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Abstract

For a strongly subcritical branching process ðZnÞnX0 in random environment the non-

extinction probability at generation n decays at the same exponential rate as the expected

generation size and given non-extinction at n the conditional distribution of Zn has a weak

limit. Here we prove conditional functional limit theorems for the generation size process

ðZkÞ0pkpn as well as for the random environment. We show that given the population survives

up to generation n the environmental sequence still evolves in an i.i.d. fashion and that the

conditioned generation size process converges in distribution to a positive recurrent Markov

chain.
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1. Introduction and main results

For a branching process in random environment it is assumed that the offspring
distribution of the individuals varies in a random fashion, independently from one
generation to the other. Conditioned on the environment individuals reproduce
independently of each other. Let Qn be the random offspring distribution of an
individual at generation n � 1 and let Zn denote the number of individuals at
generation n. Then Zn is the sum of Zn�1 independent random variables, each of
which has distribution Qn. To give a formal definition let D be the space of
probability measures on N0:¼f0; 1; . . .g which equipped with the metric of total
variation is a Polish space. Let Q be a random variable taking values in D. Then, an
infinite sequence P ¼ ðQ1;Q2; . . .Þ of i.i.d. copies of Q is said to form a random

environment. A sequence of N0-valued random variables Z0;Z1; . . . is called a
branching process in the random environment P, if Z0 is independent of P and given
P the process Z ¼ ðZ0;Z1; . . .Þ is a Markov chain with

LðZn jZn�1 ¼ z; P ¼ ðq1; q2; . . .ÞÞ ¼ q�z
n (1.1)

for every n 2 N; z 2 N0 and q1; q2; . . . 2 D, where q�z is the z-fold convolution of the
measure q. The corresponding probability measure on the underlying probability
space will be denoted by P. Note that the transition probabilities Pxy of the Markov
chain ðZnÞnX0 are

Pxy ¼ E½Q�xðfygÞ�; x; y 2 N0. (1.2)

In the following we assume that the process starts with a single founding ancestor,
Z0 ¼ 1 a.s., and that PfQ ¼ d0g ¼ 0; where dx denotes unit point mass at x. Note,
however, that in general Z is not the superposition of Z0 independent copies of the
process started at Z0 ¼ 1. The second assumption is no loss of generality since if
PfQad0g ¼: ao1; then LðZnÞ ¼ anLðZn jQkad0; 1pkpnÞ þ ð1� anÞd0.

It turns out that the asymptotic behavior of the generation size process Z is
determined in the main by the associated random walk S ¼ ðSnÞnX0. This random
walk has initial state S0 ¼ 0 and increments X n ¼ Sn � Sn�1; nX1 defined as

X n:¼ log mðQnÞ,

where

mðqÞ:¼
X1
y¼0

yqðfygÞ

is the mean of the offspring distribution q 2 D. In view of (1.1) and the assumption
Z0 ¼ 1 a.s. the conditional expectation of Zn given the environment P can be
expressed by means of S as

E½Zn jP� ¼
Yn

k¼1

mðQkÞ ¼ expðSnÞ P-a:s. (1.3)
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Averaging over the environment gives

E½Zn� ¼ ðE½mðQÞ�Þ
n. (1.4)

If the random walk S drifts to �1, then the branching process is said to be
subcritical. It is customary to assume that Xþ ¼ logþ mðQÞ has finite mean. Then
subcriticality corresponds to E½log mðQÞ�o0: For such processes the conditional
non-extinction probability at n decays at an exponential rate for almost every
environment. This fact is an immediate consequence of the strong law of large
numbers and the first moment estimate

PfZn40 jPg ¼ min
0pkpn

PfZk40 jPg

p min
0pkpn

E½Zk jP� ¼ exp min
0pkpn

Sk

� �
P-a:s. ð1:5Þ

As was first observed by Afanasyev [1] and later independently by Dekking [6] the
asymptotic behavior of subcritical branching processes in random environment
essentially depends on the sign of E½mðQÞ log mðQÞ�: Accordingly there are three
different cases, namely the weakly subcritical, the intermediate subcritical and the
strongly subcritical case (see, e.g., [10] for the detailed classification).

The present article is part of a series of publications (having started with paper [3]
on the critical case) in which we try to develop the characteristic properties of the
different cases. For a comparative discussion we refer the reader to [5].

Here we study the strongly subcritical case:

Assumption A1.

E½mðQÞ log mðQÞ�o0.

By Jensen’s inequality, A1 implies E½mðQÞ� log E½mðQÞ�o0, which means that

E½mðQÞ�o1. (1.6)

Again using Jensen’s inequality we see that (1.6) entails

E½log mðQÞ�o0. (1.7)

Our second assumption is an integrability condition on Q.

Assumption A2.

E½Z1 log
þ Z1�o1.

Here are some instances, where Assumptions A1 and A2 are satisfied.

Examples.
1.
 The classical Galton–Watson branching process is a special case of branching
processes in random environment with PfQ ¼ qg ¼ 1 for some q 2 D. If the
Galton–Watson process is subcritical, i.e., if mðqÞo1, then Assumption A1 holds.
For subcritical Galton–Watson processes A2 is well-known to be a necessary and
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sufficient condition for the mean generation size EZn ¼ mðqÞn to give the right decay
rate of the survival probability PfZn40g (see, e.g., [4, Corollary 2 in Section 1.11]).
2.
 A2 holds if the random offspring distribution Q has bounded support. In
particular, the results to follow hold for any strongly subcritical binary branching
process (where individuals have either two children or none).
3.
 Let ZðQÞ be the standardized second factorial moment of Q,

ZðQÞ :¼ ðmðQÞÞ
�2
X1
y¼0

yðy � 1ÞQðfygÞ.

