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Abstract

We consider a system of forward–backward stochastic differential equations (FBSDEs) with monotone
functionals. We show that such a system is well-posed by the method of continuation similarly to Peng
and Wu (1999) for classical FBSDEs. As applications, we prove the well-posedness result for a mean field
FBSDE with conditional law and show the existence of a decoupling function. Lastly, we show that mean
field games with common noise are uniquely solvable under a linear-convex setting and weak-monotone
cost functions and prove that the optimal control is in a feedback form depending only on the current state
and conditional law.
c⃝ 2018 Published by Elsevier B.V.
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1. Introduction 1

In recent years, there has been a wide interest in the study of fully-coupled mean-field 2

forward–backward stochastic differential equations (FBSDEs) of the following form 3

d X t = b(t, X t , Yt , Z t ,P(X t ,Yt ,Zt ))dt + σ (t, X t , Yt , Z t ,P(X t ,Yt ,Zt ))dWt

dYt = f (t, X t , Yt , Z t ,P(X t ,Yt ,Zt ))dt + Z t dWt

X0 = ξ, YT = g(XT ,PXT ),
(1) 4
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where the coefficients b, σ , f and g depend on P(X t ,Yt ,Zt ), the law of the solution (X t , Yt , Z t ).1

This type of FBSDEs arises naturally from the mean-field type problems such as mean-field2

games (MFG) and mean-field type control problems (MFTC) [2,14].3

The well-posedness of the mean-field FBSDE (1) is studied in [8,11,12,14]. In [11], Carmona4

and Delarue show the existence of (1) under a bound condition on the law argument. In [8], the5

existence and uniqueness results are shown under a monotonicity condition. This monotonicity6

condition is motivated by the well-posedness result in the classical fully-coupled FBSDEs7

developed by [24,33]. All these results are based on the method of continuation and the Banach8

fixed point theorem, and more importantly, they are probabilistic approaches relying on the9

estimates on the space of random variables.10

In this paper, we are interested in extending mean-field FBSDE (1) to a more general setting11

where the monotonicity property can still be applied to establish well-posed result and explore12

its application to the MFG model. That is, we consider the fully-coupled functional FBSDE of13

the following form14

d X t = B(t, X t , Yt , Z t )dt + Σ (t, X t , Yt , Z t )dWt

dYt = F(t, X t , Yt , Z t )dt + Z t dWt

X0 = ξ, YT = G(XT ).
(2)15

Here instead of the functions of the values of (X t , Yt , Z t ), we assume that B, Σ , F and G are
functionals of the square integrable random variables X t , Yt and Z t . This functional FBSDE
includes (1) as one can define a lifting functional

B :[0, T ] × L2(Rn) × L2(Rn) × L2(Rn×d ) → L2(Rn)
(t, X, Y, Z ) → b(t, X, Y, Z ,P(X,Y,Z ))

and define similarly Σ , F,G for σ, f, g. More importantly, as we shall discuss below, this set-16

up includes a mean-field FBSDE with conditional law arising from a mean-field game with17

common noise, a type of model which has gained significant interest in recent years due to its18

application in economic and financial modeling [1,15,16,28]. This lifting of a function on a law19

to a functional on the space of random variables was also discussed in [10,22] where in [10],20

Lasry and Lion apply the lifting to define a notion of derivative in the Wasserstein space.21

This paper contributes mainly to the well-posedness theory of a general class of functional22

FBSDE and its applications to mean-field problems. Through a functional set-up, we provide23

several new results relating to mean-field FBSDE with conditional law and MFG with common24

noise. First, we show the existence and uniqueness result of both systems under a monotone type25

condition. For MFG with common noise, this result leads to what we call a weak monotonicity26

condition on the cost functions. The weak monotonicity condition was first discussed in [2] under27

a simpler set-up. Here, we generalize the result further and provide a simpler proof through this28

functional FBSDE.29

In addition to the well-posed result, by using the conditional estimate of the solution to the30

functional FBSDE, we are able to prove the existence of the decoupling function of mean-field31

FBSDE with conditional law. As a corollary, we have that the solution to MFG with common32

noise is in a feedback form thereby establishing its Markov property. The Markov property of33

MFG was discussed heuristically in [13] and proven in the case of no common noise in [17].34

Here, we extend the result to the case with common noise.35

Closely related to our work is a recent paper by Bensoussan, Yam, and Zhang [8] where they36

also consider a mean-field FBSDE under monotone type conditions similar to (H2.1)-(H2.3) in37

Peng and Wu [33] and several variations. Here, our assumptions are similar to (H3.2)-(H3.3)38
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in [33] as they are related to a stochastic control problem, or in the mean-field setting, a mean- 1

field game. Furthermore, our results pertain mainly to its application to mean-field game model 2

particularly in the case of common noise, and, thus, we consider a system with conditional law 3

which was not discussed in [8]. 4

The paper is organized as follows. In Section 2, we discuss the existence and uniqueness of 5

the solution to the functional FBSDE (2) by extending the proof in [33] and provide the regularity 6

of the solution. In Section 3, as an application, we study a mean-field FBSDE with conditional 7

probabilities and gives well-posedness result and the existence of a decoupling function. The 8

mean-field game with common noise is discussed in Section 4. Finally, the technical proofs of 9

Theorems 1 and 2 are provided in the Appendix. 10

2. FBSDE with conditional monotone functionals 11

2.1. Notations and assumptions 12

Let (Ω ,F ,F = {Ft }0≤t≤T ,P) denote a complete filtered probability space augmented by 13

P-null sets on which a d-dimensional Brownian motion (Wt )0≤t≤T is defined. Let Rn denote 14

the n-dimensional Euclidean space with the usual inner product and norm, and Rn×d denote the 15

Hilbert space of (n × d)-matrices with inner product ⟨A, B⟩ = Tr(AT B) and the induced norm 16

|A|
2

= Tr(AT A). 17

For any sub σ -algebra G of F , let L2
G(Rk) denote the set of G-measurable Rk-valued 18

square integrable random variables. Suppose G = {Gt }0≤t≤T is a sub-filtration of F, then 19

let H2
G([0, T ];Rk) denote the set of all Gt -progressively-measurable Rk-valued process β = 20

(βt )0≤t≤T such that 21

E
[∫ T

0
|βt |

2dt
]
< ∞ 22

We define similarly the space H2
G([s, t];Rk) for any 0 ≤ s < t ≤ T . We will often omit the 23

subscript and write H2([0, T ];Rk) for H2
F([0, T ];Rk). 24

We consider the following FBSDE 25

d X t = B(t, X t , Yt , Z t )dt + Σ (t, X t , Yt , Z t )dWt

dYt = F(t, X t , Yt , Z t )dt + Z t dWt

X0 = ξ, YT = G(XT )
(3) 26

where 27

B : [0, T ] × L2
F (Rn) × L2

F (Rn) × L2
F (Rn×d ) → L2

F (Rn)

Σ : [0, T ] × L2
F (Rn) × L2

F (Rn) × L2
F (Rn×d ) → L2

F (Rn×d )

F : [0, T ] × L2
F (Rn) × L2

F (Rn) × L2
F (Rn×d ) → L2

F (Rn)

G : L2
F (Rn) → L2

F (Rn)

(4) 28

are “functionals” on the space of random variables and output a random variable. Our motivation 29

for a functional set up is to solve a mean-field FBSDE similar to (1) but with the conditional 30

law (see (10)). This type of system arises from a mean-field game with “common noise” through 31

the stochastic maximum principle. The conditional law creates certain difficulties not presented 32

in FBSDE (1). One approach to deal with the law, particularly the conditional law, is to use 33

purely a probabilistic method. To do so, we define lifting functionals on the space of random 34

variables. In that case, we can apply the same probabilistic technique as used for a classical 35
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FBSDE, particularly those employed in [33], to prove the existence, uniqueness, and solution1

estimates.2

One disadvantage of using a general framework is the fact that we may lose any specific3

information pertaining to our system, in this case, a conditional mean-field FBSDE. To partially4

resolve this, we impose “conditional” property in the assumptions for functionals. In this way,5

we are able to obtain an estimate for a solution under conditional law (see Theorem 2). Our main6

application for this result is to show existence of decoupling function of mean-field FBSDE with7

conditional law. This is presented in Section 3.3.8

We now state the main assumptions on the coefficients. Fix a sub-filtration G = {Gt }0≤t≤T of9

F = {Ft }0≤t≤T , we assume10

(A1) For Φ = B, F,Σ , (Φ(t, X t , Yt , Z t ))0≤t≤T are Ft -progressively measurable for any11

(X t , Yt , Z t )0≤t≤T ∈ H2([0, T ];Rn
× Rn

× Rn×d ).12

(A2)

E
[∫ T

0
|B(t, 0, 0, 0)|2 + |Σ (t, 0, 0, 0)|2 + |F(t, 0, 0, 0)|2dt

]
< ∞ (5)13

(A3) There exist a constant K and a set of uniformly bounded linear functionals {c(1)
t , c(2)

t }0≤t≤T14

where15

c(1)
t : L2

F (Rn) → L2
F (Rk), c(2)

t : L2
F (Rn×d ) → L2

F (Rk)16

such that for any t ∈ [0, T ], X, X ′, Y, Y ′
∈ L2

F (Rn), Z , Z ′
∈ L2

F (Rn×d ), A ∈ Gt , Ã ∈ GT ,17

the following holds18

(a)
(

c(1)
t (Yt ), c(2)

t (Z t )
)

0≤t≤T
are Ft -progressively measurable for any (Yt , Z t )0≤t≤T ∈19

H2([0, T ];Rn
× Rn×d ).20

(b)

E
[
1A|∆Bt |

2]
≤ KE

[
1A

(
|∆X |

2
+ |c(1)

t (∆Y ) + c(2)
t (∆Z )|2

)]
E
[
1A|∆Σt |

2]
≤ KE

[
1A

(
|∆X |

2
+ |c(1)

t (∆Y ) + c(2)
t (∆Z )|2

)]
E
[
1A|∆Ft |

2]
≤ KE

[
1A
(
|∆X |

2
+ |∆Y |

2
+ |∆Z |

2)]
E
[
1 Ã|∆G|

2]
≤ KE

[
1 Ã|∆X |

2]
(6)21

(c) There exists β > 0 such that22

E (1A [⟨∆Ft ,∆X⟩ + ⟨∆Bt ,∆Y ⟩ + ⟨∆Σt ,∆Z⟩])

≤ −βE
[
1A|c(1)

t (∆Y ) + c(2)
t (∆Z )|2

]
,

E[1 Ã∆G∆X ] ≥ 0,

(7)23

where24

∆X = X − X ′, ∆Bt = B(t, X, Y, Z ) − B(t, X ′, Y ′, Z ′),25

and ∆Y,∆Z ,∆Σt ,∆Ft ,∆G are defined similarly.26

The first assumption (A1) is necessary to ensure that the stochastic integral is well-defined27

under these functionals set up. Assumption (A3) is a special Lipschitz condition and monotone28

condition related specifically to FBSDE arising from a stochastic control problem. It is motivated29

by assumption (H3.2)-(H3.3) in [33].30
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Remark 1. Note that the assumption (A3) depends on the filtration {Gt }0≤t≤T . Thus, when it is 1

not evident from the context, we will specify the filtration when referring to these assumptions. 2

This filtration plays an important role in controlling the level of generality of our functional 3

framework. For instance, if our filtration is trivial, namely Gt = {∅,Ω}, then the conditions are 4

the weakest involving only on the full expectation, and so does the estimate of the solutions. 5

Consequently, one cannot do much further analysis beyond the well-posedness property. On the 6

other hand, if our filtration is too large, for instance Gt = F , then we can set A = {X = x, Y = 7

y, Z = z} yielding a strict deterministic bound for the functionals in exchange for finer solution 8

estimates. 9

2.2. Existence and uniqueness 10

With the assumptions above, we have the following well-posed result. 11

Theorem 1. Let ξ ∈ L2
Fs

(Rn) and B, F,G,Σ be functionals satisfying (A1)–(A3), then the 12

FBSDE (3) has the unique solution (X t , Yt , Z t )s≤t≤T . 13

Proof. The proof for both existence and uniqueness are naturally extended from Theorem 14

3.1 in [33] for a classical FBSDE. It is based on probabilistic arguments using the method of 15

continuation and Banach fixed point theorem on the space of square-integrable random variables. 16

The proof is summarized in Appendix A. □ 17

2.3. Estimate 18

We now give estimates of the solution to (3). These estimates are given under conditional 19

expectation on the same filtration specified in the assumptions. This filtration controls the level 20

of generality of our functionals in the FBSDE (see Remark 1). These estimates, particularly 21

in its conditional form, will be used frequently in the subsequent sections when we discuss 22

the existence of a decoupling function for the conditional mean-field FBSDE and the Markov 23

property for mean-field games with common noise. 24

Theorem 2. Assume that two sets of functionals (B,Σ , F,G), (B ′,Σ ′, F ′,G ′) satisfy (A1)–(A3) 25

with the same filtration {Gt }s≤t≤T and θt = (X t , Yt , Z t ), θ ′
t = (X ′

t , Y ′
t , Z ′

t ) are the solutions 26

to the FBSDE (3) with the coefficients (B,Σ , F,G), (B ′,Σ ′, F ′,G ′) and initial conditions 27

