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Abstract

In this paper we show that the weak representation property of a semimartingale X with respect to
a filtration F is preserved in the progressive enlargement G by a random time τ avoiding F-stopping
times and such that F is immersed in G. As an application of this, we can solve an exponential utility
maximization problem in the enlarged filtration G following the dynamical approach, based on suitable
BSDEs, both over the fixed-time horizon [0, T ], T > 0, and over the random-time horizon [0, T ∧ τ ].
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider an Rd -valued semimartingale X that possesses the weak represen-
tation property (from now on WRP) with respect to a filtration F. For the definition of the WRP
see Definition 3.1 below. We denote by G the progressive enlargement of F by a random time
τ and assume that τ avoids F-stopping times and that F is immersed in G (Assumptions 4.2).
We then show that under these assumptions on τ the WRP of X with respect to F propagates
to G. More precisely, if H denotes the default process associated with τ , we prove that the
Rd+1-valued semimartingale (X, H ) possesses the WRP with respect to G. The WRP which we
obtain with respect to G is valid for all G-martingales and not only for G-martingales stopped
at τ .

E-mail address: Paolo.Di_Tella@tu-dresden.de.

https://doi.org/10.1016/j.spa.2019.03.013
0304-4149/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2019.03.013
http://www.elsevier.com/locate/spa
mailto:Paolo.Di_Tella@tu-dresden.de
https://doi.org/10.1016/j.spa.2019.03.013


Please cite this article as: P. Di Tella, On the weak representation property in progressively enlarged filtrations with an application in exponential utility
maximization, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.03.013.

2 P. Di Tella / Stochastic Processes and their Applications xxx (xxxx) xxx

Let X be an F-local martingale and let G be the progressive enlargement of F by a random
time τ . The propagation of the predictable representation property (from now on PRP) of X
to G has been extensively studied in the literature under different assumptions on τ and a
pioneering work about this topic is Kusuoka [26] in a Brownian setting. In [2], Aksamit et al.
proved a PRP for a class of local martingales stopped at τ if G is the progressive enlargement
of the filtration generated by a Poisson process. In Jeanblanc & Song [22] the propagation
of the PRP to G is studied in a more general case. We also recall Coculescu, Jeanblanc &
Nikeghbali [11] for results about the propagation of the PRP.

The result on the WRP with respect to G in this paper, generalizes, in particular, the
martingale representation theorem obtained in [26]. It also extends the WRP obtained by Kunita
& Watanabe in [25] (see also [24]) for Lévy processes to progressively enlarged Lévy filtrations.
Furthermore, it adds a class of non trivial examples to Becherer [3].

We remark that, according to [16, Theorem 13.14], if X possesses the PRP then it also
possess the WRP (for this reason the PRP is sometimes also called strong representation
property). However, the converse is, in general, not true and it is easy to find martingales
possessing the WRP but not the PRP. This means that the study of the propagation of the
WRP to the progressive enlargement G is of its own interest.

As an application of the WRP with respect to the progressive enlargement G of F, we can
solve a problem of expected exponential utility maximization of the wealth of an investor with
respect to G, following the dynamical approach, based on BSDEs. Indeed, because of the WRP
with respect to G obtained in this paper, this problem fits in the frame of Becherer [3] and we
can apply [3, Theorem 3.5] to ensure the existence and the uniqueness of the solution of the
involved BSDEs.

In the financial context of the exponential utility maximization, the filtration F models the
information available in the market. On the other side, the random time τ , which is not an
F-stopping time, models the occurrence time of an external event, as the default of (part of)
the market or the death of the investor himself, which cannot be inferred on the basis of the
information available in F. We consider the exponential utility maximization problem with
respect to G both at maturity T > 0 and, inspired by Jeanblanc et al. [21], at T ∧ τ . The
problem at T describes the situation in which the investor (or his heirs) is able to go on with
the investment up to the maturity T , although the exogenous event has occurred before T .
Contrarily, the optimization problem at T ∧ τ corresponds to the case in which the investment
can only be pursued up to the occurrence time τ of the market-exogenous shock event, that is,
the investor has access to the market only up to τ . This latter situation is common, e.g., in life
insurance, where the time to maturity T can exceed with probability one the life duration of
the investor (in this case τ models the death of the investor).

A few references about utility maximization in progressively enlarged filtrations are,
e.g., Bielecki et al. [4,5], Jeanblanc et al. [21], Lim & Quenez [27], for the dynamical approach
and Blanchet-Scalliet et al. [7] and Bouchard & Pham [8] for the duality approach.

Concerning martingale representation theorems and utility maximization in progressively
enlarged filtration, we also mention some work-in-progress as Choulli et al. [9] and [10].

This paper has the following structure: In Section 2, we introduce some preliminary notions.
In Section 3, we recall properties of integer-valued random measures and discuss the WRP for a
general semimartingale. Section 4 is a short summary of results about progressive enlargement
of filtrations which will be useful later. In Section 5, we show that the WRP of a semimartingale
X propagates from F to its progressive enlargement G. Finally, in Section 6, as a consequence
of the WRP with respect to G obtained in Section 5 and the theory developed in [3], we solve
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an exponential utility maximization problem both over [0, T ] and over the random-time horizon
[0, T ∧ τ ].

2. Basic notions

In this paper we regard an element of Rd , d ≥ 1, as a column, that is, v = (v1, . . . , vd )tr ,
v ∈ Rd , where tr denotes the transposition operation.

Let (Ω , F ,P) be a complete probability space and let F = (Ft )t≥0 be a filtration satisfying
the usual conditions, i.e., F is right-continuous and contains the P-null sets of F . For a filtration
F we define F∞ as the smallest σ -algebra containing each Ft , t ≥ 0, that is F∞ :=

⋁
t≥0 Ft .

For a càdlàg process X , we define X0− := X0 so that the jump process ∆X is equal to zero
in t = 0.

If X is a càdlàg F-adapted process with paths of finite variation and K is a nonnegative
measurable process, we denote by K · X = (K · X t )t≥0 the (Stieltjes–Lebesgue) integral process
of K with respect to X , that is, K · X t (ω) :=

∫ t
0 Ks(ω)dXs(ω).

As in [20, I.3.6], we denote by A +
= A +(F) the set of integrable increasing processes,

that is, if X ∈ A +, then X is F-adapted, has càdlàg and increasing paths, X0 = 0 and
E[X∞] < +∞. By A +

loc = A +

loc(F) we denote the space of F-adapted and locally integrable
increasing processes.

For p ∈ [1, +∞), we denote by H p
= H p(F) the space of F-adapted real-valued

uniformly integrable martingales such that ∥X∥H p := E[supt≥0 |X t |
p]1/p < +∞. By Doob’s

inequality, ∥X∥H p is equivalent to ∥X∥p := E[|X∞|
p]1/p for p > 1 and, for every p ≥ 1,

(H p, ∥·∥H p ) is a Banach space while (H 2, ∥·∥2) is a Hilbert space. The space H p
loc, p ≥ 1, is

introduced from H p by localization. We recall that H 1
loc coincides with the space of R-valued

local martingales (see [19, Proposition 2.38]).
For X ∈ H 2

loc, we denote by ⟨X, X⟩ the F-predictable covariation of X , that is, ⟨X, X⟩ is
the unique F-predictable process belonging to A +

loc such that X2
−⟨X, X⟩ ∈ H 1

loc. If X ∈ H 2,
then ⟨X, X⟩ ∈ A + and X2

− ⟨X, X⟩ ∈ H 1.
For any semimartingale X we denote by [X, X ] the quadratic variation of X :

[X, X ]t := ⟨X c, X c
⟩t +

∑
s≤t

(∆Xs)2, t ≥ 0,

where X c denotes the continuous local martingale part of X .
We stress that, if X ∈ H 2, then [X, X ] ∈ A + and [X, X ] − ⟨X, X⟩ ∈ H 1, i.e., ⟨X, X⟩

is the F-dual predictable projection of [X, X ]. If X is a continuous local martingale, then the
identity [X, X ] = ⟨X, X⟩ holds.

We are now going to recall the stochastic integral for a multidimensional martingale. For this
part we refer to [19, Chapter VI, Section 4§a]. Let X = (X1, . . . , Xd )tr be an Rd -valued process
such that X i

∈ H p
loc, p ≥ 1, i = 1, . . . , d , that is, X is an Rd -valued local martingale. We

denote by a and A the processes given in [19, Chapter VI, Section 4§a] such that [X, X ] = a · A
(see [19, Eq. (4.56)]). Let K be an Rd -valued predictable process and define ∥K∥Lp(X ) =

E[((K tr aK ) · A)p/2
∞ ]. We then define Lp(X ) := {K predictable and Rd -valued : ∥K∥Lp(X ) <

+∞}. Notice that the identity Lp(X ) = {K predictable and Rd -valued : ((K tr aK ) · A)p/2
∈

A +
} obviously holds. The space Lp

loc(X ) is introduced making use of A +

loc instead of A +. We
recall that, if X i

∈ H p
loc, i = 1, . . . , d , then (Lp(X ), ∥ · ∥Lp(X )) is a complete space (see [19,

Theorem 4.60]). For K ∈ L1
loc(X ) we denote by K · X the multidimensional stochastic integral

of K with respect to X . We notice that K · X ∈ H 1
loc, the identity [K · X, K · X ] = K tr aK · A

holds (see [19, Remark 4.61]) and K ·X ∈ H p if and only if K ∈ Lp(X ), this latter claim being
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a direct consequence of [19, Eq. (4.57)] and of Burkhölder–Davis–Gundy’s inequality (from
now on BDG’s inequality), since E[[K · X, K · X ]p/2

∞
] = ∥K∥Lp(X ). To specify the filtration,

we sometimes write Lp(X,F). Notice that, if X ∈ H p
loc is real-valued, then Lp(X ) is the space

of F-predictable processes K such that (K 2
· [X, X ])p/2

∈ A +. Furthermore, in the special
case in which X is a local martingale of finite variation and K ∈ L1

loc(X ) is such that the
Stieltjes–Lebesgue integral of K with respect to X can be defined (as, e.g., if K is locally
bounded), then the stochastic integral and the Stieltjes–Lebesgue integral of K with respect to
X coincide (see [19, Remark 2.47]). Hence, the notation K · X is not ambiguous.

We shall sometimes consider a finite time horizon T > 0 and stochastic processes restricted
to the finite time interval [0, T ]. In this case, we write FT = (Ft )t∈[0,T ] to denote the
filtration F restricted to the finite time interval [0, T ]. We furthermore denote by H p

T the
space of p-integrable F-martingales on [0, T ]. We write H p

loc,T for the localized version of
H p

T . Analogously, we write Lp
T (X ) for the space of the predictable integrands restricted to the

finite time interval [0, T ] for a d-valued local martingale X = (X1, . . . , Xd )tr , X i
∈ H p

loc,T ,
i = 1, . . . , d .

