≤ f
n+1

≤ f ,
f ≤ f m+1

≤ f m
≤ 0 and that jγ (·) is convex. (ii) Firstly, let us check the condition for f

n
.

Since

f
n
(t, y, z, ψ) − f

n
(t, y, z, ψ ′)

= inf
w∈Rd

{ f (t, y, w,ψ) + n|z − w|} − inf
w∈Rd

{ f (t, y, w,ψ ′) + n|z − w|}

≤ sup
w∈Rd

{ f (t, y, w,ψ) − f (t, y, w,ψ ′)}

one sees the desired result by considering the four cases of signs ( f (t, y, w,ψ), f (t, y, w,ψ ′))
= (+,+), (+,−), (−,+), (−,−). The first two cases are bounded by f (·, ψ)− f (·, ψ ′). The last
two cases are bounded by 0 and hence the condition is trivially satisfied. Similar analysis yields
the same conclusion for f m . Finally, let us consider f n,m . Based on the same categorization of
signs ( f (·, ψ), f (·, ψ ′)), we have

f n,m(·, ψ) − f n,m(·, ψ ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f

n
(·, ψ) − f

n
(·, ψ ′) if (+,+)

f m(·, ψ) − f m(·, ψ ′) if (−,−)
f m(·, ψ) − f

n
(·, ψ ′) if (−,+)

f
n
(·, ψ) − f m(·, ψ ′) if (+,−).

The first two cases satisfy AΓ -condition by the previous discussion. The third case is trivial since
it is bounded by 0. As for the last case, one sees f

n
(·, ψ) − f m(·, ψ ′) ≤ f (·, ψ) − f (·, ψ ′) =

f (·, ψ)− f (·, ψ ′) and hence the conclusion follows. (iii) Lipschitz continuity with respect to y, ψ
arguments can be shown similarly as (ii) above. Consider now the following obvious inequality
f (t, ϕk(y), w, ϕk(ψ)) + n|z − w| ≤ f (t, ϕk(y), w, ϕk(ψ)) + n|z′

− w| + n|z − z′
|. By taking

infw in the both hands, we get f
n,k

(t, y, z, ψ) ≤ f
n,k

(t, y, z′, ψ) + n|z − z′
|. The desired result

4 The smoothness is introduced just for convenience so that one can use the same function later when proving
Malliavin differentiability.
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follows by flipping the role of z, z′. The same conclusion follows similarly for f m,k and hence
also f n,m,k . □

The above regularization is inspired by [30,24,12] as an application to quadratic BSDEs.
However, notice the differences from the one used in [24] regarding the arguments of y, ψ . The
following result is an extension of Lemma 9.6.6 in [12] for our setting.

Proposition 4.1. Suppose ξ ∈ FT is bounded and the sequence { f n, n ≥ 1} and f of the drivers
are such that (i) They are continuous mappings and satisfy Assumptions 3.1 and 4.1 uniformly.
(ii) f n

↓ f (resp. f n
↑ f ). (iii) If yn

→ y in R, zn
→ z in Rd and ψn

→ ψ in L2(ν), then
f n(·, yn, zn, ψn) → f (·, y, z, ψ) in R. (iv) There exists a solution (Y n, Zn, ψn) ∈ S∞

×H2
×J2

to the BSDE for each n

Y n
t = ξ +

∫ T

t
f n(s, Y n

s , Zn
s , ψ

n
s )ds −

∫ T

t
Zn

s dWs −

∫ T

t

∫
E
ψn

s (x)µ̃(ds, dx), t ∈ [0, T ],

for which the comparison principle holds i.e. Y n+1
t ≤ Y n

t (resp. Y n
t ≤ Y n+1

t ) for ∀t ∈ [0, T ] a.s.
Then, there exists (Y, Z , ψ) ∈ S∞

× H2
B M O × J2

B M O such that Y n
→ Y in S∞, Zn

→ Z in H2

and ψn
→ ψ in J2 and solves the BSDE

Yt = ξ +

∫ T

t
f (s, Ys, Zs, ψs)ds −

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx), t ∈ [0, T ].

(4.3)

Proof. It suffices to consider the case f n
↓ f with monotonically decreasing sequence of Y n .

By condition (i), the solution (Y n, Zn, ψn) satisfies the universal bounds given in Lemmas 3.1
and 3.2 uniformly in n. By monotonicity, (Y n) converges, for all t ∈ [0, T ], Y n

t ↓ Yt P-a.s. to its
limit process Y := limnY n . Furthermore, there exists (Z , ψ) satisfying the universal bounds,
such that Zn ⇀ Z weakly in H2 as well as ψn ⇀ ψ weakly in J2 under an appropriate
subsequence (still denoted by the same n). By condition (i), each driver f n satisfies, dt ⊗ dP-
a.e., f n(t, Y n

t , Zn
t , ψ

n
t ) ≤ f n(t, Y n

t , Zn
t , 0) +

∫
E Γ

ψn ,0
t (x)ψn

t (x)ν(dx) ≤ lt + β|Y n
t | +

γ

2 |Zn
t |

2
+

CM∥ψn
t ∥L2(ν)and similarly − f n(t, Y n

t , Zn
t , ψ

n
t ) ≤ lt + β|Y n

t | +
γ

2 |Zn
t |

2
+ CM∥ψn

t ∥L2(ν), where
CM is a constant depending only on the universal bounds.

Let φ : R → R be a smooth convex function such that φ(0) = 0, φ′(0) = 0, which will be
specified later. We put δY n,m

:= Y n
− Y m , δZn,m

:= Zn
− Zm , δψn,m

:= ψn
− ψm , and assume

m ≥ n. Note that δY n,m
T = 0 and δY n,m

≥ 0 for m ≥ n. Itô formula gives

φ(δY n,m
t ) +

∫ T

t

1
2
φ′′(δY n,m

s )|δZn,m
s |

2ds +

∫ T

t

∫
E

[
φ(δY n,m

s− + δψn,m
s (x)) − φ(δY n,m

s− )

−φ′(δY n,m
s− )δψn,m

s (x)
]
µ(ds, dx) =

∫ T

t
φ′(δY n,m

s )
[

f n(s,Θn
s ) − f m(s,Θm

s )
]
ds

−

∫ T

t
φ′(δY n,m

s )δZn,m
s dWs −

∫ T

t

∫
E
φ′(δY n,m

s− )µ̃(ds, dx) .
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Using the previous driver’s bound and noticing that φ′(y) ≥ 0 for y ≥ 0, there exist constants
CM ,C0 independent of n,m satisfying

E
∫ T

0

1
2
φ′′(δY n,m

s )|δZn,m
s |

2ds + E
∫ T

0

∫
E

[
φ(δY n,m

s− + δψn,m
s (x)) − φ(δY n,m

s− )

−φ′(δY n,m
s− )δψn,m

s (x)
]
µ(ds, dx) ≤ E

∫ T

0
CMφ

′(δY n,m
s )

(1
ϵ

+ |Y n
s | + |Y m

s |

+ |Zn
s |

2
+ |Zm

s |
2
+ ϵ∥ψn

s ∥
2
L2(ν) + ϵ∥ψm

s ∥
2
L2(ν)

)
ds

≤ E
∫ T

0
C0φ

′(δY n,m
s )

(1
ϵ

+ |δZn,m
s |

2
+ |Zn

s − Zs |
2
+ |Zs |

2

+ ϵ∥δψn,m
s ∥

2
L2(ν) + ϵ∥ψn

s − ψs∥
2
L2(ν) + ϵ∥ψs∥

2
L2(ν)

)
ds (4.4)

for any constant ϵ > 0. We now choose φ as

φ(y) :=
1

8C2
0

[
e4C0 y

− 4C0 y − 1
]
, φ′(y) =

1
2C0

[
e4C0 y

− 1
]
, φ′′(y) = 2e4C0 y .

By the mean-value theorem and the universal bound of Lemma 3.2 for δY n,m
s , δY n,m

s− ,

cM |δψn,m
s (x)|2 ≤ φ(δY n,m

s− + δψn,m
s (x)) − φ(δY n,m

s− ) − φ′(δY n,m
s− )δψn,m

s (x)

holds uniformly in (n,m) by choosing cM := exp
(
−8C0eβT (∥ξ∥∞ + T ∥l∥S∞ )

)
. Similarly, one

can choose the constant ϵ such that C0φ
′
(
2eβT (∥ξ∥∞ + T ∥l∥S∞ )

)
ϵ = cM/4 . Then (4.4) implies

(note that φ′′(y) = 4C0φ
′(y) + 2),

E
∫ T

0

[
C0φ

′(δY n,m
s ) + 1

]
|δZn,m

s |
2ds + E

∫ T

0

∫
E

3
4

cM |δψn,m
s (x)|2ν(dx)ds

≤ E
∫ T

0
C0φ

′(δY n,m
s )

(1
ϵ

+ |Zn
s − Zs |

2
+ |Zs |

2
+ ϵ∥ψn

s − ψs∥
2
L2(ν) + ϵ∥ψs∥

2
L2(ν)

)
ds.

Let fix n. δψn,m ⇀ ψn
− ψ weakly in J2. Since δY n,m is bounded and strongly converges

∀t ∈ [0, T ] δY n,m
t → Y n

t − Yt a.s., it is easy to see that
√

C0φ′(δY n,m) + 1[δZn,m] converges
weakly to

√
C0φ′(Y n − Y ) + 1[Zn

− Z ] in H2. From Proposition 3.5 (iii) [7], by passing to the
limit m → ∞,

E
∫ T

0

[
C0φ

′(Y n
s − Ys) + 1

]
|Zn

s − Zs |
2ds + E

∫ T

0

3
4

cM∥ψn
s − ψs∥

2
L2(ν)ds

≤ lim inf
m→∞

E
∫ T

0

[
C0φ

′(δY n,m
s ) + 1

]
|δZn,m

s |
2ds + E

∫ T

0

∫
E

3
4

cM |δψn,m
s (x)|2ν(dx)ds

≤ E
∫ T

0
C0φ

′(Y n
s − Ys)

(1
ϵ

+ |Zn
s − Zs |

2
+ |Zs |

2
+ ϵ∥ψn

s − ψs∥
2
L2(ν) + ϵ∥ψs∥

2
L2(ν)

)
ds,

which then yields

E
∫ T

0
|Zn

s − Zs |
2ds + E

∫ T

0

cM

2
∥ψn

s − ψs∥
2
L2(ν)ds

≤ E
∫ T

0
C0φ

′(Y n
s − Ys)

(1
ϵ

+ |Zs |
2
+ ϵ∥ψs∥

2
L2(ν)

)
ds . (4.5)

Since φ′(Y n
s − Ys) → 0 a.s. as n → ∞, one concludes Zn

→ Z in H2 and ψn
→ ψ in J2 by the

dominated convergence theorem.
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Therefore, one can extract a subsequence such that Zn
→ Z dt ⊗ dP-a.s. and ψn

→ ψ

ν(dx)dt ⊗ dP-a.s. Thus condition (iii) implies f n(t, Y n
t , Zn

t , ψ
n
t ) → f (t, Yt , Z t , ψt ) dt ⊗ dP-

a.s. Moreover, by extracting further subsequence if necessary, one sees from Lemma 2.5 of [29]
that Gz := supn|Z

n
|
2, Gψ := supn∥ψ

n
∥

2
L2(ν) are in L1([0, T ] × Ω ). By assumption (i), for

almost all ω, | f n(·, Y n, Zn, ψn)| is dominated by CM
(
1 + Gz + Gψ

)
∈ L1([0, T ]) with some

constant CM depending only on the universal bounds. Note also that f (·, Y, Z , ψ) ∈ L1([0, T ])
a.s. Thus one obtains, for almost all ω,

∫ T
0 | f n(s, Y n

s , Zn
s , ψ

n
s ) − f (s, Ys, Zs, ψs)|ds → 0

by Lebesgue’s dominated convergence theorem. From (4.5) and the Burkholder–Davis–Gundy
inequality,5 one can also extract a subsequence in which supt∈[0,T ]

⏐⏐⏐ ∫ T
t (Zn

s − Zs)dWs

⏐⏐⏐ → 0,

supt∈[0,T ]

⏐⏐⏐ ∫ T
t

∫
E (ψn

s (x) − ψs(x))µ̃(ds, dx)
⏐⏐⏐ → 0 a.s. By passing to the limit m → ∞ and

taking supremum over t in

|Y n
t − Y m

t | ≤

∫ T

t
| f n(s,Θn

s ) − f m(s,Θm
s )|ds +

⏐⏐⏐ ∫ T

t
(Zn

s − Zm
s )dWs

⏐⏐⏐
+

⏐⏐⏐ ∫ T

t

∫
E

(ψn
s (x) − ψm

s (x))µ̃(ds, dx)
⏐⏐⏐ ,

one obtains

sup
t∈[0,T ]

|Y n
t − Yt | ≤

∫ T

0
| f n(s,Θn

s ) − f (s,Θs)|ds + sup
t∈[0,T ]

⏐⏐⏐ ∫ T

t
(Zn

s − Zs)dWs

⏐⏐⏐
+ sup

t∈[0,T ]

⏐⏐⏐ ∫ T

t

∫
E

(ψn
s (x) − ψs(x))µ̃(ds, dx)

⏐⏐⏐,
from which one concludes the uniform convergence supt∈[0,T ]|Y

n
t − Yt | → 0 a.s. (hence

∥Y n
− Y∥S∞ → 0) under an appropriate subsequence and (Y, Z , ψ) solves (4.3). One can check

that S∞ convergence actually occurs in the entire sequence. If this is not the case, there exists
a subsequence (n j ) ⊂ (n) such that ∥Y n j − Y∥S∞ > c with some c > 0 for all n j , where
Y = limnY n is independent of the choice of subsequence due to the monotonicity. However,
one can extract a further subsequence (n jk) ⊂ (n j ) such that supt∈[0,T ]|Y

n jk
t − Yt | → 0 a.s.

by repeating the same discussion given above and hence ∥Y n jk − Y∥S∞ → 0, which is a
contradiction. □

Remark 4.1. By applying Itô-formula to |Y n
− Y |

2,

|Y n
τ − Yτ |

2
+ E

[∫ T

τ

|Zn
s − Zs |

2ds
⏐⏐⏐Fτ] + E

[∫ T

τ

∫
E

|ψn
s (x) − ψs(x)|2µ(ds, dx)

⏐⏐⏐Fτ]
≤ 2∥Y n

− Y∥S∞E
[∫ T

τ

| f n(s, Y n
s , Zn

s , ψ
n
s ) − f (s, Ys, Zs, ψs)|ds

⏐⏐⏐Fτ]
for any τ ∈ T T

0 . It follows that the uniform convergence of Y n
→ Y implies Zn

→ Z and ψn
→

ψ in H2
B M O and J2

B M O respectively, because supτ∈T T
0

E[∫ T
τ
| f n(s,Θn

s )− f (s,Θs)|ds
⏐⏐⏐Fτ]

∞

≤

C
(
1 + ∥Zn

∥
2
H2

B M O
+ ∥ψn

∥
2
J2

B M O

)
≤ C with some constant C depending only on the universal

bounds.6

5 See, for example, Theorem 48 in IV.4. of [38].
6 Convergence in the norm of Kp

= Sp
×Hp

× Jp with ∀p ≥ 2 is actually enough for the discussions on Malliavin’s
differentiability.
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Theorem 4.1. Under Assumptions 3.1, 3.2 and 4.1, there exists a unique bounded solution
(Y, Z , ψ) ∈ S∞

× H2
B M O × J2

B M O of the BSDE (3.1).

