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Abstract

For a strongly subcritical branching process (Z,),~, in random environment the non-
extinction probability at generation n decays at the same exponential rate as the expected
generation size and given non-extinction at n the conditional distribution of Z,, has a weak
limit. Here we prove conditional functional limit theorems for the generation size process
(Zi)o<i<n as well as for the random environment. We show that given the population survives
up to generation n the environmental sequence still evolves in an i.i.d. fashion and that the
conditioned generation size process converges in distribution to a positive recurrent Markov
chain.
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1. Introduction and main results

For a branching process in random environment it is assumed that the offspring
distribution of the individuals varies in a random fashion, independently from one
generation to the other. Conditioned on the environment individuals reproduce
independently of each other. Let Q, be the random offspring distribution of an
individual at generation n — 1 and let Z, denote the number of individuals at
generation n. Then Z, is the sum of Z,_; independent random variables, each of
which has distribution Q,. To give a formal definition let 4 be the space of
probability measures on Ny:={0,1,...} which equipped with the metric of total
variation is a Polish space. Let Q be a random variable taking values in 4. Then, an
infinite sequence IT = (Q,, Q,,...) of i.i.d. copies of Q is said to form a random
environment. A sequence of Ny-valued random variables Zy,Z;,... is called a
branching process in the random environment I1, if Z is independent of IT and given
IT the process Z = (Zy, Z1,...) is a Markov chain with

L Ly Ly =2, 11 = (q1, 4, -- ) = G,y (1.1)

foreveryn € N, z € Ny and ¢, ¢, ... € 4, where ¢** is the z-fold convolution of the
measure ¢. The corresponding probability measure on the underlying probability
space will be denoted by P. Note that the transition probabilities P,, of the Markov
chain (Z,),~, are

Py, = E[Q™((0)],  x,» € No. (1.2)

In the following we assume that the process starts with a single founding ancestor,
Zy =1 a.s., and that P{Q = 6y} = 0, where J, denotes unit point mass at x. Note,
however, that in general Z is not the superposition of Z, independent copies of the
process started at Zy = 1. The second assumption is no loss of generality since if
P{Q+#¢} = a<1, then L (Z,) = " L(Z,| O # o, | <k <n)+ (1 — o«")dy.

It turns out that the asymptotic behavior of the generation size process Z is
determined in the main by the associated random walk S = (S,),~,. This random
walk has initial state So = 0 and increments X,, = S, — S,_1, n=>1 defined as

Xn:= 10g m(Qn)a
where
m(g)="_ yq({y})
y=0

is the mean of the offspring distribution ¢ € 4. In view of (1.1) and the assumption
Zy =1 a.s. the conditional expectation of Z, given the environment II can be
expressed by means of S as

E[Z,|II] = Hm(Qk) exp(S,) P-as. (1.3)
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Averaging over the environment gives

E[Z,] = (E[m(Q)])". (1.4)

If the random walk S drifts to —oo, then the branching process is said to be

subcritical. It is customary to assume that X+ = log" m(Q) has finite mean. Then

subcriticality corresponds to E[log m(Q)]<0. For such processes the conditional

non-extinction probability at n decays at an exponential rate for almost every

environment. This fact is an immediate consequence of the strong law of large
numbers and the first moment estimate

P(Z,>0M) = min P{Z;>0|1T)

< min E[Z;|II] :exp( min Sk> P-a.s. (1.5)
0<k<n 0<k<n

As was first observed by Afanasyev [1] and later independently by Dekking [6] the

asymptotic behavior of subcritical branching processes in random environment

essentially depends on the sign of E[m(Q) log m(Q)]. Accordingly there are three

different cases, namely the weakly subcritical, the intermediate subcritical and the

strongly subcritical case (see, e.g., [10] for the detailed classification).

The present article is part of a series of publications (having started with paper [3]
on the critical case) in which we try to develop the characteristic properties of the
different cases. For a comparative discussion we refer the reader to [5].

Here we study the strongly subcritical case:

Assumption Al.
E[m(Q) log m(Q)]<0.

By Jensen’s inequality, Al implies E[m(Q)] log E[m(Q)]<0, which means that

E[m(Q)]<1. (1.6)
Again using Jensen’s inequality we see that (1.6) entails
E[log m(Q)]<0. (1.7)

Our second assumption is an integrability condition on Q.
Assumption A2.
E[Z,log" Z|]< 0.

Here are some instances, where Assumptions Al and A2 are satisfied.

Examples.