We claim that Assumption A1 and the integrability condition

E½mðQÞ logþ ZðQÞ�o1 (1.8)

imply A2. Indeed, observe that Jensen’s inequality impliesX1
y¼1

log y
yQðfygÞ

mðQÞ
p logð1þ mðQÞZðQÞÞ

p1þ logþ mðQÞ þ logþ ZðQÞ P-a:s.

Multiplying either side by mðQÞ and taking expectations gives

E½Z1 log
þ Z1�pE½mðQÞ� þ E½mðQÞ logþ mðQÞ�

þ E½mðQÞ logþ ZðQÞ�o1.
4.
 If Q is a Poisson distribution with random mean, then ZðQÞ ¼ 1 a.s., while if Q is a
random geometric distribution on N0, then ZðQÞ ¼ 2 a.s. Hence, in these cases
condition (1.8) is redundant (recall (1.6)) and we merely require the random walk
S to satisfy A1.

In many aspects the longtime behavior of strongly subcritical branching processes
in random environment resembles the asymptotic behavior of classical subcritical
Galton–Watson branching processes. One such similarity is the fact that the first
moment estimate PfZn40gpE½Zn� gives the right decay of the non-extinction
probability at generation n up to a constant. (We note that all limit theorems in this
paper are under the law P which is what is called the annealed approach. Notation
an�bn is used to indicate that the two sequences are asymptotically equivalent, i.e.,
an=bn ! 1 as n ! 1.)

Theorem 1.1. Assume A1 and A2. Then, as n ! 1;

PfZn40g�yE½Zn� (1.9)

for some 0oyp1.

This result is due to Guivarc’h and Liu (Theorem 1.2 (a) in [11]). It was originally
proved by D’Souza and Hambly [7] under an extra moment assumption.

In a subcritical Galton–Watson branching process the nth generation size has a
conditional weak limit law given non-extinction at n. The next result, which is
Theorem 1.1 in [10], shows that the same holds true for a strongly subcritical
branching process in random environment.
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Theorem 1.2. Assume A1 and A2. Then there is a probability measure r with weights

rz; z 2 N so that

lim
n!1

PfZn ¼ z jZn40g ¼ rz; z 2 N. (1.10)

Note that Fatou’s lemma implies mðrÞpy�1. Hence, by Theorem 1.1, we have

mðrÞo1. (1.11)

Below we will see that the two quantities mðrÞ and y�1 agree (Corollary 2.3). We
remark that the proof of Theorem 1.2 (and the results to follow) depends only on the
asymptotics (1.9) but does not use the integrability condition A2 explicitly.

We now come to the main results of this paper. Clearly, conditioning the
population on non-extinction at n also has an effect on the random environment P.
Note that there are various ways how the unlikely event, that the population survives
until some late generation n, might occur. E.g., the population might be lucky to find
an extraordinary productive environment in which chances for survival are high.
However, it might also be that the population evolves in a typical environment, still
by good luck it manages to avoid extinction. Theorem 1.3 below shows that given
non-extinction at n the environment still evolves in an i.i.d. fashion. The new
(random) offspring law is more productive but still subcritical. Hence, the situation is
something in between the two scenarios described above.

To give the precise statement we introduce a measure bP on the s-field generated by
Z1;Z2; . . . ;Q1;Q2; . . . which essentially describes the asymptotic behavior of ðZ;PÞ

conditioned on Zn40. The measure is obtained from P by the following
transformation: For every non-negative measurable c on Nk

0 � Dk; kX1 let

bE½cðZ1; . . . ;Zk;Q1; . . . ;QkÞ� :¼
E½ZkcðZ1; . . . ;Zk;Q1; . . . ;QkÞ�

ðE½mðQÞ�Þ
k

. (1.12)

To see that (under suitable regularity conditions on the underlying probability space)
relation (1.12) defines a probability measure on sðZ1;Z2; . . . ;Q1;Q2; . . .Þ observe
that the following consistency condition holds: If functions ck and ckþ1 satisfy

ckþ1ðz1; . . . ; zkþ1; q1; . . . ; qkþ1Þ ¼ ckðz1; . . . ; zk; q1; . . . ; qkÞ

for all zi 2 N0 and qi 2 D; 1pipk þ 1; then

bE½ckþ1ðZ1; . . . ;Zkþ1;Q1; . . . ;Qkþ1Þ�

¼
E½Zkþ1ckðZ1; . . . ;Zk;Q1; . . . ;QkÞ�

ðE½mðQÞ�Þ
kþ1

¼
E½ckðZ1; . . . ;Zk;Q1; . . . ;QkÞE½Zkþ1jZ1; . . . ;Zk;P��

ðE½mðQÞ�Þ
kþ1

¼
E½ckðZ1; . . . ;Zk;Q1; . . . ;QkÞmðQkþ1ÞZk�

ðE½mðQÞ�Þ
kþ1

¼ bE½ckðZ1; . . . ;Zk;Q1; . . . ;QkÞ�,
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where for the last two equalities we have used relation (1.1) and the independence of
Qkþ1 and ðZ1; . . . ;Zk;Q1; . . . ;QkÞ.