3. Random measures and weak representation property

Let µ be a nonnegative random measure on R+ × E in the sense of [20, Definition
II.1.3], where E coincides with Rd or with a Borel subset of Rd . Notice that we assume
µ(ω, {0} × E) = 0 identically.

Let W be a P(F) ⊗ B(E)-measurable mapping on the set Ω × R+ × E , where we denote
by P(F) the σ -algebra generated by the F-predictable sets of Ω ×R+ and by B(E) the Borel
σ -algebra on E . We say that W is an F-predictable mapping.

Let W be an F-predictable mapping. For t ≥ 0, following [20, Chapter II], we define

W ∗ µ(ω)t :=

⎧⎪⎪⎨⎪⎪⎩
∫

[0,t]×E
W (ω, t, x)µ(ω, dt, dx), if

∫
[0,t]×E

|W (ω, t, x)|µ(ω, dt, dx) < +∞;

+∞, else.

We say that µ is an F-predictable random measure if W ∗ µ is F-predictable for every
F-predictable mapping W .

Let X be an Rd -valued F-semimartingale. We denote by µX the jump measure of X , that
is,

µX (ω, dt, dx) =

∑
s>0

1{∆Xs (ω)̸=0}δ(s,∆Xs (ω))(dt, dx),

where, here and in the whole paper, δa denotes the Dirac measure at point a (which can be
d-dimensional, d ≥ 1).

From [20, Theorem II.1.16], µX is an integer-valued random measure with respect to F
(see [20, Definition II.1.13]). By (B X , C X , νX ) we denote the F-predictable characteristics of
X with respect to the truncation function h(x) = 1{|x |≤1}x (see [20, Definition II.2.3]). We
recall that νX is a predictable random measure characterized by the following two properties:
For any F-predictable mapping W such that |W | ∗ µX

∈ A +

loc, we have |W | ∗ νX
∈ A +

loc and
(W ∗ µX

− W ∗ νX ) ∈ H 1
loc (see [20, Theorem II.1.8]).

We are now going to introduce the stochastic integral with respect to (µX
− νX ) of an

F-predictable mapping W .
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Let W be an F-predictable mapping. We define the process W̃ by

W̃t (ω) := W (ω, t,∆X t (ω))1{∆X t (ω)̸=0} − Ŵt (ω), (3.1)

where, for t ≥ 0,

Ŵt (ω) :=

⎧⎪⎪⎨⎪⎪⎩
∫
Rd

W (ω, t, x)νX (ω, {t} × dx), if
∫
Rd

|W (ω, t, x)|νX (ω, {t} × dx) < +∞;

+∞, else.

Notice that, according to [20, Lemma II.1.25], Ŵ is predictable and a version of the predictable
projection of the process (ω, t) ↦→ W (ω, t,∆X t (ω))1{∆X t (ω)̸=0}. Furthermore, since from
[20, Corollary II.1.19] we have νX (ω, {t} × Rd ) = 0 if and only if X is quasi-left continuous,
we deduce that for any quasi-left continuous semimartingale X and for any F-predictable W ,
the identity Ŵ ≡ 0 holds.

We introduce (see [19, (3.62)])

G p(µX ) :=
{
W : W is an F-predictable mapping and

(∑
0≤s≤·

W̃ 2
s

)p/2
∈ A +

}
.

The definition of G p
loc(µX ) is similar and makes use of A +

loc instead. If a finite time horizon
T > 0 is fixed, we denote by G p

T (µX ) (resp., by G p
loc,T (µX )) the restriction of G p(µX ) (resp.,

of G p
loc(µX )) to the finite time interval [0, T ]. To specify the filtration we sometimes write

G p(µX ,F). Setting

∥W∥G p(µX ) := E
[(∑

s≥0 W̃ 2
s

)p/2
]1/p

,

we get a semi-norm on G p(µX ).
Let now W ∈ G 1

loc(µX ). The stochastic integral of W with respect to (µX
− νX ) is denoted

by W ∗ (µX
− νX ) or by

∫
·

0

∫
E W (t, x)(µX

− νX )(dt, dx) and is defined as the unique purely
discontinuous local martingale Z ∈ H 1

loc such that Z0 = 0 and ∆Z = W̃ . To justify
this definition, see [20, Definition II.1.27] and the subsequent comment. We only recall that,
according to [19, Proposition 3.66], W ∗ (µX

− νX ) ∈ H p if and only if W ∈ G p(µX ).
We are now ready to give the definition of the WRP with respect to the filtration F for an

F-semimartingale X .

Definition 3.1. For a fixed p ≥ 1, we say that the Rd -valued F-semimartingale X with
continuous local martingale part X c and characteristics (B X , C X , νX ) possesses the H p-WRP
with respect to F if every N ∈ H p(F) can be represented as

N = N0 + K · X c
+ W ∗ (µX

− νX ), K ∈ Lp(X c,F), W ∈ G p(µX ,F). (3.2)

We remark that Definition 3.1 is similar to [20, Definition III.4.22].
At a first look it could seem that the H p-WRP gets stronger as p increases. The next

proposition shows that all H p-WRP are in fact equivalent.

Proposition 3.2. If the Rd -valued semimartingale X possesses the H 1-WRP with respect to
F, then it possesses the H p-WRP, for every p ≥ 1. Conversely, if X possesses the H p-WRP
with respect to F for a fixed p > 1, then it possess the H 1-WRP and, hence, the H q -WRP
for every q ≥ 1.
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Proof. Let X possess the H 1-WRP with respect to F and let p > 1 be fixed. Then, every
N ∈ H p can be represented as in (3.2) with K ∈ L1(X c) and W ∈ G 1(µX ). Therefore,
denoting by [N , N ] the quadratic variation of N , by the definition of W ∗ (µX

− νX ), we get

[N , N ]t = ⟨K · X c, K · X c
⟩t +

∑
0≤s≤t

W̃ 2
s , t ≥ 0.

Hence, we can estimate each addend in the previous identity by [N , N ]∞. Thus, both ⟨K ·X c, K ·

X c
⟩

p/2 and (
∑

0≤s≤·
W̃ 2

s )p/2 belong to A +, since [N , N ]p/2 does. Therefore, K ∈ Lp(X c) and
W ∈ G p(µX ), meaning that X possesses the H p-WRP. Since p > 1 is arbitrary, we deduce
that X has the H p-WRP for every p ≥ 1. Conversely, let X possess the H p-WRP, for some
p > 1. We show that X possesses the H 1-WRP. From this and the previous step, we deduce
that X has the H q -WRP for every q ≥ 1. From [19, Proposition 2.39], H p is dense in
(H 1, ∥ · ∥H 1 ). Hence, for each N ∈ H 1 there exist (N n)n ⊆ H p such that N n

−→ N in
(H 1, ∥ · ∥H 1 ) as n → +∞ and, by assumption,

N n
= N n

0 + K n
· X c

+ W n
∗ (µX

− νX ), K n
∈ Lp(X c), W n

∈ G p(µX ).

Using this relation, [19, Eq. (4.58) and Remark 4.61(2)] and BDG’s inequality, we see that
(K n)n is a Cauchy sequence in the space (L1(X c), ∥ · ∥L1(Xc)) and (W n)n is a Cauchy sequence
in the space (G 1(µX ), ∥·∥G 1(µX )). Since, from [19, Theorem 4.60], the space (L1(X c), ∥·∥L1(Xc))
is complete, we find K ∈ L1(X c) which is the limit in L1(X c) of (K n)n . Thus, by BDG’s
inequality, we obtain ∥(K n

− K ) · X c
∥H 1 ≤ c1∥K n

− K∥L1(Xc) −→ 0 as n → +∞, where
c1 > 0 is a constant. Concerning (W n)n , by BDG’s inequality, there exists a constant C1 > 0
such that

∥(W n
− W m) ∗ (µX

− νX )∥H 1 ≤ C1∥W n
− W m

∥G 1(µX ).

Thus, (W n
∗ (µX

− νX ))n is a Cauchy sequence in K 1(µX ) := {W ∗ (µX
− νX ), W ∈ G 1(µX )}

which, because of [19, Theorem 4.46], is a closed subspace of (H 1, ∥ · ∥H 1 ). So, there exists
W in G 1(µX ) such that W n

∗ (µX
− νX ) −→ W ∗ (µX

− νX ) in (H 1, ∥ · ∥H 1 ) as n → +∞,
which, again by BDG’s inequality, implies W n

−→ W in (G 1(µX ), ∥ · ∥G 1(µX )) as n → +∞.
Taking the limit in H 1 yields

N = lim
n→+∞

N n
= lim

n→+∞

(
N n

0 + K n
· X c

+W n
∗ (µX

−νX )
)

= N0 + K · X c
+W ∗ (µX

−νX )

and the proof of the lemma is complete. □

According to Proposition 3.2, if there is no need to specify the involved martingale space
H p, p ≥ 1, we will sometime simply say WRP instead of H p-WRP. Furthermore, to verify
that an Rd -valued semimartingale X possesses the H 1-WRP with respect to F, it is enough
to check that X possesses the H 2-WRP with respect to F. For later use, the following lemma
will be useful:

Lemma 3.3. Let (ξ n)n ⊆ L2(Ω , F∞,P), ξ n
−→ ξ in L2(Ω , F∞,P) as n → +∞. If

ξ n
= E[ξ n

|F0] + K n
· X c

∞
+ W n

∗ (µX
− νX )∞, K n

∈ L2(X c,F), W n
∈ G 2(µX ,F),

then there exist K ∈ L2(X c) and W ∈ G 2(µX ) such that

ξ = E[ξ |F0] + K · X c
∞

+ W ∗ (µX
− νX )∞.

The proof of Lemma 3.3 can be given in a similar fashion as the one of Proposition 3.2 and
is, therefore, omitted.
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In the next remark we compare the WRP with another representation property for local
martingales, that is, the predictable representation property (from now on PRP).

For a process X , we denote in this paper by FX the smallest filtration satisfying the usual
conditions such that X is adapted.

Remark 3.4 (WRP and PRP). Let X ∈ H 1
loc be an F-local martingale. We recall that X

possesses the PRP with respect to F if every F-local martingale N can be represented as

N = N0 + H · X, H ∈ L1
loc(X,F).

From [16, Theorem 13.14], we know that the PRP implies the WRP. The converse is,
in general, not true. As a counter-example we recall the case of a martingale X which is a
Lévy process: In this case X possesses the WRP with respect to FX but it possesses the PRP
with respect to FX if and only if X is a Brownian motion or a compensated Poisson process
(see [16, Corollary 13.54]).