Proof. From Proposition 3.1, it suffices to prove the existence. Firstly, consider the BSDE with
data (ξ, f n,m,k). Since f n,m,k is globally Lipschitz, there exists a unique solution (Y n,m,k, Zn,m,k,

ψn,m,k) for each n,m, k. One also sees Y n,m,k
∈ S∞ by Lemma B.1. Since the driver f n,m,k sat-

isfies the Qexp-structure condition by Lemma 4.1, (Y n,m,k, Zn,m,k, ψn,m,k) satisfies the universal
bounds of Lemmas 3.1 and 3.2 uniformly in n,m, k. In particular, since ∥Y n,m,k

∥S∞ , ∥ψn,m,k
∥J∞

are bounded uniformly, (Y n,m,k, Zn,m,k, ψn,m,k) also consists of a solution of the BSDE

Y n,m
t = ξ +

∫ T

t
f n,m(s, Y n,m

s , Zn,m
s , ψn,m

s )ds −

∫ T

t
Zn,m

s dWs

−

∫ T

t

∫
E
ψn,m

s (x)µ̃(ds, dx) (4.6)

for each n,m provided k is large enough. By Lemma B.2, this is actually the unique solution of
(4.6) and satisfies the comparison principle Y n,m+1

≤ Y n,m
≤ Y n+1,m for every n,m ∈ N. Thus,

from Lemma 4.1, we can apply Proposition 4.1 with a fixed n. In particular, the condition (iii)
follows from the continuity of the driver and the property of inf(sup)-convolution (see, Lemma 1
of [30]). We then obtain Y n,m

→ Ỹ n in S∞, Zn,m
→ Z̃n in H2 and ψn,m

→ ψ̃n in J2, which
solves

Ỹ n
t = ξ +

∫ T

t
f̃ n(s, Ỹ n

s , Z̃n
s , ψ̃

n
s )ds −

∫ T

t
Z̃n

s dWs −

∫ T

t

∫
E
ψ̃n

s (x)µ̃(ds, dx) , (4.7)

for each n ∈ N, where f̃ n
:= f

n
+ f . f̃ n satisfies the structure as well as AΓ -conditions

uniformly in n. By Lemma B.3, one can once again apply Proposition 4.1 to the monotone
sequence f̃ n

↑ f . Then there exists (Y, Z , ψ) ∈ S∞
× H2

B M O × J2
B M O with the convergence

Ỹ n
→ Y in S∞, Z̃n

→ Z in H2, ψ̃n
→ ψ in J2, which solves the BSDE (3.1). By Remark 4.1,

one also obtains the convergence in the stronger norms. □

Although we have used a specific regularization to obtain a monotone sequence of drivers,
we can actually weaken the condition of monotonicity. The following result is the adaptation of
Theorem 2.8 of [29] to our setting.

Proposition 4.2. Suppose ξ ∈ FT is bounded and the sequence { f n, n ≥ 1} and f of
the drivers are such that (i) They are continuous mappings and satisfy Assumption 3.1, 3.2,
4.1 uniformly in n. (ii) If yn

→ y in R, zn
→ z in Rd and ψn

→ ψ in L2(ν), then
f n(·, yn, zn, ψn) → f (·, y, z, ψ) in R. (iii) Let (Y n, Zn, ψn) ∈ S∞

× H2
B M O × J2

B M O be the
unique solution of the BSDE (which is guaranteed by Theorem 4.1)

Y n
t = ξ +

∫ T

t
f n(s, Y n

s , Zn
s , ψ

n
s )ds −

∫ T

t
Zn

s dWs −

∫ T

t

∫
E
ψn

s (x)µ̃(ds, dx),

t ∈ [0, T ]

for each n. Then Y n
→ Y in S∞, Zn

→ Z in H2
B M O and ψn

→ ψ in J2
B M O where (Y, Z , ψ) is

a unique solution of (3.1) with data (ξ, f ).

Proof. Let us define two drivers such that Gn
:= supm≥n f m , H n

:= infm≥n f m . Then we have
Gn

↓ f , H n
↑ f as n → ∞. By condition (i), both Gn and H n satisfy Assumptions 3.1 and 3.2
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uniformly in n. Moreover the relations Gn(·, ψ)−Gn(·, ψ ′) ≤ supm≥n

[
f m(·, ψ)− f m(·, ψ ′)

]
and

H n(·, ψ) − H n(·, ψ ′) ≤ supm≥n

[
f m(·, ψ) − f m(·, ψ ′)

]
imply AΓ -condition of Assumption 4.1

holds uniformly. Thus, by Theorem 4.1, there exists a unique solution (Y n∗, Zn∗, ψn∗) (resp.
(Y n

∗
, Zn

∗
, ψn

∗
)) in S∞

× H2
B M O × J2

B M O to the BSDEs with data (ξ,Gn) (resp. (ξ, H n)) for each
n. By the local Lipschitz continuity, AΓ -condition, and the universal bounds of the solutions
make the measure change used in the comparison principle well defined. Hence, by similar
arguments of Lemma B.3, it is straightforward to confirm that the comparison principle holds
among (Y n∗, Y n

∗
, Y n). One has Y n

∗
≤ Y n

≤ Y n∗ for every n ∈ N. Furthermore, Proposition 4.1
also imply the convergence Y n∗

↓ Y and Y n
∗

↑ Y in S∞. Thus we have Y n
→ Y in S∞.

Remark 4.1 gives the convergence of Zn, ψn in the desired norms. □

5. Malliavin differentiability

In the reminder of the paper, we study the Malliavin differentiability of the quadratic–
exponential growth BSDEs. Among the various ways to develop Malliavin’s calculus, we follow
the conventions based on the chaos expansion used in Delong & Imkeller (2010) [15] and Delong
(2013) [14], which were adopted from the work of Solé et al. (2007) [40]. See also Di Nunno
et al. (2009) [16] for an extension to a multi-dimensional setup and other applications (with
only a slight adjustment of conventions). For the detailed conventions, see Section 3 of [15].
Following the extension given in Section 17 of [16], we denote (Di

t,0, i ∈ {1, . . . , d}) and
(Di

t,z, i ∈ {1, . . . , k}) as the Malliavin derivatives with respect to (Wi (t), i ∈ {1, . . . , d}) and
(µ̃i (dt, dz), i ∈ {1, . . . , k}), respectively.

Note that a random variable F is Malliavin differentiable if and only if F ∈ D1,2. Here, the
space D1,2

⊂ L2(P) is defined by the completion with respect to the norm ∥ · ∥1,2 which is given
by

∥F∥
2
1,2 := E

[
|F |

2
]

+

d∑
i=1

E
[∫ T

0
|Di

s,0 F |
2
ds

]
+

k∑
i=1

E
[∫ T

0

∫
R0

|Di
s,z F |

2
z2νi (dz)ds

]
.

For notational convenience, let us introduce two types of finite measures mi (dz) = 1z ̸=0z2νi (dz)
with i ∈ {1, . . . , k} defined on whole R, and q defined on Ẽ := [0, T ] × Rk by

q(dt, dz) := 1z=0dt +

k∑
i=1

mi (dz)dt .

We also introduce a space L1,2(Rn) of product measurable and F-adapted processes χ : Ω ×

[0, T ] × Rk
→ Rn satisfying

E
[∫

Ẽ
|χ (s, y)|2q(ds, dy)

]
< ∞,

χ (s, y) ∈ D1,2(Rn), for q-a.e. (s, y) ∈ Ẽ,

E
[∫

Ẽ

∫
Ẽ

|Dt,zχ (s, y)|2q(ds, dy)q(dt, dz)
]
< ∞.

Note that the space L1,2 is a Hilbert space endowed with the norm

∥χ∥
2
L1,2 := E

[∫
Ẽ

|χ (s, y)|2q(ds, dy)
]

+ E
[∫

Ẽ

∫
Ẽ

|Dt,zχ (s, y)|2q(ds, dy)q(dt, dz)
]
.

The fact that the Malliavin derivative is a closed operator in L1,2 (see, Theorem 12.6 in [16])
plays a crucial role later.
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Suppose that (t, z) is a jump of size z at time t in a random measure µi . We denote
by ω

t,z
µi a transformed family of ωµi = ((t1, z1), (t2, z2), . . .) ∈ Ωµi into a new family

with additional jump at (t, z); ωt,z
µi = ((t, z), (t1, z1), (t2, z2), . . .) ∈ Ωµi . As for an ele-

ment ω = (ωW , ωµ1 , ωµ2 , . . . , ωµk ) ∈ Ω in the full canonical product space, we denote
ωt,z

∈ Ω as the above transformation only in the corresponding element, such as ωt,z
=

(ωW , ωµ1 , . . . , ω
t,z
µi , . . . , ωµk ) ∈ Ω without specifying the relevant coordinate for notational

simplicity. By the same reason, we also frequently omit i denoting the direction of derivative
Di

s,z by assuming that we consider each Wiener (z = 0, i ∈ {1, . . . , d}) and jump (z ̸=

0, i ∈ {1, . . . , k})) direction separately (and summing them up whenever necessary, such as
when considering integration on Ẽ).

In this section, we consider Malliavin’s differentiability of the following BSDE;

Yt = ξ +

∫ T

t
f
(

s, Ys, Zs,

∫
R0

ρ(x)G(s, ψs(x))ν(dx)
)

ds −

∫ T

t
ZsdWs

−

∫ T

t

∫
E
ψx (x)µ̃(ds, dx), (5.1)

for t ∈ [0, T ] where ξ : Ω → R, f : Ω × [0, T ] × R × Rd
× Rk

→ R, and ρi
: R → R,

G i
: [0, T ] × R → R for each i ∈ {1, . . . , k}. The last arguments of the driver denote a

k-dimensional vector whose i th element is given by
∫
R0
ρi (x)G i (s, ψ i

s (x))νi (dx). With slight

abuse of notation, we adopt Θr :=

(
Yr , Zr ,

∫
R0
ρ(z)G(r, ψr (z))ν(dz)

)
, r ∈ [0, T ] as a collective

argument in this section.

Remark 5.1. In Solé et al. [40] and Delong & Imkeller [15], the conventions

ψ(x) → ψ(x)/x, µ̃(dt, dx) → xµ̃(dt, dx) x ∈ R0

are used. For the convenience when discussing the L1,2-norm, we introduce the notation φ(x) :=

φ(x)/x, x ∈ R0 for the control variables of the random measure, φ = ψ,ψm etc. See, in
particular, Section 3.5 of [14].

Assumption 5.1. (i) For every i ∈ {1, . . . , k}, ρi is a continuous function satisfying∫
R0

|ρi (x)|2νi (dx) < ∞. (ii) For every i ∈ {1, . . . , k}, G i (s, v) is a continuous function in
the both arguments and one-time continuously differentiable with respect to v with continuous
derivative. Moreover, for every R > 0,

G R := sup
(s,v)∈[0,T ]×(|v|≤R)

k∑
i=1

|G i (s, v)| < ∞,

G ′

R := sup
(s,v)∈[0,T ]×(|v|≤R)

k∑
i=1

|∂vG i (s, v)| < ∞ .

We put without loss of generality that G i (·, 0) = 0 for every i ∈ {1, . . . , k}.

Assumption 5.2. The driver F defined by F(s, y, z, ψ) := f (s, y, z,
∫
R0
ρ(x)G(s, ψ(x))ν(dx))

for s ∈ [0, T ], y ∈ R, z ∈ Rd , ψ ∈ L2(E, ν;Rk) and the data (ξ, l) satisfies both
Assumptions 3.1 and 4.1.
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Assumption 5.3. For each M > 0, and for every (y, z, ψ), (y′, z′, ψ ′) ∈ R×Rd
×L2(E, ν;Rk)

satisfying |y|, |y′
|, ∥ψ∥L∞(ν), ∥ψ

′
∥L∞(ν) ≤ M , there exists some positive constant KM possibly

depending on M such that⏐⏐ f
(
t, y, z, ut

)
− f

(
t, y′, z′, u′

t

)⏐⏐ ≤ KM
(
|y − y′

| + |ut − u′

t |
)

+ KM
(
1 + |z| + |z′

| + |ut | + |u′

t |
)
|z − z′

|

dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ], where we have used ut :=
∫
R0
ρ(x)G(t, ψ(x))ν(dx) and

u′
t :=

∫
R0
ρ(x)G(t, ψ ′(x))ν(dx) for notational simplicity.

Remark 5.2. In the above assumption, using the fact that

|ut | ≤ ∥ρ∥L2(ν)G
′

M∥ψ∥L2(ν), |ut − u′

t | ≤ ∥ρ∥L2(ν)G
′

M∥ψ − ψ ′
∥L2(ν) ,

one can see the consistency with Assumption 3.2. Therefore, under Assumptions 5.1–5.3, there
exists a unique solution (Y, Z , ψ) ∈ S∞

× H2
B M O × J2

B M O to the BSDE (5.1) by Theorem 4.1.

For Malliavin differentiability, we need the following additional assumptions:

Assumption 5.4. With the notation ut =
∫
R0
ρ(x)G(t, ψ(x))ν(dx), u′

t =
∫
R0
ρ(x)G(t,

ψ ′(x))ν(dx),
(i) The terminal value is Malliavin differentiable; ξ ∈ D1,2.
(ii) For each M > 0, and for every (y, z, ψ) ∈ R×Rd

×L2(E, ν;Rk) satisfying |y|, ∥ψ∥L∞(ν) ≤

M , the driver
(

f (t, y, z, ut ), t ∈ [0, T ]
)

belongs to L1,2(R) and its Malliavin derivative is denoted
by (Ds,z f )(t, y, z, ut ). Furthermore, the driver f is one-time continuously differentiable with
respect to its spacial variables with continuous derivatives.
(iii) For every Wiener as well as jump direction, for every M > 0 and dP ⊗ dt-a.e.
(ω, t) ∈ Ω × [0, T ], and for every (y, z, ψ), (y′, z′, ψ ′) ∈ R × Rd

× L2(E, ν;Rk) satisfying
|y|, |y′

|, ∥ψ∥L∞(ν), ∥ψ
′
∥L∞(ν) ≤ M , the Malliavin derivative of the driver satisfies the following

local Lipschitz conditions;⏐⏐(Di
s,0 f )(t, y, z, ut ) − (Di

s,0 f )(t, y′, z′, u′

t )
⏐⏐

≤ K M,i
s,0 (t)

(
|y − y′

| + |ut − u′

t | + (1 + |z| + |z′
| + |ut | + |u′

t |)|z − z′
|
)

for ds-a.e. s ∈ [0, T ] with i ∈ {1, . . . , d}, and⏐⏐(Di
s,z f )(t, y, z, ut ) − (Di

s,z f )(t, y′, z′, u′

t )
⏐⏐

≤ K M,i
s,z (t)

(
|y − y′

| + |ut − u′

t | + (1 + |z| + |z′
| + |ut | + |u′

t |)|z − z′
|
)

for mi (dz)ds-a.e. (s, z) ∈ [0, T ] × R0 with i ∈ {1, . . . , k}. For every M > 0 and (s, z),(
K M,i

s,0 (t), t ∈ [0, T ]
)

i∈{1,...,d}
and

(
K M,i

s,z (t), t ∈ [0, T ]
)

i∈{1,...,k}
are R+-valued F-progressively

measurable processes.
(iv) There exists some positive constant p ≥ 2 such that∫

Ẽ

(
E

[
|Ds,zξ |

pq
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)pq
+ ∥K M

s,z∥
2pq
T

]) 1
q

q(ds, dz) < ∞

hold for ∀q ≥ 1 and ∀M > 0.

Remark 5.3. Assumption 5.4(iv) implies, for each (s, z) in Ẽ q(ds, dz)-a.e.,

E
[
|Ds,zξ |

p′

+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)p′

+ ∥K M
s,z∥

2p′

T

]
< ∞
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for ∀p′
≥ 2. In particular, K M

s,0 ∈ Sp′

for ds-a.e. s ∈ [0, T ] and K M
s,z ∈ Sp′

for z2ν(dz)ds-a.e.
(s, z) ∈ [0, T ] × R0 for ∀p′

≥ 2.

We now give the main result of this section.