For the distribution of the environmental sequence under the new measure bP note
that (1.3) gives

bE½cðQ1; . . . ;QkÞ� ¼
E½cðQ1; . . . ;QkÞE½Zk jP��

ðE½mðQÞ�Þ
k

¼
E½expðSkÞcðQ1; . . . ;QkÞ�

ðE½mðQÞ�Þ
k

ð1:13Þ

for every k 2 N and non-negative measurable c on Dk. Relation (1.13) and the fact
that the density expðSkÞ ¼

Qk
j¼1 mðQjÞ has product structure show that under bP the

random measures Qj ; jX1 are still i.i.d. Their common law is the size-biased

distribution given by

bE½cðQÞ� ¼
E½mðQÞcðQÞ�

E½mðQÞ�
. (1.14)

Note that the measure bP favors offspring distributions with large mean: A
reproduction law q 2 D is mðqÞ=E½mðQÞ� times as likely as under the measure P.
Using twice Jensen’s inequality we see that

E½mðQÞ�E½log mðQÞ�pE½mðQÞ� log E½mðQÞ�pE½mðQÞ log mðQÞ�.

Hence, by Assumption A1, we have

E½X � ¼ E½log mðQÞ�p bE½log mðQÞ� ¼ bE½X �o0, (1.15)

i.e., under bP the drift of the random walk is increased but remains negative.

Theorem 1.3. Assume A1 and A2. Let in;j ; n 2 N; 1pjpk be non-negative integers

with 1pin;1oin;2o � � �oin;kpn and n � in;k ! 1 as n ! 1. Then

lim
n!1

PfQin;1
2 B1; . . . ;Qin;k

2 Bk jZn40g ¼
Yk

j¼1

bPfQ 2 Bjg (1.16)

for every k 2 N and Borel sets B1; . . . ;Bk � D.
Moreover, for every e40,

lim
n!1

P sup
0ptp1

1

n
Sbntc � t bE½X �

���� ����Xe jZn40

� 	
¼ 0.

Remarks. Let us explain in an informal manner the intuition behind Theorem 1.3
and the significance of Assumption A1. The change in the distribution of the
environment P when conditioning on the event fZn40g is captured by the formula

PfP 2 dp jZn40g ¼ cn PfZn40 jP ¼ pgPfP 2 dpg (1.17)
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for every p ¼ ðq1; q2; . . .Þ 2 DN with normalizing constant cn ¼ ðPfZn40gÞ�1. In view
of (1.5) it is plausible that one can rewrite (1.17) as

PfP 2 dp jZn40g � c0n exp min
0pkpn

sk

� �
PfP 2 dpg, (1.18)

where sk:¼
Pk

j¼1 log mðqjÞ and c0n ¼ ðE½expðminkpn SkÞ�Þ
�1. We claim that under A1

approximation (1.18) simplifies to

PfP 2 dp jZn40g � c00n expðsnÞPfP 2 dpg, (1.19)

where c00n ¼ ðE½mðQÞ�Þ
�n. Indeed, note that in order to pass from (1.18) to (1.19) one

needs L1-convergence of the ratio of the two densities w.r.t. to the new measure
LðP jZn40Þ. However, w.r.t. to the measure defined on the right-hand side of
(1.19) the process ðSkÞ0pkpn performs a random walk with drift bE½X �, which is
negative under A1 (see the discussion following (1.13)). In this situation the
difference Sn �min0pkpn Sk is asymptotically independent of any initial piece of the
random walk and has a weak limit as n ! 1.

The behavior of the conditioned environment in the strongly subcritical case is in
sharp contrast to the other subcritical cases and the critical case, where conditioning
the population on survival at some late generation leads to dependence among the
states of the environmental sequence (see [3,5]).

Our next theorem describes the dynamics of the generation size process ðZkÞ0pkpn

given non-extinction at n. Note that conditioning on the event fZn40g not only has
an effect on the environment, but also affects the individuals’ reproduction within
the new environment.

To prepare for the result we first identify the distribution of the generation size
process Z under the measure bP as the law of a certain Markov chain. Note that
(1.12) implies (set z0:¼1)

bPfZ1 ¼ z1; . . . ;Zk ¼ zkg ¼
zkPfZ1 ¼ z1; . . . ;Zk ¼ zkg

ðE½mðQÞ�Þ
k

¼
z1 � � � zk

z0 � � � zk�1

Pz0z1 � � �Pzk�1zk

ðE½mðQÞ�Þ
k

¼
Yk

j¼1

bPzj�1zj
ð1:20Þ

for every zj 2 N; 1pjpk; where

bPxy:¼
yPxy

xE½mðQÞ�
; x; y 2 N. (1.21)

By linearity of expectation, the bPxy sum to 1 for every x 2 N (recall (1.2)). Relation
(1.20) shows thatbPfZ1 ¼ z1; . . . ;Zk ¼ zk jZk ¼ zkg ¼ PfZ1 ¼ z1; . . . ;Zk ¼ zk jZk ¼ zkg (1.22)

for every z1; . . . ; zk 2 N. Hence, the two Markov chains with transition matrices P

and bP, respectively, have the same distribution if initial and final states are fixed. The
unconditional distributions, however, are notably different since for every x the
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measure ðbPxyÞ is the size-biasing of ðPxyÞ. In particular, the support of ðbPxyÞ is N

rather than N0.
For later reference we state the following formula for the k-step transition

probabilities of the bP-chain:
bPfZjþk ¼ y jZj ¼ xg ¼ bPk

xy ¼
yPk

xy

xðE½mðQÞ�Þ
k

(1.23)

for every x; y 2 N and j; kX0. Here bPk
;Pk denote the kth power of the transition

matrices bP and P.

