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Abstract

Cramér’s theorem provides an estimate for the tail probability of the maximum of a random walk with
negative drift and increments having a moment generating function finite in a neighborhood of the origin.
The class of (g, F)-processes generalizes in a natural way random walks and fractional ARIMA models
used in time series analysis. For those (g, F)-processes with negative drift, we obtain a logarithmic estimate
of the tail probability of their maximum, under conditions comparable to Cramér’s. Furthermore, we exhibit
the most likely paths as well as the most likely behavior of the innovations leading to a large maximum.
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1. Introduction

Cramér’s theorem on the maximum of a random walk with negative drift provides an estimate
for the tail probability of this maximum when the moment generating function of the increments
is finite in a neighborhood of the origin. Specifically, writing M for the maximum of the random
walk, it asserts that there are constants c and θ such that

P{M > t} ∼ ce−θ t (1.1)

as t tends to infinity; the constants c and θ are explicit, but their formulas are irrelevant to the
current discussion. We refer the reader to [22, Section XI.7] for a proof of Cramér’s theorem.
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The purpose of this paper is to make a first step toward an extension of Cramér’s result to a
wider class of stochastic processes which encompass some fractional ARIMA ones. As explained
in [4] where we dealt with the analogous problem in the heavy tail context, the motivations
are manifold. To summarize, besides the original application to insurance mathematics which
motivated Cramér, other areas of applications exist, such as queueing theory — the connection
between risk and queueing theory was pointed out in [41] (see e.g. [31] for an account on this
connection); furthermore, on a more fundamental level, a certain analogy, described in Barbe and
McCormick [4], has been developed between the asymptotic theory of the usual random walk
and that of some FARIMA processes, and it is natural to investigate to what extent this analogy
carries over in the context of Cramér’s theorem.

Previous authors have considered extensions of Cramér’s result to processes with dependent
innovations. For instance, using a martingale technique, Gerber [25] considered bounded ARMA
increments. His result was extended by Promislow [42] who removed the boundedness assump-
tion and dealt with a larger class of increments. In contrast, using large deviations theory, building
upon the work of Burton and Dehling [11] as well as Iscoe et al. [30], Nyrhinen [38–40] consid-
ered increments following a stationary linear process with some having a Markovian structure.
Müller and Pflug [37] extended some of Nyrhinen’s results by relating the asymptotic behavior of
the moment generating function of the ruin process at time n, as n tends to infinity, to the behav-
ior of its maximum, hence showing that the Gärtner–Ellis [24,21] approach in large deviations
leads to a ruin probability estimate. A common feature of these works is that the processes under
consideration exhibit short range dependence in order to have an explicit behavior of some mo-
ment generating functions. In contrast, the study of ruin probability associated with continuous
time processes has recently focused on long range dependent models. For instance, combining
Duffield and O’Connell [19] with Chang et al. [12] yields ruin probability estimates for some
nonnecessarily Gaussian long range memory processes modeled after the fractional Brownian
motion. More precise results were obtained by Hüsler and Piterbarg [29] for some Gaussian pro-
cesses. Our results may be viewed as non-Gaussian and discrete analogues of those continuous
ones, in the sense that we are interested in processes exhibiting long range dependence. Inter-
estingly, for some values of their parameters, the processes considered in this paper, suitably
rescaled and normalized, converge to some fractional Brownian motions.

A true extension of Cramér’s theorem to FARIMA processes seems beyond what one can
achieve at the present, and we will only consider a logarithmic form of it, namely, after taking
the logarithm in (1.1),

lim
t→∞

t−1 log P{M > t} = −θ.

The paper is organized as follows. The class of stochastic processes which we will consider
and the main result are described in the next section. In Section 3 we describe the most likely
scenario leading to a ruin, that is to a large maximum of the processes under consideration.
Section 4 contains a broad outline of the proof. In Section 5, we prove some large deviations
results which are of independent interest and lead to the proof – inspired by Collamore [13] – of
the results of Section 2. The result of Section 3 is proved in Section 6. Some of the easier proofs
are omitted or only outlined; their full version can be found in the preprint version of this paper
available at arxiv.org/abs/0811.3460.

Notation. Throughout this paper, if (an) and (bn) are two positive sequences, we say that ‘an is
lower bounded from above by an equivalent of bn’ and write an . bn if an ≤ bn

(
1+ o(1)

)
as n

tends to infinity. The symbol & is defined in an analogous way.

http://arxiv.org/arxiv.org/abs/0811.3460
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2. Main result

Barbe and McCormick [4] introduced (g, F)-processes as a natural extension of FARIMA
processes. To define such a process, we start with a function g which is real analytic on (−1, 1)
and a distribution function F . The function g has a Taylor series expansion

g(x) =
∑
i≥0

gi x i .

