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Abstract 

Let X = {X(r), - cc < t < co} be a continuous-time stationary process with spectral 
density function &(,I) and {Q} be a stationary point process independent of X. Estimates $,(I) 
of r,&(n) based on the discrete-time observation {X(Q), zk} are considered. Asymptotic expres- 
sions for the bias and covariance of &(A) are derived. A multivariate central limit theorem is 
established for the spectral estimators &(I). Under mild conditions, it is shown that the bias is 
independent of the statistics of the sampling point process {rk} and that there exist sampling 
point processes such that the asymptotic variance is uniformly smaller than that of a Poisson 
sampling scheme for all spectral densities &x(n) and all frequencies 1. 
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1. Introduction 

There is an extensive literature on the theory and applications of spectral analysis of 

time series. This paper is concerned with some theoretical properties of spectral 

density function estimation of continuous-time stationary processes when the obser- 

vations are taken at discrete times. Let X = {X(t), - co < t < CO} be a real-valued 

stationary process with mean zero, continuous covariance function Rx(t) E L1 and 

spectral density function 4x(A). If the process is sampled at equally spaced times 

{rk = k/a}, th en I IS well known that aliasing arises and consistent estimates of Rx(t) ‘t . 
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and &(A) from the samples {X(k/b)} d o not exist unless the process X is band limited, 

&(A) = 0 for (11 > B and B < Brr. This motivated the consideration of irregularly spaced 

sampling point processes. Two notions of alias-free sampling are known (Shapiro and 

Silverman, 1960; Brillinger, 1972). The latter was further developed in Masry (1978b). The 

quadratic-mean consistency of various estimates of $&), for the Poisson sampling pro- 

cess, is considered in Masry (1978a, 1980) while the consistency and asymptotic normality 

of estimates of R,(t) is established in Masry (1983) for general alias-free sampling schemes. 

For parametric (finite parameter) spectral estimation of continuous-time process from 

unequally spaced data, we refer to Robinson (1978) and Lii and Masry (1992a) and the 

references therein. There is a considerable interest in time-series analysis from irregularly 

observed data. See, for example, the collection of papers in Parzen (1983), and the 

simulation study in Moore et al. (1987). A recent application to the spectral analysis of 

ocean profiles from unequally spaced data can be found in Moore et al. (1988). 

In this paper we consider a nonparametric spectral estimate of &(A) based on 

discrete-time observations {X(7,), zk} where {rk) is a general alias-free stationary point 

process. We obtain asymptotic expressions for the bias and covariance of Jx(A). We also 

establish a multivariate central limit theorem for 6*(;l). A key expression used in our 

derivations is the asymptotic cumulants of dz, T(n) of Eq. (2.11) given in Brillinger (1972, 

Theorem 4.1). Our general results are compared with those of the Poisson sampling. It is 

also shown that, under certain regularity conditions, there are alias-free sampling 

schemes such that the mean-squares error is uniformly smaller than that of the Poisson 

sampling for all spectral densities +,(A) and all ;1. These results may be of particular 

interest to oceanographic spectral analysis, Moore et al. (1988). 

2. Preliminaries 

We begin by setting the framework and notations. 

Let X = (X(t), - cc < t < co} be a zero mean stationary process with finite 

second-order moments, continuous covariance function R,(t) E L1 and spectral den- 

sity function bx(d). The point process {zk}FZ _ m is stationary, orderly, independent of 

X, with finite second-order moments (Daley and Vere Jones, 1972). Let N( .) be the 

counting process associated with (Q} and j3 = E [N((O, l])] be the mean intensity of 

the point process, then 

E[N((t, t + dt])] = j?dt, (2.1) 

Cov{N((t, t + dt]), N((t + u, t + u + du]) = C,(du)dt, (2.2) 

where CN is the reduced covariance measure which is a a-finite measure on the Bore1 

sets g with an atom at the origin, C&(O)) = fi. We assume that CN is absolutely 

continuous, outside of the origin, with covariance density function c,,(u) i.e. 

cm = B&m + s c,(u)du, BE&? (2.3) 
B 
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and 

MB) = 
1 if OEB, 

0 otherwise. 

In the differential notation dN(t) = N((0, t + dt]) - N((0, t]), we can write 

Cov{dN(t,), dN(t,)} = c& - tI)dtI dt, 

for distinct tis. 

We define the sampled process by 

Z(B) = 1 X(zi)y B E 9 (2.4) 
T,EB 

or in differential from dZ(t) = X(t)dN(t). The increment process Z has finite sec- 

ond-order moments and in particular E [dZ (t)] = 0 and 

@Z(du)dtAE[dZ(t)dZ(t + u)] 

= R,(u) {p’ du + C,(du)} dt 

= dCy’(u) dt . 

If we define the a-finite measure 

(2.5) 

PN(B) = s [b’ du + GkWl, B E 9% 
B 

then 

PZ@) = s Rx @)PN k-W 
B 

= BRx(W,(B) + s RxWCB2 + cd41 du 
B 

is a a-finite measure on $3. We define the spectral density &(A) of the increment 

process Z by 

where 

$(A) ~2 &s” e-‘““+(u)du; c.4 E L1 
cc 

(2.6) 

(2.7) 
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is assumed. We note that +Z(n) is bounded, uniformly continuous but not integrable in 

general. Define 

cd4 
?+) = p2 + c&4)’ 

Under the assumption that 

y(u)~Lr and r(A)&& ” e-‘““y(u)duELr, 
s m 

(2.8) 

(2.9) 

relationship (2.6) can be inverted and we have 

s 

PM3 ___- &(u)-~ du II . (2.10) 

We note that a sufficient condition for {zk} to be “alias-free” is p2 + cN(u) > 0 a.e.; 

however, this is not sufficient to invert relationship (2.6). A sufficient condition for 

(2.10) to hold is (2.9) (Masry, 1978b). Eq. (2.10) is formally given in Brillinger (1972). 