Theorem 5.1. Suppose that Assumptions 5.1–5.4 hold true and denote the solution to the
BSDE (5.1) as (Y, Z , ψ) ∈ S∞

× H2
B M O × J2

B M O . Then, the following statements hold: (a)
For each Wiener direction i ∈ {1, . . . , d} and ds-a.e. s ∈ [0, T ], there exists a unique solution
(Y s,0,i , Z s,0,i , ψ s,0,i ) ∈ Kp′

[0, T ] with ∀p′
≥ 2 to the BSDE

Y s,0,i
t = Di

s,0ξ +

∫ T

t
f s,0,i (r )dr −

∫ T

t
Z s,0,i

r dWr −

∫ T

t

∫
E
ψ s,0,i

r (x)µ̃(dr, dx) (5.2)

for 0 ≤ s ≤ t ≤ T , where

f s,0,i (r ) := (Di
s,0 f )(r,Θr ) + ∂Θ f (r,Θr )Θ s,0,i

r

:= (Di
s,0 f )(r,Θr ) + ∂y f (r,Θr )Y s,0,i

r + ∂z f (r,Θr )Z s,0,i
r

+ ∂u f (r,Θr )
∫

E
ρ(x)∂vG(r, ψr (x))ψ s,0,i

r (x)ν(dx) .

The solution also satisfies
∫ T

0 ∥(Y s,0,i , Z s,0,i , ψ s,0,i )∥p
Kp[0,T ]ds < ∞ .

(b) For each jump direction i ∈ {1, . . . , k} and mi (dz)ds-a.e (s, z) ∈ [0, T ] × R0, there exists a
unique solution (Y s,z,i , Z s,z,i , ψ s,z,i ) ∈ S∞

× H2
B M O × J2

B M O to the BSDE

Y s,z,i
t = Di

s,zξ +

∫ T

t
f s,z,i (r )dr −

∫ T

t
Z s,z,i

r dWr −

∫ T

t

∫
E
ψ s,z,i

r (x)µ̃(dr, dx) (5.3)

for 0 ≤ s ≤ t ≤ T and z ̸= 0, where

f s,z,i (r ) :=
1
z

(
f (ωs,z, r,Θr + zΘ s,z,i

r ) − f (ω, r,Θr )
)

:=
1
z

{
f
(
ωs,z, r, Yr + zY s,z,i

r

, Zr + zZ s,z,i
r ,

∫
R0

ρ(x)G
(
r, ψr (x) + zψ s,z,i

r (x)
)
ν(dx)

)
− f (ω, r,Θr )

}
.

The solution also satisfies
∫ T

0

∫
R ∥(Y s,z,i , Z s,z,i , ψ s,z,i )∥p

Kp[0,T ]m
i (dz)ds < ∞ .

(c) The solution of the BSDE (5.1) is Malliavin differentiable (Y, Z , ψ) ∈ L1,2
× L1,2

× L1,2.
Put, for every i , Y s,·,i

t = Z s,·,i
t = ψ

s,·,i
t (·) ≡ 0 for t < s ≤ T , then

(
(Y s,z,i

t , Z s,z,i
t , ψ

s,z,i
t (x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)

is a version of the Malliavin derivative
(
(Di

s,zYt , Di
s,z Z t , Di

s,zψt (x)),
0 ≤ s, t ≤ T, x ∈ R0, z ∈ R

)
for every Wiener and jump direction.

Proof. Firstly, from Assumptions 5.1–5.3, Theorem 4.1 tells us that there exists a unique solution
(Y, Z , ψ) ∈ S∞

× H2
B M O × J2

B M O to the BSDE (5.1). Since ∥Y∥S∞ , ∥ψ∥J∞ are bounded by the
universal bounds, one can choose a constant M > 0 big enough so that the local Lipschitz
conditions hold true for the whole relevant range. We choose one such M and fix it throughout
the proof. We also omit the superscript i denoting the direction of derivative by assuming that
we always discuss each direction separately.

Proof for (a): Firstly, the continuous differentiability of f and the local Lipschitz conditions
imply that, for the relevant range of variables,

|∂y f (t, y, z, ut )| ≤ KM , |∂u f (t, y, z, ut )| ≤ KM ,

|∂z f (t, y, z, ut )| ≤ KM (1 + 2|z| + 2|ut |) . (5.4)
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It is easy to check that the BSDE (5.2) satisfies Assumption A.2. Indeed, its second condition
follows from the relation

|(Ds,0 f )(r,Θr )| ≤ |(Ds,0 f )(r, 0)| + K M
s,0(|Yr | + ∥ρ∥L2(ν)G

′

M∥ψr∥L2(ν))

+ K M
s,0(1 + |Zr | + ∥ρ∥L2(ν)G

′

M∥ψr∥L2(ν))|Zr | ,

Lemma 2.2 and Remark 5.3. Thus, Theorem A.1 implies that there exists a unique solution
(Y s,0, Z s,0, ψ s,0) ∈ Kp′

[0,T ] to the BSDE (5.2) satisfying

∥(Y s,0, Z s,0, ψ s,0)∥
p′

Kp′ ≤ C p′

(
1 + E

[
|Ds,0ξ |

p′q̄2
+

(∫ T

0
|(Ds,0 f )(r, 0)|dr

)p′q̄2

+ ∥K M
s,0∥

2p′q̄2

T + ∥Y∥
2p′q̄2

T +

(∫ T

0
|Zr |

2dr
)2p′q̄2

+

(∫ T

0
∥ψr∥

2
L2(ν)dr

)2p′q̄2]) 1
q̄2 < ∞,

for ∀p′
≥ 2, where C p′ and q̄ > 1 are positive constants. Assumption 5.4(iv) also gives the 2nd

claim
∫ T

0 ∥(Y s,0, Z s,0, ψ s,0)∥p
Kp[0,T ]ds < ∞ .

Proof for (b): Let us first consider the BSDE

Y s,z
t = ξ (ωs,z) +

∫ T

t
f
(
ωs,z, r,Y s,z

r ,Zs,z
r ,

∫
R0

ρ(x)G(r,Ψ s,z
r (x))ν(dx)

)
dr

−

∫ T

t
Zs,z

r dWr −

∫ T

t

∫
E
Ψ s,z

r (x)µ̃(dr, dx) . (5.5)

For every (s, z) ∈ [0, T ] × R0, m(dz)ds-a.e, Assumption 5.1, 5.2, 5.3 are all satisfied. Thus,
by Theorem 4.1, there exists a unique solution (Y s,z,Zs,z,Ψ s,z) ∈ S∞

× H2
B M O × J2

B M O to the
BSDE (5.5) satisfying the universal bounds. Now, let us define for z ∈ R0,

Y s,z
:=

Y s,z
− Y

z
, Z s,z

:=
Zs,z

− Z
z

, ψ s,z
:=

Ψ s,z
− ψ

z
,

and then (Y s,z, Z s,z, ψ s,z) ∈ S∞
×H2

B M O ×J2
B M O is the unique solution to the BSDE (5.3). Note

that Ds,zξ :=
1
z (ξ (ωs,z) − ξ (ω)).

We use a new collective argument Ξ s,z
r :=

(
Y s,z

r ,Zs,z
r ,

∫
R0
ρ(x)G(r,Ψ s,z

r (x))ν(dx)
)
. Let us

introduce

f s,z(r ) :=
1
z

(
f (ωs,z, r,Ξ s,z

r ) − f (ω, r,Θr )
)

= (Ds,z f )(r,Θr ) +
f (ωs,z, r,Ξ s,z

r ) − f (ωs,z, r,Θr )
z

,

a d-dimensional F-progressively measurable process (bs,z
r , r ∈ [0, T ]),

bs,z
r (ω) :=

1

|Zs,z
r − Zr |

2

{
f
(
ωs,z, r, Yr ,Zs,z

r ,

∫
R0

ρ(x)G(r, ψr (x))ν(dx)
)

− f
(
ωs,z, r, Yr , Zr ,

∫
R0

ρ(x)G(r, ψr (x))ν(dx)
)}

1Zs,z
r −Zr ̸=0(Zs,z

r − Zr )
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and also the map f̃ s,z
: Ω × [0, T ] × R × L2(E, ν;Rk) → R,

f̃ s,z(ω, r, ỹ, ψ̃) := (Ds,z f )(r,Θr )

+
1
z

{
f
(
ωs,z, r, z ỹ + Yr ,Zs,z

r ,

∫
R0

ρ(x)G(r, zψ̃(x) + ψr (x))ν(dx)
)

− f
(
ωs,z, r, Yr ,Zs,z

r ,

∫
R0

ρ(x)G(r, ψr (x))ν(dx)
)}
.

Then, (Y s,z, Z s,z, ψ s,z) can also be expressed as a solution to the BSDE

Y s,z
t = Ds,zξ +

∫ T

t

(
f̃ s,z(r, Y s,z

r , ψ s,z
r ) + bs,z

r · Z s,z
r

)
dr

−

∫ T

t
Z s,z

r dWr −

∫ T

t

∫
E
ψ s,z

r (x)µ̃(dr, dx) .

It is straightforward to check that Assumption A.1 is satisfied. Thus, Lemma A.1 gives

∥(Y s,z, Z s,z, ψ s,z)∥p′

Kp′

≤ C p′

(
1 + E

[
|Ds,zξ |

p′q̄2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)p′q̄2

+ ∥K M
s,z∥

2p′q̄2

T

+ ∥Y∥
2p′q̄2

T +

(∫ T

0
|Zr |

2dr
)2p′q̄2

+

(∫ T

0
∥ψr∥

2
L2(ν)dr

)2p′q̄2]) 1
q̄2 < ∞

for ∀p′
≥ 2, where C p′ and q̄ > 1 are the positive constants. Choosing p′

= p, one can show∫ T
0

∫
R ∥(Y s,z, Z s,z, ψ s,z)∥p

Kp m(dz)ds < ∞ from Assumption 5.4(iv), which proves the second
claim of (b). Note that, we also have

∫
Ẽ ∥(Y s,z, Z s,z, ψ s,z)∥p

Kp q(ds, dz) < ∞ by combining the
results (a) and (b).

Proof for (c): First step (Approximating sequence of globally Lipschitz BSDEs)
We finally proceed to the proof for (c). Firstly, let us define for each m ∈ N

Gm(s, ψ(x)) := G(s, ϕm(ψ ◦ ζm(x))), fm(s, y, z, u) := f (s, ϕm(y), ϕm(z), u)

where ϕm is the smooth truncation function defined in (4.2), and ψ ◦ ζm(x) := ψ(x)1|x |≥1/m ,
which are applied component-wise for z and ψ . Let us now define a sequence of regularized
drivers (Fm,m ∈ N) by Fm(s, y, z, ψ) := fm

(
s, y, z,

∫
R0
ρ(x)Gm(s, ψ(x))ν(dx)

)
for s ∈

[0, T ], y ∈ R, z ∈ Rd , ψ ∈ L2(E, ν;Rk). Note that

∥ϕm(ψ ◦ ζm)∥2
L2(ν) =

∫
E

|ϕm(ψ ◦ ζm(x))|2ν(dx) ≤ (m + 1)2Cm

where Cm := kmax1≤i≤k
∫
R0

1|x |≥1/mν
i (dx). Combined with Assumption 5.3 and Remarks 5.2,

one sees Fm is globally Lipschitz for each m ∈ N. One can also check |Fm | is bounded. Thus,
for each m ∈ N, there exists a unique solution (Y m, Zm, ψm) of the BSDE

Y m
= ξ +

∫ T

t
Fm(s, Y m

s , Zm
s , ψ

m
s )ds −

∫ T

t
Zm

s dWs −

∫ T

t

∫
E
ψm

s (x)µ̃(ds, dx), (5.6)

with Y m
∈ S∞. Moreover, the convexity of positive function jγ (·) and Assumption 5.2 imply

that Fm satisfy the Qexp-structure condition uniformly in m. Therefore, (Y m, Zm, ψm) satisfies
the universal bounds of Lemmas 3.1 and 3.2. Since ∥Y m

∥S∞ and ∥ψm
∥J∞ are bounded uniformly

in m, the truncation ϕm for (y, ψ) becomes irrelevant provided m is large enough. Thus, for large
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m, (Y m, Zm, ψm) also consists of a unique bounded solution7 to the BSDE with data (ξ, F̃m)
where

F̃m(s, y, z, ψ) := f
(

s, y, ϕm(z),
∫
R0

ρ(x)G(s, ψ ◦ ζm(x))ν(dx)
)
.

Since (F̃m) satisfies AΓ -condition uniformly in m, and also F̃m → F locally uniformly in the
spacial variables, Proposition 4.2 implies Y m

→ Y in S∞, Zm
→ Z in H2

B M O and ψm
→ ψ

in J2
B M O where (Y, Z , ψ) is a unique solution of the BSDE (5.1). One can also check that, for

each m ∈ N, the BSDE (5.6) satisfies Assumptions C.1 as well as C.2. Therefore Theorem C.1
implies that the approximating BSDEs are Malliavin differentiable and (Y m, Zm, ψ

m
) ∈ (L1,2)3

for ∀m ∈ N.

Second step (Uniform boundedness of L1,2-norm of the approximating BSDEs)
From the first step, one can define the Malliavin derivatives of (Y m, Zm, ψm) for every m ∈ N
as the solution to the following BSDEs: For every Wiener direction i ∈ {1, . . . , d}, ds-a.e.
s ∈ [0, T ] and s ≤ t ≤ T ,

Di
s,0Y m

t = Di
s,0ξ +

∫ T

t
Di

s,0 fm(r )dr −

∫ T

t
Di

s,0 Zm
r dWr −

∫ T

t

∫
E

Di
s,0ψ

m
r (x)µ̃(dr, dx),

Di
s,0 fm(r ) := (Ds,0 fm)(r,Θm

r ) + ∂Θ fm(r,Θm
r )Di

s,0Θ
m
r , (5.7)

and for jump direction i ∈ {1, . . . , k}, mi (dz)ds-a.e. (s, z) ∈ [0, T ] × R0 and s ≤ t ≤ T ,

Di
s,zY m

t = Di
s,zξ +

∫ T

t
Di

s,z fm(r )dr −

∫ T

t
Di

s,z Zm
r dWr −

∫ T

t

∫
E
ψm

r (x)µ̃(dr, dx),

Di
s,z fm(r ) :=

1
z

(
fm(ωs,z, r,Θm

r + zDi
s,zΘ

m
r ) − fm(ω, r,Θm

r )
)

= (Di
s,z fm)(r,Θm

r ) +
1
z

(
fm(ωs,z, r,Θm

r + zDi
s,zΘ

m
r ) − fm(ωs,z, r,Θm

r )
)
. (5.8)

Here, we have defined Θm
r :=

(
Y m

r , Zm
r ,

∫
R0
ρ(x)Gm(r, ψm

r (x))ν(dx)
)

for r ∈ [0, T ] and
slightly abused its notation in such a way that fm(ωs,z, r,Θm

r + zDi
s,zΘ

m
r ) := fm

(
ωs,z, r, Y m

r +

zDi
s,zY m

r , Zm
r + zDi

s,z Zm
r ,

∫
R0
ρ(x)Gm

(
r, ψm

r (x) + zDi
s,zψ

m
r (x)

)
ν(dx)

)
to save the space. For

0 ≤ t < s, one has Ds,zΘ
m
t ≡ 0.

One can check that the unique solution of (5.7) satisfies (Ds,0Y m, Ds,0 Zm, Ds,0ψ
m) ∈

Kp′

[0, T ] for ∀p′
≥ 2 by Theorem A.1. Let us also define (for each direction i ∈ {1, . . . , k})

Ym
s,z(t) := Y m

t + zDs,zY m
t , Zm

s,z(t) := Zm
t + zDs,z Zm

t ,

Ψm
s,z(t, ·) := ψm

t (·) + zDs,zψ
m
t (·) ,

for (s, z) ∈ [0, T ] × R0 and t ∈ [0, T ], and denote its collective argument as Ξ m
s,z(t) :=(

Ym
s,z(t),Zm

s,z(t),
∫
R0
ρ(x)Gm(t,Ψm

s,z(t, x))ν(dx)
)
. Note that (Ym

s,z,Zm
s,z,Ψ

m
s,z) is a solution to a

Lipschitz BSDE (5.5) with f,G replaced by fm,Gm . Since it satisfies the structure condition
uniformly in m, (Ym

s,z,Zm
s,z,Ψ

m
s,z) satisfies the universal bounds. It then shows (Ds,zY m, Ds,z Zm,

Ds,zψ
m) ∈ S∞

× H2
B M O × J2

B M O for z ̸= 0. Moreover, by the same analysis given in the
first step, one observes the convergence (Ym

s,z,Zm
s,z,Ψ

m
s,z) → (Y s,z,Zs,z,Ψ s,z) in the space

S∞
× H2

B M O × J2
B M O .