Considering a sequence (X i )i≥1 of independent and identically distributed random variables with
common distribution function F , we define the (g, F)-process (Sn)n≥0 by S0 = 0 and

Sn =
∑

0≤i<n

gi Xn−i .

When g(x) = (1 − x)−1, the corresponding process is the random walk associated with the
sequence (Xn)n≥1. Some nonstationary ARMA processes are obtained when g is a rational
function, and FARIMA processes are obtained when g(x) is the product of some negative power
of 1− x and a rational function in x .

For the process to drift toward minus infinity and mimic the behavior of the random walk
involved in Cramér’s theorem, it is natural to impose that the mean µ of F is negative and that

lim
n→∞

∑
0≤i<n

gi = +∞. (2.1)

Indeed, in this case, the expectation of Sn drifts toward minus infinity. A consequence of (2.1) is
that g has a singularity at 1. To obtain a satisfactory theory, we need to restrict the type of
singularity by assuming that g is regularly varying at 1 of positive index γ , meaning, as explained
for instance in [7], that there exists a positive γ such that for any positive λ,

lim
t→∞

g
(
1− 1/(λt)

)
g(1− 1/t)

= λγ .

This assumption is satisfied by ARIMA processes.
Let Id be the identity function on the real line. We then consider a function U , defined up to

asymptotic equivalence by the requirement

g(1− 1/U ) ∼ Id

at infinity. This function, which plays a key role in our result, is necessarily regularly varying at
infinity of index 1/γ . However, for notational simplicity, writing Γ (·) for the gamma function, it
will be better to use the function

V = Γ (1+ γ )1/γU,

which could alternatively be defined by the requirement g(1− 1/V ) ∼ Γ (1+ γ )Id at infinity.
In order to concentrate on the principles and the key arguments, we assume throughout

this paper that the coefficients gi are nonnegative. This restriction can be overcome with the
introduction of the proper tail balance condition.

To have a compact notation, we introduce the kernel

kγ (u) =

{
γ (1− u)γ−1 if 0 ≤ u < 1,
0 if u ≥ 1,

defined on the nonnegative half-line.
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Further notation related to large deviations theory is needed in order to state our main result.
As the proof shows, the appearance of some large deviations formalism is not coincidental.
Cramér’s theorem assumes that the moment generating function

ϕ(λ) = EeλX1

is finite in a neighborhood of the origin. A classical consequence of Hölder’s inequality is that
logϕ is convex. This implies that the function

λ 7→

∫ 1

0
logϕ

(
λkγ (u)

)
du (2.2)

is convex as well on its domain. This function will be of importance in our results. It is not clear
a priori that this function is nontrivial in the sense that if γ is less than 1 it could be infinite for
all nonvanishing λ. This suggests that we should consider two cases, according to the finiteness
of the integral involved in (2.2).

The convex conjugate (see e.g. [43]) of the function involved in (2.2), at a nonnegative
argument a, is

J (a) = sup
λ>0

(
aλ−

∫ 1

0
logϕ

(
λkγ (u)

)
du
)
.

With a moment generating function ϕ one also associates the corresponding mean function
m, which is the derivative (logϕ)′ — see [5,10] or [34].

The following convention will be convenient. We say that a (g, F)-process satisfies the
standard assumption if it satisfies the following:

Standard assumption. The function g is regularly varying of positive index at 1 and its
coefficients (gi )i≥0 are nonnegative. Moreover g0 does not vanish. If the sequence (gn)n≥0
converges to 0, it is asymptotically equivalent to a monotone sequence. The distribution function
F has a moment generating function finite on the nonnegative half-line. The image of the mean
function contains the half-line [0,∞).

With respect to the monotonicity requirement for the sequence (gn)n≥0 involved in the
standard assumption, it will follow from Proposition 1.5.3 in [7] and Lemma 5.1.1 that regular
variation of g implies that (gn)n≥1 is asymptotically equivalent to a monotone sequence whenever
the index of regular variation of g is different from 1.

Let (Sn)n≥0 be a (g, F)-process. If the first k coefficients g0, g1, . . . , gk−1 vanish and gk
does not, then (Sn+k)n≥1 is a (g/Idk, F)-process, and the first Taylor coefficient of g/Idk does
not vanish. Thus, in the standard assumption, the condition that g0 does not vanish bears no
restriction.