When (2.9) is satisfied, we call the point process {sk) admittable. Eq. (2.10) is the 

principal relationship which allows one to estimate $,(A) from the discrete data 

{X(z,), zk}. Given the observations {X(7,), z,}::‘,’ with T > 0 and N(T) the number 

of points in [0, T], we estimate $.J,I) as follows. First let IT(n) be the periodogram 

zT(n) = kT Is 
T 

e-““X(t)dN(t) 2 
0 

g ~TIWJl” (2.11) 

and we estimate 4Z(n) by 

VT@ - u)z,(u)dW (2.12) 

where W,(l) = (l/b,) W(A/b.) is a spectral window where bT + 0 as T -+ co is the 

bandwidth parameter and W(A) is a real, even, weight function satisfying 

WE L1 n L, and 
s 

cc 
W(A)dA = 1. (2.13) 

-C0 

Using (2.10) we now estimate 4x(n) by 

where 

(2.14) 

X2(t)dN(t). (2.15) 
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Eq. (2.14) will be used in subsequent sections to establish the convergence properties 

of Jx(A). In terms of actual data processing of the observations (X(7,), zk}kN_(T) one 

may prefer an alternative expression which is obtained as follows. Let w(t) be the 

covariance averaging kernel 

s 

cc 
w(t) = eifA W(A) dl. (2.16) 

-m 

Then it is seen from (2.11) that 

Z,(A) = kTyf’ Nf” e-i(rJ-r*)l X(Tj)X(Tk) 

J-1 k=l 

and 

Simple algebra then shows that 

exp [ - i(Tj - 7k)n-J W[bT(Zj - 5k)] 

jfk 

x Cl - YCTj - Tk)lx(Tj)x(Tk)~ (2.17) 

which is an explicit expression in terms of the observations {X(rj), rj}jZT’. 

In this paper it is assumed that the mean sampling rate /I and the covariance density 

function cN(u) of the point process {rk) are known. Also, in case the process X has 

a nonzero mean m, the standard method is to estimate m by 

1 T 
hT=gT o 

s 

1 N(T) 
x(t)dN(t) = go jzl X(zj) (2.18) 

and subtract it from the data {X(rk)}. Th e results of this paper continue to hold since 

the contribution of the mean estimation is of a smaller order (as in classical spectral 

estimation). 

In Section 3 we establish the quadratic-mean consistency of &x(n) as T -+ cc along 

with explicit asymptotic expressions for the bias and covariance of ~$~(n). In Section 

4 we derive the joint asymptotic normality of Jx(n). Examples are given in Section 5. 

3. Mean-squares consistency 

Define 

m K&t) = s r(A - u) FVr(U)du 
-m 

(3.1) 
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and note that 

s m 
s 

a) IK,(n)ldA I lr(u)ldu m 
-CS -m s 

1 W(u)( du < co (3.2a) 
-m 

and 

s 

m 
Kr(J)dL = y(O). (3.2b) 

-m 

We can then write the spectral estimate $x(A) in the more compact form, using (2.12) 

and (2.14), 

s IT(u)[WT(A - u) - KT(I - u)] du - 
l-Y(O) ^ 
___ Rx(O). 

27@ 
(3.3) 

We first show that, asymptotically, E[c$,(A)] does not depend on the statistics of 

the point process irk}. We make use of the following result (Brillinger, 1972, Theorem 

4.1): If 

s 
m (1 + luJ)d)C~)(u)) < co, (3.4) 
-CZ 

then 

cum{&,&), &,&)1 = 2r&(A + P)&(A) + O(l), 

where 

s T 1 _ e-ilT 

&(a) = e-‘“‘dt = il 
0. 

and the O(1) term is uniform in 2. Hence, 

ECITU)I = kTcum (dz,T(l), dz,T( - A>} 

= c/J&) + 0 f 0 . 
Also, 

1 T 
ECRxWI = F 

s 
MO)Bdt = Rx(O). o 

Hence, by (3.1) and w,(n) E Lr, Kr(A) E L1 we have 

ECdd41 = $ 
s 

Trn h(u)I:wT(~ - U) - KT(A - u)ldu 

(3.5) 

1 - Y(O) 
--RR,(O)+0 _: . 

w3 0 (3.6) 
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It is seen by (2.6), (2.16) and (3.1), using Fubini’s theorem, that 

s 

m 
Jk Mu)C@‘& - u) - KT@ - 4ldu _-m 

1 m =- 
2rc _coe s 

-iU’[l - Y(u)]w(b,u)dC;‘(u) 

and substituting (2.5) and using w(0) = 1 and 1 - y(u) = /I’/(B” + cN(u)), we have 

J=’ 

s 

m 

27c _me 
-i”“[l - Y(~)]w(~Tu)RX(U){PG(U) + B” + c,(u)}du 

= & {/I[1 - y(O)]R,(O) + 8” s? e-‘““R,(u)w(b,u)du). 
-Co 

It then follows by (3.6) that 

E[&#)] = & 
s 

1 
m 

e’““w(b,u)R,(u)du + 0 f 
0 

(3.7) 

by dominated convergence since W satisfies (2.13). We thus have the following 

theorem. 