7 Using the universal bounds, uniqueness is checked similarly as in the standard Lipschitz BSDE.
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By the same arguments used in the proofs for (a) and (b), one can apply Theorem A.1 to the
BSDE (5.7) and Lemma A.1 to the BSDE (5.8) to obtain(Ds,zY m, Ds,z Zm, Ds,zψ

m)
p′

Kp′ [0,T ]

≤ C p′

(
1 + E

[
|Ds,zξ |

p′q̄2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)p′q̄2

+ ∥Ks,z∥
2p′q̄2

T

+ ∥Y m
∥

2p′q̄2

T +

(∫ T

0
|Zm

r |
2dr

)2p′q̄2

+

(∫ T

0
∥ψm

r ∥
2
L2(ν)dr

)2p′q̄2]) 1
q̄2

with ∀p′
≥ 2, for the Wiener (z = 0) as well as the jump (z ̸= 0) directions. Here, C p′ and q̄ > 1

are positive constants independent of m. Assumption 5.4(iv), the universal bounds for Θm and
the energy inequality give∫

Ẽ
sup
m∈N

(Ds,zY m, Ds,z Zm, Ds,zψ
m)

p
Kp[0,T ]q(ds, dz) < ∞ . (5.9)

It then easily follows that L1,2-norm of (Y m, Zm, ψ
m

) is bounded uniformly in m. The estimate
(5.9) also gives

k∑
i=1

∫ T

0

∫
|z|>ϵ

(Di
s,zY m, Di

s,z Zm, Di
s,zψ

m)
p
Kp[0,T ]m

i (dz)ds

→

k∑
i=1

∫ T

0

∫
R0

(Di
s,zY m, Di

s,z Zm, Di
s,zψ

m)
p
Kp[0,T ]m

i (dz)ds (5.10)

as ϵ ↓ 0 uniformly in m ∈ N by the Lebesgue’s dominated convergence theorem.

Third step (Convergence of Ds,0Θ
m

→ Θ s,0)
For ds-a.e. s ∈ [0, T ] and m ∈ N, set

∆s,0Y m
:= Y s,0

− Ds,0Y m, ∆s,0 Zm
:= Z s,0

− Ds,0 Zm, ∆s,0ψm
:= ψ s,0

− Ds,0ψ
m

and then (∆s,0Y m,∆s,0 Zm,∆s,0ψm) ∈ Kp′

[0, T ] with ∀p′
≥ 2 is the unique solution to the

BSDE

∆s,0Y m
t =

∫ T

t

(
f s,0(r ) − Ds,0 fm(r )

)
dr −

∫ T

t
∆s,0 Zm

r dWr

−

∫ T

t

∫
E
∆s,0ψm

r (x)µ̃(dr, dx) .

We claim

lim
m→∞

∫ T

0

(∆s,0Y m,∆s,0 Zm,∆s,0ψm)
p
Kp[0,T ]ds = 0 . (5.11)

The proof is straightforward and we give the details in Appendix D.1.

Fourth step (Convergence of Ds,zΘ
m

→ Θ s,z (z ̸= 0))
For each direction of jump, let us put

∆s,zY m
:= Y s,z

− Ds,zY m, ∆s,z Zm
= Z s,z

− Ds,z Zm, ∆s,zψm
= ψ s,z

− Ds,zψ
m .
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Then, (∆s,zY m,∆s,z Zm,∆s,zψm) ∈ S∞
× H2

B M O × J2
B M O is the unique solution to

∆s,zY m
t =

∫ T

t

(
f s,z(r ) − Ds,z fm(r )

)
dr −

∫ T

t
∆s,z Zm

r dWr

−

∫ T

t

∫
E
∆s,zψm

r (x)µ̃(dr, dx) ,

with t ∈ [0, T ]. As in the third step, we claim

lim
m→0

∫ T

0

∫
R0

(∆s,zY m,∆s,z Zm,∆s,zψm)
p
Kp[0,T ]m(dz)ds = 0. (5.12)

The proof is tedious but straightforward and we give the details in Appendix D.2.

Final step
From the previous steps, one sees (Y m, Zm, ψ

m
) converges to

(
(Y, Z , ψ), (Y s,z, Z s,z, ψ

s,z
)
)

in L2(0, T ;D1,2) = L1,2. The closability of the Malliavin derivatives in L1,2 (see Theorem
12.6 in [16]), one concludes (Y, Z , ψ) ∈ L1,2 and that (Y s,z, Z s,z, ψ s,z) is a version of
(Ds,zY, Ds,z Z , Ds,zψ). □

Corollary 5.1. Under the assumptions of Theorem 5.1, we have
(i)

(
(Di

t,0Yt )P , t ∈ [0, T ]
)

is a version of
(

Z i
t , t ∈ [0, T ]

)
for i ∈ {1, . . . , d},

(ii)
(

(zDi
t,zYt )P , (t, z) ∈ [0, T ] × R0

)
is a version of

(
ψ i

t (z), (t, z) ∈ [0, T ] × R0

)
for

i ∈ {1, . . . , k},
where (·)P denotes the predictable projection of a process.

Proof. See Corollary 4.1 in [15]. □

6. An application: Markovian forward–backward system

6.1. Forward SDE

As an important application, we consider a Qexp-growth BSDE driven by an n-dimensional
Markovian process

(
X t,x

s , s ∈ [0, T ]
)

defined by the next SDE:

X t,x
s = x +

∫ s

t
b(r, X t,x

r )dr +

∫ s

t
σ (r, X t,x

r )dWr +

∫ s

t

∫
E
γ (r, X t,x

r−, e)µ̃(dr, de) (6.1)

for s ∈ [t, T ] and put X t,x
s ≡ x for s < t . Here, x ∈ Rn , b : [0, T ] × Rn

→ Rn ,
σ : [0, T ] × Rn

→ Rn×d and γ : [0, T ] × Rn
× E → Rn×k . Let us introduce η : R → R+ by

η(e) = 1 ∧ |e|.

Assumption 6.1. The functions b(t, x), σ (t, x) and γ (t, x, e) are continuous in all their argu-
ments and one-time continuously differentiable with respect to x with continuous derivatives.
Furthermore, there exists some positive constant K such that
(i) |b(t, 0)| + |σ (t, 0)| ≤ K uniformly in t ∈ [0, T ].
(ii) |∂x b(t, x)| + |∂xσ (t, x)| ≤ K uniformly in (t, x) ∈ [0, T ] × Rn .
(iii) For each column vector i ∈ {1, . . . , k}, |γ i (t, 0, e)| ≤ Kη(e) uniformly in (t, e) ∈

[0, T ] × R0.
(iv) For each column vector i ∈ {1, . . . , k}, |∂xγ

i (t, x, e)| ≤ Kη(e) uniformly in (t, x, e) ∈

[0, T ] × Rn
× R0.
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We have the following result:

Proposition 6.1. Under Assumption 6.1, there exists a unique solution X t,x
∈ Sp[0, T ] with

∀p ≥ 2 for every initial data (t, x) ∈ [0, T ] × Rn . Furthermore, the process X t,x is Malliavin

differentiable X t,x
∈ L1,2 and satisfies, for ∀p ≥ 2,∫

Ẽ
E

[
∥Du,z X t,x

∥
p
T

]
q(du, dz) ≤ C(1 + |x |

p)

with some positive constant C depending only on (p, T, K ).

Proof. The fact that X t,x
∈ Sp[0, T ] with ∀p ≥ 2 is rather standard. See, for example, Lemma

A.3 in [17]. The existence of Malliavin derivative follows from Theorem 3 of Petrou (2008) [37].
This implies, for u ∈ [t, s] and i ∈ {1, . . . , d},

Di
u,0 X t,x

s = σ i (u, X t,x
u ) +

∫ s

u
∂x b(r, X t,x

r )Di
u,0 X t,x

r dr +

∫ s

u
∂xσ (r, X t,x

r )Di
u,0 X t,x

r dWr

+

∫ s

u

∫
E
∂xγ (r, X t,x

r−, e)Di
u,0 X t,x

r µ̃(dr, de) ,

and for (u, z) ∈ [t, s] × R0 and i ∈ {1, . . . , k},

Di
u,z X t,x

s =
γ i (u, X t,x

u−, z)
z

+

∫ s

u
Di

u,zb(r, X t,x
r )dr +

∫ s

u
Di

u,zσ (r, X t,x
r )dWr

+

∫ s

u

∫
E

Di
u,zγ (r, X t,x

r−, e)µ̃(dr, de) ,

where both σ i and γ i denote the i th column vectors of dimension n, and for ϕ = b, σ, γ ,

Di
u,zϕ(r, X t,x

r ) :=
ϕ(r, X t,x

r + zDi
u,z X t,x

r ) − ϕ(r, X t,x
r )

z
.

By Lemma A.3 [17], the above SDEs satisfy the a priori estimates

E
[
∥Du,0 X t,x

∥
p
T

]
≤ C p,T,KE

[
|σ (u, X t,x

u )|p
]

≤ C p,T,KE
[
|σ (u, 0)|p

+ ∥X t,x
∥

p
T

]
≤ C p,T,K (1 + |x |

p)

and

E
[
∥Du,z X t,x

∥
p
T

]
≤ C p,T,KE

[⏐⏐⏐γ (u, X t,x
u−, z)

z

⏐⏐⏐p]
≤ C p,T,KE

[⏐⏐⏐γ (u, 0, z)
z

⏐⏐⏐p

+ ∥X t,x
∥

p
T

]
≤ C p,T,K (1 + |x |

p) .

Since q(du, dz) on Ẽ is a finite measure, the claim is proved. □
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6.2. Qexp-growth BSDE driven by X t,x

In many applications, there appears a BSDE driven by a Markovian forward process. Let us
consider a Qexp-BSDE driven by the process

(
X t,x

s , s ∈ [0, T ]
)

introduced in the last section;

Y t,x
s = ξ (X t,x

T ) +

∫ T

s
f
(

r, X t,x
r , Y t,x

r , Z t,x
r ,

∫
R0

ρ(e)G(r, ψr (e))ν(de)
)

dr

−

∫ t

s
Z t,x

r dWr −

∫ T

s

∫
E
ψ t,x

r (e)µ̃(dr, de) (6.2)

for s ∈ [t, T ] and put (Y t,x
s , Z t,x

s , ψ t,x
s ) ≡ (Y t,x

t , 0, 0) for s < t . Here, ξ : Rn
→ R,

f : [0, T ] ×Rn
×R×Rd

×Rk
→ R are measurable functions. We treat Z and ψ as row vectors

for notational simplicity. In this setup, the driver f is deterministic without explicit dependence
on ω, which is now provided by the dependence on X t,x .

Assumption 6.2. (i) For every (x, y, z, ψ) ∈ Rn
× R × Rd

× L2(E, ν;Rk), there exist two
positive constants β ≥ 0, γ > 0 and the non-negative measurable function l : [0, T ] → R+ such
that the measurable function f satisfies

−lt − β|y| −
γ

2
|z|2 −

∫
E

jγ
(
−ψ(e)

)
ν(de) ≤ f

(
t, x, y, z,

∫
R0

ρ(e)G(t, ψ(e))ν(de)
)

≤ lt + β|y| +
γ

2
|z|2 +

∫
E

jγ
(
ψ(e)

)
ν(de)

dt-a.e. t ∈ [0, T ], where jγ (u) :=
1
γ

(
eγ u

− 1 − γ u
)
. (ii) |ξ (x)| + lt is bounded uniformly in

(t, x) ∈ [0, T ] × Rn . (iii) F(t, x, y, z, ψ) := f
(
t, x, y, z,

∫
R0
ρ(e)G(t, ψ(e))ν(de)

)
satisfies the

AΓ -condition (Assumption 4.1).

Assumption 6.3. For each M > 0, for every x ∈ Rn and (y, z, ψ), (y′, z′, ψ ′) ∈ R × Rd
×

L2(E, ν;Rk) satisfying

|y|, |y′
|, ∥ψ∥L∞(ν), ∥ψ

′
∥L∞(ν) ≤ M,

there exists some positive constant KM (possibly dependent on M) such that⏐⏐ f (t, x, y, z, ut ) − f (t, x, y′, z′, u′

t )
⏐⏐

≤ KM
(
|y − y′

| + |ut − u′

t |
)
+ KM

(
1 + |z| + |z′

| + |ut | + |u′

t |
)
|z − z′

|

with the short-hand notation ut :=
∫
R0
ρ(e)G(t, ψ(e))ν(de) and u′

t :=
∫
R0
ρ(e)G(t, ψ ′(e))ν(de) .

Lemma 6.1. Under Assumptions 5.1 and 6.1–6.3, there exists a unique solution (Y t,x , Z t,x , ψ t,x )
∈ S∞

[0,T ] × H2
B M O[0,T ] × J2

B M O[0,T ] to the BSDE (6.2) for every (t, x) ∈ [0, T ] × Rn .

Proof. This is a special case of Theorem 4.1. □

We denote Θ t,x
r :=

(
Y t,x

r , Z t,x
r ,

∫
R0
ρ(e)G(r, ψ t,x

r (e))ν(de)
)

as a collective argument of the
solution indexed by the initial data (t, x).

Assumption 6.4. (i) ξ and the driver f are one-time continuously differentiable with respect to
the spacial variables with continuous derivatives.
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(ii) There exists some positive constant K such that |∂xξ (x)| ≤ K as well as |∂x f (t, x, 0, 0, 0)| ≤

K uniformly in (t, x) ∈ [0, T ] × Rn .
(iii) For each M > 0, for every x ∈ Rn and (y, z, ψ), (y′, z′, ψ ′) ∈ R × Rd

× L2(E, ν;Rk)
satisfying

|y|, |y′
|, ∥ψ∥L∞(ν), ∥ψ

′
∥L∞(ν) ≤ M,

there exists some positive constant KM (possibly dependent on M) such that⏐⏐∂x f (t, x, y, z, ut ) − ∂x f (t, x, y′, z′, u′

t )
⏐⏐

≤ KM
(
|y − y′

| + |ut − u′

t |
)
+ KM

(
1 + |z| + |z′

| + |ut | + |u′

t |
)
|z − z′

|

with the short-hand notation ut :=
∫
R0
ρ(e)G(t, ψ(e))ν(de) and u′

t :=
∫
R0
ρ(e)G(t, ψ ′(e))ν(de) .

One sees that Assumption 6.4, together with Assumption 6.3, implies

|∂x f (t, x, y, z, ut )| ≤ C KM
(
1 + |y| + |z|2 + |ut |

2), |∂y f (t, x, y, z, ut )| ≤ KM ,

|∂z f (t, x, y, z, ut )| ≤ KM
(
1 + 2|z| + 2|ut |

)
, |∂u f (t, x, y, z, ut )| ≤ KM ,

where C is some positive constant.

Theorem 6.1. Under Assumptions 5.1 and 6.1–6.4, the solution of the BSDE (6.2) is Malliavin
differentiable (Y t,x , Z t,x , ψ

t,x
) ∈ L1,2

× L1,2
× L1,2 for every initial data (t, x) ∈ [0, T ] × Rn .