1. The classical Galton—-Watson branching process is a special case of branching
processes in random environment with P{Q = ¢} =1 for some ¢ € 4. If the
Galton—Watson process is subcritical, i.e., if m(g) <1, then Assumption Al holds.
For subcritical Galton—Watson processes A2 is well-known to be a necessary and
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sufficient condition for the mean generation size EZ,, = m(q)" to give the right decay
rate of the survival probability P{Z, >0} (see, e.g., [4, Corollary 2 in Section 1.11]).
2. A2 holds if the random offspring distribution Q has bounded support. In
particular, the results to follow hold for any strongly subcritical binary branching
process (where individuals have either two children or none).
3. Let n(Q) be the standardized second factorial moment of Q,

n(Q) = (mQ) > yy—1) Q).
y=0

We claim that Assumption Al and the integrability condition
E[m(Q)log" n(Q)]<oo (1.8)

imply A2. Indeed, observe that Jensen’s inequality implies

Zl y ) < lox(1 + m(O(Q)

<1+ log" m(Q)+log" n(Q) P-as.
Multiplying either side by m(Q) and taking expectations gives

E[Z, log" Z,]<E[m(Q)] + E[m(Q) log* m(Q)]
+ E[m(Q) log* n(Q)] <.

4. If Qs a Poisson distribution with random mean, then #(Q) = 1 a.s., while if Q is a
random geometric distribution on Ny, then n(Q) = 2 a.s. Hence, in these cases
condition (1.8) is redundant (recall (1.6)) and we merely require the random walk
S to satisfy Al.

In many aspects the longtime behavior of strongly subcritical branching processes
in random environment resembles the asymptotic behavior of classical subcritical
Galton—Watson branching processes. One such similarity is the fact that the first
moment estimate P{Z,>0}<E[Z,] gives the right decay of the non-extinction
probability at generation n up to a constant. (We note that all limit theorems in this
paper are under the law P which is what is called the annealed approach. Notation
a,~b, 1s used to indicate that the two sequences are asymptotically equivalent, i.e.,
ay/by, — 1 as n — 00.)

Theorem 1.1. Assume Al and A2. Then, as n — oo,
P{Z,>0}~0E[Z,] (1.9)
Jfor some 0<0<1.

This result is due to Guivarc’h and Liu (Theorem 1.2 (a) in [11]). It was originally
proved by D’Souza and Hambly [7] under an extra moment assumption.

In a subcritical Galton—Watson branching process the nth generation size has a
conditional weak limit law given non-extinction at n. The next result, which is
Theorem 1.1 in [10], shows that the same holds true for a strongly subcritical
branching process in random environment.
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Theorem 1.2. Assume A1 and A2. Then there is a probability measure r with weights
r., z € N so that
lim P{Z,=2|Z,>0}=r,, zeN. (1.10)

n—oQo
Note that Fatou’s lemma implies m(r)<0~'. Hence, by Theorem 1.1, we have
m(r) <oo. (1.11)

Below we will see that the two quantities m(r) and 6~ agree (Corollary 2.3). We
remark that the proof of Theorem 1.2 (and the results to follow) depends only on the
asymptotics (1.9) but does not use the integrability condition A2 explicitly.

We now come to the main results of this paper. Clearly, conditioning the
population on non-extinction at # also has an effect on the random environment I7.
Note that there are various ways how the unlikely event, that the population survives
until some late generation n, might occur. E.g., the population might be lucky to find
an extraordinary productive environment in which chances for survival are high.
However, it might also be that the population evolves in a typical environment, still
by good luck it manages to avoid extinction. Theorem 1.3 below shows that given
non-extinction at n the environment still evolves in an i.i.d. fashion. The new
(random) offspring law is more productive but still subcritical. Hence, the situation is
something in between the two scenarios described above.

To give the precise statement we introduce a measure P on the o-field generated by
Z1,Z3,...;0;,0,,... which essentially describes the asymptotic behavior of (Z, IT)
conditioned on Z,>0. The measure is obtained from P by the following
transformation: For every non-negative measurable s on N’g x A¥ k=1 let

E[Zkl//(Zl, ... »Zk; Ql: s Qk)]
(E[m(Q))"
To see that (under suitable regularity conditions on the underlying probability space)

relation (1.12) defines a probability measure on o(Z;,Z>,...; 0, 0,,...) observe
that the following consistency condition holds: If functions ¥, and v, satisfy

EW(Z,,....Z; 0., 0] = (1.12)

Vi1 (2l 2kt 1590 - Qi) = W20, o 2k g o )
for all z; e Ny and ¢; € 4, 1<i<k + 1, then

E['//kJrl(Zl:"-sZ/H-l; O, O]
_ ElZi Y (Zy,.... 2104, .., Q)]

(E[m(Q))*!
_ Ey,(Z1,....Z;;01,..., QJEZi| Zy, ..., Zi; ]]
(E[m(Q)D*!
_ Ely, (Z1,....Z; Oy, .., Qk)m(Qk+l)Zk]
(E[m(Q)D*!