Theorem 3.1. Let X be a continuous time, zero mean, stationary process with covariance 

function R,(t) E L1 and spectral density &J~(A). Let the point process {Q} be stationary, 

independent of X, with mean intensity /I, covariance densityfunction cN (u) E LI such that 

(2.8) and (2.9) hold. Zf W(A) satisfies (2.13) then the spectral estimate Jx(;l) of (3.3) 

satisJes 

s 
a! amI = 
-00 

WA2 -/44x(/4+ + 0 ; 
0 

-+ &(A) as T-r co, 

where the term 0 (l/T) is untform in A. 

Thus, the mean of JX(n) is independent of the statistics of the sampling process {TV} 

(and in particular does not depend on the mean sampling rate /I). The proof of the 

following corollary is given in the Appendix. 

Corollary 3.1. If, in addition, we have for some integer n > 0 

6) u”RAu) E L1, 
(ii) w(t) is n-times dtjerentiable with w(“)(t) being bounded and continuous. 
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Then 

E&(A)] = 4x(l) + i (%) j, 
j,(j)(O) cb(.i)(A) + (g ) + 0 

x o T 
j=l 

A special case of interest is n = 2 and noting that w(l)(O) = 0, since w(t) is even, we 

find 

bias[Jx(L)] = - (3.8) 

which is of course independent of the statistics of the sampling process. 

Before we proceed to establish the covariances of Jx(J) we make the following 

assumptions. 

Assumption 3.1. For integer K 2 2 

(a) SRk_’ (1 + Jnjl)(Cjlk)(ur, . . . . Uk-r)dUr...dnk-l < ~0 for j=l ,...,k- 1; 

k = 2, . . . , IS, (3.9) 

where cck) x 1st he kth order cumulant of X = (X(t), - cc < t < co} and we note 

that c$?‘(u) = R,(u). 

(b) c$+‘(O, u, u) E L1 n L,. 

(C) JRk-1 (1 + IujJ)lC~‘(u,,...,Uk-1)Jdu,...duk-l < Co for j=l ,...,k- 1; 

k = 2 ,..., K, (3.10) 

where c$) is defined by 

cum{dN(t,),..., dN(t,)} = c$‘(t, - tr, . . . , tk - tl)dtI *.. dt,, 

for distinct tj’s. Note that cf’(u) = c,,,(u). 

Note that Assumption 3.1 requires that EjX(t)lK < co as well as EldN(t)IK < 00 

for the existence of the cumulants CT’, c$“, k = 2, . . . , K. We define the cumulants 

Cik’(u,, . . . , I+ 1) of the increment process 2 (see (2.4)) by 

cum{dZ(t,), . . . , dZ(t,)} = dC$“(t, - tl, . . . , tk - tr)dtr (3.11) 

and Cik) is of bounded variation over finite cubes. Then under Assumption 3.1 (a) and 

(c) we have (Brillinger, 1972, p. 485) 

s (1 + (Uj()dlC~‘(Ul)...) Uk_1)J < CO, for j = l,..., k - 1; k = 2 ,..., K.(3.12) 
RL-1 

The kth-order cumulant spectrum (Pik)(J,, . . , &_ 1) is defined by 

bl*‘(~~,...,nk-,)a~S,,_,expj-;k~lUj~j dC$k’(Ul,...,Uk_l) (3.13) 
j= 1 
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and we note that c#J.$“ is bounded, uniformly continuous but not integrable in general, 
and 4$“‘(A) = &(A). Under (3.12) we have (Brillinger, 1972, Theorem 4.1) 

cum&r(&),..., dZ,T(&)) = (~x)~-‘DT 
( > 

i Aj $~‘(J+I,..., &-I) + O(l), 
j=l 

k=2,...,K, (3.14) 

where dZ, T(,I) is given by (2.1 l), D,(d) is given by (3.5) and the O(1) term is uniform in 
A’S. 

We need an Assumption on W(A). 

Assumption 3.2. W(n) is a real even, uniformly continuous function on R’ such that 

WE L1 n L,, 
s 

m W(rI)dn = 1. 
--m 

We no-w state the asymptotic covariance of $,(I.). 

Theorem 3.2. Under Assumptions 3.1 with K = 4, Assumption 3.2, and bT + 0 such that 

TbT + co, we have for each ,I, p, 

X 

f 
m W2(x)dx + o(l) + O(A). 
-a, 

(3.15) 

A discussion of the implications of Theorems 3.1 and 3.2, along with some exam- 
ples, will be given in Section 5. 

Proof. By (3.3) we rewrite C&(A) as 

~,(u)Q& - 4du + 2 Cl - Y(O)I&P) , 

with 

Qd4 = J+‘T@) - Kd4. 

Note that by (3.1) and (3.2) 

s 

00 
1 QT(/2) 1 d;l < const. < co 

-m 

and 

(3.16) 

(3.17) 

(3.18a) 

s m Q&)dJ = 1 - y(O) 
-0X 

(3.18b) 
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where const. denotes a generic positive constant throughout the paper. Now, 

+ cw2 
-L- [l - y(0)12 Var (Z?,(O)) 

+&Cl -Y(O)1 s O” COV(~T(U), &(WQT(& - 4du 
-co 

+ gjj Cl - Y(O)1 Srn Cov(Zr(n), &(O))Q.(A, - u)du 
-m 

= I1 + 12 + 13 + 14. 