ξ, ξ ′
∈ L2

Fs
(Rn), respectively. Then there exists a constant CK ,T > 0 depending only on K 28

and T such that for any A ∈ Gs , 29

E
[

sup
s≤t≤T

1A|∆X t |
2
+ sup

s≤t≤T
1A|∆Yt |

2
+

∫ T

s
(1A|∆Z t |

2)dt
]

≤ CK ,TE
[
1A

(
|∆ξ |2 + |Ḡ|

2
+

∫ T

s
(|F̄t |

2
+ |B̄t |

2
+ |Σ̄t |

2)
)] (8) 30

where ∆X t = X t − X ′
t and ∆Yt ,∆Z t ,∆ξ are defined similarly, Φ̄t = Φ(t, θ ′

t ) − Φ ′(t, θ ′
t ) for 31

Φ = B,Σ , F and Ḡ = G(X ′

T ) − G ′(X ′

T ). 32

Proof. See Appendix B. □ 33
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Corollary 1. Let (X t , Yt , Z t )s≤t≤T be the solution to FBSDE (3) with the initial condition1

ξ ∈ L2
Fs

(Rn) and coefficients (B,Σ , F,G) satisfying (A1)–(A3). Then there exists a constant2

CK ,T > 0 depending only on K and T such that for any A ∈ Gs ,3

E
[
1A sup

s≤t≤T
|X t |

2
+ 1A sup

s≤t≤T
|Yt |

2
+ 1A

∫ T

s
|Z t |

2dt
]

≤ CK ,T
(
E
[
1A|ξ |2 + 1A|G(0)|2

])
+ CK ,TE

[
1A

∫ T

s

(
|B(t, 0, 0, 0)|2 + |F(t, 0, 0, 0)|2 + |Σ (t, 0, 0, 0)|2

)
dt
] (9)4

Proof. Apply Theorem 2 with ξ ′
≡ 0 and (B ′,Σ ′, F ′,G ′) ≡ (0, 0, 0, 0). □5

3. Mean-field FBSDE with conditional law6

In this section, we discuss an application of the results on the functional FBSDE to a class of7

mean-field FBSDE with conditional law. In addition, we show the existence of a deterministic8

decoupling function for this type of FBSDE.9

3.1. Problem formulation10

Following similar notations as defined in Section 2.1, we consider the following system11

d X t = b(t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|F̃t
)dt

+ σ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|F̃t
)dWt

+ σ̃ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|F̃t
)dW̃t

dYt = f (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|F̃t
)dt + Z t dWt + Z̃ t dW̃t

X0 = ξ, YT = g(XT ,PXT |F̃T
)

(10)12

where (Wt )0≤t≤T , (W̃t )0≤t≤T are independent Brownian motions in Rd1 ,Rd2 , P(X t ,Yt ,Zt ,Z̃t )|F̃t
13

denotes the law of (X t , Yt , Z t , Z̃ t ) conditional on F̃t , where F̃t denotes the σ -field generated14

by {W̃s; 0 ≤ s ≤ t}. As we shall see in the next section, this FBSDE is related to mean-field15

games model with common noise. For this reason, we will refer to (Wt )0≤t≤T as individual16

noise, (W̃t )0≤t≤T as common noise and (F̃t )0≤t≤T as the common noise filtration. The tuple17

(X t , Yt , Z t , Z̃ t )0≤t≤T is called a solution to (10) if it is in H2([0, T ];Rp), where Rp
= Rn

×Rn
×18

Rn×d1 × Rn×d2 , and satisfies (10). Note that when (X t , Yt , Z t , Z̃ t )0≤t≤T ∈ H2([0, T ];Rp), the19

existence of F̃t -progressively measure version of (P(X t ,Yt ,Zt ,Z̃t )|F̃t
)0≤t≤T is guaranteed by Lemma20

1.1 in [26] for instance.21

The functions in (10) are given and defined on the following spaces;22

b, f : [0, T ] × Rp
× P2(Rp) → Rn, σ : [0, T ] × Rp

× P2(Rp) → Rn×d1

σ̃ : [0, T ] × Rp
× P2(Rp) → Rn×d2 , g : Rn

× P2(Rn) → Rn
(11)23

where P2(Rd ) denotes the space of Borel probability measures on Rd with finite second moment,24

i.e. a probability measure µ such that
∫
Rd x2dµ(x) < ∞. It is a complete separable metric space25
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equipped with a second-order Wasserstein metric W2(·, ·) defined as 1

W2(µ, ν) = inf
γ∈Γµ,ν

(∫
Rd×Rd

|x − y|
2γ (dx, dy)

) 1
2

(12) 2

where Γµ,ν denotes the space of probability measure on Rd
×Rd with marginal µ, ν respectively. 3

For the conditional probability flows, we introduce the space H2
G([0, T ];P2(Rd )) for all the 4

Gt -progressively-measurable P2(Rd )-valued processes (m t )0≤t≤T such that 5

E
[∫ T

0

∫
Rd

|x |
2m t (dx)dt

]
< ∞ 6

We will mainly be interested in L2
F̃
([0, T ];P2(Rd )) where F̃ = {F̃t }0≤t≤T with F̃t = σ (W̃s)0≤s≤t 7

being the common noise filtration. Note that when (X t , Yt , Z t , Z̃ t )0≤t≤T ∈ H2([0, T ];Rp), we 8

have (P(X t ,Yt ,Zt ,Z̃t |F̃t ))0≤t≤T ∈ H2
F̃
([0, T ];P2(Rp)). 9

In order to construct conditional expectation given common noise explicitly, we separate the 10

path space for individual noise and common noise. From now and throughout this section, we 11

assume that (Ω ,F ,P) is in the form (Ω0
×Ω̃ ,F0

⊗F̃ ,P0
⊗P̃) where the individual noise Wt and 12

common noise W̃t are supported in the space (Ω0,F0,P0) and (Ω̃ , F̃ , P̃) respectively. We will 13

also assume that (Ω̃ , F̃ , P̃) is the canonical sample space of the Brownian motion (W̃t )0≤t≤T with 14

F̃ being its natural filtration completed with P-null sets. We also assume that Ω0 is sufficiently 15

rich (Polish and atom-less) that for any m ∈ P2(Rn), we can find ξ ∈ L2(Ω0
;Rn) independent 16

of all Brownian motions with law m. We first provide the following lemma which will be proved 17

useful in a subsequent section. 18

Lemma 1. Consider a Polish and atom-less probability space Ω . For two measures m1,m2 ∈ 19

P2(Rd ) satisfying W2(m1,m2) < ε and any random variable ξ ∈ L2(Ω;Rd ) with law m1, there 20

exist η ∈ L2(Ω;Rd ) such that η has law m2 and (E|ξ − η|2|)
1
2 < ε. 21

Proof. By the definition of Wasserstein metric, there exists a small enough ε′ > 0 and two 22

random variables X and Y with law m1 and m2 respectively such that 23

(E|X − Y |
2)

1
2 < ε − ε′

24

Now by Lemma 6.4 in [10], there exists a bijective mapping τ : Ω → Ω that is measurable, 25

measure-preserving, and satisfies 26

(E|X ◦ τ − ξ |2)
1
2 ≤ |X ◦ τ − ξ |∞ < ε′

27

Since τ is measure-preserving, Y ◦ τ also has distribution m2 and 28

(E|X ◦ τ − Y ◦ τ |2)
1
2 = (E|X − Y |

2)
1
2 < ε − ε′

⇒ (E|ξ − Y ◦ τ |2)
1
2 < ε. 29

Thus, we can use Y ◦ τ as our η. □ 30

3.2. Existence and uniqueness of a solution and its estimate 31

Note that the coefficients b, σ, σ̃ , f, g, are functionals of the law in their last arguments. To 32

prove existence and uniqueness result for system (10), one approach is to employ the Schauder 33

fixed point theorem. That is, we fix a flow of probability measures (m t )0≤t≤T , replace the 34
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probability measure arguments in (10) by m t , solve a classical system of FBSDE, and consider1

the law of the solution, namely P(X t ,Yt ,Zt ,Z̃t )|F̃t
. This map can be described as follows;2

(m t )0≤t≤T ⇒ (X t , Yt , Z t , Z̃ t )0≤t≤T ⇒ (P(X t ,Yt ,Zt ,Z̃t )|F̃t
)0≤t≤T (13)3

The fixed point of these operations then yields the solution to (10). This set up was used in [12,16]4

to prove well-posedness of (10) without conditional law. However, it is considerably more5

difficult to extend the result using this argument to the case of conditional law since it involves6

the space of stochastic flow of probability measures as opposed to the deterministic one. In this7

larger space, it is non-trivial how one can find an invariant compact subset so that the Schauder8

fixed point theorem can be applied.9

Instead, we adopt a different approach to deal with the probability measure terms; we consider10

a lifting from the space of probability measure to the space of random variables. That is, for a11

function φ : Rp
× P2(Rp) → Rd , we define a functional Φ : Rp

× L2
F (Rp) → Rd by12

Φ(x, ξ ) = φ(x,Pξ )13

This lifting allows us to work on the Hilbert space L2
F (Rp) instead of the metric space P2(Rp).14

This approach was used in [10] (see Ch.6) to define a derivative in the Wasserstein space P2(Rp)15

through the Fréchet derivative in the Hilbert space L2
F (Rp). For the system (10), we can extend16

the lifting further and combine all the state variables by defining B : [0, T ]×L2
F (Rp) → L2

F (Rn)17

as18

B(t, X, Y, Z , Z̃ ) = b(t, X, Y, Z , Z̃ ,P(X,Y,Z ,Z̃ )|F̃t
) (14)19

for any random variables (X, Y, Z , Z̃ ) ∈ L2
F (Rp). We define similarly, Σ , Σ̃ , F,G the lifting20

functionals of σ, σ̃ , f, g.21

Using these functionals, FBSDE (10) is translated to a functional FBSDE (3). Thus, if22

B, (Σ , Σ̃ ), F,G defined above satisfy (A1)–(A3), then we can apply our results from Section 2,23

namely Theorems 1 and 2, to obtain the well-posedness of (10) and its solution estimate. To do24

so, we assume the following on b, σ, σ̃ , f, g.25

(B1) b, σ, σ̃ , f, g are measurable and satisfies26 ∫ T

0
|φ(t, 0, 0, 0, 0, δ0)|2dt < ∞ for φ = b, σ, σ̃ , f, g (15)27

where δa denotes the Dirac measure at a ∈ Rp.28

(B2) There exist a constant K and uniformly bounded linear maps29

c(1)
t : Rn

→ Rk, c(2)
t : Rn×d1 → Rk, c(3)

t : Rn×d2 → Rk
30

such that for any t ∈ [0, T ], θ = (X, Y, Z , Z̃ ), θ ′
= (X ′, Y ′, Z ′, Z̃ ′) ∈ L2((Ω̂ , F̂ , P̂);Rp),31

where (Ω̂ , F̂ , P̂) is an arbitrary probability space, the following holds:32

(a) For φ = b, σ, σ̃ , f

Ê|∆φt |
2

≤ K Ê(|∆X |
2
+ |c(1)

t (∆Y ) + c(2)
t (∆Z ) + c(3)

t (∆Z̃ ′)|2),

Ê|∆g|
2

≤ K Ê|∆X |
2

(b) There exists β > 0 such that

Ê
[
⟨∆ ft ,∆X⟩ + ⟨∆bt ,∆Y ⟩ + ⟨∆σt ,∆Z⟩ +

⟨
∆σ̃t ,∆Z̃

⟩]
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≤ −βÊ|c(1)
t (∆Y ) + c(2)

t (∆Z ) + c(3)
t (∆Z̃ ′)|2,

Ê[∆g∆X ] ≥ 0

where ∆X = X − X ′, ∆ ft = f (t, θ, P̂θ ) − f (t, θ ′, P̂θ ′ ) and similarly for other 1

terms. 2

It is worth noting the difference between the functionals B,Σ , Σ̃ , F,G discussed in 3

Section 2.1 and those on the functions b, σ, σ̃ , f, g. Here, the functions b, σ, σ̃ , f, g are all 4

deterministic and their definitions and assumptions (B1)–(B2) do not depend on the probabilistic 5

setup of our model. That is, it is independent of the fixed probability space (Ω ,F ,P) and/or any 6

filtration, and particularly does not involve the conditional law. 7

Assumptions (B1)–(B2) are comparable to those in Bensoussan et al. [5] where they consider 8

an extension of assumptions (H2.1)-(H2.3) in Peng and Wu [33] to include mean-field terms. In 9

our case, we give a special type of Lipschitz condition involving both Y, Z simultaneously (see 10

(B2)). This is comparable to assumption (H3.2)-(H3.3) in Peng and Wu [33] where they consider 11

this particular case for its application to stochastic control problems. Similarly, we are interested 12

mainly in its application to a mean-field game model which is a control problem with mean-field 13

interaction. 14

For our applications in the subsequent sections, we will state the well-posedness result for 15