Remark 3.5. We now list some examples from the literature of semimartingales possessing
the WRP.

• From [16, Theorem 13.14], every local martingale X with the PRP possesses also the
WRP. Classical examples are therefore obtained assuming that X is a Brownian motion
or a compensated Poisson process with respect to the filtration FX .

• A less classical situation is the case in which X = (X1, . . . , Xd )tr is a d-dimensional
continuous local martingale such that ⟨X i , X j

⟩ is deterministic and X i
0 = 0, i, j =

1, . . . , d . According to [14, Theorem 7.1], we deduce that X has the PRP with respect
to FX

T , for an arbitrary but fixed T > 0 (that is, the stable subspace generated by X
in H 2

T (FX ) equals H 2
T (FX )). A special example is given by a d-dimensional Brownian

motion X . Notice that in this latter case ⟨X i , X j
⟩ = 0 holds, i, j = 1, . . . , d i ≤ j .

• In [15], Emery studied the chaotic representation property of the Azéma martingales. This
is a special class of square integrable martingales, obtained as solutions of a particular
structure equation. An Azéma martingale X has, in particular, the following property:
For every t ≥ 0, it holds ⟨X, X⟩t = ct , c > 0, that is, Azéma martingales are normal
martingales. Notice that Azéma martingales have not, in general, independent increments
(see [15, p. 79] for an example). The Brownian motion and the compensated Poisson
processes are examples of Azéma martingales. In [15, Proposition 6], Emery proved that
some Azéma martingales X possess the chaotic (and hence the predictable and the weak)
representation property with respect to FX .

• In [18], Jacod proved that if µ is a multivariate point process and ν its compensator
with respect to the filtration Fµ, that is, the smallest right-continuous filtration with
respect to which µ is an optional random measure (see [18, (A.1), p. 36]), then every
Fµ-local martingale can be represented as a stochastic integral with respect to µ− ν (see
[18, Theorem 5.4]). Using this result, one can prove that any step process X (see
[16, 11.55]) possesses the WRP with respect to FX (see [16, Theorem 13.19]). It can
be shown that, if B is a Brownian motion with respect to FB and X is a step process in-
dependent of B, then the semimartingale Y = B+ X has the WRP with respect to FY (see
[28, Corollary 2]).
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• In [25], Kunita and Watanabe established in the example on p. 227 and in Proposition
5.2 the WRP for a Lévy processes X with respect to FX (see also [24, Theorem 1.1]).

• In [20, Theorem III.4.34] the WRP has been obtained for a semimartingale X with
conditionally independent (and not necessarily homogeneous) increments, with respect
to the right-continuous filtration F generated by FX and by an initial σ -field H
(see [20, III.2.12]).

4. Progressively enlarged filtrations: a brief summary

We denote by τ a (0, +∞]-valued random variable and call τ a random time. The default
process H = (Ht )t≥0 associated with τ is defined by Ht (ω) := 1[τ,+∞)(ω, t). The filtration
generated by H is denoted by H = (Ht )t≥0. We stress that H0 = 0 so that H is an increasing
process in the sense of [20, Definition I.3.1].

For a filtration F = (Ft )t≥0 satisfying the usual conditions, G = (Gt )t≥0 denotes the
progressive enlargement of F by τ and it is defined by

Gt :=

⋂
ε>0

G̃t+ε, t ≥ 0,

where G̃t = Ft ∨Ht , t ≥ 0, and G̃ = (G̃t )t≥0. That is, G is the smallest right-continuous (and,
hence, satisfying the usual conditions) filtration containing F and such that τ is a G-stopping
time.

Definition 4.1. Let τ : Ω −→ (0, +∞] be a random time.
(i) We say that τ satisfies hypothesis (A ), if τ avoids F-stopping times, that is, if for every

F-stopping time σ , P[τ = σ < +∞] = 0 holds.
(ii) We say that τ satisfies hypothesis (H ), if F is immersed in G, that is, if F-martingales

remain G-martingales.

The following assumptions will play a key role in this paper:

Assumptions 4.2. The random time τ satisfies both hypotheses (A ) and (H ) (see
Definition 4.1).

We now shortly comment Assumptions 4.2. Hypothesis (A ) is widely used in the literature
about progressively enlarged filtrations, especially if F-martingales are not all continuous. In
this paper, which deals with the propagation of the WRP to the filtration G, it is natural (and
convenient) to assume hypothesis (A ). Indeed, if (A ) is not satisfied, as a limit case, it can
happen that τ is an F stopping time: Hence, F and G coincide. To role out this trivial case, we
require (A ). The interpretation of (A ) is also very natural: We are enlarging F adding some
completely new information, which is not contained in F.

It is well known (see [1, Theorem 3.2 (a)]) that hypothesis (H ) is equivalent to the
conditional independence of F∞ and Gt given Ft . Therefore, it is obvious that hypothesis
(H ) is satisfied if τ is independent of F. Another important case, especially for applications
to credit risk, in which the immersion property is satisfied, is when the random time τ is
obtained by the Cox construction (see [1, Section 2.3 and Lemma 2.28]).

The next lemma, which will be useful later, exhibits a generating system for the σ -algebra
G̃t , for every t ≥ 0.
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Lemma 4.3. For every t ≥ 0, let us introduce the system

Ct := {ξ G̃t -measurable and bounded : ξ = ζ (1 − Hs), ζ bounded and
Ft -measurable, 0 ≤ s ≤ t}.

Then, the σ -algebra generated by Ct , denoted by σ (Ct ), coincides with G̃t , for every t ≥ 0.

Proof. Notice that the inclusion σ (Ct ) ⊆ G̃t obviously holds. It is therefore enough to verify
the converse inclusion G̃t ⊆ σ (Ct ). To this goal, it is sufficient to prove that each A ∈ Ft is
σ (Ct )-measurable and that Hs is σ (Ct )-measurable, for every 0 ≤ s ≤ t . Since 1A = 1A(1−H0)
for every A ∈ Ft , we have Ft ⊆ σ (Ct ), for every t ≥ 0. Furthermore, we have (1 − Hs) =

1(1 − Hs) for every 0 ≤ s ≤ t . So, Hs is σ (Ct )-measurable for every 0 ≤ s ≤ t and hence the
inclusion G̃t ⊆ σ (Ct ) holds. The proof is complete. □

The assumption that τ takes value in (0, +∞] simplifies the proof of Lemma 4.3: If we
only have P[τ = 0] = 0 (as it happens if, e.g., hypothesis (A ) is satisfied and τ takes values
in [0, +∞]), then Lemma 4.3 holds replacing σ (Ct ) by σ (Ct ) ∨ N , N denoting the family
of the P-null sets in F .

In this paper we denote by A the F-optional projection of the right-continuous and bounded
process (1 − H ). Then A is càdlàg, F-adapted and satisfies

At = P[τ > t |Ft ], a.s., t ≥ 0. (4.1)

In particular, being bounded, A is a supermartingale of class (D) with respect to F, called
the Azéma supermartingale, where we recall that an F-adapted process X is of class (D) with
respect to F if the family {Xσ : σ finite-valued F-stopping time} is uniformly integrable.

Notice that A0 = 1. From classical literature on martingale theory (see, e.g., [16,
Theorem 2.62 and p. 63]), it follows that A− > 0 on [0, τ ] and that A > 0 on [0, τ ).

We denote by H o,F the F-dual optional projection and by H p,F the F-dual predictable
projection (see [12, Theorem V.28]) of H .

For the formulation of the next result, we refer to [1, Lemma 1.48].

Lemma 4.4. Let τ satisfy hypothesis (A ). Then, H o,F is continuous and H p,F
= H o,F.

Proof. If H o,F is continuous, then it is F-predictable, H o,F being F-adapted. Hence, the
identity H p,F

= H o,F holds. We now come to the continuity of H o,F. Let σ be a finite-valued
F-stopping time. Then, ∆H o,F

σ = 1[0,σ ] · H o,F
∞

−1[0,σ ) · H o,F
∞

and 1[0,σ ) is an F-optional process.
The properties of the F-dual optional projection and hypothesis (A ) now yield E[∆H o,F

σ ] =

E[∆Hσ ] = P[τ = σ ] = 0. Hence, since H o,F is increasing, we get H o,F
σ = H o,F

σ− a.s. for every
finite-valued F-stopping time σ . By the optional section theorem (see [12, Theorem IV.13]),
we obtain the continuity of H o,F. The proof is complete. □

We now discuss some properties of the Azéma supermartingale A, which we shall need
later.

Proposition 4.5. Let τ satisfy Assumptions 4.2. Then A is decreasing, continuous and A > 0
on [0, τ ].

Proof. By hypothesis (H ), we have At = P[τ > t |F∞] (see [1, Theorem 3.2(c)]) from
which we see that A is decreasing. The continuity of A follows by Lemma 4.4 because, by



Please cite this article as: P. Di Tella, On the weak representation property in progressively enlarged filtrations with an application in exponential utility
maximization, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.03.013.

10 P. Di Tella / Stochastic Processes and their Applications xxx (xxxx) xxx

[1, Proposition 3.9(a)], the Doob–Meyer decomposition of A is A = 1 − H o,F. To see the last
part, we observe that A− > 0 on [0, τ ] and A = A−. The proof is complete. □

Since H ∈ A +(G), H being bounded, there exists the G-dual predictable projection ΛG of
H , that is, ΛG is the unique G-predictable process in A +(G) such that M = (Mt )t≥0, defined by

Mt := Ht − ΛG
t , t ≥ 0, (4.2)

is a local martingale (see [20, Theorem I.3.17]). Since H belongs to A +(G), we also have that
ΛG belongs to A +(G). Hence, we have E[supt≥0 |Mt |] ≤ 1 + E[ΛG

∞
] < +∞ which implies

that M is a true martingale and that it belongs to H 1(G). From [1, Proposition 2.15], we have

ΛG
t =

∫ τ∧t

0

1
As−

dH p,F
s , t ≥ 0. (4.3)

By U := E (−M) we denote the stochastic exponential (see [20, Chapter I, Section 4f]) of
the martingale −M . The following theorem summarizes some relevant properties of M , ΛG

and U .

Theorem 4.6. Let τ satisfy Assumptions 4.2.
(i) ΛG is continuous and ΛG

t = − log(Aτ∧t ), t ≥ 0, where we define log(0) := −∞.
(ii) M ∈ H 2(G), M0 = 0 and M2

− ΛG
∈ H 1(G), that is, ⟨M, M⟩ = ΛG.

(iii) U ∈ H 2
loc(G) and U = A−11[0,τ ).