We will show that 

(i) Var(&(O)) = 0(1/T), 

(3.19) 

(ii) Zl=84Tbr z -?!- 4’(n)[&,, + 6+,] [_“, W’(u)du + o . 

Then by the Cauchy-Schwarz inequality and the fact that Qr(x) E L1 we have 

13 + 14 = O(l/(TJb,)) and Theorem 3.2 is proved. To show (i), we have by (2.15) 

cum(X2 (t) dN(t), X2(s) dN(s)) 

=- cum(X2(t), X2(s))E[dN(t)dN(s)] 

cp) (9 z, 4> ( P’ + PS (4 + c, b>> dz 

@(O, ~,41 CP’ + cd4ll dt 

(3.20) 

For the last inequality in (3.20) we note that Ri E L1 since Rx E L1 n L,, Ric, E L1 

since Rx E L,, cN E L1 and the inequality follows by using Assumption 3.1(b). 

In order to show (ii) we note first that, using (3.14), 

cov(IT(ul)~ Z&2)) = (27tT)2 -I_cum{&.r(ur)d,,r( - u1),&,r(u2)&,r( - u2)> 
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+ cumCd,,.(ul),dZ,T(U2)1 

xcumCb,d - Ul)&,dU2)1 

+ cumCd,,&,h 4.d - ~211 

xcumC&,d - UlkdU2)l) 

+ C27CW% + u2)4&1) + O(l)1 

x Pm4 - Ul - ddd - 4) + O(l)1 

+ P7cW% - ~2)4Z@l) + O(l)1 

x C27m( - Ul + %)4.2( - %I + O(l)l) 

= g qp (U1) - ~1, ~2) + $$:(WT(U~ + ~2) 

+ MUI - ~211 

+ y {4&1)C&(~l + u2) + &+I - u2)l 

+ &( - %)C&( - Ul - u2) 

+ 4-( - Ul + u2)l + 1) 9 

where AT(A) is the Fejer kernel 

AT@) = ;lW)12. 

Therefore, I1 of (3.19) is equal to 

2x 
11 = B’r 

s 
R* &%> - ~1, u2)&(4 - ~)QT@z - U2)h du2 

1 

+E Rz s 
&h)Qd& - UI)QT@Z - ~2)[Ibh + ~2) 

+ AT(UI - ~211 du, dU2 

O(1) 
~ 

+ /?‘+T2 s 
{&(~l)Cb+l + u2) + &+I - L42)1 

p 

(3.21) 

(3.22) 

+ &z( - %)(C&( - Ul - u2) + &-( - Ul + u2)l) 

x QT@I - ~1)Qd~2 - U2)h dU2 

+ 0(1/T*) 

E Jl + 52 + 53 + 0 (3.23) 
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Since q5L4’ is bounded and QT E L1 we have 

Jl=O 1 
0 T 

uniformly in AI, &. Also, 

(3.24) 

uniformly in &, AZ because &(u) and DT(u)/T are uniformly bounded and QT E L1 by 

(3.18). To evaluate 52, we need the following lemma whose proof is given in the 

Appendix. 

Lemma 3.1. Under Assumption 3.2, r(n) E L,, and bT -+ 0 such that TbT --, w as 

T+ co we have 

s m QT@ - u)Mu)d~ = 2nQd4 + Wbh 
-m 

where the term 0(1/b,) is uniform in A. 

By (3.23) and Lemma 3.1 we have 

1 m 
J2=p,T _m 

s 
&WQd& - ul)dul 

E Jzl + Jx. (3.26) 

Since 4.~ is bounded and j”, IQT(IZ))dl 5 const. by (3.18) we have 

uniformly in 2,) AZ. 

TO evaluate Jzl we first note that, from (3.17) and (3.1), 

QT(~I -uI)QT(~ k us)= w~(J-1 -uI)~T(& f UI)- ~+'T(AI -UI) 

s 

m 

X r(& IL ~1 - ~d~T(vdd~~ 
-UZ 

(3.27) 
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x W&I) w,(u,)dul du2 

= F, + F2 -I- F3 + Fq. (3.28) 

Thus, Jzl of (3.26) has four terms 

Jzr = 5;r + 5;r + .I;“1 + .J;; (3.29) 

corresponding to (3.28). We show that .J;r is the dominant term: we have with 

n = (A - %)I& 

2n * 
A,=,, _a, 

s 
(P;(u~) wr(& - ~)Cwr(& + ~1) + JJ’r(& - ul)ldu, 

Note that since WE L1 and is uniformly continuous we have W(u) + 0 as 1~1 + co. 

Thus, as T -+ co the integrand tends to 

&(M W2(a)CL2 + JA1.TA21 

and is bounded by const. W(v) E L1 since &(A) and W(p) are bounded. Thus, by 

dominated convergence 

W”(u) du, (3.30) 

where 6n,p is the Kronecker delta. 

Next 

and since q&(u) is bounded 

I W&4 I du 
s 

m l~(u)ldo 
-co 

uniformly in AI, &. (3.3 1) 
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Similarly, 

J;; = 0 1 0 T 
uniformly in At, AZ. (3.32) 

Finally, 

const. m 

s s 
m IW&dlduz 

s 
m 

’ T 
I ~AdI dvl IrWl du 

_m -a, -02 

uniformly in Ai, A2, (3.33) 

since $z and Z E Li are bounded function. It follows by (3.26), (3.27) and (3.29)-(3.33) 

that 

cc 
J 

2 
= 2n(l + o(l)) 

B4G%-) 
&&wL,.A, + aLI,-A*1 s (3.34) 

-a 

where the term 0(1/T) is uniform in Ii, A2. This completes the proof of (ii) and the 

theorem is proved. 0 

4. Joint asymptotic normality 

In this section we prove the following result. 