FBSDE over the time interval [s, T ] and slightly more general filtrations. For that, we define the 16

following 17

Definition 1. Let s ∈ [0, T ], ξ ∈ L2
Fs

(Rn) and {Gt }s≤t≤T be a sub-filtration of {Ft }s≤t≤T . We 18

define FBSDE with data (s, ξ, {Gt }s≤t≤T ) or simply FBSDE (s, ξ, {Gt }s≤t≤T ) to be the following 19

FBSDE 20

d X t = b(t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|Gt
)dt

+ σ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|Gt
)dWt

+ σ̃ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|Gt
)dW̃t

dYt = f (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt ,Zt ,Z̃t )|Gt
)dt + Z t dWt + Z̃ t dW̃t

Xs = ξ, YT = g(XT ,PXT |GT )

(16) 21

θt = (X t , Yt , Z t , Z̃ t )s≤t≤T is called a solution to FBSDE (s, ξ, {Gt }s≤t≤T ) if they are Ft -adapted 22

and satisfy FBSDE (16). 23

We are interested particularly in the FBSDE (s, ξ, {F̃ s
t }s≤t≤T ), where ξ ∈ L2

Fs
(Rn) and 24

{F̃ s
t }s≤t≤T denotes the σ -algebra generated by the common noise starting at time s, i.e. F̃ s

t = 25

σ (W̃r − W̃s; s ≤ r ≤ t). In Section 3.3, we will discuss the use of this sub-FBSDE to define the 26

so-called “decoupling” function for mean-field FBSDE. First, we state our main result for this 27

subsection which establishes their existence and uniqueness results. 28
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Theorem 3. Assume that (B1)–(B2) hold, then FBSDE (s, ξ, {F̃ s
t }s≤t≤T ) admits a unique1

solution (X t , Yt , Z t , Z̃ t )s≤t≤T satisfying2

E
[
1A sup

s≤t≤T
|X t |

2
+ 1A sup

s≤t≤T
|Yt |

2
+ 1A

∫ T

s
(|Z t |

2
+ |Z̃ t |

2)dt
]

≤ CK ,TE
[
1A|ξ |2 + 1A|g(0, δ0)|2 + 1A

∫ T

s

(
|b(t, 0, 0, 0, 0, δ0)|2

+ | f (t, 0, 0, 0, 0, δ0)|2 + σ (t, 0, 0, 0, 0, δ0)2
+ σ̃ (t, 0, 0, 0, 0, δ0)2

)
dt
]

(17)3

for A ∈ Fs , where δa denotes the Dirac measure at a ∈ Rp. Moreover, for i = 1,2, let4

(X i
t , Y i

t , Z i
t , Z̃ i

t )s≤t≤T denote the solution to FBSDE (s, ξ i , {F̃ s
t }s≤t≤T ), where ξ i

∈ L2
Fs

(Rn),5

then the following estimate holds6

E
[
1A sup

s≤t≤T
|∆X t |

2
+ 1A sup

s≤t≤T
|∆Yt |

2
+ 1A

∫ T

s
|∆Z t |

2
+ |∆Z̃ t |

2dt
]

≤ CK ,TE
[
1A|∆ξ |2

] (18)7

where ∆X t = X1
t − X2

t and ∆Yt ,∆Z t ,∆Z̃ t ,∆ξ are defined similarly.8

Proof. Let B,Σ , Σ̃ , F,G be lifting functionals of b, σ, σ̃ , f, g as defined in (14) but with respect9

to {F̃ s
t }s≤t≤T ; that is,10

B(t, X, Y, Z , Z̃ ) = b(t, X, Y, Z , Z̃ ,P(X,Y,Z ,Z̃ )|F̃ s
t
)11

for any random variables (X, Y, Z , Z̃ ) ∈ L2
F (Rp). The functionals Σ , Σ̃ , F,G are defined12

similarly. We need to verify that B, (Σ , Σ̃ ), F,G satisfy (A1)–(A3) with respect to {F̃ s
t }0≤t≤T ,13

then the result follows directly from Theorems 1 and 2.14

Since the map H2([s, T ];Rp) ∋ (θt )s≤t≤T → Pθt |F̃ s
t

∈ L2
F̃
([s, T ];P2(Rp)) is continuous,15

assumption (A1) follows from (B1) and so does (A2). Assumption (A3) follows from (B2), that16

is,17

E [1A|∆Bt |] = E
[
E
[
1A|∆bt ||F̃ s

t

]]
= E

[
1AE

[
|∆bt ||F̃ s

t

]]
≤ E

[
1A KE

[
|∆X |

2
+ |c(1)

t (∆Y ) + c(2)
t (∆Z ) + c(3)

t (∆Z̃ ′)|
2
|F̃ s

t

]]
= KE

[
1A

(
|∆X |

2
+ |c(1)

t (∆Y ) + c(2)
t (∆Z ) + c(3)

t (∆Z̃ ′)|2
)] (19)18

Other conditions in (A3) follow similarly. □19

3.3. Decoupling function of a mean-field FBSDE with conditional law20

In this section, we discuss the existence of a decoupling function for mean-field FBSDE with21

conditional law. A decoupling function is a function which helps to “decouple” the FBSDE by22

describing the relation of the backward process Yt as a function of the forward process X t . As a23

result, it reduces the FBSDE to merely solving a standard forward SDE. This method of solving24

FBSDE is called Four-steps scheme and was first proposed by Ma, Protter, and Yong in [31]25

for a classical FBSDE with non-random coefficients. In that case, under regularity assumptions26

on the coefficients, one can find a decoupling function by solving a quasilinear PDE. When the27
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coefficients are random, the decoupling function is also random and is referred to as a decoupling 1

field and is related to backward stochastic differential equation (BSDE). We refer to [18] for 2

more detail on a decoupling function of a classical FBSDE in a deterministic case and [32] for a 3

decoupling field in a general case. 4

Going back to our setting, we consider first the mean-field FBSDE (10) with unconditional 5

law; suppose that we fix a deterministic flow of probability measure m = (m t )0≤t≤T ∈ 6

M([0, T ];P2(Rp)) and consider the system 7

d X t = b(t, X t , Yt , Z t , Z̃ t ,m t )dt + σ (t, X t , Yt , Z t , Z̃ t ,m t )dWt

+ σ̃ (t, X t , Yt , Z t , Z̃ t ,m t )dW̃t

dYt = f (t, X t , Yt , Z t , Z̃ t ,m t )dt + Z t dWt + Z̃ t dW̃t

X0 = ξ, YT = g(XT ,m(n)
T )

(20) 8

where m(n)
T denotes the marginal distribution of the first n-dimension of Rp of mT . Since 9

(b, σ, σ̃ , f )(t, x, y, z,m t ), g(x,m(n)
T ) are deterministic functions, we have, under certain standard 10

assumptions, an existence of a decoupling function for classical FBSDEs; that is, there exist a 11

function U m
: [0, T ] × Rn such that 12

Yt = U m(t, X t ) 13

See [18] for instance. A Markov property for (20) would mean U m(t, x) can be written as 14

Ū (t, x,m t ); consequently, going back to the mean-field FBSDE (10) (with unconditional law), 15

we have 16

Yt = U m(t, X t ) = Ū (t, X t ,m t ) = Ū (t, X t ,P(X t ,Yt ,Zt ,Z̃t )) 17

In addition, its Markov property also means that the law of the backward processes also depends 18

only on the law of the forward process. As a result, a decoupling function for mean-field FBSDE 19

(10) is expected to be a deterministic function U : [0, T ] × Rn
× P2(Rn) such that 20

Yt = U (t, X t ,PX t ) 21

We note that the relation above does not follow directly from results for a classical FBSDE 22

and the derivation above is merely heuristic. The decoupling function for unconditional mean- 23

field FBSDE was discussed in [13,14] and shown rigorously in [17]. In our case where the 24

law is conditional, the flow m is in fact stochastic which introduces more difficulties. First, the 25

coefficients (given m) (b, σ, σ̃ , f )(t, x, y, z,m t ), g(x,m(n)
T ) are now random, so the result from 26

classical FBSDEs does not even apply directly in the first place. Secondly, the conditional law 27

makes it difficult to deal with a time-varying FBSDE used to define the decoupling function. 28

However, as the coefficients in (10) are still deterministic functions of m, if the system is 29

well-posed, it is reasonable to expect a Markov property with respect to the conditional law of 30

X t ; that is, there exist a deterministic function U : [0, T ] × Rn
× P2(Rn) such that 31

Yt = U (t, X t ,PX t |F̃t
) (21) 32

Remark 2. In the classical FBSDE, the decoupling function of the FBSDE corresponding to a 33

control problem is the gradient (in state variable x) of the value function which is a solution to 34

an HJB equation. Similarly, the decoupling function U (t, x,m) here is the gradient (in x) of the 35

generalized value function which satisfies the so-called master equation. We refer to [1,6,13] for 36

more detailed discussion on the master equation. 37
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To state our main result showing the existence of U satisfying (21), we first list additional1

assumptions2

(B3) The functions b, σ, σ̃ , f in the FBSDE (10) depend only on the conditional law of3

(X t , Yt ); that is, the FBSDE (s, ξ, {Gt }s≤t≤T ) is now given by4

d X t = b(t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt )|Gt )dt + σ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt )|Gt )dWt

+ σ̃ (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt )|Gt )dW̃t

dYt = f (t, X t , Yt , Z t , Z̃ t ,P(X t ,Yt )|Gt )dt + Z t dWt + Z̃ t dW̃t

Xs = ξ, YT = g(XT ,PXT |GT )

(22)5

(B4) For any m ∈ P2(R2n), m̃ ∈ P2(Rn), t ∈ [0, T ], φ = b, σ, σ̃ , f ,6

φ(t, 0, 0, 0, 0,m)2
≤ K

(
1 +

∫
R2n

y2dm(y)
)

g(0, m̃)2
≤ K

(
1 +

∫
Rn

y2dm̃(y)
)7

(B5) We have assumptions on both Lipschitz property and monotonicity.8

(a) For φ = b, σ, σ̃ , f and m,m ′
∈ P2(R2n)

|φ(t, θ,m) − φ(t, θ ′,m ′)|2

≤ K (|∆x |
2
+ |c(1)

t (∆y) + c(2)
t (∆z) + c(3)

t (∆z̃′)|2 + W2
2 (m,m ′))

where θ = (x, y, z, z̃), θ ′
= (x ′, y′, z′, z̃′) ∈ Rp. We also assume, for x, x ′

∈ Rn ,9

m̃, m̃ ′
∈ P2(Rn) ,10

|g(x, m̃) − g(x ′, m̃ ′)|2 ≤ K
(
|∆x |

2
+ W2

2 (m̃, m̃ ′)
)

11

(b) For any m ∈ P2(R2n), m̃ ∈ P2(Rn),

⟨∆ ft ,∆x⟩ + ⟨∆bt ,∆y⟩ + ⟨∆σt ,∆z⟩ + ⟨∆σ̃t ,∆z̃⟩

≤ −β|c(1)
t (∆y) + c(2)

t (∆z) + c(3)
t (∆z̃)|2,

for some β > 0 and12

E[∆g∆x] ≥ 013

where ∆ ft = f (t, x, y, z, z̃,m)− f (t, x ′, y′, z′, z̃′,m), and ∆bt , ∆σt , ∆σ̃t , ∆g are14

similarly defined.15

Our main result for this section is the following16

Theorem 4. Assume (B1)–(B5) hold and let (X t , Yt , Z t , Z̃ t )0≤t≤T denote the solution to FBSDE17

(10), then there exists a deterministic function U : [0, T ] × Rn
× P2(Rn) such that18

Yt = U (t, X t ,PX t |F̃t
), ∀t ∈ [0, T ] a.s. (23)19

Theorem 4 will be given as a consequence of Theorem 7 presented at the end of this section.20

The main idea is to define explicitly a function U through a solution of time-varying FBSDE21
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with arbitrary initial data. This is done in two steps as it involves both the state variables and 1

probability measure variable. Then, using a priori estimates and a discretization argument, we 2

show that this function U satisfies (23) and, thus, is the decoupling function. The rest of the 3

section are devoted to the proof of Theorem 7. We assume (B1)–(B5) throughout the rest of this 4

section. 5

3.3.1. Flow map 6

In this section, we define flow maps {Θ s,t
}0≤s≤t≤T which describes the conditional law at time 7

t of the solution of mean-field FBSDE over [s, t] as a functional of the initial law. Our main result 8

for this section, Theorem 5, gives the Markov property of the solution flows. 9

We begin with its definition. For m ∈ P2(Rn), let ξ ∈ L2
Fs

(Rn) with law m and denote 10

by θ s,ξ
t = (X s,ξ

t , Y s,ξ
t , Z s,ξ

t , Z̃ s,ξ
t )s≤t≤T the unique solution to FBSDE (s, ξ, {F̃ s

t }s≤t≤T ), i.e. it 11

satisfies 12

d X s,ξ
t = b(t, θ s,ξ

t ,P(X s,ξ
t ,Y s,ξ

t )|F̃ s
t
)dt + σ (t, θ s,ξ

t ,P(X s,ξ
t ,Y s,ξ

t )|F̃ s
t
)dWt

+ σ̃ (t, θ s,ξ
t ,P(X s,ξ

t ,Y s,ξ
t )|F̃ s

t
)dW̃t

dY s,ξ
t = f (t, θ s,ξ

t ,P(X s,ξ
t ,Y s,ξ

t )|F̃ s
t
)dt + Z s,ξ

t dWt + Z̃ s,ξ
t dW̃t

X s,ξ
s = ξ, Y s,ξ

T = g(X s,ξ
T ,PX s,ξ

T |F̃ s
T

).