= E[l//k(Z],,Zk, Q],-~~)Qk)]7
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where for the last two equalities we have used relation (1.1) and the independence of

Orsr and (Z1,..., Zi; Oy, -, Op).
For the dlstnbutlon of the environmental sequence under the new measure P note

that (1.3) gives

E[(Qy, ..., QE[Z | ]]
(E[m(Q))"

_ Elexp(S(Qy, - -, O]
(E[m(Q))"

for every k € N and non- negatlve measurable i on A*. Relation (1.13) and the fact

that the density exp(Sy) = HJ  m(Q;) has product structure show that under P the

random measures Q;, j>1 are still i.i.d. Their common law is the size-biased
distribution given by

E[m(Q)y(Q)]
E[m(Q)] -

Note that the measure P favors offspring distributions with large mean: A
reproduction law g € 4 is m(q)/E[m(Q)] times as likely as under the measure P.
Using twice Jensen’s inequality we see that

E[m(Q)IE[log m(Q)]<E[m(Q)]log E[m(Q)] < E[m(Q)log m(Q)].

Hence, by Assumption Al, we have

EW(Q,....,0)] =

(1.13)

EW(Q)] = (1.14)

E[X] = E[log m(Q)]< E[log m(Q)] = E[X]<0, (1.15)

i.e., under P the drift of the random walk is increased but remains negative.

Theorem 1.3. Assume Al and A2. Let i,;, n € N, 1<j<k be non-negative integers
with 1 <iy 1 <ipa< -+ <ipp<nand n—i,; — 0o as n — 0o0. Then

k
lim P{Q, €Bi.....0, €BiZ,>0}=]]P{QeB) (1.16)
n—00 h = iy

for every k € N and Borel sets By,...,B; C A.
Moreover, for every >0,

lim P{ sup

n—oo 0<r<1

1 ~
- S[m‘J - tE[X]‘>8|Z,1>O} =0.

Remarks. Let us explain in an informal manner the intuition behind Theorem 1.3
and the significance of Assumption Al. The change in the distribution of the
environment IT when conditioning on the event {Z, >0} is captured by the formula

P{Il € dn|Z,>0} = ¢, P{Z,>0|II = n} P{IT € dn} (1.17)
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for every m = (¢, ¢,, . ..) € A" with normalizing constant ¢, = (P{Z, >01)7". In view
of (1.5) it is plausible that one can rewrite (1.17) as

P{Il € dn|Z,>0} ~ c,exp <0mkin sk) P{II € dn}, (1.18)
<k<n

where sk:=z;‘=1 log m(q;) and ¢, = (E[exp(mink<, S)D~!. We claim that under Al

approximation (1.18) simplifies to

P{Il € dn|Z,>0} ~ ¢} exp(s,) P{II € dn}, (1.19)

where ¢/ = (E[m(Q)])™". Indeed, note that in order to pass from (1.18) to (1.19) one
needs L;-convergence of the ratio of the two densities w.r.t. to the new measure
L1 Z,>0). However, w.r.t. to the measure defined on the right-hand side of
(1.19) the process (Si)o<i<, performs a random walk with drift E[X], which is
negative under Al (see the discussion following (1.13)). In this situation the
difference S, — ming<x <, Sk 1s asymptotically independent of any initial piece of the
random walk and has a weak limit as n — oo.

The behavior of the conditioned environment in the strongly subcritical case is in
sharp contrast to the other subcritical cases and the critical case, where conditioning
the population on survival at some late generation leads to dependence among the
states of the environmental sequence (see [3,5]).

Our next theorem describes the dynamics of the generation size process (Zi)y<i <
given non-extinction at n. Note that conditioning on the event {Z, >0} not only has
an effect on the environment, but also affects the individuals’ reproduction within
the new environment.