(i) A version of
(
(Di

s,0Y t,x
r , Di

s,0 Z t,x
r , Di

s,0ψ
t,x
r (e)), 0 ≤ s, r ≤ T, e ∈ R0

)
i∈{1,...,d}

is the unique
solution to the BSDE

Di
s,0Y t,x

u = Di
s,0 Z t,x

u = Di
s,0ψ

t,x
u (·) = 0, 0 ≤ u < s ≤ T,

Di
s,0Y t,x

u = ∂xξ (X t,x
T )Di

s,0 X t,x
T +

∫ T

u
f s,0,i (r )dr −

∫ T

u
Di

s,0 Z t,x
r dWr

−

∫ T

u

∫
E

Di
s,0ψ

t,x
r µ̃(dr, de), u ∈ [s, T ]

where f s,0,i (r ) := ∂x f (r, X t,x
r ,Θ t,x

r )Ds,0 X t,x
r + ∂Θ f (r, X t,x

r ,Θ t,x
r )Ds,0Θ

t,x
r . Moreover, for a

given ds-a.e. s ∈ [0, T ], (Di
s,0Y t,x , Di

s,0 Z t,x , Di
s,0ψ

t,x ) ∈ Kp[0, T ] with ∀p ≥ 2.
(ii) A version of

(
(Di

s,zY t,x
r , Di

s,z Z t,x
r , Di

s,zψ
t,x
r (e)), 0 ≤ s, r ≤ T, e, z ∈ R0

)
i∈{1,...,k}

is the unique
solution to the BSDE

Di
s,zY t,x

u = Di
s,z Z t,x

u = Di
s,zψ

t,x
u (·) = 0, 0 ≤ u < s ≤ T,

Di
s,zY t,x

u = ξ s,z,i
+

∫ T

u
f s,z,i (r )dr −

∫ T

u
Di

s,z Z t,x
r dWr −

∫ T

u

∫
E

Di
s,zψ

t,x
r (e)µ̃(dr, de) ,

for u ∈ [s, T ] where

ξ s,z,i
:=
ξ (X t,x

T + zDi
s,z X t,x

T ) − ξ (X t,x
T )

z
,

f s,z,i (r ) :=
1
z

{
f
(

r, X t,x
r + zDi

s,z X t,x
r , Y t,x

r + zDi
s,zY t,x

r , Z t,x
r + zDi

s,z Z t,x
r

,

∫
R0

ρ(e)G(r, ψ t,x
r (e) + zDi

s,zψ
t,x
r (e))ν(e)de

)
− f (r, X t,x

r ,Θ t,x
r )

}
.

Moreover, for a given mi (dz)ds-a.e. (s, z) ∈ [0, T ] × R0, (Di
s,zY t,x , Di

s,z Z t,x , Di
s,zψ

t,x ) ∈

S∞[0, T ] × H2
B M O [0, T ] × J2

B M O [0, T ].
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Proof. It suffices to check Assumption 5.4 to hold so that Theorem 5.1 can be applied. (i), (ii)
are obviously satisfied due to the Malliavin’s differential rule (Theorem 3.5 and Theorem 12.8
in [16]). The local Lipschitz condition (iii) is satisfied if we replace K M

s,z(r ) by KM |Ds,z X t,x
r |.

This is easy to see for a Wiener direction (z = 0). For a jump direction (z ̸= 0), notice that

(Ds,z f )(r, y, z, ur ) =
1
z

[
f (r, X t,x

r + zDs,z X t,x
r , y, z, ur ) − f (r, X t,x

r , y, z, ur )
]

=

(∫ 1

0
∂x f

(
r, X t,x

r + θ zDs,z X t,x
r , y, z, ur

)
dθ

)
Ds,z X t,x

r ,

which implies⏐⏐(Ds,z f )(r, y, z, ur ) − (Ds,z f )(r, y′, z′, u′

r )
⏐⏐

≤ |Ds,z X t,x
r |

∫ 1

0

⏐⏐⏐∂x f (r, X t,x
r + θ zDs,z X t,x

r , y, z, ur )

− ∂x f (r, X t,x
r + θ zDs,z X t,x

r , y′, z′, u′

r )
⏐⏐⏐dθ

≤ KM |Ds,z X t,x
r |

(
|y − y′

| + |ur − u′

r | + (1 + |z| + |z′
| + |ur | + |u′

r |)|z − z′
|
)
.

Since |Ds,zξ | ≤ K |Ds,z X t,x
T | and |(Ds,z f )(r, 0, 0, 0)| ≤ K |Ds,z X t,x

r |, one can confirm that the
condition (iv) are satisfied from an inequality

E
[
|Ds,zξ |

p
+

(∫ T

0
|(Ds,z f )(r, 0, 0, 0)|dr

)p
+ K 2p

M ∥Ds,z X t,x
∥

2p
T

]
≤ C p,K ,KM ,TE

[
1 + ∥Ds,z X t,x

∥
2p
T

]
≤ C p,K ,KM ,T (1 + |x |

2p)

uniformly in (s, z) ∈ [0, T ] × R for ∀p ≥ 2 (see, proof of Proposition 6.1). □

Corollary 6.1. Under the assumptions of Theorem 6.1, let us define the deterministic function
u : [0, T ] × Rn

→ R by u(t, x) := Y t,x
t . Then, u(t, x) is continuous in (t, x), one-time

continuously differentiable with respect to x with continuous derivative. Moreover,(
Z t,x (s)

)i
= ∂x u(s, X t,x

s−)σ i (s, X t,x
s−), t ≤ s ≤ T , i ∈ {1, . . . , d}(

ψ t,x
s (z)

)i
= u(s, X t,x

s− + γ i (s, X t,x
s−, z)) − u(s, X t,x

s−), t ≤ s ≤ T , i ∈ {1, . . . , k}

where σ i and γ i denote the i th column vectors.

Proof. By replacing a priori estimates for the Lipschitz BSDEs of Lemma 5.1 in [17] with the
local Lipschitz ones given in Theorem A.1 and Lemma A.2, one can follow the same arguments
in Theorem 3.1 in [31] to show that the function u(t, x) is continuous in the both arguments and
one-time continuously differentiable with respect to x with continuous derivatives. Then the fact
that

Di
s,0 X t,x

s = σ i (s, X t,x
s ), zDi

s,z X t,x
s = γ i (s, X t,x

s , z) ,

Corollary 5.1, and the Malliavin differential rule for a continuously differentiable function give
the desired result. □
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Appendix A. An a priori estimate and BMO-Lipschitz BSDEs

A.1. An a priori estimate

Firstly, we establish a priori estimate which plays a crucial role throughout the paper.
Although it is similar to that of BMO-Lipschitz BSDEs, which will be discussed in the next
section, it has a much wider range of applications. See discussion in Section 3 of Ankirchner
et al. [1] for a diffusion setup. Let us consider the BSDE, for t ∈ [0, T ],

Yt = ξ +

∫ T

t
f (s, Ys, Zs, ψs)ds −

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx) , (A.1)

where ξ : Ω → R, f : Ω × [0, T ]×R×Rd
×L2(E, ν;Rk) → R. We treat Z , ψ are row vectors

for simplicity. We introduce another driver f̃ : Ω × [0, T ] × R × Rd
× L2(E, ν;Rk) → R.

The crucial point of the next assumption is that the process (Ht )t∈[0,T ] is not forbidden to be a
function of (Yt , Z t , ψt )t∈[0,T ].

Assumption A.1. (i) The maps (ω, t) ↦→ f (ω, t, ·), f̃ (ω, t, ·) are F-progressively measurable.
ξ is an FT -measurable random variable.
(ii) There exists a solution (Y, Z , ψ) to the BSDE (A.1) satisfying Y ∈ Sp for ∀p ≥ 2.
(iii) For every (y, z, ψ) ∈ R × Rd

× L2(E, ν;Rk), the driver f̃ satisfies with some positive
constant K such that8

| f̃ (ω, t, y, z, ψ)| ≤ gt + K
(
|y| + |z| + ∥ψ∥L2(ν)

)
dP⊗dt-a.e. (ω, t) ∈ Ω×[0, T ], where (gt , t ∈ [0, T ]) is an F-progressively measurable positive
process. Moreover, ξ and g satisfy, for ∀p ≥ 2, E

[
|ξ |p

+

(∫ T
0 gsds

)p]
< ∞.

(iv) With the solution (Y, Z , ψ) to the BSDE (A.1), there exists an F-progressively measurable
positive process (Ht , t ∈ [0, T ]), H ∈ H2

B M O such that

| f (s, Ys, Zs, ψs) − f̃ (s, Ys, Zs, ψs)| ≤ Hs |Zs |

for dP ⊗ ds-a.e. (ω, s) ∈ Ω × [0, T ].

Lemma A.1. Suppose Assumption A.1 holds true. Then the solution (Y, Z , ψ) to the BSDE (A.1)
satisfies, for ∀p ≥ 2,(Y, Z , ψ)

p
Kp[0,T ] ≤ C

(
E

[
|ξ |pq̄2

+

(∫ T

0
gsds

)pq̄2]) 1
q̄2

with a positive constant q̄ satisfying q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled only
by ∥H∥H2

B M O
, and some positive constant C depending only on (p, q̄, T, K , ∥H∥H2

B M O
).

Proof. Define a d-dimensional progressively measurable process (bs, s ∈ [0, T ]) by

bs :=
f (s, Ys, Zs, ψs) − f̃ (s, Ys, Zs, ψs)

|Zs |
2 1Zs ̸=0 Zs,

which satisfies |bs | ≤ Hs and hence b ∈ H2
B M O whose norm is bounded by ∥H∥H2

B M O
. Using the

process b, (A.1) can be written as

Yt = ξ +

∫ T

t

(
f̃ (s, Ys, Zs, ψs) + bs · Zs

)
ds −

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx)

8 This can be generalized to a monotone condition.
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and hence under the new measure Q defined by dQ/dP = ET (b ∗ W ), one obtains

Yt = ξ +

∫ T

t
f̃ (s, Ys, Zs, ψs)ds −

∫ T

t
ZsdWQ

s −

∫ T

t

∫
E
ψs(x)µ̃Q(ds, dx) (A.2)

where WQ
:= W −

∫
·

0 bsds and µ̃Q
= µ̃ due to the independence of (W, µ̃). By the linear growth

property of f̃ , one has

Ys f̃ (s, Ys, Zs, ψs) ≤ |Ys |
(
gs + K (|Ys | + |Zs | + ∥ψs∥L2(ν))

)
,

and hence for ∀λ > 0

Ys f̃ (s, Ys, Zs, ψ) ≤ |Ys |
2(K + K 2/(2λ)

)
+ |Ys |gs + λ(|Zs |

2
+ ∥ψs∥

2
L2(ν)) .

Thus by choosing V λ
t :=

(
K +

K 2

2λ

)
t and N λ

t =
∫ t

0 gsds, the BSDE (A.2) satisfies Assumption B.1
in [17]. Then Lemma B.1 in [17] of an a prior estimate for the BSDEs with a monotone driver
implies, for ∀p ≥ 2,(Y, Z , ψ)

p
Kp(Q)[0,T ] ≤ CEQ

[
|ξ |p

+

(∫ T

0
gsds

)p]
with some positive constant C = C p,K ,T depending only on (p, K , T ).

By the properties of the BMO martingales, one can choose r̄ > 1 with which both ET (b ∗ W )
and ET (−b ∗ WQ) satisfy the reverse Hölder inequality (see Lemma 2.4 and the following
remark). Define q̄ =

r̄
r̄−1 as its dual. Let us put D := max

(
∥ET (b ∗ W )∥Lr̄ (P), ∥ET (−b ∗

WQ)∥Lr̄ (Q)
)
, which is dominated by some constant depending only on ∥H∥H2

B M O (P). Then one
obtains(Y, Z , ψ)

p
Kp(P)[0,T ]

= EQ
[
ET (−b ∗ WQ)

(
∥Y∥

p
T +

(∫ T

0
|Zs |

2ds
) p

2
+

(∫ T

0
∥ψs∥

2
L2(ν)ds

) p
2
)]

≤ D
(Y, Z , ψ)

p
Kpq̄ (Q)[0,T ] ≤ C p,q̄,K ,T D

(
EQ

[
|ξ |pq̄

+

(∫ T

0
gsds

)pq̄]) 1
q̄

≤ C p,q̄,K ,T D1+
1
q̄
(
E

[
|ξ |pq̄2

+

(∫ T

0
gsds

)pq̄2]) 1
q̄2
,

which proves the desired result. □

A.2. BMO-Lipschitz BSDE

In this subsection, we study the properties of the BSDE with a locally Lipschitz driver where
the Lipschitz coefficient for the control variable belongs to H2

B M O . In the diffusion setup, the
details have been discussed by Briand & Confortola (2008) [8]. As we have announced before,
we keep the reverse Hölder property only to the continuous part and assume only the standard
Lipschitz continuity for the jump coefficient.

Assumption A.2. The map (ω, t) ↦→ f (ω, t, ·) is F-progressively measurable.
(i) There exist a positive constant K and a positive F-progressively measurable process (Ht , t ∈

[0, T ]) ∈ H2
B M O such that, for every (y, z, ψ), (y′, z′, ψ ′) ∈ R × Rd

× L2(E, ν;Rk),

| f (ω, t, y, z, ψ) − f (ω, t, y′, z′, ψ ′)| ≤ K
(
|y − y′

| + ∥ψ − ψ ′
∥L2(ν)

)
+ Ht (ω)|z − z′

|



Please cite this article in press as: M. Fujii, A. Takahashi, Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability,
Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.09.002.

M. Fujii, A. Takahashi / Stochastic Processes and their Applications ( ) – 33

dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ].
(ii) ξ is FT -measurable and, for ∀p ≥ 2,

E
[
|ξ |p

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)p]
< ∞ .

Theorem A.1. Under Assumption A.2, there exists a unique solution (Y, Z , ψ) to the BSDE
(A.1) and it satisfies, for ∀p ≥ 2,(Y, Z , ψ)

p
Kp[0,T ] ≤ C

(
E

[
|ξ |pq̄2

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)pq̄2]) 1
q̄2

with a positive constant q̄ satisfying q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled only
by ∥H∥H2

B M O
, and some positive constant C depending only on (p, q̄, T, K , ∥H∥H2

B M O
).

Proof. Define a progressively measurable process (bs, s ∈ [0, T ]) taking values in Rd by

bs :=
f (s, Ys, Zs, ψs) − f (s, Ys, 0, ψs)

|Zs |
2 1Zs ̸=0 Zs

then |bs | ≤ Hs and hence b ∈ H2
B M O and its norm is dominated by ∥H∥H2

B M O
. Under the measure

Q defined by dQ/dP = ET (b ∗ W ),

Yt = ξ +

∫ T

t
f (s, Ys, 0, ψs)ds −

∫ T

t
ZsdWQ

s −

∫ T

t
ψs(x)µ̃Q(ds, dx) (A.3)

where WQ
= W −

∫
·

0 bsds and µ̃Q
= µ̃. As discussed in Lemma A.1, one can choose r̄ > 1 with

which both of ET (b ∗ W ) and ET (−b ∗ WQ) satisfy the reverse Hölder inequality and q̄ =
r̄

r̄−1 as
its dual. Let us put D := max

(
∥ET (b ∗ W )∥Lr̄ (P), ∥ET (−b ∗ WQ)∥Lr̄ (Q)

)
, which is dominated by

some constant depending only on ∥H∥H2
B M O (P).

It is clear that the BSDE satisfies the global Lipschitz properties under the measure Q.
Furthermore, the following inequality is satisfied due to (reverse) Hölder inequalities:

EQ
[
|ξ |p

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)p]
= E

[
ET (b ∗ W )

(
|ξ |p

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)p)]
≤ Cq̄ DE

[
|ξ |pq̄

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)pq̄] 1
q̄
< ∞ ,

with some positive constant Cq̄ . Thus, by Lemma B.2 in [17], one concludes that there exists a
unique solution (Y, Z , ψ) to (A.3) in Q and hence also to (A.1) in P. Furthermore, it also satisfies
by the same lemma,

∥(Y, Z , ψ)∥p
Kp(Q) ≤ C p,K ,TEQ

[
|ξ |p

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)p]
.