(24) 13

Recall that F̃ s
t is a σ -algebra generated by the common Brownian motion starting at time s, 14

i.e. F̃ s
t = σ

(
W̃r − W̃s; s ≤ r ≤ t

)
. We define, for 0 ≤ s ≤ t ≤ T , the following two flow maps 15

Θ s,t
: P2(Rn) → L2

F s
t
(P2(R2n)), Θ s,t

X : P2(Rn) → L2
F s

t
(P2(Rn)) as 16

Θ s,t (m) ≜ P(X s,ξ
t ,Y s,ξ

t )|F̃ s
t
, Θ s,t

X (m) ≜ PX s,ξ
t |F̃ s

t
(25) 17

We will sometimes use the following notation 18

ms,m
t ≜ Θ s,t (m), ms,m

X,t ≜ Θ s,t
X (m) (26) 19

First, we check that this map is well-defined. That is, the conditional law PX s,ξ |F̃ s
t

is 20

independent of the choice of ξ ∈ L2
Fs

(Rn) provided that Pξ = m. This is equivalent to a 21

(conditional) weak uniqueness for FBSDE, or equivalently, the Yamada–Watanabe theorem, 22

extended to mean-field FBSDE with conditional law. We state a slightly more general result 23

taking into account the conditional law as it will be applied in a subsequent section. 24

Proposition 1. Let 0 ≤ r ≤ s ≤ T . Suppose that ξ1, ξ2 ∈ L2
Fs

(Rn) such that Pξ1|F̃r
s

= Pξ2|F̃r
s

∈ 25

L2
Fs

(P2(Rn)), then P
(X

s,ξ1
t ,Y

s,ξ1
t )|F̃r

t
= P

(X
s,ξ2
t ,Y

s,ξ2
t )|F̃r

t
, and in particular P

X
s,ξ1
t |F̃r

t
= P

X
s,ξ2
t |F̃r

t
for 26

all t ∈ [s, T ] where (X s,ξ1
t , Y s,ξ1

t ), (X s,ξ2
t , Y s,ξ2

t ) are as defined above. 27

Proof. Fix a path of the common Brownian motion ω̃ ∈ Ω̃ , then follow the same argument as 28

in Theorem 5.1 in [3] which shows that pathwise uniqueness implies weak uniqueness for an 29

FBSDE. □ 30

Next, we give a Lipschitz bound on this map. 31
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Proposition 2. For 0 ≤ s ≤ t ≤ T , m,m ′
∈ P2(Rn), there exists a constant CK ,T that depends1

only on K , T such that2

E
[
W2

2 (Θ s,t (m),Θ s,t (m ′))
]

≤ CK ,TW2
2 (m,m ′)

E
[
W2

2 (Θ s,t
X (m),Θ s,t

X (m ′))
]

≤ CK ,TW2
2 (m,m ′)

(27)3

Proof. Let ξ , ξ ′ be arbitrary elements of L2
Fs

(Rn) with law m, m ′
∈ P2(Rn). Let (X t , Yt , Z t ,4

Z̃ t )0≤t≤T and (X ′
t , Y ′

t , Z ′
t , Z̃ ′

t )0≤t≤T denote the solutions of FBSDE (24) with initial Xs = ξ, X ′
s =5

ξ ′, then by the estimate (18), it follows that6

E[W2
2 (Θ s,t (m),Θ s,t (m ′))] ≤ E[(X t − X ′

t )
2] + E[(Yt − Y ′

t )2]

≤ CK ,TE[(ξ − ξ ′)2]
7

for a constant CK ,T depends only on K , T . Since ξ , ξ ′ are arbitrary, we conclude that8

E[W2
2 (Θ s,t (m),Θ s,t (m ′))] ≤ CK ,TW2

2 (m,m ′)9

The proof for Θ s,t
X is identical. □10

We are now ready to state and prove our main result for this subsection which gives Markov11

property of the law of the solution to the conditional mean-field FBSDE (24)12

Theorem 5. For any m ∈ P2(Rn) and 0 ≤ s ≤ t ≤ u ≤ T13

Θ t,u(Θ s,t
X (m)) = Θ s,u(m)

Θ t,u
X (Θ s,t

X (m)) = Θ s,u
X (m)

(28)14

Proof. Let η ∈ L2
Fs

(Rn) with Pη = m and (X s,η
t , Y s,η

t , Z s,η
t , Z̃ s,η

t )s≤t≤T denote the solution to15

FBSDE (24) corresponding to the definition of Θ s,u and Θ s,u
X , so16

Θ s,u(m) = P(X s,η
u ,Y s,η

u )|F̃ s
u
, Θ s,u

X (m) = PX s,η
u |F̃ s

u
17

Since P2(Rn) is separable, for any δ > 0, there exist a sequence of disjoint Borel measurable18

subsets {An}n∈N of P2(Rn) such that diam(An) < δ and ∪n∈NAn = P2(Rn). Let mn be a19

representative element of An so that W2(m,mn) < δ for all m ∈ An . Let Bn = {ω ∈20

Ω;PX s,η
t |F̃ s

t
(ω) ∈ An}. Consider21

ξ̃ ≜
∑
n∈N

1Bnξ
n

22

where ξ n
∈ L2

Ft
has law mn and is independent of F̃t , thus independent of Bn . That is,23

Pξn |F̃ s
t

= Pξn = mn24

Then it follows by construction that ξ̃ ∈ L2
Ft

(Rn) and25

W2(Pξ̃ |F̃ s
t
,PX s,η

t |F̃ s
t
) < δ26

Using this type of discretization and Lemma 1, we can redivide An further and proceed27

sequentially to construct a sequence {ξ N
}N∈N of the form28

ξ N ≜
∑
n∈N

1Bn,N ξ
n,N

29
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such that {ξ N
}N∈N is Cauchy in L2

Ft
, ξ n,N is independent of F̃ s

t and 1

W2(PξN |F̃ s
t
,PX s,η

t |F̃ s
t
) <

1
N

2

Let ξ = limN→∞ ξ
N in L2

Ft
, then we have 3

Pξ |F̃ s
t

= PX s,η
t |F̃ s

t
= Θ s,t

X (m) (29) 4

Now consider FBSDE (t, ξ, {F̃ s
r }t≤r≤T ) and denote its solution by (X t,ξ

r , Y t,ξ
r , Z t,ξ

r , Z̃ t,ξ
r ). By (29) 5

and Proposition 1, it follows that 6

P(X t,ξ
u ,Y t,ξ

u )|F̃ s
u

= P(X s,η
u ,Y s,η

u )|F̃ s
u

= Θ s,u(m) (30) 7

Let 8

X N
r ≜

∑
n∈N

1Bn,N Xn,N
r ; Y N

r ≜
∑
n∈N

1Bn,N Y n,N
r 9

where (Xn,N
r , Y n,N

r )t≤r≤u is a solution to FBSDE (t, ξ n,N , {F̃ t
r }t≤r≤T ). It is easy to check that 10

(X N
r , Y N

r )t≤r≤u is a solution to FBSDE (t, ξ N , {F̃ s
r }t≤r≤T ) with initial ξ N . Note that (Xn,N

r , Y n,N
r ) 11

is F t
r -measurable which is independent of F̃t , hence independent of Bn . Thus, we have 12

P(X N
u ,Y N

u )|F̃ s
u

=

∑
n∈N

1Bn,N P(Xn,N
u ,Y n,N

u )|F̃ t
u

=

∑
n∈N

1Bn,N Θ
t,u(Pξn,N ) 13

Taking limit in L2
Fu

as N → ∞ both sides, it follows from the fact that E[(ξ − ξ N )2] → 0 and 14

from estimate (18) that 15

P(X t,ξ
u ,Y t,ξ

u )|F̃ s
u

= Θ t,u(Pξ |F̃ s
t
) 16

Combine with (29) and (30), we get (28) as desired. With similar proof, we also have 17

Θ t,u
X (Θ s,t

X (m)) = Θ s,u
X (m) □ 18

3.3.2. Defining a decoupling function 19

Now, we let ξ ∈ L2
Fs

(Rn) and define (X s,ξ,m
t , Y s,ξ,m

t , Z s,ξ,m
t , Z̃ s,ξ,m

t )s≤t≤T to be the Ft -adapted 20

solution to the following FBSDE 21

d X s,ξ,m
t = b(t, θ s,ξ,m

t ,ms,m
t )dt + σ (t, θ s,ξ,m

t ,ms,m
t )dWt + σ̃ (t, θ s,ξ,m

t ,ms,m
t )dW̃t

dY s,ξ,m
t = f (t, θ s,ξ,m

t ,ms,m
t )dt + Z s,ξ,m

t dWt + Z̃ s,ξ,m
t dW̃t

X s,ξ,m
s = ξ, Y s,ξ,m

T = g(X s,ξ,m
T ,ms,m

T )

(31) 22

Remark 3. 23

1. The initial ξ ∈ L2
Fs

(Rn) does not necessarily have law m. Here, m ∈ P2(Rn) and hence 24

(ms,m
t )s≤t≤T are given exogenously. 25

2. The FBSDE (31) is a classical FBSDE with random coefficients and not a mean-field 26

FBSDE since the stochastic law (ms,m
t )s≤t≤T in the system is given exogenously. 27

3. The law m in ms,m
t refers to the law of X t which is an element in P2(Rn) while Θ s,t (m) or 28

ms,m
t refers to the joint law of (X t , Yt ), an element in P2(R2n). 29

The assumptions (B4)–(B5) ensure the existence and uniqueness of the FBSDE above using 30

Theorem 1 similar to our proof for Theorem 3 with different lifting functionals. 31
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Theorem 6. Assume that (B1)–(B5) hold. The FBSDE in (31) has a unique solution (X t , Yt , Z t ,1

Z̃ t )s≤t≤T .2

Proof. We need to verify that the system in (31) with (B1)–(B5) satisfies the assumptions (A1)–3

(A3) where4

B(t, X t , Yt , Z t , Z̃ t ) = b(t, X t , Yt , Z t , Z̃ t ,ms,m
t )

F(t, X t , Yt , Z t , Z̃ t ) = f (t, X t , Yt , Z t , Z̃ t ,ms,m
t )

Σ (t, X t , Yt , Z t , Z̃ t ) = (σ (t, X t , Yt , Z t , Z̃ t ,ms,m
t ), σ̃ (t, X t , Yt , Z t , Z̃ t ,ms,m

t ))

(32)5

The result then follows from Theorem 1. Assumption (A1) follows from the fact that b, f, σ, σ̃6

is measurable. For (A2), by using (B4) and (17), we have7

E
∫ T

s
|B(t, 0, 0, 0, 0)|2dt = E

∫ T

s
|b(t, 0, 0, 0, 0,ms,m

t )|2dt

≤ E
∫ T

s

∫
R2n

|x |
2dms,m

t (x)dt

= E
∫ 0T

s
E(|X s,ξ̄

t |
2
+ |Y s,ξ̄

t |
2
|F̃ s

t )dt

=

∫ T

s
E(|X s,ξ̄

t |
2
+ |Y s,ξ̄

t |
2)dt

≤ T (E sup
s≤t≤T

|X s,ξ̄
t |

2
+ E sup

s≤t≤T
|Y s,ξ̄

t |
2)

< ∞8

where (X s,ξ̄
t , Y s,ξ̄

t ) solves the FBSDE in (24) with initial ξ̄ ∈ L2
Fs

(Rn) such that Pξ̄ = m. Lastly,9

from (B2), the condition (A3) holds pointwise and thus holds under conditional expectation. □10

Note that the initial ξ in (31) is arbitrary and does not necessarily have law m. When ξ = x11

is a constant, Y s,x,m
s is deterministic since it is F s

s -measurable. This fact allows us to define the12

following map13

U :[0, T ] × Rn
× P2(Rn) → Rn

(s, x,m) ↦→ Y s,x,m
s

(33)14

To summarize how we define U (s, x,m). We begin with the law m ∈ P2(Rn), then solve the15

mean-field FBSDE in conditional law over [s, T ] with law m as initial to get the stochastic flow16

of probability measure (ms,m
t )s≤t≤T . Then we solve (31) with (ms,m

t )s≤t≤T given exogenously and17

initial Xs = x which is a classical FBSDE with random coefficients.18

We will show in Theorem 7 that this map is indeed our decoupling function. We begin with19

estimates of the related FBSDEs.20

Proposition 3. Assume (B1)–(B5). For i = 1,2, let ξ (i)
∈ L2

Fs
(Rn), (m(i)

t )s≤t≤T ∈21

M([s, T ];P2(Rn)), and (X (i)
t , Y (i)

t , Z (i)
t , Z̃ (i)

t )s≤t≤T denote the solution to FBSDE (31) given m(i)
22



SPA: 3406

Please cite this article as: S. Ahuja, W. Ren and T.-W. Yang, Forward–backward stochastic differential equations with monotone functionals and
mean field games with common noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2018.11.005.