Remark. For classical Galton–Watson processes the Markov chain with transition
matrix bP is called the Q-process of the branching process (see [4, Section 1.14]).

Having introduced the limiting object we can now state the functional limit
theorem for the conditioned generation size process. (We useLðX Þ and LðX jAÞ for
the distribution or conditional distribution of the random variable X given the event
A and write dTV½m; n� for the total variation distance between probability measures m
and n.)

Theorem 1.4. Assume A1 and A2. Let kn; nX1 be a sequence of non-negative integers

with knpn and n � kn ! 1 as n ! 1. Then

lim
n!1

dTV½LðZ1; . . . ;Zkn
jZn40Þ;Lð bZ1; . . . ; bZkn

Þ� ¼ 0 (1.24)

and

lim
n!1

dTV½LðZn; . . . ;Zn�kn
jZn40Þ;Lð eZ0; . . . ; eZkn

Þ� ¼ 0. (1.25)

Here, the process ð bZjÞjX0 is a Markov chain with transition matrix bP started at bZ0 ¼ 1:
The chain converges towards its stationary distribution r̂ with weights

r̂x ¼
xrx

mðrÞ
; x 2 N. (1.26)

The process ð eZjÞjX0 is a Markov chain with the time-reversed transition matrix eP,
ePxy ¼

r̂y

r̂x

bPyx; x; y 2 supp r̂ (1.27)

and initial distribution r. This chain converges in distribution to r̂, too.

Remarks.
1.
 The result displays a unique feature of strongly subcritical branching processes in
random environment (among the subcritical cases): The population conditioned on
non-extinction at n stays small throughout the time interval from 0 to n. Moreover,
every once in a while there are certain regeneration epochs. Those are times when
all individuals stem from the same individual of the previous generation. Note that
this does not necessarily mean that the population has declined to a single
individual (e.g., if branching is binary then PfZn is eveng ¼ 1 for all nX1).
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2.
 The processes ð bZjÞjX0 and ð eZjÞjX0 could be defined on some different probability
space. Therefore we denote the corresponding probabilities and expectations by P

and E. Note that for every jX0 the random variable bZj has the size-biased
distribution

Pf bZj ¼ zg ¼
zPfZj ¼ zg

E½Zj �
; z 2 N.

This change of measure is quite intuitive: Since the conditioned environment
is still subcritical the event that two or more individuals at generation j

have a descendant at n is asymptotically negligible, so that (compare Lemma 2.4
below)

PfZn40 jZj ¼ zg�zPfZn�j40g as n ! 1.

Consequently,

PfZj ¼ z jZn40g� zPfZj ¼ zg
PfZn�j40g

PfZn40g
�Pf bZj ¼ zg.
3.
 As a consequence of Theorem 1.4, conditioned on Zn40 the random variables
Zbnt1c; . . . ;Zbntkc are asymptotically i.i.d. for distinct tj 2 ð0; 1Þ; 1pjpk. This fact
had been established in [2] for the case where Q a.s. has a linear fractional
generating function (which means that the offspring law Qð � \NÞ=QðNÞ is
geometric with random mean). In this special case also results on the reduced tree
spanned by the individuals of generation n and the root have been obtained
(see [9]).
2. Proofs

To prepare for the proofs of Theorems 1.3 and 1.4 we first establish the asserted
properties of the Markov chain with transition matrix bP. The fact that the chain
converges towards its equilibrium distribution will be an immediate consequence.

Proposition 2.1. Assume A1 and A2.
(i)
 The probability measure r̂ from (1.26) is an invariant distribution for bP,X
y2N

r̂y
bPyx ¼ r̂x; x 2 N. (2.1)
(ii)
 The chain has a single recurrent class bR ¼ supp r̂. The class bR is positive recurrent

and aperiodic.
(iii)
 For whatever initial state the chain eventually hits bR,

lim
k!1

X
y2R̂

bPk

xy ¼ 1; x 2 N.
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Proof. By (1.11), the measure r̂ has total mass 1. To prove the invariance of the
measure r̂ for bP note that in view of (1.21) and (1.26), condition (2.1) is equivalent toX

y2N

ryPyx ¼ E½mðQÞ� rx; x 2 N. (2.2)

From Theorems 1.1 and 1.2 we obtain

ryPyx ¼ lim
n!1

PfZn ¼ ygPfZnþ1 ¼ x jZn ¼ yg

PfZn40g

¼ E½mðQÞ� lim
n!1

PfZn ¼ y;Znþ1 ¼ x jZnþ140g ð2:3Þ

for every x; y 2 N. Again using Theorems 1.1 and 1.2 we see that (2.3) implies

E½mðQÞ� rx ¼ lim
n!1

Xz

y¼1

E½mðQÞ�PfZn ¼ y;Znþ1 ¼ x jZnþ140g

 

þPfZnþ140 jZn40gPfZn4z;Znþ1 ¼ x jZnþ140g

!