Theorem 4.1. Let Assumption 3.1 (for all K 2 2) and Assumption 3.2 hold. 

If bT = q(T-‘), for_ some 0 < a < 1, then the standardized variables 

{(Tb,)“2{4,(Ai) - EC+~(A)l)i’=~) are jointly asymptotically normally distributed 

with mean 0 and covariances given by (3.15). 

Proof. Recall from (3.3) and (3.17) that 

1 m 
$x(n)=,, _-m 

s 
ZT(U)QT(~ - u)du - $ (1 - Y(W&(O). 

We have already seen in Section 3 that Var (ix(O)) = 0(1/T) which is of smaller order 

of magnitude than that of G(,$) 4 ST, ZT(u)QT(Ai - u)du which is O(l/(T&-)). There- 

fore, to prove the theorem, we only need to establish the joint asymptotic normality of 

{fiG(A For th’ is it suffices to show that all joint cumulants of {&G(Ai)) of 



K.-S. Lii. E. MasrylStochastic Processes and their Applications 52 (1994) 39-64 53 

order k 2 3 tend to zero as T + co. For k 2 3, consider 

(TbT)k’2cum{ G(/Z,), . . . , G(A,)} = (TbT)k’2 
s[ 

fi QT(nj - Uj) R~ 
j=l I 

X h,(U, . . . I&) d#r, . . . , dU,, (4.1) 

where 

hk(u 1, ... 3 uk) = cum(zT(~l)~ . . . , zTtuk)) 

=(27~T)-~ i 1 cum({dz,T(UI);lEU1})...cUm({dZ,T(U1);lEVp)) 
p=l ” 

(4.2) 

and the inner sum is over all indecomposable partition u = v1 u ... u up of the 

transformed table 

u1 - fJ1 1 -1 

u2 -u2 2 -2 

uk - uk k -k 

(see Rosenblatt, 1985). We note that in using the transformed table, 

cum({dz,r(uI); 1 E Uj}) in (4.2) denotes the joint cumulant of all random variables in 

{dZ,r(ul); 1 E uj) with the convention ;Ir = - ,I,,, if 1~ 0. Also, any partition v which 

has a single element in a subset Uj contributes zero since cum(d&I)) 

= E(d,,(A)) = 0. Hence, in any partition v, all subsets Uj must have at least two 

elements from the transformed table in order to contribute and thus the sum in (4.2) 

over p has an upper limit k. Denote by # (Vi) the number of elements in the subset vj. 

We now evaluate (4.2) in detail. First consider the case p = 1. Then by (4.2), its 

contribution to (4.1), using (3.14) is 

( TbT)k’2 

(27C Rk s 
[(~~c)“~-‘D,(O)C$~~‘(U~; 1 = + l,..., + (k - l), k) + O(l)] 

k 

XJcl QT(Aj - uj)dul ...dUk 

=O(T’-k’2)+0 asT-+oo fork23. 

The last equality is obtained by the boundedness of $F”‘, the integrability (3.18a) of 

the QT’s and D=(O) = T. Now for 1 < p I k, given an indecomposable partition 

v = v1 u ... u up of the transformed table, there exists at least one j such that j E v, 

and - j E v, with m # n; otherwise the partition is not indecomposable. Without loss 
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of generality, we can assume j = 1, m = 1, and n = 2 for convenience. The contribu- 

tion of such a partition in (4.2) to (4.1) is 

(TbT)k’2 k 
(27CTy s RL jl$ QT(Aj - Uj) 

with the expanded notation that 4z( {uI, 1 E Oj}) being the cumulant spectrum of order 

# (Uj) with # (Vj) - 1 arguments. Also, VJ is implicitly defined in 

The expansion of the product of the form n,!= 1 [aj + 0 (l)] in the integrand of (4.3) 

has many terms. The most significant term is n,!= 1 Uj which involves the product of all 

the Dirichlet kernels &‘s. This dominant term contribution to (4.1) is 

B 

1 
= @TInk’2 

(zn)k 

XDT --1+ 2 UI ~z(-u~,(u~,~Eu;})QT(~~-u~)~u~ 
fEo,,l# - 1 1 

Xjfi3D~( C U~)Bz(u,,l~Lil) fi QT(Aj_Uj)du2...dUk. (4.4) 
I E ", j=2 

We note that by (3.17) and (3.1) we have Qr(u) = 0(1/b,) since W is bounded. 