S. Ahuja, W. Ren and T.-W. Yang / Stochastic Processes and their Applications xxx (xxxx) xxx 17

and initial ξ (i), then the following estimate holds 1

E
[

sup
s≤t≤T

1A|∆X t |
2
+ sup

s≤t≤T
1A|∆Yt |

2
+

∫ T

s
1A[|∆Z t |

2
+ |∆Z̃ t |

2]dt
]

≤ CK ,TE[1A|∆ξ |2 + 1A

∫ T

s
(∆m t )2dt + 1A(∆mn

T )2]

(34) 2

where mn,(i)
T denotes the marginal distribution of m(i)

T in the first n dimension, ∆X t = X (1)
t − X (2)

t , 3

∆m t = W2(m(1)
t ,m(2)

t ), and ∆Yt ,∆Z t ,∆Z̃ t ,∆ξ,∆mn
T are defined similarly. 4

Proof. Let (B(i),Σ (i), F (i),G(i)), for i = 1,2, be the functionals defined as 5

B(i)(t, X t , Yt , Z t , Z̃ t ) = b(t, X t , Yt , Z t , Z̃ t ,m(i)
t )

F (i)(t, X t , Yt , Z t , Z̃ t ) = f (t, X t , Yt , Z t , Z̃ t ,m(i)
t )

Σ (i)(t, X t , Yt , Z t , Z̃ t ) = (σ (t, X t , Yt , Z t , Z̃ t ,m(i)
t ), σ̃ (t, X t , Yt , Z t , Z̃ t ,m(i)

t ))

G(i)(XT ) = g(XT ,mn,(i)
T )

6

Then as shown in Theorem 6, (B(i),Σ (i), F (i),G(i)) satisfies (A1)–(A3). Thus, by estimate (8), 7

we have 8

E
[

sup
s≤t≤T

1A|∆X t |
2
+ sup

s≤t≤T
1A|∆Yt |

2
+

∫ T

s
1A(|∆Z t |

2
+ |∆Z̃ t |

2)dt
]

≤ CK ,TE
[
1A

(
|∆ξ |2 + |Ḡ|

2
+

∫ T

s
(|F̄t |

2
+ |B̄t |

2
+ |Σ̄t |

2)
)

dt
] (35) 9

where B̄t = (B(1)
− B(2))(t, X (1)

t , Y (1)
t , Z (1)

t , Z̃ (1)
t ) and similarly for other terms. Note that by 10

(B5)(a) 11

|B̄t | = |(B(1)
− B(2))(t, X (1)

t , Y (1)
t , Z (1)

t , Z̃ (1)
t )|

= |b(t, X (1)
t , Y (1)

t , Z (1)
t , Z̃ (1)

t ,m(1)
t ) − b(t, X (1)

t , Y (1)
t , Z (1)

t , Z̃ (1)
t ,m(2)

t )|

≤ W2(m(1)
t ,m(2)

t )

(36) 12

and similarly for other terms. The estimate (34) then follows from (35) and (36). □ 13

To complete the proof of the Markov property of FBSDE (22), we are left to show (23). We 14

first state necessary estimates for U . 15

Lemma 2. Let U : [0, T ] × Rn
× P2(Rn) → Rn be as defined above, then it satisfies

|U (t, x,m) − U (t ′, x ′,m ′)| (37)

≤ CK ,T

(
|x − x ′

| + W2(m,m ′) +

(
1 + |x | +

(∫
Rn

y2dm(y)
) 1

2
)√

|t − t ′|

)
(
U (t, x,m) − U (t, x ′,m)

)
(x − x ′) ≥ 0 (38)

for all t ∈ [0, T ], x, x ′
∈ R,m,m ′

∈ P2(Rn), where CK ,T depends only on K , T . 16
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Proof. From Propositions 2 and 3 , we get1

|U (t, x,m) − U (t, x ′,m ′)| ≤ CK ,T
(
|x − x ′

| + W2(m,m ′)
)

(39)2

Next, by definition of U (t, x,m),U (t ′, x,m), we need to consider FBSDE over different time3

and filtration. We assume t ′
≥ t and let (X t,x,m

u , Y t,x,m
u , Z t,x,m

u , Z̃ t,x,m
u )t≤u≤T , (X t ′,x,m

u , Y t ′,x,m
u ,4

Z t ′,x,m
u , Z̃ t ′,x,m

u )t ′≤u≤T denote the solutions to FBSDE (31) corresponding to the definition5

of U (t, x,m) and U (t ′, x,m) respectively. We can extend the latter to [t, T ] by setting the6

coefficients to 0 for s ∈ [t, t ′) which still satisfy the same assumptions. Thus, by Theorems 2, 5,7

Proposition 2, we have8

E[ sup
t ′≤u≤T

(Y t ′,x,m
u − Y t,x,m

u )2]

≤ CK ,T

( ∫ t ′

t
E
[
(X t,x,m

u )2
+ (Y t,x,m

u )2
+ (Z t,x,m

u )2
+ (Z̃ t,x,m

u )2
]

du

+

∫ T

t
W2

2 (Θ t,u(m),Θ t ′,u(m))du
)

≤ CK ,T

(
(1 + x2)(t ′

− t) +

∫ T

t
E
[
W2

2 (Θ t ′,u(Θ t,t ′
X (m)),Θ t ′,u(m))

]
du
)

≤ CK ,T

(
(1 + x2)(t ′

− t) +

∫ T

t
E
[
W2

2 (Θ t,t ′
X (m),m)

]
du
)

(40)9

where CK ,T > 0 is a constant which may differ from line to line. Now, consider the mean-field10

FBSDE (t, ξ, {F̃ t
u}t≤u≤T ) with Pξ = m and the same FBSDE but with functional11

Φ(s, X, Y, Z , Z ′) =

{
0 , t ≤ s ≤ t ′

φ(s, X, Y, Z , Z ′,P(X,Y )|F̃ t ′
s

) , s ≥ t ′
12

for Φ = B,Σ , F and φ = b, σ, f respectively. Denote their solutions by13

(X t,m
u , Y t,m

u , Z t,m
u , Z̃ t,m

u )t≤u≤T , (X t ′,m
u , Y t ′,m

u , Z t ′,m
u , Z̃ t ′,m

u )t≤u≤T ,14

respectively. Thus, by Theorem 2, assumption (B4), and Proposition 2, we have15

E[(X t ′,m
u − X t,m

u )2] ≤ CK ,T

(∫ t ′

t
E
[
(X t,m

u )2
+ (Y t,m

u )2
+ (Z t,m

u )2
+ (Z̃ t,m

u )2
]

du

)
≤ CK ,T

(
(1 + E|ξ |2)

)
(t ′

− t)

(41)16

Therefore,17

E
[
W2

2 (Θ t,t ′
X (m),m)

]
≤ E[(X t,m

t ′ − ξ )2]

≤ E[(X t,m
t ′ − X t ′,m

t ′ )2]

≤ CK ,T
(
(1 + E|ξ |2)(t ′

− t)
)

= CK ,T

(
1 +

∫
Rn

|y|
2dm(y)

)
(t − t ′)

(42)18

Combining (39), (40), and (42) yields (37) as desired.19
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Lastly, let (X t , Yt , Z t , Z̃ t )s≤t≤T and (X ′
t , Y ′

t , Z ′
t , Z̃ ′

t )s≤t≤T denote the solutions to the FBSDE
corresponding to the definition of U (s, x,m) and U (s, x ′,m) respectively. Note that both FBSDE
have the same coefficient functions and only the initials are different. Let ∆X t = X t − X ′

t and
define similarly ∆Yt , ∆Z t , ∆Z̃ t , ∆bt , ∆ ft , ∆σt , ∆σ̃t , ∆g. Applying Itô’s lemma to ⟨∆X t ,∆Yt ⟩

and using (B5)(b) yields

E ⟨∆Ys,∆Xs⟩ = E ⟨∆g,∆XT ⟩

− E
∫ T

s

(
⟨∆ ft ,∆X t ⟩ + ⟨∆bt ,∆Yt ⟩ + ⟨∆σt ,∆Z t ⟩ +

⟨
∆σ̃t∆Z̃ t

⟩)
dt ≥ 0

By definition of U and the fact that it is deterministic, we deduce that 1

(U (s, x,m) − U (s, x ′,m))(x − x ′) ≥ 0 □ 2

Now we are ready to state and prove the existence of a deterministic decoupling function 3

thereby establishing the Markov result. Using Theorem 5, we can show (23) using a similar 4

argument as was done for a classical FBSDE (see Corollary 1.5 in [18] for instance). 5

Theorem 7. Let s ∈ [0, T ],m ∈ P2(Rn), ξ ∈ L2
Fs

(Rn), consider (ms,m
t )s≤t≤T and 6

(X s,ξ,m
t , Y s,ξ,m

t , Z s,ξ,m
t , Z̃ s,ξ,m

t )s≤t≤T as defined above, then it follows that 7

Y s,ξ,m
t = U (t, X s,ξ,m

t ,ms,m
X,t ), ∀t ∈ [s, T ] a.s. (43) 8

Remark 4. (23) in Theorem 4 follows from (43) by setting s = 0 and Pξ = m. 9

Proof. We will use a similar argument as in the proof of Theorem 5 which is based on a 10

discretization argument and global Lipschitz property. Note that Rn
× P2(Rn) is separable, 11

hence there exists a countable disjoint set {An}n∈N such that
⋃

∞

n=1 An = Rn
× P2(Rn) and 12

diam(An) < δ. Let (xn,mn) ∈ Rn
× P2(Rn) be a fixed element of An , then let 13

Bn = {ω ∈ Ω; (X s,ξ,m
t ,ms,m

X,t ) ∈ An} (44) 14

Then by Lemma 2, we have 15∑
n∈N

|U (t, X s,ξ,m
t ,ms,m

X,t ) − U (t, xn,mn)|21Bn ≤ C1δ
2 (45) 16

On the other hands, using Theorem 5, it follows that (X s,ξ,m
r , Y s,ξ,m

r , Z s,ξ,m
r , Z̃ s,ξ,m

r )t≤r≤T satisfies 17

the FBSDE 18

d Xr = b(r, Xr , Yr , Zr , Z̃r ,Θ
t,r (ms,m

t ))dr + σ (r, Xr , Yr , Zr , Z̃r ,Θ
t,r (ms,m

t ))dWr

+ σ̃ (r, Xr , Yr , Zr , Z̃r ,Θ
t,r (ms,m

t ))dW̃r

dYr = f (r, Xr , Yr , Zr , Z̃r ,Θ
t,r (ms,m

t ))dt + Zr dWr + Z̃r dW̃r

X t = X s,ξ,m
t , YT = g(XT ,Θ

t,T
X (ms,m

t ))

19

Thus, we get by Propositions 2, 3, and (44) that 20∑
n∈N

E
[
(Y s,ξ,m

t − Y t,xn ,mn
t )21Bn

]
≤ C2δ

2 (46) 21
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Combining (45) and (46), it follows that1

E
[(

U (t, X s,ξ,m
t ,ms,m

X,t ) − Y s,ξ,m
t

)2
]

≤ C3δ
2

2

Since δ is arbitrary, (43) holds a.s. for each t ∈ [0, T ]. Then by continuity in t of U and the fact3

that (X t,ξ,m
s , Y t,ξ,m

s )t≤s≤T have continuous trajectories, we have (43) as desired. □4

4. Mean-field games with common noise5

A mean-field game (MFG) is a system of differential equations to describe the evolution of6

the distribution of the players when each player maximizes its own utility and there are infinitely7

many players in the game. The original framework are provided by Lasry and Lion [10,30] and8

its wellposedness are proved by the PDE approach. Because of the nature of the problem, the9

probabilistic approach (for example, see [12]) quickly becomes a popular approach in the MFG10

community after Lasry and Lion’s original work. In the probabilistic approach, a mean-field11

game is modeled as a system of FBSDEs where the forward SDE describes the evolution of the12

system and the backward SDE determines the individuals’ optimal control. Because the system13

evolution and the optimal control affect each other, the forward and backward SDEs are fully14

coupled in general.15

The original MFG framework and largely the following literature assume that all the16

individuals’ uncertainties/noises are independent; in other words, there is no common noise17

allowed in the system. The independence assumption is required mainly due to the mathematical18

tractability; with a common noise, the PDE approach would lead to a system of forward–19

backward stochastic PDEs and many crucial techniques cannot be applied in the presence of a20

common noise. For the MFG with common noise, the probabilistic approach becomes a feasible21

method because with a common noise, the forward and backward SDEs would be coupled22

through the law of the solution conditional on the filtration of the common noise, and to provide23

the wellposedness result is still possible even in this case. While there is a relatively small amount24

of the literature, the MFG with common noise has gained interest due to its applications in25

economics and financial modeling. We refer readers to [1,15,28] for the theoretical analysis of26

MFGs with common noise and [16] for the example of an application.27

In this section, we consider a mean-field game (MFG) model in the presence of common28

noise. By applying results from Section 3, we establish existence and uniqueness of this class29

of models under linear-convex setting and weak monotone cost functions. In addition, we show30

that the solution to MFG with common noise is Markovian as a consequence of the existence of31

a decoupling function discussed in Section 3.3.32

4.1. Problem formulation33

Mean-field games (MFG) with common noise can be described in succinct form as follows;34 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α∗

∈ arg max
α∈H2([0,T ];Rk )

E
[∫ T

0
f (t, Xα

t ,m t , αt )dt + g(Xα
T ,mT )

]
d Xα

t = b(t, Xα
t ,m t , αt )dt + σ (t, Xα

t ,m t , αt )dWt + σ̃ (t, Xα
t ,m t , αt )dW̃t

m t = P
Xα

∗
t |F̃t

, F̃t = σ (W̃s; 0 ≤ s ≤ t)

(47)35

where the set up and notations are as defined in Section 3 with the following measurable functions
being given;

b : [0, T ] × Rn
× P2(Rn) × Rk

→ Rn, σ : [0, T ] × Rn
× P2(Rn) × Rk

→ Rn×d1
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σ̃ : [0, T ] × Rn
× P2(Rn) × Rk

→ Rn×d2 , f : [0, T ] × Rn
× P2(Rn) × Rk

→ Rn,

g : Rn
× P2(Rn) → Rn.