¼
Xz

y¼1

ryPyx þ lim
n!1

PfZn4z;Znþ1 ¼ x jZn40g ð2:4Þ

for every x; z 2 N. Hence,

0pE½mðQÞ� rx �
Xz

y¼1

ryPyxp lim sup
n!1

PfZn4z jZn40g ¼
X1

y¼zþ1

ry. (2.5)

Letting z ! 1 in (2.5) gives (2.2).
To prove part (ii) we first show that there are states which can be reached from any

other state of the chain in a single step. By the assumed subcriticality, there exists
z 2 N with

PfQðf0gÞ40;QðfzgÞ40g40, (2.6)

i.e., in the original branching process individuals of the same generation may have
both 0 or z children with positive probability. For such z (recall (1.2) and (1.21))

bPxz ¼
zE½Q�xðfzgÞ�

xE½mðQÞ�
X

zE½QðfzgÞðQðf0gÞÞx�1
�

xE½mðQÞ�
40 (2.7)

for every x 2 N. The second assertion of the proposition now follows from standard
results from Markov chain theory: Since any invariant probability distribution is
supported by positive recurrent states (see, e.g., the criterion in Section XV.7 of [8]),
part (i) of the proposition shows that the chain has at least one such class. In view of
(2.7) there can be at most one recurrent class. Clearly, this class bR, say, contains all z

which satisfy (2.7). Since bPzz40 for such z, the class is aperiodic. The fact thatbR ¼ supp r̂ again follows from part (i), because the equilibrium weight r̂x is the
reciprocal of the expected return time to x (see, e.g., [8, Theorem 1 in Section XV.7]).
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We finally prove (iii). In view of (2.7) it will be sufficient to show that the chain
cannot escape to 1 with positive probability,bPfZn ! 1jZ0 ¼ xg ¼ 0; x 2 N. (2.8)

This in turn will follow from the stochastic monotonicity of the chain which we will
establish first. We claim thatbPxy ¼ bE½ bQ � Q�ðx�1ÞðfygÞ�; x; y 2 N, (2.9)

where the random measure bQ is obtained from Q by size-biasing,

bQðfygÞ ¼
yQðfygÞ

mðQÞ
; y 2 N.

Indeed, in view of (1.2), (1.14) and (1.21) we have

bPxy ¼
y

x
bE Q�xðfygÞ

mðQÞ

� �
¼

1

x
bE ðmðQÞÞ

�1
X

y1þ���þyx¼y

ðy1 þ � � � þ yxÞQðfy1gÞ � � �QðfyxgÞ

" #

¼ bE ðmðQÞÞ
�1

X
y1þ���þyx¼y

y1Qðfy1gÞ � � �QðfyxgÞ

" #

¼ bE X
y1þ���þyx¼y

bQðfy1gÞQðfy2gÞ � � �QðfyxgÞ

" #
¼ bE½ bQ � Q�ðx�1ÞðfygÞ�.

Identity (2.9) shows that bP is monotone, i.e. ðbPxyÞy2N is stochastically increasing with
x: Xz

y¼1

bPxy ¼ bE½ bQ � Q�ðx�1Þðf1; . . . ; zgÞ�

XbE½ bQ � Q�ðx0�1Þðf1; . . . ; zgÞ� ¼
Xz

y¼1

bPx0y

for every z 2 N and xpx0. A standard coupling argument shows that we can
construct versions of the chain started at xpx0, respectively, so that with probability
1 the process started at x is always below the one started at x0.

Now suppose that bR ¼ supp r̂ is unbounded so that for every x 2 N, there exists
x0 2 bR with x0

Xx. Using monotonicity of bP and the fact that bR is a recurrent class we
obtainbPfZn ! 1jZ0 ¼ xgpbPfZn ! 1jZ0 ¼ x0g ¼ 0.

It is easy to see that bR ¼ supp r̂ can only be bounded if P1y ¼ 0 for all yX2 (and thenbR ¼ f1g). In this case the chains with transition matrices P and bP have decreasing
paths and (2.8) is trivially true.



ARTICLE IN PRESS

V.I. Afanasyev et al. / Stochastic Processes and their Applications 115 (2005) 1658–1676 1669
To deduce (iii) from (2.8) note that with probability 1 each transient state is visited
only finitely often. Therefore, fZnebR for all ng ¼ fZn ! 1g a.s. and thus

lim
k!1

X
y2R̂

bPk

xy ¼ bPfZn 2 bR for some n jZ0 ¼ xg ¼ 1: &

Remark. The chain with transition matrix bP can have transient states. In fact, it
might well be that the event that the time of the first exit from the set of transient
states is later than n has positive probability for all n. E.g., if

PfQ ¼ d1g ¼ a and PfQ ¼ pd0 þ ð1� pÞd2g ¼ 1� a

for some 0oao1 and 1
2
opo1, then

PfZk ¼ 1 for all 1pkpn jZn40g40

even though supp r̂ ¼ 2N. The chain with the time-reversed transition matrix eP,
however, is always an irreducible recurrent Markov chain with state space supp r̂.

Corollary 2.2. Assume A1 and A2. For whatever initial state the chain converges

towards its equilibrium distribution,

lim
k!1

bPk

xy ¼ r̂y; x; y 2 N. (2.10)

Proof. When restricted to bR ¼ supp r̂ the chain is positive recurrent, aperiodic and
irreducible. Hence, for x 2 bR the claim follows from the standard convergence
theorem for Markov chains (see, e.g., [8, Theorem 1 in Section XV.7]). To extend the
result to general x use part (iii) of Proposition 2.1. &

An immediate consequence of the weak convergence result (2.10) is uniform
integrability of the Zn conditioned on non-extinction at n.