To prepare for the result we first identify the distribution of the generation size
process Z under the measure P as the law of a certain Markov chain. Note that
(1.12) implies (set zop:==1)

= o P{Zy =z1,...,Zk = 2k}
P Z = ... Z = =
{(Zi=z21,.... 2k = zk} EO))

-z Poyz o Poyiz s
20 Zk-1 (E[m(Q)]) =1

for every z; € N, 1<j<k, where

5 Py
Py=—-—"—, x,yeN. (1.21)
T XE[m(Q)]
By linearity of expectation, the 13xy sum to 1 for every x € N (recall (1.2)). Relation
(1.20) shows that

PiZi=z,....Z =z Z=a}=PZi=2,... Zr==|Zr =2z} (122

for every zi,...,z¢ € N. Hence, the two Markov chains with transition matrices P
and P, respectively, have the same distribution if initial and final states are fixed. The
unconditional distributions, however, are notably different since for every x the
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measure (ngy) is the size-biasing of (P,,). In particular, the support of (ﬁx},) is N
rather than N.
For later reference we state the following formula for the k-step transition
probabilities of the P-chain:
K
. ~k yP,
P{Zjy=ylZj=x}=P, =——"—— (1.23)
x(E[m(Q)])
~k .\
for every x,y € N and j,k>0. Here P , P denote the kth power of the transition
matrices P and P.

Remark. For classical Galton-Watson processes the Markov chain with transition
matrix P is called the Q-process of the branching process (see [4, Section 1.14]).

Having introduced the limiting object we can now state the functional limit
theorem for the conditioned generation size process. (We use £ (X) and Z(X | A) for
the distribution or conditional distribution of the random variable X given the event
A and write dyvy[u, v] for the total variation distance between probability measures u
and v.)

Theorem 1.4. Assume Al and A2. Let k,, n=1 be a sequence of non-negative integers
with k,<n and n — k,, — 0o as n — oco. Then

im dy[L(Z,,....Zk | Zy>0), L(Z\,.... Z;)] =0 (1.24)
n—0o

and
im dy[L(Zns ... Zni, | Zu>0), L(Zo, ..., Zr)] = 0. (1.25)
n—o0

Here, the process (2 )i is a Markov chain with transition matrix P started at 20 =1.
The chain converges towards its stationary distribution 7 with weights

~ XTIy
I =
Y m(r)’

The process (Z,)j>0 is a Markov chain with the time-reversed transition matrix P,

xeN. (1.26)

ﬁxy = % ﬁyxa X,y € SUPPf (127)

X

and initial distribution r. This chain converges in distribution to F, too.

Remarks.

1. The result displays a unique feature of strongly subcritical branching processes in
random environment (among the subcritical cases): The population conditioned on
non-extinction at z stays small throughout the time interval from 0 to n. Moreover,
every once in a while there are certain regeneration epochs. Those are times when
all individuals stem from the same individual of the previous generation. Note that
this does not necessarily mean that the population has declined to a single
individual (e.g., if branching is binary then P{Z, is even} =1 for all n>1).
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2.

p

The processes (2j)_,>0 and (Zf)_/->0 could be defined on some different probability
space. Therefore we denote the corresponding probabilities and expectations by P
and E. Note that for every j>0 the random variable Z; has the size-biased
distribution
=~ P{Z; = z}
PiZ =z} ="-"L"_""" zeN.
’ E[Z)]

This change of measure is quite intuitive: Since the conditioned environment
is still subcritical the event that two or more individuals at generation j
have a descendant at n is asymptotically negligible, so that (compare Lemma 2.4
below)

P{Z,>0|Z; =z} ~zP{Z,_;>0} as n— oc.

Consequently,

P{Z,_ >0} =

P{Z =z|Z,>0}~zP{Z; = z} m ~P{Z; =z}.

. As a consequence of Theorem 1.4, conditioned on Z,, >0 the random variables
Zin)» - Z ) are asymptotically i.i.d. for distinct #; € (0,1), 1 <j<k. This fact
had been established in [2] for the case where Q a.s. has a linear fractional
generating function (which means that the offspring law Q(- N N)/Q(N) is

geometric with random mean). In this special case also results on the reduced tree
spanned by the individuals of generation n and the root have been obtained

(see [9]).

. Proofs

To prepare for the proofs of Theorems 1.3 and 1.4 we first establish the asserted
roperties of the Markov chain with transition matrix P. The fact that the chain

converges towards its equilibrium distribution will be an immediate consequence.

Proposition 2.1. Assume Al and A2.

(i) The probability measure 7 from (1.26) is an invariant distribution for P,

> APy=F. xeN. 2.1)
yeN

(i1) The chain has a single recurrent class R= supp 7. The class Ris positive recurrent

and aperiodic.