Proof. We verify (i). By Assumptions 4.2, the identity H p,F
= 1 − A holds (see [1, Theorem

3.2(c)] and Lemma 4.4). Hence, form Proposition 4.5 and (4.3) we deduce (i). We now come
to (ii). Clearly, M0 = 0. The continuity of ΛG yields the identity [M, M] = H . Thus, from
[16, Theorem 7.32], we deduce M ∈ H 2(G). Integration by parts implies M2

= 2M− · M + H .
Since the stochastic integral in this identity is a G-local martingale, M2

−⟨M, M⟩ is a G-local
martingale if and only if H −⟨M, M⟩ is a G-local martingale. By the uniqueness of the G-dual
predictable projection of an increasing process, we deduce the identity ⟨M, M⟩ = ΛG, which
completes the proof of (ii). We now verify (iii). Because of the Doléans–Dade equation, we
have U = 1 − U− · M . So, from (ii), we deduce U ∈ H 2

loc(G). From Proposition 4.5, we have
A > 0 on [0, τ ] so that A−1 is well-defined over [0, τ ]. Using the Doléans–Dade exponential
formula, we compute

Ut := E (−M)t = exp(−Mt )
∏

0≤s≤t

(1 − ∆Ms) exp(∆Ms)

=

{
exp(− log(At∧τ )), on {t < τ },

0, else.

The proof of the theorem is complete. □

5. The weak representation property in the progressive enlargement

In this section we consider an Rd -valued semimartingale X with respect to the filtration
F. The jump-measure of X is µX and (B X , C X , νX ) is the triplet of the semimartingale
characteristics of X . We assume that X possesses the WRP with respect to F. In particular,
according to Proposition 3.2, every N ∈ H 2(F) can be represented as

N = N0 + K · X c
+ W ∗ (µX

− νX ), K ∈ L2(X c,F), W ∈ G 2(µX ,F).
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We denote by τ a random time on Ω with values in (0, +∞] and by G the progressive
enlargement of F by τ .

Lemma 5.1. Let τ satisfy hypothesis (H ). Then X is a G-semimartingale and the
G-semimartingale characteristics of X are again (B X , C X , νX ).

Proof. Because of hypothesis (H ), X is a semimartingale also in the filtration G. To compute
the G-semimartingale characteristics of X we apply hypothesis (H ) and [20, Theorem II.2.21].
The proof is complete. □

Let H = 1[τ,+∞) be the default process associated with τ . We set E := Rd
×{0, 1} ⊆ Rd+1.

If τ satisfies hypothesis (H ), the process (X, H )tr is an E-valued G-semimartingale. To
prove Theorem 5.3, we need the G-semimartingale characteristics (B(X,H ), C (X,H ), ν(X,H )) of
the E-valued G-semimartingale (X, H )tr . The next step is devoted to the computation of these
semimartingale characteristics.

We denote by x1 a vector of Rd , while x2 is a real number. We consider the
G-semimartingale characteristics of (X, H )tr with respect to the Rd+1-valued truncation
function

h(x1, x2) = (h1(x1), h2(x2)) := (1{|x1|≤1}x1, 1{|x2|≤1}x2).

The jump measure µH of H is given by µH (ω, dt, dx2) = dHt (ω)δ1(dx2) and the compen-
sator of µH is νH (ω, dt, dx2) = dΛG

t (ω)δ1(dx2). Hence, the G-semimartingale characteristics
of H with respect to the truncation function h2 are (ΛG, 0, νH ).

Let hypothesis (H ) be in force. The second G-semimartingale characteristic of (X, H )tr

is completely determined by C X , since C H
= 0. Furthermore, we have B(X,H )

= (B X ,ΛG)tr .
In summary, to determine (B(X,H ), C (X,H ), ν(X,H )), it is enough to compute the jump measure
µ(X,H ) of (X, H )tr and then the G-predictable compensator ν(X,H ) of µ(X,H ): The next
proposition is devoted to this goal.

Proposition 5.2. Let τ satisfy Assumptions 4.2.
(i) The jump-measure µ(X,H ) of the E-valued G-semimartingale (X, H )tr is given by

µ(X,H )(ω, dt, dx1, dx2) = µX (ω, dt, dx1)δ0(dx2) + dHt (ω)δ1(dx2)δ0(dx1).

(ii) The G-predictable compensator ν(X,H ) of µ(X,H ) is given by

ν(X,H )(ω, dt, dx1, dx2) = νX (ω, dt, dx1)δ0(dx2) + dΛG
t (ω)δ1(dx2)δ0(dx1). (5.1)

Proof. We start proving (i). First, we observe that X is a G-semimartingale, because of
hypothesis (H ). Therefore, (X, H )tr is a G-semimartingale. By definition, the jump-measure
µ(X,H ) of (X, H )tr is given by

µ(X,H )(ω, dt, dx1, dx2) =

∑
s>0

1{∆(X,H )s (ω)̸=0}δ(s,∆(X,H )s (ω))(dt, dx1, dx2).

Since τ satisfies hypothesis (A ), the G-semimartingales X and H have no common jumps.
Therefore, the identity {∆X ̸= 0} ∩ {∆H ̸= 0} = ∅ holds and we have the inclusions
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{∆X ̸= 0} ⊆ {∆H = 0} and {∆H ̸= 0} ⊆ {∆X = 0}. Thus,

µ(X,H )(ω, dt, dx1, dx2) =

∑
s>0

1{∆Xs (ω)̸=0}∩{∆Hs (ω)=0}δ(s,∆Xs (ω))(dt, dx1)δ0(dx2)

+

∑
s>0

1{∆Xs (ω)=0}∩{∆Hs (ω)̸=0}δ(s,∆Hs (ω))(dt, dx2)δ0(dx1)

=

(∑
s>0

1{∆Xs (ω)̸=0}δ(s,∆Xs (ω))(dt, dx1)

)
δ0(dx2)

+

(∑
s>0

1{∆Hs (ω)̸=0}δ(s,∆Hs (ω))(dt, dx2)

)
δ0(dx1)

= µX (ω, dt, dx1)δ0(dx2) + µH (ω, dt, dx2)δ0(dx1)

= µX (ω, dt, dx1)δ0(dx2) + dHt (ω)δ1(dx2)δ0(dx1)

and the proof of (i) is complete. We now show (ii). To see that the G-predictable random
measure ν(X,H ) is the G-predictable compensator of µ(X,H ), it is enough to verify |W |∗ν(X,H )

∈

A +

loc(G) and (W ∗ µ(X,H )
− W ∗ ν(X,H )) ∈ H 1

loc(G), for all G-predictable mappings W on
the space E = Rd

× {0, 1} such that |W | ∗ µ(X,H ) belongs to A +

loc(G) (see [20, Theorem
II.1.8]). Let now W ∗ µ(X,H )

∈ A +

loc(G), where W ≥ 0 is a G-predictable mapping. We define
W 0(t, x1) := W (t, x1, 0) and W 0,1(t) := W (t, 0, 1). Then W 0 is a G-predictable mapping, W 0,1

is a G-predictable process and, from (i), we have:

W ∗ µ
(X,H )
t = W 0

∗ µX
t + W 0,1

· Ht , t ≥ 0,

meaning that W 0
∗ µX

∈ A +

loc(G) and W 0,1
· H ∈ A +

loc(G), because of W ≥ 0. Since
ΛG is the G-predictable compensator of µH and since, because of Lemma 5.1, νX is the
G-predictable compensator of µX , this yields W 0,1

· ΛG
∈ A +

loc(G), W 0
∗ νX

∈ A +

loc(G),
(W 0,1

· H − W 0,1
· ΛG) ∈ H 1

loc(G) and (W 0
∗ µX

− W 0
∗ νX ) ∈ H 1

loc(G). Hence, denoting
by ν̃(X,H ) the predictable measure defined on the right-hand side of (5.1), we have

W ∗ ν̃(X,H )
= W 0

∗ νX
+ W 0,1

· ΛG
∈ A +

loc

and

W ∗ µ(X,H )
− W ∗ ν̃(X,H )

= (W 0
∗ µX

− W 0
∗ νX ) + (W 0,1

· H − W 0,1
· ΛG) ∈ H 1

loc(G).

If W is an arbitrary G-predictable mapping and |W |∗µ(X,H )
∈ A +

loc(G), from the previous step,
we deduce |W | ∗ ν̃(X,H )

∈ A +

loc and, applying the previous step to the positive and negative part
of W , we additionally obtain (W ∗ µ(X,H )

− W ∗ ν(X,H )) ∈ H 1
loc(G). By [20, Theorem I.1.8],

the G-predictable compensator ν(X,H ) of µ(X,H ) coincides with ν̃(X,H ) and the proof of the
proposition is complete. □

We now consider an arbitrary but fixed time horizon T > 0. We recall the notation
GT = (Gt )t∈[0,T ] and H 2

T (G) is the space of square integrable G-adapted martingales restricted
to the finite time interval [0, T ]. Analogously L2

T (X c,G) and G 2
T (µ(X,H ),G) are the spaces of

G-predictable integrands for X c and µ(X,H )
− ν(X,H ), respectively, restricted to the finite time

interval [0, T ].
The following theorem, which is the main results of this paper, shows that the WRP of X

with respect to F propagates to the semimartingale (X, H )tr in the filtration GT .
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Theorem 5.3. Let τ satisfy Assumptions 4.2 and let X be an F-semimartingale possessing
the WRP with respect to F. Let T > 0 be an arbitrary but fixed time horizon. Then the
G-semimartingale (X, H )tr possesses the H 2-WRP with respect to GT , that is, every N ∈

H 2
T (G) can be represented as

Nt = N0 + K · X c
t + W ∗ (µ(X,H )

− ν(X,H ))t ,

t ∈ [0, T ], K ∈ L2
T (X c,G), W ∈ G 2

T (µ(X,H ),G).
(5.2)

Furthermore, the representation (5.2) is unique on [0, T ] in the following sense: If K ′
∈

L2
T (X c,G) and W ′

∈ G 2
T (µ(X,H ),G) are other integrands such that (5.2) holds, we then have

∥K −K ′
∥Lp

T (Xc,G) = 0, ∥W −W ′
∥G

p
T (µ(X,H ),G) = 0 and K ·X c

t = K ′
·X c

t , W ∗(µ(X,H )
−ν(X,H ))t =

W ′
∗ (µ(X,H )

− ν(X,H ))t , for all t ∈ [0, T ] a.s.