Applying the Cauchy-Schwarz inequality to the inner integral with respect to ul, 

using the boundedness of 4z, +z < M, we find that the inner integral is bounded by 

Then 

JBl) I o(b,/T)k’“-’ LX’ I!??( ;;J 
X ~z(UI> lE vj) fi QT(Aj - uj) du2 *.. dUk. 

j=2 



K.-S. Lii, E. MasrylStochastic Processes and their Applications 52 (1994) 39-64 55 

If p = 2 there is no Dirichlet kernel DT left in the integrand and by the integrability of 

QT’s, we have IB,) = O(bT/T)k’Z-l + 0 as T + co for k 2 3. If p > 2 then there exists 

an 1 # 1 such that I E Vj for j 2 3 and - 1 does not appear in any other remaining 

subset of the partition v; otherwise the partition would be decomposable. Without loss 

of generality (be relabeling the indices), let j = 3 and 1 = 2. Then 

k 

X n QT('zj - Uj) du, ..’ dUk 
j=3 

The last integration in (4.5) is bounded by O(log T/b,) by Lemma A.1 in the 

Appendix which states that 

00 

5 I 
DT(u)QT(;l - u) du = O(log T/b,). 

-co 

Hence, 

jB1) _< 0(bT/T)k’2-10(log T/b,) 
Jw lciDT(:“juJ 

X +z(U,, 1 E Vj) fi QT(Aj - Uj) dU3 ... dUk. 
j=3 

If p = 3 then no more Dirichlet kernels DT are left, and using the boundedness of 

4z and the integrability of QT’s we have IB1 1 = 0 [(1/T)k’2-i (bT)k’2-2 log T] -+ 0 as 

T + cc for all k 2 3. Continuing in the same manner, using Lemma A.1 repeatedly, 

we will have p - 4 additional integrations involving DTQT and k - 3 - (p - 4) 

= k - p + 1 additional integrations involving the QT’s only. Hence, the dominant 

term in (4.3) for a fixed 1 < p i k occurs when p = k, 

(Bl, = O[(bT,T)*12-l (yy-‘I 

= O((log T)k-2/(TbT)k’Z-1) + 0 (4.6) 

as T + cc for k 2 3 since bT = O(Tda), 0 < c1-c 1 by assumption. The same argu- 

ment can be applied when at least one O(1) term is present in the expansion of the 

product of the form n!= 1 [ai + O(l)] in the integrand of (4.3). Since at least one 

DT term will be replaced by O(l), this will result in at least one factor (log T/b,) less 

than that in the bound of the dominant term Bl of (4.6). Hence, all other terms in the 

expansion are of smaller order. Thus (4.1) is bounded by (4.6). This completes the 

proof of the theorem. 117 
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5. Discussion and examples 

We first note that Theorems 3.1 and 3.2 imply that the spectral estimate $X(A) 

converges in quadratic mean to I$~(A) as T -+ co. In order to obtain rates of 

convergence, we assume that Corollary 3.1 holds with n = 2 in which case the 

dominant term of the bias is 

bias [$x(A)] = - ” wI’(o) (P?)(A) 

and by (3.15) the dominant term of the variance is 

VarCM41 = (TbT)B4 z -!z- cb’(W + &,n) s m W2 (u) du, 
-m 

where 

4z(/2) = /?‘&(A) + F + & J’” e-‘““Rx(u)cN(u)du. 
co 

(5.1) 

(5.2a) 

(5.2b) 

The asymptotically optimal rate of mean-squares convergence is T-415 obtained with 

bT - T-‘j5 and then 

7-4’5 E [&A) _ @,(A)]” -_* [w’2’(o;~:(1)]2 

s 

m 

W2(U)du. 
-US 

(5.3) 

We first compare the quadratic-mean performance of the above discrete-time 

estimate JX(A) with the classical continuous-time estimate Jz,#), based on the 

observations {X(t), 0 I t < T). The latter has the same bias as +x(A) and its variance 

is (Parzen, 1967) 

Var CL@)1 = $- 434(1 + b,,d s m 

W2(u)du. 
T -00 

(5.4) 

It suffices therefore to compare the asymptotic constants of the two variance expres- 

sions since they have the same rate. Ignoring the common factor 

(h/Tb,)(l + S,.,)s_“, W’(u)du we write from (5.2) 

w = [Ihf(JJ + ___ 
RY(O) + 1 m 
27@ 27cp2 _me s -i”“R,(u)c,(u)du]2 (5.5) 

and 

Vc@) = CdJx(412. (5.6) 
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Noting that 

e-‘“” Rx(u)c,(u)du = & 
s 

1 e-‘““R&)dC&) 2 0, 
m 

since dCN (u) is a covariance measure, we conclude that V’(n) 2 V,(n) for all 1 and thus 

there is no alias-free point process {zk) which asymptotically provides a smaller 

variance for Jx(;C) than Jx,_-(A) for any A. 

Among alias-free point processes {zk}, the Poisson point process is the simplest and 

provides the simplest estimator for I$&): Here cN(u) 3 0 and hence y(u) z 0 and 

r(A) 3 0 and hence Jx(n) of (2.14) becomes much simpler. In the Poisson case we have 

by (5.5), 

Rx(O) 2 
444 + ~ . 

1 
(5.7) 

However, we show that there exist non-Poisson point processes for which 

V(A) < V,(n) for all/z for all spectral densities 4x and that the improvement factor can 

be substantial for certain frequency ranges. 