Corollary 2.3. Assume A1 and A2. Then

lim
z!1

lim sup
n!1

E½ZnIfZn4zg jZn40 � ¼ 0 (2.11)

and

mðrÞ ¼ y�1. (2.12)

Proof. Using first (1.12) and then Theorem 1.1 and Corollary 2.2, we get

E½ZnIfZn4zg jZn40 � ¼
ðE½mðQÞ�Þ

n

PfZn40g
bPfZn4zg

! y�1
X1

y¼zþ1

r̂y as n ! 1.

Letting z ! 1 gives (2.11). For (2.12) recall that weak convergence and uniform
integrability imply convergence of the means. Hence, Theorem 1.2 and (2.11) give

y�1
¼ lim

n!1

E½Zn�

PfZn40g
¼ lim

n!1
E½Zn jZn40 � ¼ mðrÞ: &
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We will establish one more preliminary result before we prove Theorems 1.3 and
1.4. Let ek;n be the conditional extinction probability at n given P when Zk ¼ 1,

ek;n ¼ ek;nðPÞ:¼PfZn ¼ 0 jZk ¼ 1; P g; 0pkpn. (2.13)

In view of (1.1) we have

PfZn40 jZk; P g ¼ 1� eZk

k;n P-a:s. (2.14)

The following lemma states that for a binomially distributed random variable Y n

with random parameters Zkn
and 1� ekn;n the quantities EY n and PfY nX1g are

asymptotically equivalent. Note that Y n is the number of individuals at generation
kn which have a descendant at n.

Lemma 2.4. Assume A1 and A2. Let kn; nX1 be a sequence of non-negative integers

with knpn and n � kn ! 1 as n ! 1. Then

lim
n!1

E jZkn
ð1� ekn;nÞ � ð1� e

Zkn

kn;n
Þ j

ðE½mðQÞ�Þ
n ¼ 0. (2.15)

Proof. The inequality 1� xjpjð1� xÞ for 0pxp1; j 2 N0 (with the usual conven-
tion 00 ¼ 1) implies

0p1� e
Zkn

kn;n
pZkn

ð1� ekn;nÞ P-a:s. (2.16)

Also, note that, by independence and stationarity of the Qj under P and relations
(1.4) and (1.9), we have

lim
n!1

E½Zkn
ð1� ekn;nÞ�

ðE½mðQÞ�Þ
n ¼ lim

n!1

E½Zkn
�PfZn�kn

40g

ðE½mðQÞ�Þ
knþn�kn

¼ y. (2.17)

Hence, to prove (2.15) it suffices to show

lim inf
n!1

E½1� e
Zkn

kn;n
�

ðE½mðQÞ�Þ
n Xy. (2.18)

To establish (2.18) use 1� xj
Xjð1� xÞxj for 0pxp1; j 2 N0 and independence of

the Qj to deduce

E½1� e
Zkn

kn;n
�XE½Zkn

ð1� ekn;nÞ e
Zkn

kn;n
�

Xð1� eÞz E½Zkn
ð1� ekn;nÞ; Zkn

pz; ekn;nX1� e�

¼ ð1� eÞz E½Zkn
; Zkn

pz�E½1� ekn;n; 1� ekn;npe� ð2:19Þ

for every e40 and z 2 N0. For the first expectation on the right-hand side of (2.19)
note that, by (1.12),

E½Zkn
; Zkn

pz �

ðE½mðQÞ�Þ
kn

¼ 1� bPfZkn
4zg. (2.20)
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For the other expectation observe that the first moment inequality (1.5) and relations
(1.13) and (2.13) give

E½1� ekn;n; 1� ekn;n4e �

ðE½mðQÞ�Þ
n�kn

p
E½expðSn � Skn

Þ; expðSn � Skn
Þ4e�

ðE½mðQÞ�Þ
n�kn

¼ bPfSn�kn
4 log eg. ð2:21Þ

The probability on the right-hand side of (2.21) tends to 0 as n ! 1 by the law of
large numbers (recall (1.15)). Hence, an application of Theorem 1.1 yields

lim
n!1

E½1� ekn;n; 1� ekn;npe �

ðE½mðQÞ�Þ
n�kn

¼ y. (2.22)

Combining (2.20) and (2.22) with (2.19) we obtain

lim inf
n!1

E½1� e
Zkn

kn;n
�

ðE½mðQÞ�Þ
n Xyð1� eÞz 1� lim sup

n!1

bPfZkn
4zg

� �
(2.23)

for every e40 and z 2 N0. The weak convergence result (2.10) shows that the
random variables Zkn

; nX1 are tight w.r.t. bP. Hence,

lim
z!1

lim sup
n!1

bPfZkn
4zg ¼ 0.