Remark 5.4. A seminal paper about the propagation of the PRP is Kusuoka [26]. In [26],
Kusuoka assumed that F is the filtration generated by a Brownian motion and he considered
a finite-valued random time τ . Furthermore, Kusuoka assumed that F is immersed in G and
that the G-predictable compensator ΛG of the default process H is absolutely continuous with
respect to the Lebesgue measure. This latter assumption implies, in particular, that τ avoids
finite-valued F-stopping times. Indeed, let ΛG be absolutely continuous with respect to the
Lebesgue measure. Then ΛG is, in particular, continuous. If now σ is a finite-valued F-stopping
time, both 1[0,σ ] and 1[0,σ ) are F-predictable (and hence G-predictable) processes, F being the
Brownian filtration. Therefore, using the properties of the G-dual predictable projection, we
get the identity P[τ = σ ] = E[∆Hσ ] = E[∆ΛG

σ ] = 0, meaning that τ avoids finite-valued
F-stopping times. Hence, for a finite valued random time τ , Assumptions 4.2 are weaker
than those in [26]. Therefore, since in the Brownian case the WRP and the PRP coincide,
Theorem 5.3 is a generalization of the result about the PRP obtained in [26].

We now come to the proof of Theorem 5.3.

Proof of Theorem 5.3. We first discuss the uniqueness of the representation (5.2). We
observe that the stochastic integral with respect to X c defines an isometry between the spaces
(H 2

T (G), ∥ · ∥2) and (L2
T (X c,G), ∥ · ∥L2

T (Xc,G)) and the stochastic integral with respect to
µ(X,H )

− ν(X,H ) defines an isometry between the spaces (H 2
T (G), ∥ · ∥2) and (G 2

T (µ(X,H ),G), ∥ ·

∥G 2
T (µ(X,H ),G)). From this, the claim about the uniqueness of the representation (5.2) easily

follows.
To prove the representation (5.2), it is sufficient to verify that each ξ ∈ L2(Ω , GT ,P) can

be represented as

ξ = E[ξ |G0]+K · X c
T +W ∗(µ(X,H )

−ν(X,H ))T , K ∈ L2
T (X c,G), W ∈ G 2

T (µ(X,H ),G),
(5.3)

since (H 2
T (G), ∥ · ∥2) is isomorphic to (L2(Ω , GT ,P), ∥ · ∥2).

We show (5.3) by an application of the monotone class theorem. We consider a time u > T
arbitrary but fixed. We recall that G̃u = Fu ∨ Hu . As a first step, we prove that every
G̃u-measurable and square integrable random variable ξ has the representation

ξ = E[ξ |G0]+K ·X c
u+W∗(µ(X,H )

−ν(X,H ))u, K ∈ L2(X c,G), W ∈ G 2(µX ,G). (5.4)
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Let us consider the system

Cu := {ξ G̃t -measurable and bounded : ξ = ζ (1 − Hs), ζ bounded and
Fu-measurable, 0 ≤ s ≤ u}

which, by Lemma 4.3, generates G̃u . We now show (5.4) for ξ ∈ Cu . So, let ξ = ζ (1 − Hs),
where ζ is Fu-measurable and bounded and 0 ≤ s ≤ u is arbitrary but fixed. Denoting by
A the Azéma supermartingale (cf. (4.1)), we define ζ ′

:= ζ As . Then ζ ′ is Fu-measurable
and bounded. Therefore, Z ′

t := E[ζ ′
|Gt ], t ≥ 0, is a bounded G-martingale with terminal

value in G̃u . As a consequence of hypothesis (H ), Z ′
t = E[ζ ′

|Ft ] (see [1, Theorem 3.2(d)]),
t ≥ 0, meaning that Z ′ is in fact a bounded F-martingale. Hence, we find K ∈ L2(X c,F) and
W ′

∈ G 2(µX ,F) such that

Z ′

t = Z ′

0 + K · X c
t + W ′

∗ (µX
− νX )t , t ≥ 0.

From Proposition 4.5, A > 0 on [0, τ ]. Let M be the martingale defined in (4.2) and let
U := E (−M) be the stochastic exponential of −M . Then, from Theorem 4.6 (iii), we get

ζ (1 − Hs) = ζ1[0,τ )(s) = ζ1[0,τ )(s)As A−1
s = Z ′

uU s
u

where U s
t := Us∧t , t ≥ 0. We define the bounded G-martingale Z t := E[ζ (1 − Hs)|Gt ], t ≥ 0.

Using the Doléans–Dade equation for U , i.e.,

Ut = 1 − U− · Mt , t ≥ 0,

and integration by parts, from [20, Proposition II.1.30 b)], since U and Z ′ have no common
jumps by hypothesis (A ), we get

Zu = Z ′

uU s
u

= Z ′

0 + U s
−

· Z ′

u + Z ′

−
1[0,s] · Uu

= Z ′

0 + U s
−

K · X c
u + U s

−
W ′

∗ (µX
− νX )u − Z ′

−
U−1[0,s] · Mu .

(5.5)

We clearly have Z ∈ H 2(G), and hence [Z , Z ] ∈ A +(G). Furthermore, denoting by Y j ,
j = 1, 2, 3, the first, the second and the third integral on the right-hand side in the previous
formula, we see that, by hypothesis (A ), [Y i , Y j ] = 0, i ̸= j . Therefore, we deduce the
inclusions 1[0,u]U s

−
K ∈ L2(X c,G), 1[0,u]U s

−
W ′

∈ G 2(µX ,G) and Z ′
−

U−1[0,s] ∈ L2(M,G). We
now define

W (ω, t, x1, x2) = U s
t−(ω)W ′(ω, t, x1)1{x2=0} − Z ′

−
U−1[0,s]1{x1=0,x2=1}.

From Proposition 5.2 and the continuity of ΛG, we get

W̃t (ω) = U s
t−(ω)W̃ ′

t (ω) − Z ′

t−(ω)Ut−(ω)1[0,s](t)∆Ht (ω), t ≥ 0.

Hence, we obtain the inclusion 1[0,u]W ∈ G 2(µ(X,H ),G) and the identity

1[0,u]W ∗ (µ(X,H )
− ν(X,H )) = 1[0,u]U s

−
W ′

∗ (µX
− νX ) − Z ′

−
1[0,u]U−1[0,s] · M,

since both sides in the previous identity are purely discontinuous local martingale with the
same jumps. Therefore, (5.5) becomes

ζ (1 − Hs) = Z ′

0 + 1[0,u]U s
−

K · X c
u + 1[0,u]W ∗ (µ(X,H )

− ν(X,H ))u ,

meaning that (5.4) holds for all ξ ∈ Cu and the proof for this elementary case is complete.
We denote by B(G̃u) the system of the G̃u-measurable and bounded random variables and let
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K ⊆ B(G̃u) be the subfamily of B(G̃u) consisting of the random variables which can be
represented as in (5.4). Then, from the previous step, Cu ⊆ K . Moreover, K is a monotone
class of B(G̃u): Take (ξ n)n≥1 ⊆ K uniformly bounded such that ξ n

↑ ξ as n → +∞. Then

ξ n
= E[ξ n

|G0] + K n
· X c

u + W n
∗ (µ(X,H )

− ν(X,H ))u

= E[ξ n
|G0] + 1[0,u] K n

· X c
∞

+ 1[0,u]W n
∗ (µ(X,H )

− ν(X,H ))∞

with K n
∈ L2(X c,G), W n

∈ G 2(µ(X,H ),G). Furthermore, ξ is bounded, G̃u ⊆ Gu-measurable
and, by dominated convergence, ξ n

↑ ξ in L2(Ω , G̃u,P) as n → +∞. Thus, from Lemma 3.3,
we have

ξ = E[ξ |G0]+K ·X c
∞

+W ∗(µ(X,H )
−ν(X,H ))∞, K ∈ L2(X c,G), W ∈ G 2(µ(X,H ),G).

Since the stochastic integrals on the right-hand side of the previous expression are
G-martingales, by the G̃u ⊆ Gu-measurability of ξ , taking the conditional expectation with
respect to Gu , we see that the inclusion ξ ∈ K holds. The monotone class theorem (see
[16, Theorem 1.4]) now yields B(G̃u) ⊆ K . Let ξ ∈ L2(Ω , G̃u,P) and ξ ≥ 0. Defining
ξ n

:= ξ ∧ n, by dominated convergence, we see that ξ n
−→ ξ in L2(Ω , G̃u,P) as n → +∞.

Therefore, from the previous step and Lemma 3.3,

ξ = E[ξ |G0]+K ·X c
∞

+W ∗(µ(X,H )
−ν(X,H ))∞, K ∈ L2(X c,G), W ∈ G 2(µ(X,H ),G).

Now, taking the conditional expectation with respect to Gu as above, we see that ξ can
be represented as in (5.4). For an arbitrary ξ ∈ L2(Ω , G̃u,P), it is enough to apply the
previous step to the positive and the negative part of ξ and then to use the linearity of the
involved stochastic integrals, to see that ξ can be represented as in (5.4). The proof of (5.4)
for an arbitrary ξ ∈ L2(Ω , G̃u,P) is now complete. Let now ξ ∈ L2(Ω , GT ,P). Since ξ is
GT -measurable and u > T , then ξ is also G̃u-measurable. By the previous step, we see that ξ

can be represented as in (5.4). Taking now the conditional expectation with respect to GT in
(5.4) and using that the stochastic integrals on the right-and side of (5.4) are all G-martingales,
by the GT -measurability of ξ , we get (5.3) for every ξ ∈ L2(Ω , GT ,P). The proof of the
theorem is now complete. □

Combining Theorem 5.3 and Proposition 3.2, we get the following corollary.

Corollary 5.5. Let τ be a random time satisfying Assumptions 4.2 and let X be an F-
semimartingale possessing the WRP with respect to F. Let T > 0 be an arbitrary but fixed
finite time horizon. Then, the semimartingale (X, H )tr possesses the H p-WRP with respect to
the filtration GT , for every p ≥ 1, that is, every N ∈ H p

T (G) can be represented as

Nt = N0 + K · X c
t + W ∗ (µ(X,H )

− ν(X,H ))t ,

t ∈ [0, T ], K ∈ Lp
T (X c,G), W ∈ G p

T (µ(X,H ),G).
(5.6)

Furthermore, the representation (5.6) is unique on [0, T ] in the following sense: If K ′
∈

Lp
T (X c,G) and W ′

∈ G p
T (µ(X,H ),G) are other integrands such that (5.6) holds, we then have

∥K −K ′
∥Lp

T (Xc,G) = 0, ∥W −W ′
∥G

p
T (µ(X,H ),G) = 0 and K ·X c

t = K ′
·X c

t , W ∗(µ(X,H )
−ν(X,H ))t =

W ′
∗ (µ(X,H )

− ν(X,H ))t , for all t ∈ [0, T ] a.s.

6. Applications in exponential utility maximization

In this section we consider a problem of exponential utility optimization of the expected
terminal wealth in presence of an additional exogenous risk source that cannot be inferred
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from the information available in the market, represented by the filtration F. The additional
risk source can be a shock event, as the death of the investor or the default of part of the
market. Its occurrence time is modelled by τ .