We now discuss a specific class of alias-free point processes. The structure of the 

class of delayed renewal point processes is examined in detail in Masry (1978b). Here 

we only mention that it is generated by a single probability density function g(x) on 

[0, co) with mean l/B (the “inter-arrival times” density). We assume that g(x) > 0 a.e. 

on [0, co). Then the delayed renewal point process {zk} is alias-free relative to all 

spectral densities 4x(n) (Masry, 1978b). We can express the covariance density 

function cN(u) of {zk} in terms of g as follows. Let g(“)(x) be the nth fold convolution of 

g with itself and define the renewal density function h by 

h(u) = f g’“‘(u). (5.8) 
n=l 

We have h(u)+ p as u--t co. Then 

cd4 = PCWlul) - 81; 
P 

Y(U) = 1 - h(lul)’ (5.9) 

This class of stationary point processes is admittable if condition (2.9) is satisfied. This 

requirement imposes further restrictions on g(u): If g(u) > 0 for all u E [0, co) and g(u) 

decays exponentially fast as u + cc then we expect y(u) of (5.9) to be in L,; a trivial 

example is g(u) = BeeD” 1 to, m,(~) which generates the Poisson point process. On the 

other hand, if g is Gamma type k, k 2 2 

(pklk k-1 

gkh) = (k 24 epkpu ltO,laj(~), k 2 2, 

then it is seen that gk(0) = 0 and thus g:“‘(O) = 0 for n 2 1, so that h(O) = 0 and by 

(5.9), y $ L1 SO that the Gamma class (5.10) is not admittable. A simple remedy is to 
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modify (5.10) by making gk(0) > 0 in a continuous manner, e.g., by introducing 

mixtures 

&k(u) = (1 - or)g,(u) + crg,&), 0 < a < 1, k 2 2. (5.11) 

We prove that all delayed renewal point processes {zk} generated by the mixture 

densities & of (5.11) are admittable. The Laplace transform &(s) = f,” e-‘“&(u) du of 

&(u) is given by 

G” ($ = (l - alp 41Wk 
k ____ 

B+s + (jk + s)~’ k 2 2 
and the Laplace transform H(s) of the corresponding renewal density h(u) is equal to 

H(s) = 
gk 6) 

1 - Gk(k(s) = 

We first note that by partial fraction expansion we have 

(5.12) 

h(u) = /3 + i Ajunje-aju, u 2 0, 
j=l 

where the integers nj 2 0 and Aj and aj are, possibly, complex number (appearing in 

complex conjugate pairs). Thus by (5.9) 

cN(u) = fi i Ajlu[“‘e -‘j”‘. 
j=l 

(5.13) 

By (2.9) the point process {rk) is admittable if y E Li and r E Li. By (5.13), cN(u) --t 0 as 

1 u( -+ 00. Hence, given E > 0 there exists N = N, such that ( cN(u)( I E for Iu 1 > N. 

Thus, /I’ + cN(u) > /12/2 for 1~1 > N with E = 3 ,B”. By (5.11) &k(u) 2 (1 - cc)gi(u) so 

that gp’(u) 2 (1 - a)“gy’(n) and by (5.8) 

h(u) 2 2 (1 - c()“gf)(u) = p(l - a)e-@“. 
PI=1 

Hence, 

p2 + cN(u) = /lh(lul) 2 p2(l - cl)e-@pl”l 2 p2(l - tx)eeaflN, 

for 1 UI < N. Thus, 

fi2 + cN(u) 2 min (4 /12, p’(l - a)ePapN) > 0, VU. 

It follows that 

(5.14) 

(5.15) 
cN(u) 

Y(U) = p + cN(u) E Ll> 
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since cN(u) E L,. We next show that r E L1. It is seen by (5.13)-(5.15) that on [IO, co) 

y(u) is infinitely differentiable. Now 

r(A) = & 
s 
: eC'""y(u)du = 1 m (cosuA)y(u)du. 

m s = 0 
(5.16) 

Note that y(j)(u) E L1 on [IO, cc) forj = 1,2 and y(j)(u) -+ 0 as 1~1 + cc for j = 0, 1. It 

then follows by integration by parts twice that r(A) = 0(1/A’) as (1) + cc and thus 

r E L1 . It follows that the delayed renewal points processes {rk} generated by the 

mixture densities &k(u) of (5.11) are indeed admittable for all k 2 2. 

We now examine in detail the case of the mixture density (5.11) with k = 2 and show 

that the spectral estimate (PX(A), with this sampling process, has a smaller asymptotic 

variance than that of the Poisson sampling, for all spectral densities +X(A). We have, 

after some algebra, 

(5.17) 

(5.18a) 

where 

(5.18b) 

B1= -a A+ 
2 

(518c) 

The Fourier transform $(A) of cN(u) is given by 

(5.19) 

which is negative for all A. Hence, by (5.2b) 

and thus V(A) < V,(A). 

We next evaluate the improvement factor in the asymptotic variance of $,(A) using 

the sampling process generated by the mixture density g2(u) relative to a Poisson 

sampling process. We compute 

f (A; P) p VP(4 - V(4 > o. 

VP@) 
(5.20) 

Here we assume 

R,(t) = c2e-pltl (5.21) 
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Fig. 1. Improvement factor f(k /3) as a function of A and /3 

and we set the mixture parameter c1 to c1 = 0.9 (far away from the Poisson sampling 

which corresponds to a = 0). By (5.2b) and (5.18) we find 

i i 

P/n 1 1 

[ 

Bl(P + al) Bz(p + oz) III 
2 

v(n) = 62 ___ 

p2 + A2 + 2Tcp + Fc (p + a# + A2 + (p + a# + A2 

and 

The half-power bandwidth of @X(L) is 2B = 2prad/(unit time) and the “nominal 

sampling rate” is B/x = p/n. We select p = n: in (5.21) so that the nominal sampling 

rate is normalized to one. Fig. 1 shows the improvement factor f(L; p) for 

111 < 20 rad/(unit time) and 0 < /3 < 10. It is clear that f(& p) > 0 throughout this 

region and that for large /I the improvement factor can be as high as 50% for high 

frequencies. 