Letting first e ! 0 and then z ! 1 in (2.23) gives (2.18). &
Proof of Theorem 1.3. Let k 2 N and let B1; . . . ;Bk be Borel subsets of D. Using
first (2.14) and then Lemma 2.4, Theorem 1.1 and the independence of the Qj ,
we obtain

PfQin;1
2 B1; . . . ;Qin;k

2 Bk jZn40g

¼ ðPfZn40gÞ�1E½PfQin;1
2 B1; . . . ;Qin;k

2 Bk; Zn40 jZin;k ;Pg�

¼ ðPfZn40gÞ�1E½1� e
Zin;k

in;k ;n
; Qin;j

2 Bj for all 1pjpk�

¼
E½1� ein;k ;n�

PfZn40g
E½Zin;k

; Qin;j
2 Bj for all 1pjpk� þ oð1Þ. ð2:24Þ

By shift-invariance of the measure P and again using Theorem 1.1 we deduce from
(2.24) that

PfQin;1
2 B1; . . . ;Qin;k

2 Bk jZn40g

¼
E½Zin;k

; Qin;j
2 Bj for all 1pjpk�

ðE½mðQÞ�Þ
in;k

þ oð1Þ. ð2:25Þ
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We now show that the first term on the right-hand side of (2.25) equalsQk
j¼1
bPfQ 2 Bjg. Observe that for every 1pi1o � � �oik and kX2 we have

E½Zik ; Qij
2 Bj for all 1pjpk�

¼ E½E½Zik IfQij
2 Bj for all 1pjpkg jQ1; . . . ;Qik�1

;Zik�1
��

¼ E½E½Zik IfQik
2 Bkg jZik�1

�; Qij
2 Bj for all 1pjpk � 1�. ð2:26Þ

For the conditional expectation on the right-hand side of (2.26) note that the shift-
invariance of P and relations (1.3) and (1.13) imply

E½Zik IfQik
2 Bkg jZik�1

� ¼ E½E½Zik
IfQik

2 Bkg jQik�1þ1; . . . ;Qik
;Zik�1

� jZik�1
�

¼ E½Zik�1
expðSik � Sik�1

Þ IfQik
2 Bkg jZik�1

�

¼ E½expðSik�ik�1
Þ; Qik�ik�1

2 Bk�Zik�1

¼ ðE½mðQÞ�Þ
ik�ik�1 bPfQ 2 BkgZik�1

P-a:s. ð2:27Þ

Plugging (2.27) into (2.26) gives

E½Zik ; Qij
2 Bj for all 1pjpk�

¼ ðE½mðQÞ�Þ
ik�ik�1 bPfQ 2 BkgE½Zik�1

; Qij
2 Bj for all 1pjpk � 1� ð2:28Þ

for every kX2. For k ¼ 1 relation (1.12) implies

E½Zi1 ; Qi1
2 B1� ¼ ðE½mðQÞ�Þ

i1bPfQ 2 B1g.

Iterating equation (2.28) we now deduce

E½Zik ; Qij
2 Bj for all 1pjpk� ¼ ðE½mðQÞ�Þ

ik

Yk

j¼1

bPfQ 2 Bjg (2.29)

for every k 2 N. Combining (2.29) with (2.25) establishes the first assertion of
Theorem 1.3.

For the second part of the theorem fix e40 and let

Ae;n:¼ sup
0ptp1

1

n
Sbntc � t bE½X �

���� ����Xe
� 	

.

Using first inequality (1.5) and then relation (1.13) and Theorem 1.1 we obtain

PfAe;n jZn40g ¼ ðPfZn40gÞ�1E½E½IfAe;ngIfZn40g jP��

pðPfZn40gÞ�1E½expðSnÞ;Ae;n�

¼
ðE½mðQÞ�Þ

n

PfZn40g
bPfAe;ng

¼ y�1bPfAe;ngð1þ oð1ÞÞ. ð2:30Þ

Now let

Ne:¼ sup kX1 : jSk � kbE½X � jX
e
2

k
n o

.
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Clearly, jSk � kbE½X � joðe=2Þn for Neokpn. Hence, for n large (nX2e�1 j bE½X � j) the
triangle inequality yields

Ae;n �
[n
k¼1

jSk � kbE½X � jX
e
2

n
n o

�
[Ne

k¼1

jSk � kbE½X � jX
e
2

n
n o

.

Since bPfNeo1g ¼ 1 by means of the strong law of large numbers, we get

lim sup
n!1

PfAe;n jZn40g p y�1 lim sup
n!1

bP max
1pkpNe

jSk � kbE½X � jX
e
2

n

� 	
¼ 0.

This completes the proof of Theorem 1.3. &

Proof of Theorem 1.4. Recall that the total variation distance between probability
measures m and n on a discrete space S is

dTV½m; n� ¼
1

2

X
x2S

jmðxÞ � nðxÞj. (2.31)

We first prove assertion (1.24). For every kpn and z1; . . . ; zk 2 N the law of total
probability and relation (1.22) imply

PfZ1 ¼ z1; . . . ;Zk ¼ zk jZn40g

¼
X
y2N

bPfZ1 ¼ z1; . . . ;Zk ¼ zk jZn ¼ ygPfZn ¼ y jZn40g

¼ bPfZ1 ¼ z1; . . . ;Zk ¼ zkg
X
y2N

bPn�k

zkybPn

1y

PfZn ¼ y jZn40g

¼ Pf bZ1 ¼ z1; . . . ; bZk ¼ zkg hðk; n; zkÞ, ð2:32Þ

where

hðk; n; zÞ ¼
X
y2N

bPn�k

zybPn

1y

PfZn ¼ y jZn40g; z 2 N.