The optimization problem described above will be solved following the dynamical approach.
This method is based on a martingale optimality principle obtained using suitable BSDEs. For
the exponential utility function the related BSDE has a non-Lipschitz generator. However, the
theory developed by Becherer in [3], in particular Theorem 3.5 therein, ensures the existence
and the uniqueness of the solution of such BSDEs. The fundamental tool to apply results
from [3] to this context is Theorem 5.3.

We now state some further assumptions which are mainly those of [3].

Assumptions 6.1. Let τ : Ω −→ (0, +∞] be a random time and let T > 0 be an arbitrary but
fixed finite time horizon. We denote by H the default process associated with τ . A filtration
F satisfying the usual conditions is given and G denotes the progressive enlargement of F by
τ , while GT = (Gt )t∈[0,T ] is the restriction of G to [0, T ]. We also consider an Rd -valued
F-semimartingale X . The semimartingale characteristics of X with respect to F are (B X , C X ,

νX ). We furthermore require the following properties:
(1) τ satisfies Assumptions 4.2.
(2) F0 is trivial.
(3) The continuous local martingale part X c of X is a d-dimensional standard Brownian

motion B = (B1, . . . , Bd )tr . That is, C X
t = tIdd , Idd denoting the identity matrix in Rd×d .

(4) X has the WRP with respect to F.
(5) The F-predictable compensator νX of the jump measure µX is absolutely continuous,

that is, there exists a Lévy measure ρX on Rd (i.e., ρX is σ -finite,
∫
Rd (|x |

2
∧ 1)ρX (dx) < +∞

and ρX ({0}) = 0) such that

νX (ω, t, dx) = ζ X (ω, t, x)ρX (dx)dt,

where (ω, t, x) ↦→ ζ (ω, t, x) ≥ 0 is an F-predictable mapping.
(6) The G-dual predictable projection ΛG of H is absolutely continuous, that is, there exists

a G-predictable process λ such that

ΛG
t =

∫ t

0
1[0,τ ](s)λsds.

(7) The densities ζ X (ω, t, x) and λt (ω) are uniformly bounded and the Lévy measure ρX is
finite.

Assumptions 6.1 (1) and (2) imply that the σ -algebra G0 is trivial, since G0 = F0 ∨σ ({τ =

0}) (see [23, Lemma 4.4 a)]).
By Assumptions 6.1 (1) and Lemma 5.1, X is a semimartingale with characteristics

(B X , C X , νX ) also with respect to G. Therefore, (X, H )tr is a G-semimartingale with values
in E = Rd

× {0, 1}.
The semimartingale characteristics (B(X,H ), C (X,H ), ν(X,H )) of (X, H )tr , from Assump-

tions 6.1 and Proposition 5.2 (ii), are given by B(X,H )
= (B X ,ΛG)tr ,

C (X,H )
t =

[
Idd 0
0 0

]
t

and

ν(X,H )(ω, dt, dx1, dx2) = ζ (X,H )(ω, t, x1, x2)ρ(X,H )(dx1, dx2)dt,
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where

ζ (X,H )(ω, t, x1, x2) := ζ X (ω, t, x1)1{x1 ̸=0,x2=0} + λt (ω)1[0,τ ](ω, t)1{x1=0,x2=1},

and the measure ρ(X,H ) on (E, B(E)) is

ρ(X,H )(dx1, dx2) := ρX (dx1)δ0(dx2) + δ1(dx2)δ0(dx1).

Clearly, ζ (X,H ) is uniformly bounded, as ζ X and λ are, and ρ(X,H )(E) < +∞ since ρX (Rd ) <

+∞.
From (1) and (4) in Assumptions 6.1 and by Theorem 5.3, the Rd+1-dimensional semi-

martingale (X, H )tr possesses the WRP with respect to GT .
We remark that, because of [23, Lemma 4.4 b)] or [1, Proposition 2.11 b)], we can assume,

without loss of generality, that the density λ of the process ΛG appearing in Assumptions 6.1
(6) is, in fact, an F-predictable process.

6.1. The market model

We consider the same market model as in [3, Section 4.1] with respect to the filtration FT =

(Ft )t∈[0,T ]. The market price of risk ϕ is an FT -predictable and bounded Rd -valued process.
The volatility matrix σ is an Rd×d -valued FT -predictable process. We require that σt (ω) is
invertible, for every (ω, t) in Ω × [0, T ] and, denoting by σ i the rows of σ , we require that
the euclidean norm of σ i

t is bounded. We assume that the price process S = (S1
t , . . . , Sd

t )t∈[0,T ]
evolves according to the following stochastic differential equation

dSt = diag(Si
t )i=1,...,dσt (ϕt dt + dBt ), S0 ∈ (0, +∞)d , t ∈ [0, T ], (6.1)

where diag(Si )i=1,...,d takes values in Rd×d and denotes the diagonal-matrix-valued process
with S on the diagonal. Denoting by E (Z ) the stochastic exponential of the semimartingale Z ,
and setting

B̂ := B +

∫
·

0
ϕsds,

from (6.1), we deduce that Si
= Si

0E (σ i
· B̂). Notice that this market-model is free of arbitrage

opportunities. Indeed,

dQ := E (−ϕ · B)T dP,

defines a probability measure equivalent to P on GT . Since GT and FT contain the same null
sets, namely those of F , Q is also equivalent to P on FT . By the boundedness of ϕ, Novikov’s
condition and Girsanov’s theorem, B̂ is a Q-Wiener process with respect to GT (and hence,
with respect to FT ). Under Q, again by Novikov’s condition, σ i being bounded, Si is a Q-
martingale with respect to GT (and hence with respect to FT ). Therefore, Q is an equivalent
martingale measure for S and the market model is free of arbitrage opportunities (with respect
to both the filtrations FT and GT ).

We remark that the G-predictable compensator νX of µX with respect to Q does not change
(see [16, Theorem 12.31]).

Definition 6.2 (Admissible Strategies). An admissible strategy θ is a GT -predictable Rd -valued
process satisfying the following conditions:
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(i)
∫

·

0 |θs |
2ds ∈ L2(Ω , GT ,P).

(ii) exp(−α
∫

·

0 θsdB̂s) is a process of class (D) with respect to the filtration GT .
We denote by Θ the set of admissible strategies.

We stress that the set Θ of the admissible strategies, consisting of GT -predictable processes,
can be regarded as the set of the strategies of an insider who has private information about the
occurrence of τ .

Let θ ∈ Θ be an admissible strategy. The wealth process X x,θ
= (X x,θ

t )t∈[0,T ] is defined by

X x,θ
t := x +

∫ t

0
θsdB̂s = x +

∫ t

0
θs
(
diag(Si

t )i=1,...,dσt
)−1dSs, t ∈ [0, T ]. (6.2)

Clearly, for each θ ∈ Θ , the wealth process X x,θ is a GT -martingale under the equivalent
measure Q introduced above. Therefore, the set Θ of admissible strategies is free of arbitrage
opportunities.

6.2. Exponential utility maximization at T > 0

Let ξ belong to the class of bounded and GT -measurable random variables (denoted by
B(GT )). We now consider the optimization problem

U ξ (x) = sup
θ∈Θ

E
[
− exp(−α(X x,θ

T − ξ ))
]
, ξ ∈ B(GT ), α > 0. (6.3)

The random variable ξ ∈ B(GT ) represents a liability or an asset of the investor at maturity T .
We observe that, since the strategies are now GT -predictable and ξ ∈ B(GT ), in general, this

optimization problem cannot be solved in the filtration FT , which represents the information
available in the market, as done in [3]. Furthermore, (6.3) can be regarded as the optimization
problem of an insider who has private information about the occurrence of τ .

We stress that any GT -measurable random variable ξ can be regarded as a defaultable claim.
As an example, we can consider claims of the form ξ = ξ11{τ>T } + ξ21{τ≤T }, where ξ1 is an
FT -measurable random variable, representing the pay-off of ξ if the default does not occur in
[0, T ] while ξ2 is an FT -measurable random variable representing the recovery pay-off of ξ

in case of default before T . For pricing method for defaultable claims, see, e.g., [4,5] and [6].
To solve (6.3), we use the martingale optimality principle on [0, T ], that is, we construct a

family R := {Rθ , θ ∈ Θ} of GT -adapted processes with the following properties:
(1) Rθ,x

T = − exp(−α(X θ,x
T − ξ )), for every θ ∈ Θ .

(2) Rθ,x
0 ≡ r x is a constant not depending on θ , for every θ ∈ Θ .

(3) Rθ,x is a GT -supermartingale for every θ ∈ Θ .
(4) There exists θ∗

∈ Θ such that Rθ∗,x is a GT -martingale.
Notice that the strategy θ∗ in (4) above is optimal. Indeed, for any θ ∈ Θ we get

E
[
− exp(−α(X θ,x

T −ξ ))
]

= E
[
Rθ,x

T

]
≤ Rθ,x

0 = r x
= E

[
Rθ∗,x

T

]
= E

[
− exp(−α(X θ∗,x

T −ξ ))
]
.

We recall the notation E := Rd
× {0, 1} ⊆ Rd+1 and denote by L0(B(E), ρ(X,H ),R) the

space of B(E)-measurable, R-valued functions on E with the topology of the convergence in
measure. We consider the generator

f : Ω × [0, T ] × Rd
× L0(B(E), ρ(X,H ),R) −→ R
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given by

f (ω, t, z, wt ) := −

(
ztrϕt (ω) +

|ϕt (ω)|2

2α

)
+

1
α

∫
E

(
exp(αw(t, x1, x2)) − 1 − αw(t, x1, x2)

)
ζ (X,H )(ω, t, x1, x2)ρ(X,H )(dx1, dx2).