To simplify the notations, we assume that d1 = d2 = 1 although the result in this section still 1

holds for any d1, d2 > 0. For convenience, we will refer to MFG with common noise (σ̃ ̸≡ 0) as 2

c-MFG and MFG without common noise (σ̃ ≡ 0) as nc-MFG to emphasize the existence/non- 3

existence of the common noise. MFG is formulated as a heuristic limit of an N -player stochastic 4

differential game: for i = 1, . . . , N 5⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αi
∈ arg max

α∈H2([0,T ];Rk )
E
[∫ T

0
f (t, Xα,i

t ,m N
t , αt )dt + g(Xα,i

T ,m N
T )
]
,

d Xαi ,i
t = b(t, Xαi ,i

t ,m N
t , α

i
t )dt + σ (t, Xαi ,i

t ,m N
t , α

i
t )dW i

t + σ̃ (t, Xαi ,i
t ,m N

t , α
i
t )dW̃t

m N
t =

1
N

N∑
i=1

δ
Xα

i ,i
t

(48) 6

where δa denotes the Dirac measure at a ∈ Rn . We emphasize the main features of this N -player 7

game which are essential to the formulation of MFG. First, the cost functions are identical for 8

all other players as a function of his/her state, control, and other players’ states. Second, the 9

dependence on other players’ states is only through the empirical distribution of all states, or 10

equivalently, the interaction between players is only of a mean-field type. Lastly, the random 11

noise in the players’ state process consists of an independent component W i
t (individual noise) 12

and a common random factor W̃t shared among all the players (common noise), all of which are 13

mutually independent. 14

Under these symmetric properties, the optimization problem is identical in the perspective of 15

each player. Thus, when N is large, we can replace the empirical distribution with the law of a 16

single player and only consider a control problem of this representative player. This single player 17

optimization problem involving the law is precisely the MFG problem (47). It is important to note 18

that this formulation of MFG via taking the limit as N → ∞ is heuristic and the convergence 19

or the relation between a solution to MFG and the finite player counterpart require non-trivial 20

justifications. However, the topic is beyond the scope of this paper. We refer interested readers 21

to [4,19,20,27]. 22

The MFG problem (47) can also be viewed as a fixed point problem; Given a strategy 23

ᾱ ∈ H2([0, T ];Rk), we set m̄ t = PX ᾱt |F̃t
, then solve an individual control problem given m̄; 24

25⎧⎪⎨⎪⎩α
∗

∈ arg max
α∈H2([0,T ];Rk )

E
[∫ T

0
f (t, Xα

t , m̄ t , αt )dt + g(Xα
T , m̄T )

]
d Xα

t = b(t, Xα
t , m̄ t , αt )dt + σ (t, Xα

t , m̄ t , αt )dWt + σ̃ (t, Xα
t , m̄ t , αt )dW̃t

(49) 26

This step yields a new optimal control α∗. It is clear from (47) that the fixed point of this process 27

gives the solution to MFG. 28

4.2. Assumptions 29

We now state the main assumptions on the model and cost functions. The first set of 30

assumptions is essential for ensuring that given any stochastic flow of probability measure 31
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m = (m t )0≤t≤T ∈ M([0, T ],Rn), the stochastic control for an individual player given m is1

uniquely solvable. For notational convenience, we will use the same constant K for all the2

conditions below.3

(C1) The state process is linear in (x, α); for φ = b, σ, σ̃ , φ(t, x,m, α) = φ0(t,m) +4

⟨φ1(t,m), x⟩ + ⟨φ2(t,m), α⟩, where φi = bi , σi , σ̃i resp., for i = 0, 1, 2, are functions5

defined on [0, T ] × P2(Rn) with φ1, φ2 bounded and φ0 satisfies6

|φ0(t,m)| ≤ K

(
1 +

(∫
Rn

|y|
2dm(y)

) 1
2
)
.7

(C2) ∇x f , ∇α f , ∇x g exist and are K -Lipschitz continuous in (x, α) uniformly in (t,m).8

(C3) f, g satisfy a quadratic growth condition in m and ∇x f,∇α f,∇x g satisfy a linear growth9

condition in (x, α,m). That is, for any t ∈ [0, T ], x ∈ Rn, α ∈ Rk,m ∈ P2(Rn),10

max{| f (t, 0,m, 0)|, |g(0,m)|} ≤ K
(

1 +

∫
Rn

|y|
2dm(y)

)
, (50)11

12

max{|∇α f (t, x,m, α)|, |∇x f (t, x,m, α)|, |∇x g(x,m)|}

≤ K

(
1 + |x | + |α| +

(∫
Rn

|y|
2dm(y)

) 1
2
)
.

(51)13

(C4) g is convex in x and f is convex jointly in (x, α) with strict convexity in α. That is, for14

any x, x ′
∈ Rn,m ∈ P2(Rn),15 ⟨

∇x g(x,m) − ∇x g(x ′,m), x − x ′
⟩
≥ 0 (52)16

and there exists a constant c f > 0 such that for any t ∈ [0, T ], x, x ′
∈ Rn, α, α′

∈17

Rk,m ∈ P2(Rn),18

f (t, x ′,m, α′) ≥ f (t, x,m, α) +
⟨
∇x f (t, x,m, α), x ′

− x
⟩

+
⟨
∇α f (t, x,m, α), α′

− α
⟩
+ c f |α

′
− α|

2.
(53)19

The Lipschitz and linear growth conditions (C2), (C3) are standard assumptions to ensure20

the existence of a strong solution. The linear-convex assumptions (C1), (C4) are essential to our21

setup in various ways. First, they ensure that the Hamiltonian is strictly convex, so that there22

is a unique minimizer in a feedback form. In addition, they satisfy sufficient conditions for the23

SMP so that solving an optimal control problem can be translated to solving the corresponding24

FBSDE. See section 6.4.2 in [34] for instance. Lastly, they give a monotone property for the25

FBSDE corresponding to an individual player control problem (49) so that it is uniquely solvable.26

See [24,33] for well-posedness result of FBSDEs related to convex control problems.27

The second set of assumptions are conditions on the m-argument in the cost functions. These28

assumptions are essential in showing the wellposedness of MFG with common noise.29

(C5) The functions b, σ, σ̃ are independent of m.30

(C6) (Lipschitz in m) ∇x g,∇x f is Lipschitz continuous in m uniformly in (t, x), i.e. there exists31

a constant K such that32

|∇x g(x,m) − ∇x g(x,m ′)| ≤ KW2(m,m ′)

|∇x f (t, x,m, α) − ∇x f (t, x,m ′, α)| ≤ KW2(m,m ′)
(54)33
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for all t ∈ [0, T ], x ∈ Rn, α ∈ Rk,m,m ′
∈ P2(Rn), where W2(m,m ′) is the second order 1

Wasserstein metric defined by (12). 2

(C7) (Separable in α,m) f is of the form 3

f (t, x,m, α) = f 0(t, x, α) + f 1(t, x,m) (55) 4

where f 0 is assumed to be convex in (x, α) strictly in α, f 1 is assumed to be convex in x . 5

(C8) (Weak monotonicity) For all t ∈ [0, T ], m,m ′
∈ P2(Rn) and γ ∈ P2(R2n) with marginals 6

m,m ′ respectively, 7∫
R2

[⟨
∇x g(x,m) − ∇x g(y,m ′), x − y

⟩]
γ (dx, dy) ≥ 0∫

R2

[⟨
∇x f (t, x,m, α) − ∇x f (t, y,m ′, α), x − y

⟩]
γ (dx, dy) ≥ 0

(56) 8

Equivalently, for any x ∈ Rn, ξ, ξ ′
∈ L2(Ω̄ , F̄ , P̄;Rn) where (Ω̄ , F̄ , P̄) is an arbitrary 9

probability space, 10

Ē[
⟨
∇x g(ξ,Pξ ) − ∇x g(ξ ′,Pξ ′ ), ξ − ξ ′

⟩
] ≥ 0

Ē[
⟨
∇x f (t, ξ,Pξ , α) − ∇x f (t, ξ ′,Pξ ′ , α), ξ − ξ ′

⟩
] ≥ 0

(57) 11

Assumption (C1)–(C4) are similar to those used in [12] to apply the SMP to MFG without 12

common noise. To establish existence result, in addition to (C1)–(C4), they assume (C6) and 13

what they refer to as a weak mean reverting assumption. The latter states that there exists a 14

constant C > 0 such that for all t ∈ [0, T ], x ∈ Rn
15

⟨x,∇x f (t, 0, δx , 0)⟩ ≥ −C(1 + |x |)

⟨x,∇x g(0, δx )⟩ ≥ −C(1 + |x |)
(58) 16

where δx denotes the Dirac measure at x . By plugging in deterministic ξ = x, ξ ′
= 0 in (57), 17

we can see that the weak monotonicity assumption (C8) is a stronger version of (58). The weak 18

monotone condition was first introduced in [2] for the terminal cost to obtain wellposedness 19

result for MFG with common noise under linear state process and quadratic running cost. Our 20

result here extends it to cover a more general running cost function. 21

Note that the separability condition (C7) is not necessary for existence of a solution of MFG 22

without common noise, but is only needed for the uniqueness result. See Proposition 3.7 and 3.8 23

in [12] for instance. In our case, we rely on the monotone property of the mean-field FBSDE and 24

this condition is necessary to obtain this property. 25

For the uniqueness result, the main assumptions in the literature [10,12,21] are the separability 26

in the control and mean-field term (assumption (C7)) and the Lasry and Lions’ monotonicity 27

property which states that 28∫
(h(x,m1) − h(x,m2))d(m1 − m2)(x) ≥ 0 29

for any m1,m2 ∈ P2(Rn). This condition can be expressed in terms of random variables as 30

follows; For any ξ, ξ ′
∈ L2(Ω̂ , F̂ , P̂;Rn) where (Ω̂ , F̂ , P̂) is an arbitrary probability space. 31

Ê
[
h(ξ ′,Pξ ′ ) + h(ξ,Pξ ) − h(ξ,Pξ ′ ) − h(ξ ′,Pξ )

]
≥ 0 (59) 32
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Our weak monotonicity assumption (C8) is, as the name suggests, a weaker version of (59) when1

the cost functions are convex. See Lemma 4.2 in [2]. The converse of the proposition above does2

not hold as seen from the examples below (when n = 1).3

f (t, x,m, α) = Aα2
+ B

(
x −

∫
zdm(z)

)2

, g(x,m) = C
(

x −

∫
zdm(z)

)2

, (60)4

or5

f (t, x,m, α) = Aα2
+ B

∫
(x − z)2dm(z), g(x,m) = C

∫
(x − z)2dm(z),6

where A, B,C > 0. As a result, we have given a more general uniqueness for MFG without7

common noise. These cost functions occur frequently in applications (see [16,23] for instance).8

A similar example of cost functions satisfying our assumptions includes the general linear-9

quadratic mean-field games (LQMFG) discussed in [7] where f, g take the form10

f (t, x,m, α) =
1
2

(
qx2

+ α2
+ q̄(x − sm̄)2)

g(x,m) =
1
2

(
qT x2

+ (x − sT m̄)2q̄T
) (61)11

where m̄ =
∫
R zdm(z) and q, q̄, s, qT , q̄T , sT are constant satisfying q + q̄ − q̄s ≥ 0, qT + q̄T −12

q̄T sT ≥ 0.13

4.3. Existence and uniqueness14

We begin by discussing the SMP for MFG with common noise. Given a stochastic flow15

of probability measure m = (m t )0≤t≤T ∈ M([0, T ];P2(Rn)), we define the generalized16

Hamiltonian17

H (t, a, x, y, z, z̃,m) ≜ ⟨b(t, x,m, a), y⟩ + ⟨σ (t, x,m, a), z⟩

+ ⟨σ̃ (t, x,m, a), z̃⟩ + f (t, x,m, a).
(62)18

Under assumption (C1)–(C4), the generalized Hamiltonian is strictly convex in the control19

argument and has a unique minimizer20

ᾱ : [0, T ] × Rn
× Rn

× Rn
× Rn

× P2(Rn) → Rk
21

We then define the Hamiltonian

H̄ (t, x, y, z, z̃,m) = min
a∈Rk

H (t, a, x, y, z, z̃,m)