(ii1) For whatever initial state the chain eventually hits R,

lim S P, =1, xeN.
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Proof. By (1.11), the measure 7 has total mass 1. To prove the invariance of the
measure 7 for P note that in view of (1.21) and (1.26), condition (2.1) is equivalent to

> 1Py =E[m(Q)]ry, xeN. (2.2)
yeN
From Theorems 1.1 and 1.2 we obtain
. PZ,=y}\P{Zy1 =x|Z, =)}
ryPy = nango P{Z+> 0}
= E[n(Q)] lim P(Z, =y, Zys1 = x| Zys1 >0} (2.3)

for every x,y € N. Again using Theorems 1.1 and 1.2 we see that (2.3) implies

E[m(Q)] rx = nlingo (Z E[Wl(Q)] P{Z, = Vs Zyy1 = x| Zn+l >0}
y=1
+ P{ZnJrl >0 | Z,> 0} P{Zn >z, ZnJrl = x| Zn+1 >0}>

= Z ryPys+ im PZy>2,Zyy = x| Z,>0) (2.4)
y=I1

for every x,z € N. Hence,

z o0
0<E[m Iy — rP,<limsup P{Z,>z|Z,>0} = . 2.5
[m(Q)]ry — Y ryPy m sup P{ | b=> (2.5)

y=1 y=z+1

Letting z — oo in (2.5) gives (2.2).

To prove part (ii) we first show that there are states which can be reached from any
other state of the chain in a single step. By the assumed subcriticality, there exists
z € N with

P{O({0})>0, O({z})>0} >0, (2.6)

i.e., in the original branching process individuals of the same generation may have
both 0 or z children with positive probability. For such z (recall (1.2) and (1.21))

5 _ ZEIO™(=D]  E[O(=)(Q0)) ]
* xE[m(Q)] = xXE[m(Q)]

for every x € N. The second assertion of the proposition now follows from standard
results from Markov chain theory: Since any invariant probability distribution is
supported by positive recurrent states (see, e.g., the criterion in Section XV.7 of [8]),
part (i) of the proposition shows that the chain has at least one such class. In view of
(2.7) there can be at most one recurrent class. Clearly, this class R, say, contains all z
which satisfy (2.7). Since P..>0 for such z, the class is aperiodic. The fact that
R= supp 7 again follows from part (i), because the equilibrium weight 7, is the
reciprocal of the expected return time to x (see, e.g., [8, Theorem 1 in Section XV.7]).

>0 (2.7
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We finally prove (iii). In view of (2.7) it will be sufficient to show that the chain
cannot escape to oo with positive probability,
P{Z,— 00| Zo=x}=0, xeN. (2.8)

This in turn will follow from the stochastic monotonicity of the chain which we will
establish first. We claim that

Py =E[0* O D(()], xpeN, (2.9)

where the random measure Q is obtained from Q by size-biasing,

= _yoyh
oyh = mo) > € N.
Indeed, in view of (1.2), (1.14) and (1.21) we have

5 0™ (y)
P = EE[ Q) }

1~

=< l(m(Q))‘ St +yx)Q({y1})-~-Q({yx})]

Yitetye=y
=E|m@Q)~" Y le({y1}>~-Q({yx})1
Pt yy=y

EL > Q({m})Q({yzD--.Q({yxn]

1=y

= E[0 * 0" V().

Identity (2.9) shows that P is monotone, i.e. (ngy)yEN is stochastically increasing with
b

ZPW: [0 % 0" V({1,....2})]

SEI0+ 0 0((1,.... 0 = S Py,
y=1

for every ze N and x<x'. A standard coupling argument shows that we can
construct versions of the chain started at x<x’, respectively, so that with probability
1 the process started at x is always below the one started at x'.

Now suppose that R = supp/ is unbounded so that for every x € N, there exists
x" € Rwith x’ = x. Using monotonicity of P and the fact that R is a recurrent class we
obtain

P{Z, — 00| Zo = x}<P{Z, — 00| Zy = x'} = 0.

It is easy to see that R= supp 7 can only be bounded if Py, = 0 for all y>2 (and then
= {1}). In this case the chains with transition matrices P and P have decreasing
paths and (2.8) is trivially true.
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To deduce (iii) from (2.8) note that with probability 1 each transient state is visited
only finitely often. Therefore, {Z, ¢ R for all n} = {Z, — oo} a.s. and thus
lim ZIgiyzl?‘{ZnelAQforsomeMZo:x}:1. O

k—o0 <
yER

Remark. The chain with transition matrix P can have transient states. In fact, it
might well be that the event that the time of the first exit from the set of transient
states is later than n has positive probability for all n. E.g., if

P{O=061}=a and P{Q=poy+ (1 —p)or}=1—a«
for some 0<a<1 and § <p<1, then

P{Z,=1forall 1<k<n|Z,>0}>0

even though supp7 = 2N. The chain with the time-reversed transition matrix P,
however, is always an irreducible recurrent Markov chain with state space supp 7.