(6.4)

We then consider the BSDE

Yt = ξ +

∫ T

t
f (s, Zs, Ws)ds −

∫ T

t
ZsdBs

−

∫ T

t

∫
E

W (s, x1, x2)(µ(X,H )
− ν(X,H ))(ds, dx1, dx2). (6.5)

Since f satisfies the assumptions of [3, Theorem 3.5], we deduce the existence and the
uniqueness of a triplet (Y, Z , W ) ∈ S ∞

T (G) × L2
T (B,G) × G 2

T (µ(X,H ),G) which satisfies
(6.5), where S ∞

T (G) is the space of essentially bounded GT -semimartingales. Furthermore,
Y is bounded and W is P ⊗ ν(X,H )-a.e. bounded. Without loss of generality, we assume that
W is bounded. Indeed, according to the proof of [3, Theorem 3.5], there exists a bounded
GT -predictable mapping W ′ such that W = W ′P ⊗ ν(X,H )-a.e. and, therefore, W ∗ (µ(X,H )

−

ν(X,H )) is indistinguishable from W ′
∗ (µ(X,H )

− ν(X,H )) on [0, T ].
We define the family R := {Rθ,x , θ ∈ Θ} by

Rθ,x
t := − exp(−α(X θ,x

t − Yt )), t ∈ [0, T ]. (6.6)

We now verify that R fulfils the martingale optimality principle. We follow the ideas of
[3, Theorem 4.1]. Before, we recall the following true-martingale criterion for local mar-
tingales: Let A be an arbitrary right-continuous filtration. An A-local martingale X is a
uniformly integrable martingale if and only if it is a process of class (D) with respect to A (see
[20, Proposition I.1.47 c)]). For an example of a uniformly integrable local martingale which
is not a martingale see [13, Chapter IV, Section 26 and Example VI.29].

Theorem 6.3. The family R satisfies the martingale optimality principle. Furthermore, the
solution of the optimization problem (6.3) is given by θ∗

= Z + α−1ϕ ∈ Θ and the explicit
expression of the value function is U ξ (x) = − exp(−α(x − Y0)).

Proof. We preliminarily observe that, since W and ζ (X,H ) are bounded and ρ(X,H ) is finite,
both W and (eαW

− 1) belong to G 2
T (µ(X,H ),G). Therefore, we deduce

αW ∗ (µ(X,H )
− ν(X,H )) ∈ H 2

T (G), (eαW
− 1) ∗ (µ(X,H )

− ν(X,H )) ∈ H 2
T (G).

Furthermore, we have ∆[(eαW
− 1) ∗ (µ(X,H )

− ν(X,H ))] ≥ e−αc
− 1 > −1, where c > 0 is a

constant such that |W (ω, t, x1, x2)| ≤ c.
Applying Itô’s formula to exp

(
αW ∗ (µ(X,H )

− ν(X,H )) − (eαW
− 1 − αW ) ∗ ν(X,H )

)
and then

using the Doléans–Dade equation for the stochastic exponential, we verify the identity

exp
(
αW ∗(µ(X,H )

−ν(X,H ))−(eαW
−1−αW )∗ν(X,H ))

= E
(
(eαW

−1)∗(µ(X,H )
−ν(X,H ))

)
.

(6.7)
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Using now (6.7), BSDE (6.5), the explicit form (6.4) of the generator f and the properties of the
stochastic exponential, we verify that, for every θ ∈ Θ , the identity Rθ,x

= e−α(x−Y0) AθE (H θ )
holds, where

Aθ
:= − exp

(
α2

2

∫
·

0
|θs − Zs − α−1ϕs |

2ds
)

,

H θ
:= −α(θ − Z ) · B + (exp(αW ) − 1) ∗ (µ(X,H )

− ν(X,H )).

Since (θ − Z ) ∈ L2
T (B,G) and ∆H θ > −1 + δ, for some δ > 0, we deduce H θ

∈ H 2
T (G),

E (H θ ) > 0, and finally

⟨H θ , H θ
⟩ = α2

∫
·

0
|θs − Zs |

2ds

+

∫
·

0

∫
E

(exp(αW (s, x1, x2)) − 1)2ζ (X,H )(s, x1, x2)ρ(X,H )(dx1, dx2)ds.
(6.8)

Since Y is bounded and θ ∈ Θ , by definition (cf. (6.6)) Rθ,x is a process of class (D)
with respect to GT . Hence, from E (H θ )t ≤ −eα(x−Y0) Rθ,x

t , we get that E (H θ ) is a GT -local
martingale of class (D), and hence, a GT -uniformly integrable martingale, for every θ ∈ Θ . The
process Aθ is continuous, hence locally bounded, and decreasing. If now (σn)n is a localizing
sequence of GT -stopping times for Aθ , i.e., Aθ

·∧σn
is bounded, and 0 ≤ s ≤ t ≤ T , we get

E[Rθ,x
t∧σn

|Gs] ≤ e−α(x−Y0) Aθ
σn∧sE[E (H θ )t∧σn |Gs]

= e−α(x−Y0) Aθ
σn∧sE (H θ )s∧σn −→ Rθ,x

s , n → +∞.

But (Rθ,x
t∧σn )n is uniformly integrable for each θ ∈ Θ . Thus, E[Rθ,x

t∧σn |Gs] −→ E[Rθ,x
t |Gs] as

n → +∞. So, Rθ,x is a GT -supermartingale, for every θ ∈ Θ . We consider the process
θ∗

:= Z + α−1ϕ, which is GT -predictable. We are going to verify that θ∗
∈ Θ and that Rθ∗,x

is a martingale. For this end, we show that E (H θ∗

) is a uniformly integrable GT -martingale.
From (6.8), ϕ and W being bounded, by the boundedness of ζ (X,H ) and the finiteness of ρ(X,H ),
we deduce that ⟨H θ∗

, H θ∗

⟩T is bounded. Since H θ∗

is also a martingale with bounded jumps,
[16, Theorem 10.9] implies that H θ∗

is a GT -martingale belonging to the class BMOT (G),
that is, the class of the G-martingale in the class BMO on the finite time interval [0, T ].
Furthermore, ∆H θ∗

> −1 + δ, for some δ > 0. Hence, [17, Theorem 2] implies that
E (H θ∗

) is a uniformly integrable GT -martingale and therefore a process of class (D). Since
Rθ∗,x

= −e−α(x−Y0)E (H θ∗

), we immediately get that Rθ∗,x is a GT -martingale which is
moreover uniformly integrable and, hence, of class (D). Therefore, by the boundedness of Y ,
we deduce that exp(−α

∫
·

0 θ∗
s dB̂s) is a process of class (D). Clearly, θ∗

∈ L2
T (B,G) holds, and,

therefore, θ∗
∈ Θ . By the martingale optimality principle, we deduce that θ∗ solves (6.3) and

U ξ (x) = −e−α(x−Y0). The proof of the proposition is now complete. □

Let us now assume that ξ ∈ B(FT ), that is, ξ is a bounded and FT -measurable random
variable. In this special case, we compare BSDE (6.5) with BSDE (4.13) in [3]. From
Assumptions 6.1, we see that

f (ω, t, z, wt ) = −

(
ztrϕt (ω) +

|ϕt (ω)|2

2α

)
+

1
α

∫
Rd

(
exp(αw(t, x1, 0)) − 1 − αw(t, x1, 0)

)
ζ X (ω, t, x1)ρX (dx1)

+
1
α

(
exp(αw(t, 0, 1)) − 1 − αw(t, 0, 1)

)
λt (ω)1[0,τ ](ω, t) (6.9)
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and so (ω, t, wt ) ↦→ f (ω, t, z, wt ) is, in general, a GT -predictable function. Therefore, to
obtain the generator of BSDE (4.13) in [3], which we denote by g, it is enough to take
w(t, 0, 1) ≡ 0 in (6.9), that is, for w ∈ L0(B(E), ρ(X,H ),R), defining ut (x) = wt (x, 0), we
obtain g(ω, t, z, ut ) = f (ω, t, z, wt )

⏐⏐
wt (0,1)=0. Hence, BSDE (4.13) in [3] correspond to BSDE

(6.5) with ξ ∈ B(FT ) and generator g. The existence and the uniqueness of an FT -solution
follows from [3, Theorem 3.5] using the WRP of X with respect to F.

Remark 6.4 (Indifference Pricing of Defaultable Claims). We stress that an application of this
section can be given if one considers the problem of indifference pricing of defaultable claims.
Indeed, it is evident that the market model which we consider is not complete neither in the
filtrations FT nor in GT , since the price process S is continuous but both FT and GT support
martingales with jumps. Hence, the problem of pricing a GT -measurable claim ξ arises. A
well-known way to price a contingent claim ξ ∈ B(GT ) is indifference pricing: The indifference
price or utility indifference value π of the contingent claim ξ is given by the implicit solution
of the equation

U 0(x) = U ξ (x + π ).

Hence, the utility indifference value π is the value that, if added to the initial capital x , makes
the investor indifferent (in terms of expected utility) between only trading or trading and selling
ξ for π in t = 0 then trading and paying ξ in T .

By Theorem 6.3 (see also [3, Theorem 4.4]) the utility indifference value is π = Y ξ

0 − Y 0
0 ,

where Y 0 is the solution of BSDE (6.5) in FT with ξ = 0 and generator g (defined above, just
before this remark) while Y ξ is part of the solution of BSDE (6.5) in GT with terminal condition
ξ ∈ B(GT ) and generator f . We stress that it is important to ensure that the defaultable claim
ξ is a GT -measurable and bounded random variable. For the problem of indifference pricing
of defaultable claims in the case of a progressively enlarged Brownian filtration F we refer,
e.g., to [4,5] or [27]. The problem of the indifference price has been also considered in [3].

6.3. Exponential utility maximization at T ∧ τ

We now consider the optimization problem

Û ξ (x) = sup
θ̂∈Θ̂

E
[
− exp(−α(X θ̂

T ∧τ − ξ ))
]
, ξ ∈ B(GT ∧τ ), α > 0 (6.10)

where B(GT ∧τ ) denotes the class of bounded and GT ∧τ -measurable random variables. The
optimization problem (6.10) describes the case in which the investor can only follow his
investment up to the occurrence time τ of the exogenous shock event. In other words, the
investor has access to the market only up to time τ . This means that the price process for the
investor is not S = (St )t∈[0,T ] itself but rather Sτ

= (Sτ
t )t∈[0,T ], where Sτ

t := St∧τ , t ∈ [0, T ].
Notice that the optimization problem (6.10) automatically arises from (6.3) if the price process
S in (6.10) is substituted by Sτ and ξ is assumed GT ∧τ -measurable.

Jeanblanc et al. studied in [21] the problem (6.10) when FT is the filtration generated by a
d-dimensional Brownian motion B. In [21] admissible strategies take values in a closed subset
C ⊆ Rd , which represents an additional constraint-set for admissible strategies. The set of
constraints C leads to BSDEs with a non-Lipschitz generator f which does not fit in the frame
of [3] because of a quadratic term in z. Furthermore, in [21] the authors do not require that
the density λ in Assumptions 6.1 is bounded, as we do. On the other side, in [21] the authors
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assume that the conditional law of τ given Ft is equivalent to the Lebesgue measure and the
immersion property (see [21, (H1) (Density hypothesis)]): These assumptions on τ seem to be
stronger than Assumptions 6.1 (1) and (6).

In summary, if we consider the special case C = Rd and λ bounded, then (6.10) can be
seen as a generalization of the situation considered in [21] in a Brownian setting to the case
of an underlying filtration FT supporting martingales with jumps.