Putting together (2.31) and (2.32) gives

dTV½LðZ1; . . . ;Zkn
jZn40Þ;Lð bZ1; . . . ; bZkn

Þ�

¼
1

2

X
z1;...;zkn2N

Pf bZ1 ¼ z1; . . . ; bZkn
¼ zkn

g j1� hðkn; n; zkn
Þj

¼ 1
2
E j1� hðkn; n; bZkn

Þj. ð2:33Þ

Now observe that, by Theorem 1.1 and Corollary 2.2,

lim
n!1

bPn�kn

zybPn

1y

PfZn ¼ y jZn40g ¼ ry; y; z 2 N. (2.34)
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Moreover, relation (1.23) and Theorem 1.1 imply

bPn�kn

zybPn

1y

PfZn ¼ y jZn40g ¼
Pn
1y
bPn�kn

zybPn

1y PfZn40g

¼
ðE½mðQÞ�Þ

n

PfZn40g

bPn�kn

zy

y
pcbPn�kn

zy ð2:35Þ

for some co1. Using again Corollary 2.2 we see that

lim
x!1

lim sup
n!1

X1
y¼xþ1

bPn�kn

zybPn

1y

PfZn ¼ y jZn40gpc lim
x!1

1�
Xx

y¼1

r̂y

 !
¼ 0 (2.36)

for every z 2 N. Relations (2.34) and (2.36) show that we may interchange
summation and limiting procedures to obtain

lim
n!1

hðkn; n; zÞ ¼
X
y2N

lim
n!1

bPn�kn

zybPn

1y

PfZn ¼ y jZn40g ¼
X
y2N

ry ¼ 1 (2.37)

for every z 2 N: Since h is a non-negative function bounded by c (by (2.35)) and the
familyLð bZkn

Þ; nX1 is tight (by Corollary 2.2), we can use relation (2.37) to conclude

lim
n!1

E j 1� hðkn; n; bZkn
Þ j ¼ 0. (2.38)

Assertion (1.24) follows from (2.33) and (2.38).
The second assertion is proved in much the same way as (1.24). Let kpn and

z0; . . . ; zk 2 supp r̂. Recalling the definitions of bP; eP and r̂ from (1.21), (1.26) and
(1.27) we obtain

PfZn ¼ z0; . . . ;Zn�k ¼ zk jZn40g ¼
Pn�k
1zk

PfZn40g

Yk

j¼1

Pzjzj�1

¼
ðE½mðQÞ�Þ

n

mðrÞP fZn40g

bPn�k

1zk

r̂zk

rz0

Yk

j¼1

ePzj�1zj

¼ Pð eZ0 ¼ z0; . . . ; eZk ¼ zkÞ h̄ðk; n; zkÞ,

ð2:39Þ

where

h̄ðk; n; zÞ ¼
ðE½mðQÞ�Þ

n

mðrÞPfZn40g

bPn�k

1z

r̂z

; z 2 supp r̂. (2.40)
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Hence,

dTV½LðZn; . . . ;Zn�kn
jZn40Þ;Lð eZ0; . . . ; eZkn

Þ�

¼
1

2

X
z0;...;zkn2 supp r̂

Pf eZ0 ¼ z0; . . . ; eZkn
¼ zkn

g j 1� h̄ðkn; n; zkn
Þj

þ 1
2
PfZjesupp r̂ for some n � knpjpn jZn40g

¼ 1
2
E j 1� h̄ðkn; n; eZkn

Þ j þ 1
2
PfZn�kn

esupp r̂ jZn40g, ð2:41Þ

where for the last equality we have used the fact that if Zj 2 supp r̂ ¼ bR, then
Zjþ1 2 bR [ f0g.

Clearly, to prove (1.25) we may assume kn ! 1 with no loss of generality. Then
the first part of Theorem 1.4 and Corollary 2.2 imply

lim
n!1

PfZn�kn
esupp r̂ jZn40g ¼ 0. (2.42)

For the other term on the right-hand side of (2.41) note that, by Theorem 1.1 and
Corollaries 2.2 and 2.3,

lim
n!1

h̄ðkn; n; zÞ ¼ 1 (2.43)

for every z 2 supp r̂. Hence, by the triangle inequality,

lim sup
n!1

E j 1� h̄ðkn; n; eZkn
Þj

p lim sup
n!1

Pf eZkn
4zg þ lim sup

n!1

E½h̄ðkn; n; eZkn
Þ; eZkn

4z�. ð2:44Þ

By Corollary 2.2, the first term on the right-hand side of (2.44) tends to 0 as z ! 1.
For the second term observe that, by (1.26), (1.27) and Proposition 2.1(i),

Pf eZkn
¼ yg ¼

X
x2N

rx
ePkn

xypmðrÞ
X
x2N

r̂x
ePkn

xy ¼ mðrÞr̂y

for every y 2 supp r̂. Consequently (recall (2.40), Theorem 1.1 and Corollary 2.2 and
set h̄ðk; n; yÞ:¼0, if yesupp r̂),

lim sup
n!1

E½h̄ðkn; n; eZkn
Þ; eZkn

4z� ¼ lim sup
n!1

X1
y¼zþ1

h̄ðkn; n; yÞPf eZkn
¼ yg

p lim sup
n!1

ðE½mðQÞ�Þ
n

PfZn40g

X1
y¼zþ1

bPn�kn

1y

¼ y�1 1�
Xz

y¼1

r̂y

 !
! 0 as z ! 1. ð2:45Þ

Letting z ! 1 in (2.44) we obtain

lim
n!1

E j 1� h̄ðkn; n; eZkn
Þj ¼ 0. (2.46)

Putting together (2.41), (2.42) and (2.46) proves (1.25).
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The asserted properties of the transition matrix bP have already been established in
the proofs of Proposition 2.1 and Corollary 2.2. The convergence of the eP-chain is
immediate from (1.27) and (2.10). &
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