Corollary 2.2. Assume Al and A2. For whatever initial state the chain converges
towards its equilibrium distribution,

lim Py, =7, xyeN. (2.10)

k—o00
Proof. When restricted to R = supp 7 the chain is positive recurrent, aperiodic and
irreducible. Hence, for x € R the claim follows from the standard convergence

theorem for Markov chains (see, e.g., [8, Theorem 1 in Section XV.7]). To extend the
result to general x use part (iii) of Proposition 2.1. [J

An immediate consequence of the weak convergence result (2.10) is uniform
integrability of the Z, conditioned on non-extinction at n.

Corollary 2.3. Assume Al and A2. Then
lim lim sup E[Z,/{Z,>z}|Z,>0]=0 (2.11)

70 psoo

and
m(r) = 07" (2.12)
Proof. Using first (1.12) and then Theorem 1.1 and Corollary 2.2, we get
(E[mQ))" 5
E[Z,I{Z, Z, = ——P{Z,
201 Z,>2)1 2,01 = 52 =0 PLZ,>2)

o8
- 0! E Fy asn— oo.
y=z+1

Letting z — oo gives (2.11). For (2.12) recall that weak convergence and uniform
integrability imply convergence of the means. Hence, Theorem 1.2 and (2.11) give

_ . E[Z,] .
1 _ _ _
0 _nlglgop{ n>0}_nlglgoE[Z,1|Zn>O]_m(r). O
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We will establish one more preliminary result before we prove Theorems 1.3 and
1.4. Let ey, be the conditional extinction probability at n given II when Z; =1,

ein = e (IN=P{Z,=0|Z,=1,1}, 0<k<n. (2.13)
In view of (1.1) we have
P(Z,>0|Z, 11} =1—¢(' P-as. (2.14)

The following lemma states that for a binomially distributed random variable Y,
with random parameters Z;, and 1 — e, , the quantities EY, and P{Y,>1} are
asymptotically equivalent. Note that Y, is the number of individuals at generation
k, which have a descendant at n.

Lemma 2.4. Assume Al and A2. Let k,, n>1 be a sequence of non-negative integers
with k,<n and n — k,, — 0o as n — oo. Then

E|Zi,(1—et,) — (1 —e)|

)
s E[m(Q))"

Proof. The inequality 1 — ¥ <j(1 — x) for 0<x<1, j € Ny (with the usual conven-
tion 0° = 1) implies

0. (2.15)

0<1 — ¢/ <Zp,(1 = er,) P-as. (2.16)

Also, note that, by independence and stationarity of the Q; under P and relations
(1.4) and (1.9), we have

. E[Zi,(1 —e,n)] . E[Z,JP{Z, 4, >0}
lim ——— 2 — lim . == = 0. 2.17
s EmQ) ws (Epm(Q))F @17

Hence, to prove (2.15) it suffices to show

lim inf ———=>0. 2.18)
m2 Epm) (
To establish (2.18) use 1 — ¥ =j(1 — x)x/ for 0<x<1,j € Ny and independence of
the Q; to deduce

E[l — ¢/ 1> E[Zk, (1 — ek, ) €]

> (1 — &) E[Zy, (1 — e1,0); Zi, <, €l > 1 — 6]
= —¢efE[Zy; Z, <zZIE[l —ep,n; | — er, n<é] (2.19)

for every ¢>0 and z € Ny. For the first expectation on the right-hand side of (2.19)
note that, by (1.12),

E[Zy,; Zi, <z] 5
—m T 20— | — P{Zy, > 2). 2.20
(E[m(Q)) s 220
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For the other expectation observe that the first moment inequality (1.5) and relations
(1.13) and (2.13) give
E[l —ex,n; 1 — ex,n>¢] < Elexp(S, — Sk,); exp(S, — Sk,) > ¢l
(E[m(Q))" ™ (E[m(Q))" ™"
= P{S,_i, > log &}. (2.21)

The probability on the right-hand side of (2.21) tends to 0 as n — oo by the law of
large numbers (recall (1.15)). Hence, an application of Theorem 1.1 yields

E[l —ep,n; 1 — ex,n<e]

lim —
oo (E[m(Q)D)" ™
Combining (2.20) and (2.22) with (2.19) we obtain

— 0. (2.22)

Z
E[l — e "
lim inf 0 %]

oo (E[m(Q)])"

for every ¢>0 and z € Ny. The weak convergence result (2.10) shows that the
random variables Z; , n>1 are tight w.r.t. P. Hence,

>0(1 — &) (1 — lim sup P{Z;, >z}> (2.23)

n—o0

lim lim sup 13{an >z} =0.