= H (t, ᾱ(t, x, y, z, z̃,m), x, y, z, z̃,m)

and define (b̄, σ̄ , ¯̃σ )(t, x, y, z, z̃,m) similarly. It is easy to check that22

∇x H (t, ᾱ(t, x, y, z, z̃,m), x, y, z, z̃,m) = ∇x H̄ (t, x, y, z, z̃,m)23
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Next, consider the system of forward backward stochastic differential equation (FBSDE) 1

d X t = b̄(t, X t , Yt , Z t , Z̃ t ,m t )dt + σ̄ (t, X t , Yt , Z t , Z̃ t ,m t )dWt

+ ¯̃σ (t, X t , Yt , Z t , Z̃ t ,m t )dW̃t

dYt = −∇x H̄ (t, X t , Yt , Z t , Z̃ t ,m t )dt + Z t dWt + Z̃ t dW̃t

X0 = ξ0, YT = ∇x g(XT ,mT )

(63) 2

We now state the SMP for an individual control problem given 3

m ∈ M([0, T ];P2(Rn)) 4

in terms of FBSDE (63). 5

Theorem 8. Assume that (C1)–(C4) hold, let 6

m = (m t )0≤t≤T ∈ M([0, T ];P2(Rn)), 7

then the individual control problem given m has an optimal control 8

α̂t ∈ H2([0, T ];Rk) 9

if and only if FBSDE (63) has an adapted solution (X t , Yt , Z t , Z̃ t )0≤t≤T satisfying 10

E
[

sup
0≤t≤T

[|X t |
2
+ |Yt |

2] +

∫ T

0
[|Z t |

2
+ |Z̃ t |

2]dt
]
< ∞. 11

In that case, the optimal control is given by 12

α̂t = ᾱ(t, X t , Yt , Z t , Z̃ t ,m t ), ∀t ∈ [0, T ] 13

Proof. Given m = (m t )0≤t≤T ∈ M([0, T ];P2(Rn)), then an individual control problem given 14

m is simply a classical control problem with random coefficients and cost functions. The result 15

then follows from the SMP for linear-convex control with random coefficients (see Theorem 3.2 16

in [9]). □ 17

The definition of a MFG solution states that given the stochastic flow of probability measure 18

mα
∈ M([0, T ];P2(Rn)) corresponding to a control α ∈ H2([0, T ];Rk), the optimal control of 19

an individual control problem given mα is again α. This definition is equivalent to the following 20

consistency condition 21

mα
t = PXαt |F̃t

22

Plugging this to (63), we have the SMP for c-MFG. 23

Theorem 9 (SMP for c-MFG). Assume that (C1)–(C4) hold, then α̂ ∈ H2([0, T ];Rk) is a 24

solution to MFG if and only if the FBSDE 25

d X t = b̄(t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
)dt + σ̄ (t, X t , Yt , Z t , Z̃ t ,PX t |F̃t

)dWt

+ ¯̃σ (t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
)dW̃t

dYt = −∇x H̄ (t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
)dt + Z t dWt + Z̃ t dW̃t

X0 = ξ0, YT = ∇x g(XT ,PXT |F̃T
)

(64) 26
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has an adapted solution (X t , Yt , Z t , Z̃ t )0≤t≤T satisfying1

E
[

sup
0≤t≤T

[|X t |
2
+ |Yt |

2] +

∫ T

0
[|Z t |

2
+ |Z̃ t |

2]dt
]
< ∞.2

In that case, a MFG solution is given by3

α̂t = ᾱ(t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
), ∀t ∈ [0, T ]4

Eq. (64) was first introduced in [12] from the nc-MFG problem in which case the conditional5

law PX t |F̃t
is simply the law PX t . In [12], Carmona and Delarue, by using Schauder fixed6

point theorem, show that the mean-field FBSDE corresponding to a nc-MFG is solvable under7

assumptions similar to (C1)–(C4), (C6), plus what they call a weak mean reverting assumptions8

(see (58)). However, the same proof cannot be extended to the case of common noise since we9

can no longer find an invariant compact subset. This is due to the fact that, in the case of common10

noise, we are dealing with a much larger space of stochastic flow of probability measure instead11

of a deterministic one.12

Since then, several work has been done that deal with the common noise models [2,15,29].13

In [15], Carmona et al. considered the notion of weak solution and, by finite-dimensional14

approximation of the common noise, proved its existence under a rather general set of15

assumptions. In [29], Lacker and Webster give existence result under a class of translation16

invariant MFG models. In [2], Ahuja introduces a weak monotone assumption and proves well-17

posedness result for c-MFG using the Banach fixed point theorem over small time interval and18

extends the result to arbitrary time duration. Our work here essentially gives an extension of [2]19

to a more general system by viewing it as part of a general class of monotone functional FBSDE.20

We now discuss existence and uniqueness of solutions to (64) and thereby give a well-21

posedness result of c-MFG. Using Theorem 9, these results are mostly an application of the22

results from Section 3.23

Theorem 10. Assume (C1)–(C8) hold, then there exists a unique solution (X t , Yt , Z t , Z̃ t )s≤t≤T24

to FBSDE (64) satisfying25

E
[

sup
s≤t≤T

[|X |
2
t + |Y |

2
t ] +

∫ T

s
[|Z |

2
t + |Z̃ |

2
t ]dt

]
< ∞ (65)26

Proof. We need to verify that under (C1)–(C8), the corresponding functions (b̄, σ̄ , ¯̃σ,−∇x H̄ ,27

∇x g) of FBSDE (64) satisfy (B1)–(B2). The result then follows from Theorem 3.28

First, using (C1), (C5), (C7) and optimal condition for ᾱ, it follows that29

0 = ∇αH (t, ᾱ(t, x, y, z, z̃,m), x, y, z, z̃,m)

= ∇αb(t, x,m, ᾱ(t, x, y, z, z̃,m))T y + ∇ασ (t, x,m, ᾱ(t, x, y, z, z̃,m))T z

+ ∇ασ̃ (t, x,m, ᾱ(t, x, y, z, z̃,m))T z̃ + ∇α f (t, x,m, ᾱ(t, x, y, z, z̃,m))

= b2(t)T y + σ2(t)T z + σ̃2(t)T z̃ + ∇α f 0(t, x, ᾱ(t, x, y, z, z̃,m))

(66)30

This implies that ᾱ is independent of m. From now, we write ᾱ = ᾱ(t, x, y, z, z̃). We also have31

∇x H̄ (t, x, y, z, z̃,m) = ∇x H (t, ᾱ(t, x, y, z, z̃), x, y, z, z̃,m)

= b1(t)T y + σ1(t)T z + σ̃1(t)T z̃ + ∇x f 1(t, x,m)

+ ∇x f 0(t, x, ᾱ(t, x, y, z, z̃))

(67)32
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Furthermore, by using strict convexity assumption (C4), we have 1

f 0(t, x ′, α′) ≥ f 0(t, x, α) +
⟨
∇x f 0(t, x, α), x ′

− x
⟩

+
⟨
∇α f 0(t, x, α), α′

− α
⟩
+ c f |α

′
− α|

2

f 0(t, x, α) ≥ f 0(t, x ′, α′) +
⟨
∇x f 0(t, x ′, α′), x − x ′

⟩
+
⟨
∇α f 0(t, x ′, α′), α − α′

⟩
+ c f |α

′
− α|

2.

(68) 2

Summing both equations yields 3

2c f |α
′
− α|

2
≤
⟨
∇x f 0(t, x ′, α′) − ∇x f 0(t, x, α), x ′

− x
⟩

+
⟨
∇α f 0(t, x ′, α′) − ∇α f 0(t, x, α), α′

− α
⟩ (69) 4

Now we verify (B1). From (66), we have 5

∇α f 0(t, 0, ᾱ(t, 0, 0, 0, 0)) = 0 6

Combining with (69) using x = x ′
= α′

= 0, it follows that 7∫ T

0
|ᾱ(t, 0, 0, 0, 0)|2dt ≤

1
c f

∫ T

0
|∇α f 0(t, 0, 0)|2dt < ∞ (70) 8

By assumption (C1), we then have∫ T

0
|b̄(t, 0, 0, 0, 0, δ0)|2dt =

∫ T

0
|b(t, 0, δ0, ᾱ(t, 0, 0, 0, 0))|2dt

=

∫ T

0
|b0(t) + b2(t)ᾱ(t, 0, 0, 0, 0)|2dt < ∞

and similarly for σ̄ , ¯̃σ . The same bound holds for ∇x H̄ ,∇x g by (67), (70), and the linear growth 9

assumption (C3). Thus, (B1) holds as desired. 10

Next, by using (66) with (x, y, z, z̃), (x ′, y, z, z̃) ∈ Rp, taking the difference, and using (69), it
follows that ᾱ is Lipschitz in x . Furthermore, by using (66) again with (x, y, z, z̃), (x, y′, z′, z̃′) ∈

Rp and taking the difference, we get

0 = b2(t)T∆y + σ2(t)T∆z + σ̃2(t)T∆z̃ + ∇α f 0(t, x, ᾱ(t, x, y, z, z̃))

− ∇α f 0(t, x, ᾱ(t, x, y′, z′, z̃′))

Using (69) with x ′
= x and Lipschitz assumption on ∇α f 0, we have 11

1
K

|b2(t)T∆y + σ2(t)T∆z + σ̃2(t)T∆z̃| ≤ |ᾱ(t, x, y, z, z̃) − ᾱ(t, x, y′, z′, z̃′)|

≤ K |b2(t)T∆y + σ2(t)T∆z + σ̃2(t)T∆z̃|
(71) 12

That is, 13

|ᾱ(t, x, y, z, z̃) − ᾱ(t, x ′, y′, z′, z̃′)|

≤ K
(
|∆x | + |b2(t)T∆y + σ2(t)T∆z + σ̃2(t)T∆z̃|

)
.

(72) 14

Combining with (C1), (C5), and Lipschitz in (x,m) of f 1 ((C2), (C6)), (B2)(a) then follows. 15
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Lastly, we check the monotonicity condition (B2)(b). For (X, Y, Z , Z̃ ), (X ′, Y ′, Z ′, Z̃ ′) ∈1

L2(Ω̂ , F̂ , P̂;Rp), we have2

−
⟨
∆∇x H̄t ,∆X

⟩
= −

⟨
b1(t)T∆Y,∆X

⟩
−
⟨
σ1(t)T∆Z ,∆X

⟩
− ⟨σ̃1(t)T∆Z̃ ,∆X⟩

−
⟨
∆∇x f 0

t ,∆X
⟩
−
⟨
∆∇x f 1

t ,∆X
⟩

⟨
∆b̄t ,∆Y

⟩
= ⟨b1(t)∆X,∆Y ⟩ + ⟨b2(t)∆ᾱ,∆Y ⟩

tr ⟨∆σ̄t ,∆Z⟩ = ⟨σ1(t)∆X,∆Z⟩ + ⟨σ2(t)∆ᾱ,∆Z⟩

tr⟨∆ ¯̃σt ,∆Z̃⟩ = ⟨σ̃1(t)∆X,∆Z̃⟩ + ⟨σ̃2(t)∆ᾱ,∆Z̃⟩

(73)3

where ∆∇x H̄t = ∇x H̄ (t, X ′, Y ′, Z ′, Z̃ ′) − ∇x H̄ (t, X, Y, Z , Z̃ ),∆X = X ′
− X and similarly for4

other terms. From (66) and (69), we have5

−
⟨
∆∇x f 0

t ,∆X
⟩
+

⟨
b2(t)T∆Y + σ2(t)T∆Z + σ̃2(t)T∆Z̃ ,∆ᾱ

⟩
+ 2c f |∆ᾱ|

2
≤ 0 (74)6

Moreover, by the weak monotonicity assumption (C8), we have7

Ê
[⟨
∆∇x f 1

t ,∆X
⟩]

≥ 0, Ê [⟨∆∇x g,∆X⟩] ≥ 0 (75)8

Combining (71), (73), (74), and (75) yields (B2)(b) as desired. □9

From Theorems 9, 10, we have the wellposedness result for c-MFG with common noise.10

Corollary 2 (Wellposedness of c-MFG). Under assumption (C1)–(C8), there exists a unique11

c-MFG solution for any initial ξ0 ∈ L2
F0

.12

4.4. Markov property13

In the previous section, we seek an admissible control or strategy in the space H2([0, T ];Rk)14

which solves mean-field games with common noise (47). We show that a solution exists under15

linear-convex setting and weak monotone cost functions using the stochastic maximum principle.16

By using this approach, the control is given in an open-loop form, that is, as a function of paths17

(Wt , W̃t )0≤t≤T , which is often not desirable for practitioners as, in most cases, they are not easily18

observable compared to the state process (X t )0≤t≤T .19

In a classical control problem, one can get the closed-loop or feed-back control, that is, as a20

function of state variables, by using the dynamic programming principle (DPP) approach instead.21