We thus have(Y, Z , ψ)
p
Kp(P) ≤ Cq̄ D

(Y, Z , ψ)
p
Kpq̄ (Q)

≤ C p,q̄,K ,T D1+
1
q̄
(
E

[
|ξ |pq̄2

+

(∫ T

0
| f (s, 0, 0, 0)|ds

)pq̄2]) 1
q̄2
,

which proves the second part of the claim. □
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Now, we gives the stability result which is required to show the uniqueness of the quadratic–
exponential growth BSDE. Consider the two BSDEs with i ∈ {1, 2} satisfying Assumption A.2;

Y i
t = ξ i

+

∫ T

t
f i (s, Y i

s , Z i
s, ψ

i
s )ds −

∫ T

t
Z i

sdWs −

∫ T

t

∫
E
ψ i

s (x)µ̃(ds, dx) (A.4)

and put δY := Y 1
− Y 2, δZ := Z1

− Z2, δψ := ψ1
− ψ2, δ f (s) := ( f 1

− f 2)(s, Y 1
s , Z1

s , ψ
1
s ).

Lemma A.2. The unique solutions (Y i , Z i , ψ i ), i ∈ {1, 2} to the BSDEs (A.4) under
Assumption A.2 satisfy(δY, δZ , δψ)

p
Kp[0,T ] ≤ C

(
E

[
|δξ |pq̄2

+

(∫ T

0
|δ f (s)|ds

)pq̄2]) 1
q̄2

with a positive constant q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled only by ∥H∥H2
B M O

,
and some positive constant C depending only on (p, q̄, T, K , ∥H∥H2

B M O
).

Proof. Let us introduce a process (bs, s ∈ [0, T ]) defined by

bs :=
f 2(s, Y 1

s , Z1
s , ψ

1
s ) − f 2(s, Y 1

s , Z2
s , ψ

1
s )

|δZs |
2 1δZs ̸=0δZs

and also a map f̃ : Ω × [0, T ] × R × L2(E, ν;Rk) → R by

f̃ (ω, s, ỹ, ψ̃) := δ f (ω, s) + f 2(ω, s, ỹ + Y 2
s , Z2

s , ψ̃ + ψ2
s ) − f 2(ω, s, Y 2

s , Z2
s , ψ

2
s ) .

Then, (δY, δZ , δψ) can be interpreted as the solution to the BSDE

δYt = δξ +

∫ T

t

(
f̃ (s, δYs, δψs) + bs · δZs

)
ds −

∫ T

t
δZsdWs −

∫ T

t

∫
E
δψs(x)µ̃(ds, dx) .

Since |bs | ≤ Hs ∈ H2
B M O and f̃ has the linear-growth property with respect to (̃y, ψ̃),

Lemma A.1 with g = |δ f | gives the desired result. □

Appendix B. Some remarks on the comparison principle

Lemma B.1. If (Y, Z , ψ) is the square integrable solution of the BSDE with data (ξ, f n,m,k),
then Y ∈ S∞.

Proof. Consider a sequence of the BSDEs with l ∈ N,

Y l
t = ξ +

∫ T

t
F l(s, Y l

s , Z l
s, ψ

l
s)ds −

∫ T

t
Z l

sdWs −

∫ T

t

∫
E
ψ l

s(x)µ̃(ds, dx), t ∈ [0, T ]

(B.1)

where F l(s, y, z, ψ) := f n,m,k(s, y, z, ψ ◦ ζl) and (ψs ◦ ζl)(x) := ψs(x)1{|x |≥1/ l}. F l is
globally Lipschitz and satisfy Qexp-structure condition uniformly in l. Since | f n,m

| ≤ | f
n
| ∨

| f m
| ≤ | f |, one sees that |F l(s, y, 0, ψ)| ≤ | f (s, ϕk(y), 0, ϕk(ψ ◦ ζl))|, which is clearly

bounded for all s, y, ψ . Thus, by absorbing the Z argument by the measure change, one sees
Y l

∈ S∞. One can now apply the universal bounds of Lemmas 3.1 and 3.2 to conclude
∥Y l

∥S∞ , ∥Z l
∥H2

B M O
, ∥ψ l

∥J2
B M O

are bounded uniformly in l. It now suffices to prove (Y l , Z l , ψ l)
converges to the solution (Y, Z , ψ) of the BSDE with data (ξ, f n,m,k).
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Since (B.1) is globally Lipschitz uniformly in l, the standard stability formula gives

∥(Y l
− Y l ′ , Z l

− Z l ′ , ψ l
− ψ l ′ )∥

2
K2 ≤ CE

[(∫ T

0
|δ f (s)|ds

)2]
≤ CTE

[∫ T

0
|δ f (s)|2ds

]
where C is independent of l and δ f (s) := (F l

− F l ′ )(s, Y l , Z l , ψ l). Let us suppose l ≤ l ′. For
any (s, y, z, ψ) ∈ [0, T ] × R × Rd

× L2(E, ν;Rk), AΓ -condition for f n,m gives

|F l(s, y, z, ψ) − F l ′ (s, y, z, ψ)|
= | f n,m(s, ϕk(y), z, ϕk(ψ ◦ ζl)) − f n,m(s, ϕk(y), z, ϕk(ψ ◦ ζl ′ ))|

≤

∫
E
Γ l,l ′

s (x)|ϕk(ψ(x))|1{|x |<1/ l}ν(dx)

with some non-negative P ⊗ E-measurable process Γ l,l ′ satisfying Γ l,l ′ (x) ≤ C(1 ∧ |x |). Here,
the constant C depends only on k. Noticing the fact that ∥ψ l

∥J2 is bounded uniformly in l, the
dominated convergence theorem gives

E
[∫ T

0
|δ f (s)|2ds

]
≤ C

(∫
E

|x |
21{|x |<1/ l}ν(dx)

)
E

[∫ T

0

∫
E

|ψ l
s(x)|

2
ν(dx)ds

]
→ 0

as l (and hence also l ′)→ ∞. This proves (Y l , Z l , ψ l)l≥1 converges to some (Ỹ , Z̃ , ψ̃) in K2.
Since (Y l)l≥1 are uniformly bounded, so is Ỹ . It is straightforward to check (Ỹ , Z̃ , ψ̃) actually
gives a solution to the BSDE with data (ξ, f n,m,k), but it is unique and hence equal to (Y, Z , ψ)
due to the global Lipschitz continuity. □

The remaining two lemmas are on the comparison principle.

Lemma B.2. With Assumptions 3.1, 3.2 and 4.1, if there exists a solution (Y n,m, Zn,m, ψn,m) ∈

S∞
× H2

× J2 to the BSDE

Y n,m
t = ξ +

∫ T

t
f n,m(s, Y n,m

s , Zn,m
s , ψn,m

s )ds −

∫ T

t
Zn,m

s dWs

−

∫ T

t

∫
E
ψn,m

s (x)µ̃(ds, dx) ,

then it is unique. Moreover, if the relevant solutions exist for the pairs of (n,m), they satisfy
Y n,m+1

t ≤ Y n,m
t ≤ Y n+1,m

t for ∀t ∈ [0, T ] a.s.

Proof. Since f n,m satisfies the structure condition in Assumption 3.1 uniformly in (n,m), if there
exists a bounded solution, then we have (Y n,m, Zn,m, ψn,m) ∈ S∞

×H2
B M O ×J2

B M O and the same
universal bounds in Lemmas 3.1 and 3.2. Hence, from Assumption 3.2, one can choose a constant
KM as the Lipschitz constant with regard to y, ψ arguments. Since the driver is (n∨m)-Lipschitz
with respect to z, one obtains the same stability condition as the globally Lipschitz BSDE. The
uniqueness of the solution then follows. Since the driver f n,m satisfies Assumption 4.1, one has
for bounded solutions (ψ,ψ ′),

E
[∫ T

τ

|Γ
ψ,ψ ′

t (x)|
2
ν(dx)ds

⏐⏐⏐Fτ] ≤ (C2
M ∨ |C1

M |)
∫ T

τ

|x |
2ν(dx)ds ≤ C0T (B.2)

for any τ ∈ T T
0 with some constant C0 depending only on the universal bounds. This implies

Γψ,ψ ′

.µ̃ is a BMO-martingale. Moreover E(Γψ,ψ ′

.µ̃) is a uniformly integrable martingale by
Lemma 2.3. The comparison principles now follows in the same way as the Lipschitz case. See,
for example, Theorem 2.5 of Royer (2006) [39]. □
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Lemma B.3. With Assumptions 3.1, 3.2 and 4.1, if there exists a solution (Ỹ n, Z̃n, ψ̃n) ∈

S∞
× H2

× J2 to the BSDE with f̃ n
= f

n
+ f

Ỹ n
t = ξ +

∫ T

t
f̃ n(s, Ỹ n

s , Z̃n
s , ψ̃

n
s )ds −

∫ T

t
Z̃n

s dWs −

∫ T

t

∫
E
ψ̃n

s (x)µ̃(ds, dx) ,

then it is unique. Moreover, if the relevant solutions exist for n, n + 1, they satisfy Ỹ n
t ≤ Ỹ n+1

t for
∀t ∈ [0, T ] a.s.

Proof. Since f̃ n satisfies the structure condition in Assumption 3.1, if there exists a bounded
solution it satisfies the universal bounds. Thus the driver is KM -Lipschitz continuous with respect
to y, ψ as in the previous lemma. For z argument, the driver is local Lipschitz continuous whose
coefficient is given by the sum of n and that given in Assumption 3.2. Thanks to the universal
bounds, it has a bounded H 2

B M O -norm for each n. It is also easy to confirm that f̃ n satisfies
AΓ -condition uniformly in n as in the proof of Lemma 4.1. Thus the measure change used
in Theorem 2.5 of Royer [39] is still valid and hence the comparison principle follows. The
uniqueness follows from Proposition 3.1 or from the comparison principle as [39]. □

Appendix C. Malliavin differentiability for Lipschitz BSDEs with jumps

In order to show Malliavin’s differentiability of Qexp-growth BSDEs, we have to establish
the differentiability for Lipschitz BSDEs with slightly more general setup than what was proved
in [15,14]. For convenience of the readers, we give the detailed proof in this section. We closely
follow the arguments used in El Karoui et al. (1997) [25]. The complication relative to a diffusion
case is the treatment of small jumps. The difference from the work [15] is a local Lipschitz
condition instead of the global Lipschitz condition for the Malliavin derivative of the driver.

We consider a BSDE defined by

Yt = ξ +

∫ T

t
f
(

s, Ys, Zs,

∫
R0

ρ(x)G(s, ψs(x))ν(dx)
)

ds −

∫ T

t
ZsdWs

−

∫ T

t

∫
E
ψs(x)µ̃(ds, dx), (C.1)

where ξ : Ω → R, f : Ω × [0, T ] × R × Rd
× Rk

→ R. Here,
∫
R0
ρ(x)G(s, ψs(x))ν(dx)

denotes a k-dimensional vector whose i th element is given by
∫
R0
ρi (x)G i (s, ψ i

s (x))νi (dx)
where ρi

: R → R, G i
: [0, T ] × R → R. With slight abuse of notation, we use

Θr :=

(
Yr , Zr ,

∫
R0
ρ(x)G(r, ψr (x))ν(dx)

)
as a collective argument in this section. The results

in this section can be straightforwardly extended to multi-dimensional Lipschitz BSDEs.

Assumption C.1. (i) For every i ∈ {1, . . . , k}, ρi (s) and G i (s, v) are continuous functions
in s ∈ [0, T ] and (s, v) ∈ [0, T ] × R, respectively. We set without loss of generality that
G i (·, 0) = 0. In addition

∫
R0

|ρi (x)|2νi (dx) < ∞, and with some positive constant K , G i

satisfies

|G i (s, v) − G i (s, v′)| ≤ K |v − v′
|, for every s ∈ [0, T ] and v, v′

∈ R.

(ii) The map (ω, t) ↦→ f (ω, t, ·) is F-progressively measurable, and for every (y, z, u), (y′, z′, u′)
∈ R × Rd

× Rk , there exists some positive constant K such that

| f (ω, t, y, z, u) − f (ω, t, y′, z′, u′)| ≤ K (|y − y′
| + |z − z′

| + |u − u′
|)
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dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ].
(iii) ξ ∈ L4(Ω ,FT ,P) and

(
f (t, 0), t ∈ [0, T ]

)
∈ H4[0, T ].

Remark C.1. Due to the property of G and ρ, it is easy to see that⏐⏐⏐ ∫
R0

ρ(x)G(s, ψs(x))ν(dx) −

∫
R0

ρ(x)G(s, ψ ′

s(x))ν(dx)
⏐⏐⏐ ≤ K ′

∥ψs − ψ ′

s∥L2(ν)

with some constant K ′ > 0. Thus, Assumption C.1 yields the standard global Lipschitz
conditions. By Lemma B.2 in [17], the BSDE (C.1) has a unique solution (Y, Z , ψ) ∈ K4[0, T ].
In order to show the Malliavin’s differentiability, we need additional assumptions.

Assumption C.2. (i) For every i ∈ {1, . . . , k}, G i is one-time continuously differentiable with
respect to its spacial variable v with a uniformly bounded and continuous derivative.
(ii) The terminal value is Malliavin differentiable ξ ∈ D1,2 and satisfies

E
[∫

Ẽ
|Ds,zξ |

2q(ds, dz)
]
< ∞.

(iii) The driver f (·, y, z, u) is one-time continuously differentiable with respect to (y, z, u)
with uniformly bounded and continuous derivatives. For every (y, z, u) ∈ R × Rd

× Rk , the
driver

(
f (t, y, z, u), t ∈ [0, T ]

)
belongs to L1,2 and its Malliavin derivative is denoted by

(Ds,z f )(t, y, z, u).
(iv) For every Wiener as well as jump direction, and for every (y, z, u), (y′, z′, u′) ∈ R×Rd

×Rk

and dP⊗dt-a.e. (ω, t) ∈ Ω × [0, T ], the Malliavin derivative of the driver satisfies the following
local Lipschitz conditions9 ;

|(Di
s,0 f )(t, y, z, u) − (Di

s,0 f )(t, y′, z′, u′)| ≤ K i
s,0(t)

(
|y − y′

| + |z − z′
| + |u − u′

|
)
,

for ds-a.e. s ∈ [0, T ] with i ∈ {1, . . . , d}, and

|(Di
s,z f )(t, y, z, u) − (Di

s,z f )(t, y′, z′, u′)| ≤ K i
s,z(t)

(
|y − y′

| + |z − z′
| + |u − u′

|
)
,

for mi (dz)ds-a.e. (s, z) ∈ [0, T ] × R0 with i ∈ {1, . . . , k}. Here,
(
K i

s,0(t), t ∈ [0, T ]
)

i∈{1,...,d}

and
(
K i

s,z(t), t ∈ [0, T ]
)

i∈{1,...,k}
are R+-valued F-progressively measurable processes satisfying∫

Ẽ ∥Ks,z(·)∥4
S4[0,T ]q(ds, dz) < ∞.

Remark C.2. It follows from the conditions (ii), (iii) and (iv) that
k∑

i=1

∫ T

0

∫
|z|≤ϵ

E
[
|Di

s,zξ |
2
+

(∫ T

0
|(Di

s,z f )(r, 0)|dr
)2

+ ∥K i
s,z∥

4
T

]
mi (dz)ds → 0

as ϵ ↓ 0 by the dominated convergence.

Theorem C.1. Suppose that Assumptions C.1 and C.2 hold true and denote the solution to the
BSDE (C.1) as (Y, Z , ψ) ∈ K4[0, T ]. Then, the following statements hold:
(a) For each Wiener direction i ∈ {1, . . . , d} and ds-a.e. s ∈ [0, T ], there exists a unique solution
(Y s,0,i , Z s,0,i , ψ s,0,i ) ∈ K2[0, T ] to the BSDE

Y s,0,i
t = Di

s,0ξ +

∫ T

t
f s,0,i (r )dr −

∫ T

t
Z s,0,i

r dWr −

∫ T

t

∫
E
ψ s,0,i

r (x)µ̃(dr, dx) (C.2)

9 Delong & Imkeller (2010) [15] have treated a special case where (Ks,0, Ks,z) are positive constants. The current
generalization is necessary when one introduces a Markovian process X driven by a FSDE to create a forward–backward
SDE system, which is the subject of interests in many applications.
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for 0 ≤ s ≤ t ≤ T , where

f s,0,i (r ) := (Di
s,0 f )(r,Θr ) + ∂Θ f (r,Θr )Θ s,0,i

r

= (Di
s,0 f )(r,Θr ) + ∂y f (r,Θr )Y s,0,i

r + ∂z f (r,Θr )Z s,0,i
r

+ ∂u f (r,Θr )
∫
R0

ρ(x)∂vG(r, ψr (x))ψ s,0,i
r (x)ν(dx) .