The optimization problem (6.10) has been considered in [21] as a separate problem. Thanks
to the WRP with respect to GT , which we obtained in Theorem 5.3 for all GT -martingales, we
can now deduce the existence and the uniqueness of the solution of BSDE (6.5) on the random
time interval [0, T ∧ τ ] from [3, Theorem 3.5]. This allows to solve the optimization problem
(6.10) exactly in the same way as (6.3). For this aim, we need the following proposition, which
is a corollary to [3, Theorem 3.5]. Therefore, in the proof of this result, we use the notation
from [3, Theorem 3.5].

For a GT -stopping time σ , Y σ denotes the process Y stopped at σ , i.e., Y σ
t := Yt∧σ ,

t ∈ [0, T ].

Proposition 6.5. Let σ be a G-stopping time, let ξ ∈ B(GT ∧σ ) and let f be the generator
defined in (6.4). Then the BSDE

Yt∧σ = ξ +

∫ T ∧σ

t∧σ

f (s, Zs, Ws)ds −

∫ T ∧σ

t∧σ

ZsdBs

−

∫ T ∧σ

t∧σ

∫
E

W (s, x1, x2)(µ(X,H )
− ν(X,H ))(ds, dx1, dx2), t ∈ [0, T ],

(6.11)

admits a unique bounded solution which is given by the solution

(Y σ , 1[0,σ ] Z , 1[0,σ ]W ) ∈ S ∞

T (G) × L2
T (B,G) × G 2

T (µ(X,H ),G), W bounded,

of BSDE (6.5) with generator fσ := 1[0,σ ] f and terminal condition ξ .

Proof. Since f as in (6.4) satisfies the assumptions of [3, Theorem 3.5], also fσ = 1[0,σ ] f does.
Therefore, there exists the unique solution (Y, Z , W ) ∈ S ∞

T (G)×L2
T (B,G)×G 2

T (µ(X,H ),G) of
(6.5) with generator fσ . Let f̃ and f̃σ be the truncated generators defined as in the proof of [3,
Theorem 3.5]. Then f̃σ satisfies the assumption of [3, Proposition 3.2] and therefore (Y, Z , W )
is also solution of BSDE (6.5) with generator f̃σ (this is shown in the proof of [3, Theorem
3.5]). Hence, we have

Yt = E
[
ξ +

∫ T

t
f̃σ (s, Zs, Ws) ds

⏐⏐⏐Gt

]
(6.12)

and

ξ +

∫ T

0
f̃σ (s, Zs, Ws) ds = E

[
ξ +

∫ T

0
f̃σ (s, Zs, Ws) ds

]
+ Z · BT + W ∗ (µ(X,H )

− ν(X,H ))T . (6.13)

Since ξ ∈ B(GT ∧σ ) and f̃σ = 1[0,σ ] f̃ , from (6.13) and Doob’s stopping theorem, we get

ξ +

∫ T ∧σ

0
f̃ (s, Zs, Ws) ds = E

[
ξ +

∫ T ∧σ

0
f̃ (s, Zs, Ws) ds

]
+ 1[0,σ ] Z · BT + 1[0,σ ]W ∗ (µ(X,H )

− ν(X,H ))T .
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From (6.12) we deduce YT ∧σ = ξ and Y σ
= Y . So (Y σ , 1[0,σ ] Z , 1[0,σ ]W ) solves BSDE (6.5)

with generator f̃σ and terminal condition ξ ∈ B(GT ∧σ ). But then, according to the proof of
[3, Theorem 3.5], we also have that (Y σ , 1[0,σ ] Z , 1[0,σ ]W ) solves BSDE (6.5) with generator
fσ and terminal condition ξ ∈ B(GT ∧σ ). Therefore, (Y σ , 1[0,σ ] Z , 1[0,σ ]W ) also satisfies BSDE
(6.11) and the proof of the proposition is complete. □

We remark that, because of Proposition 6.5, we are able to consider the optimization problem
(6.10) on the interval [0, T ∧σ ], for every G-stopping time σ . We denote by (Y, 1[0,σ ] Z , 1[0,σ ]W )
solution of (6.11) with Y ∈ S ∞

T (G) and W bounded.
We now discuss the solution of the optimization problem (6.10). First we define the set Θ̂ of

the admissible strategies. Let Θ be the set of admissible strategies for the optimization problem
(6.3) introduced in Definition 6.2. For any θ ∈ Θ , we define θ̂ := 1[0,T ∧τ ]θ and clearly θ̂ ∈ Θ

holds. Let now X θ,x be the wealth process defined in (6.2). Then X θ̂ ,x
= X θ,x on [0, T ∧ τ ]

and (X θ,x )T ∧τ
= X θ̂ ,x holds. So, the set of admissible strategies for (6.10) can be restricted to

Θ̂ := {θ ∈ Θ : 1(T ∧τ,T ]θ = 0} ⊆ Θ .

Remark 6.6 (Admissible Strategies for the Random-time Horizon Problem). We now make
the following important consideration: Let A be a G-predictable process. Then, because of
[23, Lemma 4.4. b)], there exists an F-predictable process a such that A1[0,τ ] = a1[0,τ ], showing
that F-predictable and G-predictable processes coincide on [0, τ ]. This means that the set Θ̂
of admissible strategies for the optimization problem (6.10), consists of strategies which are
actually FT -predictable. In other words, if the optimization problem (6.3) on the time horizon
[0, T ] can be regarded as the problem of an insider who can use GT -predictable strategies,
having some private information about τ , the optimization problem (6.10) actually describes
the problem of an agent for whom the available information is exclusively the one in the market
(that is, he pursues FT -predictable strategies) but, for some reasons, he has only access to the
market up to the occurrence of the exogenous shock event, whose occurrence time is modelled
by τ .

Let now ξ ∈ B(GT ∧τ ). From Proposition 6.5 we know that BSDE (6.11) on [0, T ∧ τ ] with
generator f and terminal condition ξ , corresponds to BSDE (6.5) on [0, T ] with generator
1[0,T ∧τ ] f and terminal condition ξ . Hence, BSDE (6.11) has the unique solution

(Y, 1[0,T ∧τ ] Z , 1[0,T ∧τ ]W ) ∈ S ∞

T (G) × L2
T (B,G) × G 2

T (µ(X,H ),G),

where W is furthermore bounded. Notice that, being a GT -predictable process, Z coincides with
an FT -predictable process on [0, τ ] (see [1, Proposition 2.11]). A similar statement holds also
for W : That is W coincides with a P(F) ⊗ B(E)-measurable mapping on [0, τ ]. To see this,
it is enough to consider a bounded G-predictable mapping G of the form G(ω, t, x1, x2) =

gt (ω) f (x1, x2), where g is a bounded G-predictable process and f a bounded measurable
function. For G-predictable mappings of this form the statement clearly hold, because of
[1, Proposition 2.11]. Furthermore, this is a system generating P(G)⊗B(E). By the monotone
class theorem, we get the result for every bounded P(G)⊗B(E)-measurable mapping G and,
by approximation, for every nonnegative and then for every P(G)⊗B(E)-measurable mapping
G.

We now define the family R̂ = {R̂ θ̂ ,x , θ̂ ∈ Θ̂} by

R̂ θ̂ ,x
t∧τ = − exp(−α(X θ̂ ,x

t∧τ − Yt∧τ )), t ∈ [0, T ], θ̂ ∈ Θ̂ .
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Then, R̂ θ̂ ,x
T ∧τ = − exp(−α(X θ̂

T ∧τ − ξ )) holds. If we now define, for t ∈ [0, T ],

Âθ̂
t∧τ := − exp

(
α2

2

∫ t∧τ

0
|θ̂s − Zs − α−1ϕs |

2ds
)

and

Ĥ θ̂
t∧τ := −α

∫ t∧τ

0

(
(θ̂s − Zs)

)
dBs

+

∫ t∧τ

0

∫
E

(exp(αW (s, x1, x2)) − 1)(µ(X,H )
− ν(X,H ))(ds, dx1, dx2),

we can verify as in the proof of Theorem 6.3 the identity R̂ θ̂ ,x
= e−α(x−Y0) Âθ̂E (Ĥ θ̂ ), for

θ̂ ∈ Θ̂ . Furthermore, R̂ θ̂ ,x
·∧τ is a supermartingale on [0, T ] for every θ̂ ∈ Θ̂ . If now θ∗

is the optimal strategy for the optimization problem (6.3) given in Theorem 6.3, it follows
that θ̂∗

:= 1[0,T ∧τ ]θ
∗ belongs to Θ̂ and R̂θ̂∗,x

·∧τ is a martingale. Therefore, R̂ satisfies the
martingale optimality principle on [0, T ∧ τ ] and θ∗

= 1[0,T ∧τ ](Z + α−1ϕ) is the optimal
solution of (6.10). In particular, the explicit expression of the value function is given by
Û ξ (x) = E[− exp(X θ̂∗,x

T ∧τ − ξ )] = − exp(−α(x − Y T ∧τ
0 )).

The continuous case. We stress that, if ρX
= 0, that is, X is a d-dimensional Brownian motion,

and F = FX , then (6.11) with σ = τ becomes

Yt∧τ = ξ +

∫ T ∧τ

t∧τ

f (s, Zs, Us)ds −

∫ T ∧τ

t∧τ

ZsdBs −

∫ T ∧τ

t∧τ

UsdMs, t ∈ [0, T ] (6.14)

where, for t ∈ [0, T ∧ τ ], the generator is given by

f (ω, t, z, u) = −

(
ztrϕt (ω) +

|ϕt (ω)|2

2α

)
+

1
α

(
exp(αu) − 1 − αu

)
λt (ω)1[0,τ ](ω, t),

The previous equation has the unique solution (Y, 1[0,T ∧τ ] Z , 1[0,T ∧τ ]U ), which is the solution
of the same equation on [0, T ] with generator 1[0,T ∧τ ] f and initial condition ξ ∈ B(GT ∧τ ). We
notice that we can rewrite

Yt∧τ = ξ −

∫ T ∧τ

t∧τ

g(s, Zs, Us)ds −

∫ T ∧τ

t∧τ

ZsdBs −

∫ T ∧τ

t∧τ

UsdHs, t ∈ [0, T ]

where g(ω, t, z, u) := − f (ω, t, z, u) − λt u, which is the BSDE considered in [21]. Hence,
BSDE (6.14) corresponds to [21, Eq. (3.5)] with C = Rd and a bounded intensity λ. This
means that, in this special case, we can recover [21, Theorem 4.17]. Furthermore, because
of the uniqueness of the bounded solution, the solution of (6.14) and the solution given in
[21, Proposition 4.4] coincide.
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