A more detailed picture is depicted in Fig. 2 wheref(1; fi) is plotted as a function of 

2 for 4 values of a = 0.4, 1,2, 3. It is seen that in the frequency range [ - Q, ~$1 the 

improvement factor is quite substantial: For p = 0.4, the improvement factor in this 

range is approximately 23%. For /I = 1, theimprovement factor in this range is 28%. 

For large fl, the improvement factor approaches 50% for broad frequency bands away 
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Fig. 2. Improvement factor f(A; 8) as a function of I, for selected values of 8. 

from the origin (see Fig. 1). Thus, for example, Fig. 2 shows that for fi = 3 we have an 

improvement factor of between 30% and 40% for 3 < 121 I 16 rad/(unit time). 

The above example raises the issue of finding optimal sampling processes {zkj 

which minimize appropriate functions of the mean-squares error of 6x(A). Since the 

bias of Jx(A) does not depend on the statistics of {zk} it suffices to minimize 

functionals of the variance of JX(A), i.e., of &(A) for a fixed mean sampling rate B. 

Given a real valued, even, nonnegative integrable weight function H(A) we may 

consider the functional 

._Y, = 
s 

4; H(A)&(A)dz or _Y2 = 
-03 s 

m H(A) 4,’ (A) dA. 
--u3 

In view of expression (5.2b) for &(A), one desires to minimize _fZ’r or s2, for a given 

$x(A), with respect to the covariance density cN(u) of the point process (rk} under 

certain constraints, i.e., the point process must be admittable, 

with a fixed B > 0. The problem appears to be difficult and even if the above 

optimization is solved, there is still the task of generating a stationary point process 

{rkj with the optimal cN(u). One possible approach is to restrict the optimization to 

a specific class of point processes whose structure is known (e.g., the delayed renewal 

point processes generated by a single “inter-arrival times” density function g(x) with 

mean l/p). Practical considerations in the selection of point processes {rk} for the 

estimation of broadband and narrowband spectra are addressed in Lii and Masry 

(1992b). 
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Appendix 

Proof of Corollary 3.1. Expanding w(t) in a Taylor series with integral remainder 

n-1 ,(j)(o)$ n 1 

w(t) = 2 ____ ___ x~-~w(“)[(~ - x)t]dx 
j=O j! 

+ (n 4 l)! s o 

and using (3.7) we find 

exp [ - iu;l] ujR&) du + er + 0 
0 

1 T > (A.11 

where 

b; m ’ 
eT = 2Tc(n - l)! -a, s s 

exp[ - iu~]u”R,(u)x”-‘w(“)[(l - x)b,u]dxdu. 
0 

The integrand + e -iu’unRx(u)x”-l w(“)(O) as T -+ co and is bounded by const. 

x (u(“(Rx(u)lx”-l E LI (dx x du). Thus by dominated convergence 

(llG)e, = (n _ 1)! 
-[ Sdxn-ldx][~S-ie-iui~nR,(u)du]+o(l) 

w’“‘(0) 
= ~(i)“&‘(1) + o(1) as T+ co. 

The result follows by (A.l). Cl 

Lemma A.l. Zf W(n) E L1 n L, and r(n) E L1 then 

s m IDT(u)QT(R - u)(du = 0 
-UZ 

uniformly in 1. 

Proof. 

1 Q&)&(1 - u)du = 1 W,(u)Z&+ - u)du 
J-02 J-m 

- s T(u - u) W,(V)&(~ - u)dvdu 
R2 

For fixed A > 0 

= Jl + Jz + J3, 
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lJ,l 5 T s I WT@)l 
sin T(k - u)/2 du 

[,I-uli+ T(r? - u)/2 

I W(u/b,)I du I 0 
]A-ul<$ 

since W(u) and (sin T(A - u)/2)/(T(i - U)/2) are bounded. Next, 

) w,(u)/ du = O(1). 

Thus, I1 = 0 (log T/b,). Similarly Iz = O(log T/b,) since r E L1. 0 

Proof of Lemma 3.1. 

m a; QT(T? - U)AT(U)dU = 
j 

[w&. - U) - KT(A - u)]A~(U)du. (A.2) 
-m -‘X 

Now 

s 00 

KT@. - U)AT(U)du = 
j 

r(n - u - x) W,(x) AT(U)du dx 
-LZ R2 

= jym r(v)dv jTm w,(,? - V - U)d,(u)du. (A.31 

We prove below that 

s m 

Wr(A - U) AT(U) du = 2% W,(A) + 0 (l/b,), 
-‘a 

(A.4) 

where 0(1/b,) is uniform in A. It then follows by (A.3) that 

j 

m 

j 

m 
KT(A - u)AT(u)du = 27C T(v) w,(,? - v)do + 0(1/b,), 

-cc 

since r E L1. By (A.2), (A.4), and (A.5) we then have 

(A.3 

j 
m ,..,u=2.:,.)- j;/(v)W,(&v)dv)+o(llh,) 
-cc 

= 2@#.) + 0(1/b,). 
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We now proceed to prove (A.4). Let 

s 

cc 
JT A W,(A - u)A.(u)du - 27~ FV,(lJ. 

-CC 

Then 

(‘4.6) 

where w,+,(x) is the modulus of continuity of W and A(u) = ((sinu/2)/@/2))‘. The 

integrand in (A.6) + 0 as T --) cc and is bounded by const. A(U) E L1. Hence, by 

dominated convergence (l/b,) JT + 0 as T -+ cc . 0 
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