(b) For each jump direction i ∈ {1, . . . , k} and mi (dz)ds-a.e. (s, z) ∈ [0, T ] × R0, there exists a
unique solution (Y s,z,i , Z s,z,i , ψ s,z,i ) ∈ K2[0, T ] to the BSDE

Y s,z,i
t = Di

s,zξ +

∫ T

t
f s,z,i (r )dr −

∫ T

t
Z s,z,i

r dWr −

∫ T

t

∫
E
ψ s,z,i

r (x)µ̃(dr, dx) (C.3)

for 0 ≤ s ≤ t ≤ T and z ̸= 0, where

f s,z,i (r ) :=
1
z

(
f (ωs,z, r,Θr + zΘ s,z,i

r ) − f (ω, r,Θr )
)

=
1
z

{
f
(
ωs,z, r, Yr + zY s,z,i

r , Zr + zZ s,z,i
r

,

∫
R0

ρ(x)G
(
r, ψr (x) + zψ s,z,i

r (x)
)
ν(dx) − f (ω, r,Θr )

)}
.

(c) Solution of the BSDE (C.1) is Malliavin differentiable (Y, Z , ψ) ∈ L1,2
×L1,2

×L1,2. Put, for
every i , Y s,·,i

t = Z s,·,i
t = ψ

s,·,i
t (·) ≡ 0 for t < s ≤ T , then

(
(Y s,z,i

t , Z s,z,i
t , ψ

s,z,i
t (x)), 0 ≤ s, t ≤

T, x ∈ R0, z ∈ R
)

is a version of the Malliavin derivative
(
(Di

s,zYt , Di
s,z Z t , Di

s,zψt (x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)

for every Wiener and jump direction.

Proof. For notational simplicity, we omit i denoting the direction of derivative by assuming that
we consider each direction separately.

Proof for (a) and (b)
It is easy to see that both of the BSDEs (C.2) and (C.3) satisfy the standard global Lipschitz
conditions. We have | f s,0(r )| ≤ |(Ds,0 f )(r, 0)| + Ks,0(r )|Θr | + K |Θ s,0

r |. Since

f s,z(r ) =
f (ωs,z, r,Θr ) − f (ω, r,Θr )

z
+

f (ωs,z, r,Θr + zΘ s,z
r ) − f (ωs,z, r,Θr )
z

= (Ds,z f )(r,Θr ) +
f (ωs,z, r,Θr + zΘ s,z

r ) − f (ωs,z, r,Θr )
z

,

we also have | f s,z(r )| ≤ |(Ds,z f )(r, 0)| + Ks,z(r )|Θr | + K |Θ s,z
r | for z ∈ R0. Thus, Lemma B.2

in [17] tells us that for all (s, z) ∈ [0, T ] ×R (thus including Θ s,0) there exists a unique solution
Θ s,z

∈ K2[0, T ] satisfying

∥(Y s,z, Z s,z, ψ s,z)∥2
K2[0,T ]

≤ CK ,TE
[
|Ds,zξ |

2
+

(∫ T

0

[
|(Ds,z f )(r, 0)| + Ks,z(r )|Θr |

]
dr

)2]
≤ CK ,TE

[
|Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2
+ ∥Ks,z∥

4
T +

(∫ T

0
|Θr |

2dr
)2]

< ∞.

Note here that Θ ∈ K4[0, T ]. By Assumption C.2(ii), (iii) and (iv), it also follows that∫
Ẽ

∥(Y s,z, Z s,z, ψ s,z)∥2
K2[0,T ]q(ds, dz) < ∞ .
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Proof for (c)
We consider a sequence of solution (Y n, Zn, ψn)n≥1 of the following BSDEs that converges to
(Y, Z , ψ) of (C.1) in K4[0, T ];

Y n+1
t = ξ +

∫ T

t
f n(r ) −

∫ T

t
Zn+1

r dWr −

∫ T

t

∫
E
ψn+1

r (x)µ̃(dr, dx), (C.4)

for t ∈ [0, T ] and n ∈ N, where f n(r ) := f
(

r, Y n
r , Zn

r ,
∫
R0
ρ(x)G(r, ψn

r (x))ν(dx)
)

. The
convergence can be proven by the standard arguments of contraction mapping for the Lipschitz
BSDEs. See, for example, Lemma B.2 in [17] and its proof.

[First step: Showing (Y n+1, Zn+1, ψ
n+1

) ∈ (L1,2)3]
We first suppose that (Y n, Zn, ψ

n
) ∈ (L1,2)3 and are going to prove that (Y n+1, Zn+1, ψ

n+1
) ∈

(L1,2)3. Then, we can inductively show (Y n, Zn, ψ
n
) ∈ (L1,2)3 for every n ∈ N. Firstly, the chain

rules (Theorem 3.5 and Theorem 12.8 in [16] with the division by the jump size in the current
convention) and Lemma 3.2 in [15] show that∫

R0

ρ(x)G(r, ψn
r (x))ν(dx)dr ∈ D1,2 . (C.5)

In particular, this is because∫
Ẽ

Dt,zG(·, ψn
·

)
2
J2[0,T ]q(dt, dz) ≤ K 2

∫
Ẽ

Dt,zψ
n
·

2
J2[0,T ]q(dt, dz) < ∞,

where we have used the bounded derivative and the Lipschitz condition for G and the assumption
that ψ

n
∈ L1,2. This also shows that G(·, ψn

·
) ∈ L1,2.

By (C.5) and by the general chain rule for random functions (see, Theorem 3.12 [18] for
Wiener directions and Proposition 5.5 [40] for jump directions in a canonical Levy space,
respectively), we see f n(r ) = f (r,Θn

r ) ∈ D1,2 for every r ∈ [0, T ]. It is easy to check
∥ f n(·)∥2

H2[0,T ] < ∞. Next, Assumption C.2, the hypothesis (Y n, Zn, ψ
n
) ∈ K4[0, T ] ∩ (L1,2)3

and the estimate |Ds,z f n(r )| ≤ |(Ds,z f )(r, 0)| + Ks,z(r )|Θn
r | + K |Ds,zΘ

n
r | imply∫

Ẽ
∥Dt,z f n(·)∥2

H2[0,T ]q(dt, dz)

≤ CK

∫
Ẽ
E

[∫ T

0

(
|(Dt,z f )(r, 0)|2 + |Dt,zΘ

n
r |

2)dr + ∥Kt,z∥
4
T

+
(∫ T

0
|Θn

r |
2dr

)2
]
q(dt, dz) < ∞

with some positive constant CK . Thus, Lemma 3.2 [15] shows that
∫ T

t f n(r )dr ∈ D1,2 for every
t ∈ [0, T ]. As a result, we have ξ +

∫ T
t f n(r ) ∈ D1,2 for each t ∈ [0, T ]. Thus, by Lemma

3.1 [15], we conclude that Y n+1
t = E

[
ξ +

∫ T
t f n(r )

⏐⏐⏐Ft

]
∈ D1,2, which then implies∫ T

t
Zn+1

r dWr +

∫ T

t

∫
E
ψn+1

r (x)µ̃(dr, dx) = −Y n+1
t + ξ +

∫ T

t
f n(r )dr ∈ D1,2 ,

which, together with Lemma 3.3 [15], shows Zn+1, ψ
n+1

∈ L1,2.
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We are now going to prove Y n+1
∈ L1,2. For a Wiener (z = 0) as well as a jump (z ̸= 0)

direction, we have,

Ds,zY n+1
t = Ds,zξ +

∫ T

t
Ds,z f n(r )dr −

∫ T

t
Ds,z Zn+1

r dWr

−

∫ T

t

∫
E

Ds,zψ
n+1
r (x)µ̃(dr, dx),

for 0 ≤ s ≤ t ≤ T and z ∈ Rk,

by Lemma 3.3 [15]. By Lemmas B.2 in [17], one obtains∫
Ẽ

∥Ds,zY n+1
∥

2
S2[0,T ]q(ds, dz) ≤ CK ,T

∫
Ẽ
E

[
|Ds,zξ |

2
+

(∫ T

0
|Ds,z f n(r )|dr

)2]
q(ds, dz)

≤ CK ,T

∫
Ẽ
E

[
|Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)| + |Ds,zΘ

n
r |dr

)2

+ ∥Ks,z∥
4
T +

(∫ T

0
|Θn

r |
2dr

)2]
q(ds, dz) < ∞ , (C.6)

where Ds,zY n+1
t ≡ 0 for t < s is used. Hence (Y n+1, Zn+1, ψ

n+1
) ∈ (L1,2)3 is proved.

[Second step: convergence of Ds,0Θ
n

→ Θ s,0]
Let us set the difference process as follows:

∆s,0Y n
:= Y s,0

− Ds,0Y n, ∆s,0 Zn
:= Z s,0

− Ds,0 Zn, ∆s,0ψn
:= ψ s,0

− Ds,0ψ
n,

and denote ∆s,0Θn
:= (∆s,0Y n,∆s,0 Zn,∆s,0ψn) for every n ∈ N. We claim

lim
n→∞

∫ T

0
∥(∆s,0Θn)∥

2
K2[0,T ]ds = 0 . (C.7)

Since | f s,0(r )−Ds,0 f n(r )| ≤ Ks,0(r )|Θr −Θn
r |+|∂Θ f (r,Θr )−∂Θ f (r,Θn

r )||Θ s,0
r |+K |∆s,0Θn

r |,
the a priori estimate given in Lemma B.2 [17] gives∫ T

0

(∆s,0Y n+1,∆s,0 Zn+1,∆s,0ψn+1)
2
K2[0,T ]ds

≤ CT

∫ T

0
E

[(∫ T

0
| f s,0(r ) − Ds,0 f n(r )|dr

)2]
ds

≤ CT

∫ T

0
E

[(∫ T

0

[
Ks,0(r )|Θr − Θn

r | + |∂Θ f (r,Θr ) − ∂Θ f (r,Θn
r )||Θ s,0

r |

]
dr

)2]
ds

+ CT,K

∫ T

0
E

[(∫ T

0
|∆s,0Θn

r |dr
)2]

ds .

One sees that the first line converges to zero because Θn
→ Θ ∈ K4[0, T ]. Thus, by using a

sequence of small positive constants (ϵn)n≥1 converging to zero, one can write∫ T

0

(∆s,0Y n+1,∆s,0 Zn+1,∆s,0ψn+1)
2
K2[0,T ]ds

≤ ϵn + CT,K

∫ T

0
E

[(∫ T

0
|∆s,0Θn

r |dr
)2

]
ds

≤ ϵn + C ′

T,K max(T 2, T )
∫ T

0

(∆s,0Y n,∆s,0 Zn,∆s,0ψn)
2
K2[0,T ]ds.
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For a sufficiently small T (> 0) so that α := C ′

T,K max(T 2, T ) < 1, one obtains∫ T
0 ∥(∆s,0Θn+1)∥2

K2[0,T ]ds ≤ ϵn + α
∫ T

0 ∥(∆s,0Θn)∥2
K2[0,T ]ds. Then, by fixing some n0 ∈ N,

∫ T

0
∥(∆s,0Θn+n0 )∥

2
K2[0,T ]ds ≤

ϵn0

1 − α
+ αn

∫ T

0
∥(∆s,0Θn0 )∥

2
K2[0,T ]ds.

Thus, by passing n and then n0 to ∞, (C.7) is proved for small T .
For general T > 0, one can use a time partition 0 = T0 < T1 < · · · < TN = T that is fine

enough so that α < 1 in every time interval. Due to the uniqueness of the solution, by setting
Y s,0

Ti
as the terminal condition for the interval [Ti−1, Ti ], one can prove (C.7) for the interval.

Repeating the procedures from i = N to i = 1 proves the claim.

[Third step: convergence of Ds,zΘ
n

→ Θ s,z (z ̸= 0)]
Choosing one direction of jump (omit i for simplicity) and put

∆s,zY n
:= Y s,z

− Ds,zY n, ∆s,z Zn
:= Z s,z

− Ds,z Zn, ∆s,zψn
:= ψ s,z

− Ds,zψ
n.

and denote ∆s,zΘn
:= (∆s,zY n,∆s,z Zn,∆s,zψn) for every n ∈ N. In this step, our final goal is

to show the convergence

lim
n→∞

∫ T

0

∫
R0

∥(∆s,zΘn)∥2
K2[0,T ]m(dz)ds = 0 . (C.8)

Before discussing (C.8), we have to prove first that the convergence

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds

=

∫ T

0

∫
R0

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds (C.9)

occurs uniformly in (sufficiently large) n. As the proof of Theorem 4.1 [15], it suffices to show
that, for each ϵ > 0, there exists a positive constant C and ϵ̄ > 0 independent of n such that∫ T

0

∫
|z|≤ϵ̄

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds < Cϵ .

By Remark C.2, for a given arbitrary ϵ > 0, there exists ϵ̄ > 0 such that

•

∫ T

0

∫
|z|≤ϵ̄

E
[
|Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2
+ ∥Ks,z∥

4
T

]
m(dz)ds < ϵ (C.10)

•

∫ T

0

∫
|z|≤ϵ̄

m(dz)ds < ϵ. (C.11)

Let us fix ϵ̄ > 0 as above. By Lemma B.2 [17], we have ∥(∆s,zΘn+1)∥2
K2[0,T ] ≤ CTE

[(∫ T
0 | f s,z(r )

− Ds,z f n(r )|dr
)2] . Using the (local) Lipschitz properties, it is easy to show that

| f s,z(r ) − Ds,z f n(r )| ≤ Ks,z(r )|Θr − Θn
r | + K |Θ s,z

r | + K |Ds,zΘ
n
r |
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and hence∫ T

0

∫
|z|≤ϵ̄

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
Ks,z(r )|Θr − Θn

r |dr
)2

+

(∫ T

0
|Θ s,z

r |dr
)2

+

(∫ T

0
|Ds,zΘ

n
r |dr

)2]
m(dz)ds . (C.12)

We are now going to discuss each term of (C.12). For the first term, it is straightforward to
see that there exists n independent constant C such that

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
Ks,z(r )|Θr − Θn

r |dr
)2]

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[
∥Ks,z∥

4
T +

(∫ T

0
|Θr − Θn

r |
2dr

)2]
m(dz)ds < Cϵ

where the last inequality follows from (C.10), (C.11) and the fact that ∥Θ − Θn
∥

4
H4[0,T ] is

bounded due to the convergence Θn
→ Θ in K4[0, T ]. For the second term of (C.12), one

can show

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
|Θ s,z

r |dr
)2]

m(dz)ds ≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

∥(Θ s,z)∥2
K2[0,T ]m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[
|Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2

+ ∥Ks,z∥
4
T +

(∫ T

0
|Θr |

2dr
)2]

m(dz)ds

< Cϵ (C.13)

where the last inequality follows from (C.10), (C.11) and the fact that Θ ∈ K4[0, T ]. Finally, the
third term of (C.12) can be evaluated as

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
|Ds,zΘ

n
r |dr

)2]
m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

∥(Ds,zΘ
n)∥2

K2[0,T ]m(dz)ds .