70 p—soo

Letting first ¢ — 0 and then z — oo in (2.23) gives (2.18). O

Proof of Theorem 1.3. Let k € N and let By,..., B; be Borel subsets of 4. Using
first (2.14) and then Lemma 2.4, Theorem 1.1 and the independence of the Q,
we obtain

P{Q; € Bl,...,Qimk € B Z,>0}
= (P{Z,>0))'E[P{Q,, € B\.....Q,, € Bi, Z,>01Z,,.1T}]

720, € B forall 1<j<k]

In s>

= (P{Z,>0)"'E[l — ¢
E[l —e;,;.]

= Pz >0 Wi @i, € B for all IS/<K]+o(1). (2.24)

By shift-invariance of the measure P and again using Theorem 1.1 we deduce from
(2.24) that

P{Qin,l €B,..., Qi,kk € By | Z,>0}
ElZ;,; O, € B; for all 1 <j<k]

. 1. 2.25
(Elm(Q))" o) (2:23)
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We now show that the first term on the right-hand side of (2.25) equals
H]]le 13{Q € B;}. Observe that for every 1</ < --- <i; and k=2 we have
ElZi; Q; € B; for all 1<j<k]
= E[E[Z, I{Q; € B; for all I1<j<k}|Qy,.... 0, . Zi ]l
= E[E[Z; I{Q; € B} Z;, \]; Q; € B; for all 1<j<k —1]. (2.26)

For the conditional expectation on the right-hand side of (2.26) note that the shift-
invariance of P and relations (1.3) and (1.13) imply

E[Z,1{0,, € Bi}| Zi ) = EEIZ,1{Q,, € B} Qi s1s- - Cips Zi )1 Zi ]
— E[Z, , exp(S;, — S, ) {0, € B} Z,, ]
= E[exp(Si—i._,); Oi—i_, € Bl Zi,_,
= (Em(Q)D* "' P{Q e Bx} Z,_, P-as. (2.27)
Plugging (2.27) into (2.26) gives
E[Z; O, € B; for all 1<j<k]
= (E[m(Q)]) ' P{Q € By} E[Z,_,; Q, € B forall 1<j<k—1]  (2.28)
for every k>=2. For k = 1 relation (1.12) implies
E[Z;; Q; € Bi] = (Em(Q)"P{Q € By).

Iterating equation (2.28) we now deduce
k
E[Z;; O, € B; for all 1<j<k] = (E[m(Q)))’* H P{Q € B;} (2.29)
J=1

for every k € N. Combining (2.29) with (2.25) establishes the first assertion of
Theorem 1.3.
For the second part of the theorem fix ¢>0 and let

Aan::{ sup

0<r<1

1 ~
. S\ — tE[X]‘ 28}.

Using first inequality (1.5) and then relation (1.13) and Theorem 1.1 we obtain
P{4,,|Z,>0} = (P{Z,>0})"'E[E[[{4,,}]{Z,>0} | IT]]
<(P(Z,>0)) " E[exp(S,); Azl

_ (EmQ))" 5
_'TQEZZ;B?'P{A&M

= 07'P{4,.,}(1 + o(1)). (2.30)
Now let

N,= sup{k>1 © | Sk — kE[X]| > %k}
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Clearly, | Sx — kE[X] | <(¢/2)n for N, <k<n. Hence, for n large (n=>2¢"" | IAZ[X] |) the
triangle inequality yields
n R e & R e
: — > — — > _
Aﬁ,ncg{mk kE[X]|/2n}CkL=J1{|Sk kE[X]|/2n}.

Since IA’{Ns <oo} = 1 by means of the strong law of large numbers, we get

n— 00 n— 00 1<k<N,

lim sup P{4,,|Z,>0} < 0" lim sup f’{ max | Sy — kE[X]|> gn} =0.

This completes the proof of Theorem 1.3. [

Proof of Theorem 1.4. Recall that the total variation distance between probability
measures ¢ and v on a discrete space S is

1
dryl vl =5 D 1) = (). (2.31)
xes
We first prove assertion (1.24). For every k<n and z,...,z; € N the law of total

probability and relation (1.22) imply
P{Zi=2z,....Z, =2z | Z,>0}
=Y P{Zi=z1..... 2 =z | Zy = y} P{Z, = y| Z,>0}

yeN
i)\n—k
=PZi=z1.....Zc=z} Y = PZy=y|Z,>0}
yeN ly
=P{Z, =z1,..., 2 = zk} h(k, n, z1), (2.32)
where
ﬁn—k
h(k,n,2) = =5~ P{Zy=y| Z,>0}, zeN.
yeN ly