This method requires solving the Hamilton–Jacobi–Bellman (HJB) equation to obtain the value22

function and the corresponding optimal control as a function of time and state variables. We23

can obtain similar result for MFG in the absence of common noise. In that case, the flow of the24

controlled process under a MFG solution is deterministic. As a result, the solution is simply an25

optimal control of a classical Markovian control problem and, thus, can be written in a feed-back26

form.27

However, this property is not trivial in the case of common noise where the flow is now28

stochastic. In this last section, we would like to show, as an application of the result from29

Section 3.3, that the control is indeed in closed-loop or feed-back form if we include the30

conditional law of the state variables. That is, it can be written as a deterministic function of31

state variables and its conditional law thereby establishing the Markov property of MFG with32

common noise. Our main result is the following33
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Theorem 11. Assume that (C1)–(C8) hold and σ2(t) = σ̃2(t) = 0, then the solution (α̂t )0≤t≤T to 1

MFG with common noise (47) is of the form 2

α̂t = u(t, X t ,PX t |F̃t
) (76) 3

where u : [0, T ] × Rn
× P2(Rn) is a K -Lipschitz deterministic function. 4

Proof. From Theorems 9, 10, we have shown that the solution to MFG with common noise (47) 5

is given by 6

α̂t = ᾱ(t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
) (77) 7

where (X t , Yt , Z t , Z̃ t )0≤t≤T is a solution to mean-field FBSDE (64) and ᾱ is a deterministic 8

function. Note that even though ᾱ is deterministic, it does not imply the Markov property or 9

feedback control form as the processes (Yt , Z t , Z̃ t )0≤t≤T are not necessarily a deterministic 10

function of X t . 11

From the assumption σ2(t) = σ̃2(t) = 0 and (66), we have that ᾱ is independent of z, z̃. 12

We would like to apply Theorem 4, so we need to verify that assumption (B1)–(B5) hold for 13

(b̄, σ̄ , ¯̃σ,−∇x H̄ ,∇x g). We have already shown that (B1)–(B2) hold in the proof of Theorem 10. 14

(B3) immediately holds from (64), and (B4) also holds directly from (C1) and (C3). For (B5), 15

the proof is nearly identical to that of (B2) in Theorem 10, but here we do not need the weak 16

monotonicity condition for (75) and use (C4) instead. 17

Thus, by Theorem 4, there exists a deterministic K -Lipschitz function U : [0, T ] × Rn
× 18

P2(Rn) such that 19

Yt = U (t, X t ,PX t |F̃t
) (78) 20

Let u(t, x,m) = ᾱ(t, x,U (t, x,m),m), then the result follows from (77), (78). That is, 21

α̂t = ᾱ(t, X t , Yt , Z t , Z̃ t ,PX t |F̃t
) = ᾱ(t, X t ,U (t, X t ,PX t |F̃t

),PX t |F̃t
) 22

The Lipschitz property of u follows from (72) and Lemma 2. □ 23

For a classical stochastic control problem, the feed-back form optimal control is related to 24

the gradient of the value function of the HJB equation. Similarly for the MFG, the function 25

U here is related to the gradient of the solution of the so-called master equation, an infinite- 26

dimensional second order PDE involving the space of probability measures. For interested 27

readers, we refer to [1,6,13,17] for details on the dynamic programming principle approach for 28

MFG and discussions on the master equation. 29
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Appendix A. Proof of Theorem 1 33

34Suppose (∆X t ,∆Yt ,∆Z t )0≤t≤T denotes the difference of two solutions. By taking Itô lemma 35

on ⟨∆X t ,∆Yt ⟩ and using (A3)(c), we have 36∫ T

0

⏐⏐⏐c(1)
t (∆Yt ) + c(2)

t (∆Z t )
⏐⏐⏐2 dt ≤ 0 37
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Then by (A3)(b), we have the uniqueness as desired. For existence, consider the FBSDE1

d X t =

[
αB(t, X t , Yt , Z t ) + (1 − α)

(
−c̄(1)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ φt

]
dt

+

[
αΣ (t, X t , Yt , Z t ) + (1 − α)

(
−c̄(2)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ ψt

]
dWt

dYt = [αF(t, X t , Yt , Z t ) + (1 − α)(−X t ) + γt ] dt + Z t dWt

X0 = ξ, YT = αG(XT ) + η

(A.1)2

where c̄(1)
t , c̄(2)

t are the adjoint operators of the bounded operator c(1)
t , c(2)

t , (φt , ψt , γt )0≤t≤T3

∈ H2
F([0, T ];Rn), and η ∈ L2

FT
(Rn). We will show that FBSDE (A.1) with α = 1 has a unique4

solution for any (φ,ψ, γ, η) by showing that5

(i) FBSDE (A.1) with α = 0 has a unique solution for any (φ,ψ, γ, η).6

(ii) There exists δ0 > 0 such that for any α0 ∈ [0, 1), if FBSDE (A.1) with α = α0 has a7

unique solution for any (φ,ψ, γ, η), then so does FBSDE (A.1) with α ∈ [α0, α0 + δ0).8

For (ii), we define a map Φ : H2([0, T ];Rn) ∋ (xt , yt , zt )0≤t≤T → (X t , Yt , Z t )0≤t≤T ∈9

H2([0, T ];Rn) where (X t , Yt , Z t )0≤t≤T is a solution to10

d X t =

[
α0 B(t, X t , Yt , Z t ) + (1 − α0)

(
−c̄(1)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ φt

]
dt

+ δ
[

B(t, xt , yt , zt ) + c̄(1)
t

(
c(1)

t (yt ) + c(2)
t (zt )

)]
dt

+

[
α0Σ (t, X t , Yt , Z t ) + (1 − α0)

(
−c̄(2)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ ψt

]
dWt

+ δ
[
Σ (t, xt , yt , zt ) + c̄(2)

t

(
c(1)

t (yt ) + c(2)
t (zt )

)]
dWt

dYt = [α0 F(t, X t , Yt , Z t ) + (1 − α0)(−X t ) + γt + δ (F(t, xt , yt , zt ) + xt )] dt + Z t dWt

X0 = ξ, YT = α0G(XT ) + δG(xT ) + η

(A.2)11

The map is well-defined by assumption in (ii) for α = α0. Then it can be shown that for12

sufficiently small δ0 > 0 depending only on the Lipschitz constant K and time duration T ,13

Φ is a contraction for all δ ≤ δ0; the proof is identical to that of Theorem 3.1 in [33], so we omit14

it here.15

For (i), we need to apply method of continuation again by considering the FBSDE16

d X t =

[
α
(
−c̄(1)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ φt

]
dt

+

[
α
(
−c̄(2)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ ψt

]
dWt

dYt = [−X t + γt ] dt + Z t dWt

X0 = ξ, YT = η.

(A.3)17

We aim to show that18

(iii) FBSDE (A.3) with α = 0 has a unique solution for any (φ,ψ, γ, η).19
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(iv) There exists an δ1 > 0 such that for any α1 ∈ [0, 1), if FBSDE (A.3) with α = α1 has a 1

unique solution for any (φ,ψ, γ, η), then so does FBSDE (A.1) with α ∈ [α1, α1 + δ1). 2

(iii) follows from Lemma 2.5 in [33] (with G = I, β1 = 1, β2 = 0). For (iv), we proceed 3

similarly by defining a map Φ : H2([0, T ];Rn) ∋ (xt , yt , zt )0≤t≤T → (X t , Yt , Z t )0≤t≤T ∈ 4

H2([0, T ];Rn) where (X t , Yt , Z t )0≤t≤T is a solution to 5

d X t =

[
α1

(
−c̄(1)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ φt + δ

(
−c̄(1)

t

(
c(1)

t (yt ) + c(2)
t (zt )

))]
dt

+

[
α1

(
−c̄(2)

t

(
c(1)

t (Yt ) + c(2)
t (Z t )

))
+ ψt + δ

(
−c̄(2)

t

(
c(1)

t (yt ) + c(2)
t (zt )

))]
dWt

dYt = [−X t + γt ] dt + Z t dWt

X0 = ξ, YT = η

(A.4) 6

The map is well-defined by assumption in (iv) for α = α1. Similarly, it can be shown that for 7

sufficiently small δ1 > 0 depending only on the Lipschitz constant K and time duration T , Φ is a 8

contraction for all δ ≤ δ1; the proof is identical to that of Lemma 2.4 in [33], so we omit it here. 9

Appendix B. Proof of Theorem 2 10

11We will use the following notations in this proof; for Φ = B,Σ , F 12

∆Φt = Φ(t, θ) − Φ(t, θ ′), Φ̄ = (Φ − Φ ′)(t, θ ′

t )

∆G = G(XT ) − G(X ′

T ), Ḡ = (G − G ′)(X ′

T )
13

By Ito’s lemma on ⟨∆X t ,∆Yt ⟩, 14

E[1A ⟨∆Xs,∆Ys⟩]

= E[1A
⟨
∆XT ,∆G + Ḡ

⟩
]

− E[1A

∫ T

s

(⟨
∆Ft + F̄t ,∆X t

⟩
+
⟨
∆Bt + B̄t ,∆Yt

⟩
+
⟨
∆Σt + Σ̄t ,∆Z t

⟩)
dt]

≥ E1A

∫ T

s
β|c(1)

t (∆Yt ) + c(2)
t (∆Z t )|2dt + E1A

⟨
∆XT , Ḡ

⟩
− E[1A

∫ T

s
(
⟨
F̄t ,∆X t

⟩
+
⟨
∆Yt , B̄t

⟩
+
⟨
∆Z t , Σ̄t

⟩
)dt] 15

Here we used assumption (A3)(c) and the fact that A ∈ Gs which helps eliminate the stochastic 16

integral after taking the expectation. Thus, we have 17

E1A

∫ T

s
|c(1)

t (∆Yt ) + c(2)
t (∆Z t )|2dt

≤ E[1A ⟨∆ξ,∆Ys⟩] + E1A
⟨
∆XT , Ḡ

⟩
+ E[1A

∫ T

s
(
⟨
F̄t ,∆X t

⟩
+
⟨
∆Yt , B̄t

⟩
+
⟨
∆Z t , Σ̄t

⟩
)dt]

(B.1) 18
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Next, by applying Ito lemma on |∆Yt |
2 and using standard argument involving K -Lipschitz1

property of F,G, Young’s inequality, Burkholder–Davis–Gundy (BDG) inequality (see Theorem2

3.28 in [25]), and Gronwall inequality, we have3

E1A( sup
t≤u≤T

|∆Yu |
2
+

∫ T

t
|∆Zu |

2du)

≤ CK ,TE1A

(
|∆XT |

2
+ |Ḡ|

2
+

∫ T

t
(|F̄u |

2
+ |∆Xu |

2)du
)

(B.2)4

for some constant CK ,T > 0 depending only on K , T . Thus, we also have5

E1A(|∆Yt |
2
+

∫ T

t
|∆Zu |

2du)

≤ CK ,TE1A

(
|∆XT |

2
+ |Ḡ|

2
+

∫ T

t
(|F̄u |

2
+ |∆Xu |

2)du
)

(B.3)6

We now need an estimate on |∆X t |
2. By Ito’s lemma, Young’s inequality, assumption (A3)(b),

and Gronwall inequality, we have

E1A|∆X t |
2

≤ CK ,TE1A{|∆ξ |2 +

∫ t

s
[|B̄u |

2
+ |Σ̄u |

2

+ |c(1)
u (∆Yu) + c(2)

u (∆Zu)|2]du} (B.4)

Plugging this into (B.2), we have7

E1A( sup
s≤t≤T

|∆Yt |
2
+

∫ T

s
|∆Z t |

2dt)

≤ KE1A(|Ḡ|
2
+ |∆ξ |2)

+ KE1A

∫ T

s

[
|F̄t |

2
+ |B̄t |

2
+ |Σ̄t |

2
+ |c(1)

t (∆Yt ) + c(2)
t (∆Z t )|2

]
dt (B.5)8

By BDG inequality, it follows that9

E1A sup
s≤t≤T

∫ t

s
2
⟨
(∆Σu + Σ̄u)T∆Xu, dWu

⟩
≤ CE1A[ sup

s≤t≤T

∫ t

s
|(∆Σu + Σ̄u)T∆Xu |

2du]

≤ εE1A sup
s≤t≤T

|∆X t |
2
+ CE1A(

∫ T

s
|∆Σt + Σ̄t |

2dt)

≤ εE1A sup
s≤t≤T

|∆X t |
2
+ CE1A(

∫ T

s
[|Σ̄t |

2
+ |∆X t |

2
+ |c(1)

t (∆Yt ) + c(2)
t (∆Z t )|2]dt)

(B.6)10
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Next, by applying Ito’s lemma on |∆X t |
2, using (B.4) and (B.6), we have 1

E1A sup
s≤t≤T

|∆X t |
2

≤ CK ,TE1A

{
|∆ξ |2 +

∫ T

s
[|B̄t |

2
+ |Σ̄t |

2
+ |c(1)

t (∆Yt ) + c(2)
t (∆Z t )|2]dt

}
(B.7) 2

The result then follows by grouping estimates (B.5) and (B.7) and using (B.1) and Young’s 3

inequality. 4
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