Here, by the same a priori estimate used in (C.6),

CT,K ∥(Ds,zΘ
n)∥2

K2[0,T ] ≤ CK ,TE
[
|Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2
+ ∥Ks,z∥

4
T

+

(∫ T

0
|Θn−1

r |
2
dr

)2
]

+ CK ,TE
[(∫ T

0
|Ds,zΘ

n−1
r |dr

)2
]

≤ CK ,TE
[
ϵn−1 + |Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2
+ ∥Ks,z∥

4
T +

(∫ T

0
|Θr |

2dr
)2

]
+ CK ,T max(T 2, T )∥(Ds,zΘ

n−1)∥
2
K2[0,T ] , (C.14)
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where (ϵn)n≥1 is a sequence of positive constants with ϵn :=
⏐⏐∥Θn

∥
4
H4[0,T ] − ∥Θ∥

4
H4[0,T ]

⏐⏐. It is
bounded (supn∈N

(
ϵn

)
≤ δ) with some n-independent constant δ due to the convergence of Θn

→

Θ in K4[0, T ]. Choosing the terminal time T small enough so that α := CK ,T max(T 2, T ) < 1,
(C.14) yields

CT,K

∫ T

0

∫
|z|≤ϵ̄

∥(Ds,zΘ
n)∥2

K2[0,T ]m(dz)ds

≤
CK ,T

1 − α

∫ T

0

∫
|z|≤ϵ̄

E
[
δ + |Ds,zξ |

2
+

(∫ T

0
|(Ds,z f )(r, 0)|dr

)2
+ ∥Ks,z∥

4
T

+

(∫ T

0
|Θr |

2dr
)2

]
m(dz)ds + αn−1

∫ T

0

∫
|z|≤ϵ̄

∥(Ds,zΘ
1)∥

2
K2[0,T ]m(dz)ds.

It is free to choose Θ1
≡ 0 in the fixed point iteration (C.4). Thus, the right hand side is

dominated by Cϵ with some n independent constant C due to (C.10) and (C.11).
By the previous arguments, we have shown that the convergence of (C.9) is uniform in n, at

least for sufficiently small T . In this case, one can exchange the order of limit operations;

lim
n→∞

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

(∆s,zΘn+1)
2
K2m(dz)ds

= lim
ϵ↓0

lim
n→∞

∫ T

0

∫
|z|>ϵ

(∆s,zΘn+1)
2
K2m(dz)ds .

Therefore, in order to show the convergence (C.8), it is enough to prove

lim
n→∞

∫ T

0

∫
|z|>ϵ

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds = 0

for each ϵ > 0. An inequality from the Lipschitz property of the driver

| f s,z(r ) − Ds,z f n(r )| ≤
1
|z|

⏐⏐ f (ωs,z, r,Θr + zΘ s,z
r ) − f (ωs,z, r,Θn

r + zDs,zΘ
n
r )

⏐⏐
+

1
|z|

⏐⏐ f (ω, r,Θr ) − f (ω, r,Θn
r )

⏐⏐ ≤
2K
|z|

|Θr − Θn
r | + K |∆s,zΘn

r |

implies ∫ T

0

∫
|z|>ϵ

(∆s,zΘn+1)
2
K2[0,T ]m(dz)ds

≤ CT,K

∫ T

0

∫
|z|>ϵ

E
[

1
|z|2

(∫ T

0
|Θr − Θn

r |dr
)2

+

(∫ T

0
|∆s,zΘn

r |dr
)2

]
m(dz)ds

≤ ϵn + CT,K max(T 2, T )
∫ T

0

∫
|z|>ϵ

∥(∆s,zΘn)∥2
K2[0,T ]m(dz)ds

where ϵn → 0 as n → 0 due to the convergence of Θn
→ Θ . If necessary by re-choosing T

small enough so that α := CT,K max(T 2, T ) < 1, one gets∫ T

0

∫
|z|>ϵ

(∆s,zΘn+n0 )
2
K2[0,T ]m(dz)ds

≤
ϵn0

1 − α
+ αn

∫ T

0

∫
|z|>ϵ

(∆s,zΘn0 )
2
K2[0,T ]m(dz)ds.
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By passing to the limit n, n0 → ∞, (C.8) is proved for small T .
For general T > 0, one can construct a partition 0 = T0 < T1 < · · · < TN = T fine enough

so that one can conclude by the previous arguments

lim
n→0

∫ T

TN−1

∫
|z|>ϵ

(∆s,zΘn)
2
K2[0,T ]m(dz)ds = 0 .

Note that (C.13) implies limϵ↓0
∫ T

0

∫
|z|<ϵ̄ E|Y s,z

TN−1
|
2m(dz)ds = 0, in particular. Therefore, by the

same procedures with a new terminal value Y s,z
TN−1

instead of Ds,zξ , the convergence (C.8) in
[TN−2, TN−1] is proved. Repeating the same arguments proves (C.8) for general T . Hence, one
can conclude (Y n, Zn, ψ

n
) converges to

(
(Y, Z , ψ), (Y s,z, Z s,z, ψ

s,z
)
)

in (L1,2)3. Finally, thanks
to the closability of the Malliavin derivatives in L1,2 (see Theorem 12.6 in [16]), one concludes
(Y, Z , ψ) ∈ L1,2 and that (Y s,z, Z s,z, ψ s,z) is a version of (Ds,zY, Ds,z Z , Ds,zψ). □

Appendix D. Technical details omitted in the proof of Theorem 5.1

D.1. Proof for (5.11)

By (5.9) and the dominated convergence theorem, it suffices to show

lim
m→∞

(∆s,0Y m,∆s,0 Zm,∆s,0ψm)
p
Kp[0,T ] = 0

for ds-a.e. s ∈ [0, T ]. Since

• f s,0(r ) − Ds,0 fm(r ) = f s,0(r ) −
(
(Ds,0 fm)(r,Θm

r ) + ∂Θ fm(r,Θm
r )Θ s,0

r

)
+ ∂Θ fm(r,Θm

r )(Θ s,0
r − Ds,0Θ

m
r ) ,

and

•

⏐⏐⏐ f s,0(r ) −
(
(Ds,0 fm)(r,Θm

r ) + ∂Θ fm(r,Θm
r )Θ s,0

r

)⏐⏐⏐
≤ |(Ds,0 f )(r,Θr ) − (Ds,0 f )(r,Θm

r )|
+ |(Ds,0 f )(r,Θm

r ) − (Ds,0 fm)(r,Θm
r )| + |∂Θ f (r,Θr ) − ∂Θ fm(r,Θm

r )||Θ s,0
r | ,

Lemma A.2 implies that(∆s,0Y m,∆s,0 Zm,∆s,0ψm)
p
Kp[0,T ]

≤ CE
[(∫ T

0
|(Ds,0 f )(r,Θr ) − (Ds,0 f )(r,Θm

r )|dr
)pq̄2

+

(∫ T

0
|(Ds,0 f )(r,Θm

r ) − (Ds,0 fm)(r,Θm
r )|dr

)pq̄2

+

(∫ T

0
|∂Θ f (r,Θr ) − ∂Θ fm(r,Θm

r )||Θ s,0
r |dr

)pq̄2] 1
q̄2

where, as before, C > 0 and q̄ > 1 are constants independent of m.
Let us check each term. By the local Lipschitz property, the first term yields

E
[(∫ T

0
|(Ds,0 f )(r,Θr ) − (Ds,0 f )(r,Θm

r )|dr
)pq̄2]

≤ CE
[
∥K M

s,0∥
2pq̄2

T

] 1
2 E

[
∥δY m

∥
2pq̄2

T +

(∫ T

0
∥δψm

r ∥
2
L2(ν)dr

)pq̄2] 1
2

+ CE
[
∥K M

s,0∥
2pq̄2

T

(∫ T

0
|H m(r )|2dr

)pq̄2] 1
2 E

[(∫ T

0
|δZm

r |
2dr

)pq̄2] 1
2
, (D.1)
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where the process H m is defined by H m(r ) := 1 + |Zr | + |Zm
r | + ∥ψr∥L2(ν) + ∥ψm

r ∥L2(ν) and
(δY m, δZm, δψm) := (Y − Y m, Z − Zm, ψ −ψm). Since H m

∈ H2
B M O with the norm dominated

by constant independent of m, the convergence of Θm
→ Θ in S∞

× H2
B M O × J2

B M O implies
that (D.1) converges to zero as m → ∞.

Secondly, by definition of the truncated driver, (Ds,0 fm)(r,Θm
r ) = (Ds,0 f )

(
r, ϕm(Θm

r )
)
. Since

both Θm and ϕm(Θm) converge to Θ in S∞
× H2

B M O × J2
B M O , the convergence of the second

term can be shown in the same way as the first term.
Finally, by the Cauchy–Schwarz inequality,

E
[(∫ T

0
|∂Θ f (r,Θr ) − ∂Θ fm(r,Θm

r )||Θ s,0
r |dr

)pq̄2]
≤ E

[(∫ T

0
|∂Θ f (r,Θr ) − ∂Θ fm(r,Θm

r )|2dr
)pq̄2] 1

2 E
[(∫ T

0
|Θ s,0

r |
2
dr

)pq̄2] 1
2
. (D.2)

By (5.4), there exists a constant CM depends only on the universal bounds such that
|∂Θ fm(r,Θm

r )| ≤ CM (1 + |Zm
r | + ∥ψm

r ∥L2(ν)). Since Zm
→ Z (resp. ψm

→ ψ) in H2
B M O

(resp. J2
B M O ), the energy inequality of Lemma 2.2 gives the convergence in Hp′

(resp. Jp′) with
∀p′

≥ 2. Thus, by extracting subsequence if necessary, one sees supm |Zm
|, supm∥ψm

∥L2(ν) are
in Hp′

for any p′
≥ 2 from Lemma 2.5 of [29]. Since ∂Θ fm(r,Θm

r ) → ∂Θ f (r,Θr ) dt ⊗ dP-a.e.,
the dominated convergence shows the RHS of (D.2) tends to 0 as m → ∞. One can confirm the
convergence actually occurs in the entire sequence, since otherwise there exists a subsequence
(m j ) such that the RHS must be bounded from below by some positive constant. However, one
can once again choose a further subsequence from (m j ) so that the RHS converges to zero by the
dominated convergence as the last discussion, which is a contradiction. This proves (5.11).

D.2. Proof for (5.12)

Let us define a d-dimensional F-progressively measurable process (bm
s,z(r ), r ∈ [0, T ]) by

bm
s,z(ω, r ) :=

fm(ωs,z, r, Ξ̌ m
s,z(r )) − fm(ωs,z, r,Ξ m

s,z(r ))

z|∆s,z Zm
r |

2 1∆s,z Zm
r ̸=0∆

s,z Zm
r

where Ξ̌ m
s,z := (Ym

s,z, Zm
+ zZ s,z,

∫
R0
ρ(x)Gm(·,Ψm

s,z(·, x))ν(dx)) and Ξ m
s,z := (Ym

s,z,Zm
s,z,∫

R0
ρ(x)Gm(·,Ψm

s,z(·, x))ν(dx)). Noticing the fact Zs,z
= Z + zZ s,z , one sees (Ym

s,z, Zm
+

zZ s,z,Ψm
s,z) → (Y s,z,Zs,z,Ψ s,z) in S∞

× H2
B M O × J2

B M O . Let us also introduce a map f̃ m
s,z :

Ω × [0, T ] × R × L2(E, ν;Rk) → R by

f̃ m
s,z(ω, r, ỹ, ψ̃)

:= (Ds,z f )(r,Θr ) − (Ds,z fm)(r,Θm
r ) −

1
z

[
f (ωs,z, r,Θr ) − fm(ωs,z, r,Θm

r )
]

+
1
z

{
f
(
ωs,z, r, z ỹ + Ym

s,z(r ) + δY m
r ,Zs,z

r

,

∫
R0

ρ(x)G(r, zψ̃(x) + Ψm
s,z(r, x) + δψm

r (x))ν(dx)
)

− fm(ωs,z, r, Ξ̌ m
s,z(r ))

}
.

Then, (∆s,zY m,∆s,z Zm,∆s,zψm) is the solution to the BSDE

∆s,zY m
t =

∫ T

t

(
f̃ m
s,z(r,∆

s,zY m
r ,∆

s,zψm
r ) + bm

s,z(r ) · ∆s,z Zm
r

)
dr

−

∫ T

t
∆s,z Zm

r dWr −

∫ T

t

∫
E
∆s,zψm

r (x)µ̃(dr, dx).
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By denoting an F-progressively measurable process H m
s,z as

H m
s,z(r ) := KM

(
1 + |Zm

s,z(r )| + |Zs,z
r | + |δZm

r | + 2∥ρ∥L2(ν)G
′

M∥Ψm
s,z(r, ·)∥L2(ν)

)
,

one obtains |bm
s,z(r )| ≤ H m

s,z(r ) for ∀r ∈ [0, T ]. Here, H m
s,z ∈ H2

B M O and for m(dz)ds-
a.e. (s, z) ∈ [0, T ] × R0, its norm ∥H m

s,z∥H2
B M O

is bounded by some m-independent constant
thanks to the universal bounds. Furthermore, the new driver satisfies the linear growth property
| f̃ m

s,z(r, ỹ, ψ̃)| ≤ | f̃ m
s,z(r, 0, 0)| + KM

(
|̃y| + ∥ρ∥L2(ν)G

′

M∥ψ̃∥L2(ν)
)

and

| f̃ m(s, z)(r, 0, 0)| ≤ |(Ds,z f )(r,Θr ) − (Ds,z fm)(r,Θm
r )|

+
1
|z|

| f (ωs,z, r,Θr ) − fm(ωs,z, r,Θm
r )|

+
1
|z|

| f (ωs,z, r, Ξ̌ m
s,z(r )) − fm(ωs,z, r, Ξ̌ m

s,z(r ))|

+ C KM
1
|z|

(
|δY m

r | + ∥δψm
r ∥L2(ν) + Hm

s,z(r )|δZm
r |

)
where C is a positive constant depending only on ∥ρ∥L2(ν),G ′

M and

Hm
s,z(r ) := 1 + 2|Zs,z

r | + |δZm
r | + 2∥Ψm

s,z(r, ·)∥L2(ν) + ∥δψm
r ∥L2(ν) .

Hm
s,z ∈ H2

B M O and its norm is bounded by some m-independent constant m(dz)ds-a.e. (s, z) ∈

[0, T ] × R0. By applying Lemma A.1, one obtains(∆s,zY m,∆s,z Zm,∆s,zψm)
p
Kp[0,T ]

≤ CE
[(∫ T

0
|(Ds,z f )(r,Θr ) − (Ds,z fm)(r,Θm

r )|dr
)pq̄2] 1

q̄2

+
C

|z|p E
[(∫ T

0
| f (ωs,z, r,Θr ) − fm(ωs,z, r,Θm

r )|dr
)pq̄2] 1

q̄2

+
C

|z|p E
[(∫ T

0
| f (ωs,z, r, Ξ̌ m

s,z(r )) − fm(ωs,z, r, Ξ̌ m
s,z(r ))|dr

)pq̄2] 1
q̄2

+
C

|z|p E
[(∫ T

0

[
|δY m

r | + ∥δψm
r ∥L2(ν) + Hm

s,z(r )|δZm
r |

]
dr

)pq̄2] 1
q̄2
, (D.3)

where the positive constants C and q̄ > 1 are m-independent as before.
Due to (5.9) and (5.10), the convergence in limϵ↓0 is uniform in m and hence the order of limit

operations can be exchanged. By the dominated convergence from (5.9),

lim
m→∞

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

(∆s,zY m,∆s,z Zm,∆s,zψm)
p
Kp[0,T ]m(dz)ds

= lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

lim
m→∞

(∆s,zY m,∆s,z Zm,∆s,zψm)
p
Kp[0,T ]m(dz)ds.

Therefore, in order to prove the convergence (5.12) it suffices to show, for m(dz)ds-a.e. (s, z) ∈

[0, T ] × R0, limm→∞

(∆s,zY m,∆s,z Zm,∆s,zψm)
p
Kp[0,T ] = 0. This can be easily confirmed

from (D.3) by using the local Lipschitz continuity and the fact that Θm and ϕm(Θm) → Θ and
Ξ̌ m

s,z and ϕm(Ξ̌ m
s,z) → Ξ s,z converge in S∞

× H2
B M O × J2

B M O . This finishes the proof for (5.12).
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