Putting together (2.31) and (2.32) gives
AL (Zy, ..., 21| Zy>0), L2, ..., Z,)]

1 ~ ~
=5 Y. PlZi=z.Zg =5} 11— ki zi,)

Z[,..,Z;\»,IEN
= LE|1 — h(kn, 1, Z1,). (2.33)
Now observe that, by Theorem 1.1 and Corollary 2.2,
~n—ky,
lim —=—P{Z,=y|Z,>0}=r,, yzeN. (2.34)

n— oo
1y
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Moreover, relation (1.23) and Theorem 1.1 imply

ﬁnfk,, p ﬁn7k11
= n =Y Zy>0p =
P, P\, P{Z,>0}

~n—k,
— W P:y ~n—ky,
" P{Z,>0}

(2.35)

for some ¢<oo. Using again Corollary 2.2 we see that

An—k”

lim lim sup

X—>00 n— 00

=y|Z,>0}<c lim (1 -3 @) =0 (2.36)

y=x+1 ly y=1

for every z € N. Relations (2.34) and (2.36) show that we may interchange
summation and limiting procedures to obtain

n—ky

P,
lim h(ky,n,2) =Y lim —5—P(Z, =p|Z,>0)=> r,=1 (2.37)
n— 00 yen n—00 Ply yen

for every z € N. Since / is a non-negative function bounded by ¢ (by (2.35)) and the
family £ (Zy,), n>1is tight (by Corollary 2.2), we can use relation (2.37) to conclude

lim E|1 — h(kn,n,Zi)| = 0. (2.38)

n—0o0

Assertion (1.24) follows from (2.33) and (2.38).

The second assertion is proved in much the same way as (1.24). Let k<n and
20,-..,2k € supp?. Recalling the definitions of P, P and 7 from (1.21), (1.26) and
(1.27) we obtain

n—k
P{Zn =ZO,-~;Zn—k =Zk|Z”>0} P{Zl7]\>0} H
~n—k k
__(EmQ)" Py ra |1 P-
m(r)P{Z,>0} 7., Tz Zj-1%j

j=1
= IP(ZO =z0y..., 2k = zi) bk, n, zy),
(2.39)

where

EmQ)" P
mr)P{Z,>0} 7.~

h(k,n,z) = z esuppi. (2.40)
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Hence,

dTV[g(ZI’la ey Zl’l—knl Zn >0)a 3(209 ey Zk,,)]
1 ~ ~ -
=5 >, PlZy=z0.....Zk =z, = ka2,

20,2k € SUPP
+ 1P{Z;¢supp for some n — k, <j<n|Z,>0}
= YEI1 = h(knsn, Z1,) | + 3 P{Z,t, ¢ sUpD #| Z, >0}, (2.41)
where for the last equality we have used the fact that if Z; € supp7 = R, then
Zijy1 € RU{0}.
Clearly, to prove (1.25) we may assume k, — oo with no loss of generality. Then
the first part of Theorem 1.4 and Corollary 2.2 imply

lim P{Z,_, ¢supp?|Z,>0} =0. (2.42)
n—0o0

For the other term on the right-hand side of (2.41) note that, by Theorem 1.1 and
Corollaries 2.2 and 2.3,

lim A(k,,n,z) =1 (2.43)
n—0o0
for every z € supp 7. Hence, by the triangle inequality,

lim sup E|1 — h(ky,n, Zy)|

n—oo

< lim sup [P’{an >z} + lim sup E[i(k,, n, Zk”); an > z]. (2.44)

n— 00 n— 00

By Corollary 2.2, the first term on the right-hand side of (2.44) tends to 0 as z — oc.
For the second term observe that, by (1.26), (1.27) and Proposition 2.1(i),

= ~kn A Fn A
P{Z,, =y} = Z P, <mfr) Z PP, = m(r)ry,

xeN xeN

for every y € supp 7. Consequently (recall (2.40), Theorem 1.1 and Corollary 2.2 and
set h(k,n, y)=0, if y¢suppr),

lim sup E[i(k,, n, Zy,); Zx,>z] = lim sup Z hkn,n,y) PAZy,, = )

n—00 =00 y—z11
E n o0 —k,
ol P(Z,>0] 2V

— 0! <1 = @) 50 asz— o0 (245)

y=1
Letting z — oo in (2.44) we obtain

lim E|1 — h(k,,n,Zy,)| = 0. (2.46)

n—00

Putting together (2.41),(2.42) and (2.46) proves (1.25).
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The asserted properties of the transition matrix P have already been established in
the proofs of Proposition 2.1 and Corollary 2.2. The convergence of the P-chain is
immediate from (1.27) and (2.10). O
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