Note that in the standard assumption, the condition on the moment generating function is
stronger than in Cramér’s theorem. The assumption on the mean function is a rather standard one
in large deviations theory. Hölder’s inequality implies that logϕ is convex and the mean function
is nondecreasing. Our assumption ensures that the equation m(λ) = x has a solution for every
positive x .

We also say that a (g, F)-process satisfying the standard assumption has a negative mean
if its expectation is negative at all times. Since the innovations are independent and identically
distributed, considering the expectation of the process at time 1, this is equivalent to requiring
that the innovations have negative mean.
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Our first result treats the case where the integral (2.2) is finite. It calls for many remarks, stated
after the theorem, which will clarify both the hypotheses and the conclusion.

Theorem 2.1. Consider a negative mean (g, F)-process which satisfies the standard
assumption. Assume that either one of the following conditions holds:

(i) lim supn→∞max0≤i<n gi/gn is finite;
(ii) limn→∞max0≤i≤n gi/gn = +∞ and − log F is regularly varying with index α such that

αγ > 1; moreover, m′ is regularly varying.

Then, the function J is defined and finite on the nonnegative half-line and the maximum M of the
(g, F)-process satisfies

lim
t→∞

V (t)−1 log P{M > t} = − inf
x>0

x J (x−γ ).

We now make some remarks on the conclusion of the theorem, which will be followed by
remarks on its assumptions.

Writing θ for the negative of the limit involved in its statement, this theorem asserts that

P{M > t} ∼ e−θV (t)(1+o(1))

as t tends to infinity. This leads to the following observation which may constitute a caveat
of pedagogical value. Fix the distribution function F and consider the analytic function g as a
parameter. As we increase its singularity at 1, the process drifts toward minus infinity at a faster
rate, for its mean at time n is µ

∑
0≤i<n gi . One might guess that this makes it harder for the

process to reach a high threshold. However, our theorem asserts that the logarithmic order of
this probability is −V (t), which becomes larger with g. So, making the mean diverge to minus
infinity faster makes it more likely for the process to reach a high level! This phenomenon will
be explained in the next section.

In the same spirit, it follows that multiplying the X i by a scale factor σ divides θ by σ 1/γ .
Thus, increasing the drift toward minus infinity through a scaling increases the likelihood for M
to take very large values.

On a different note, we see that as in Cramér’s theorem, the tail of the distribution function of
the increments is involved in the conclusion of Theorem 2.1 only in the constant θ and not in the
logarithmic decay V .

It is also of interest to note that if γ is greater than 1, then V � Id at infinity. In this
case, Theorem 2.1 shows that the distribution of the maximum of the process is subexponential,
even though the innovations are superexponential. Such a possibility was observed in a different
context by Kesten [33].

Regarding the assumptions of Theorem 2.1, note that in case (i) we must have γ at least 1. In
case (ii), the condition that max0≤i≤n gi/gn diverges to infinity is equivalent to the convergence
of (gn)n≥0 to 0, which forces γ to be at most 1.

Let β be the conjugate exponent of α, that is such that α−1
+ β−1

= 1. It follows from
Kasahara’s theorem [7, Theorem 4.12.7] that − log F is regularly varying of index α if and only
if logϕ is regularly varying of index β. Since logϕ is convex, its derivative is monotone, and the
monotone density theorem combined with Kasahara’s theorem implies that − log F is regularly
varying of index α if and only if m is regularly varying of index β − 1. The assumption on m′

in Theorem 2.1 is stronger. This assumption is not completely satisfactory since its meaning in
terms of the distribution function is not clear.
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Under the assumptions of Theorem 2.1, we must have β − 2 > −1. Hence, using Karamata’s
theorem in addition to the previous paragraph, we see that the assumption of Theorem 2.1 on
− log F and m′ is equivalent to the single assumption that m′ is regularly varying of index β − 2
with β(1− γ ) < 1.

Our second result considers the case where the integral involved in (2.2) is infinite, and hence
the function J in Theorem 2.1 is not defined. This essentially occurs when γ is less than 1 and
αγ is at most 1. If γ is less than 1/2 then the centered process Sn − ESn converges in L2. For γ
less than 1/2, let Zn be the linear process

Zn =
∑
i≥0

gi (Xn−i − µ).

In this case, we see that the ruin problem for Sn is rather similar to that of determining the
probability that the process (Zn)n≥1 crosses the moving boundary t − E Sn . This problem is
of somewhat different nature than what is the focus of this paper, for the centered process is
well approximated by a stationary one. Therefore, we will limit ourselves to the case where γ is
greater than 1/2.

We write |g|β for the `β -norm of the sequence of its coefficients, that is for
(∑

i≥0 gβi
)1/β .

Theorem 2.2. Consider a (g, F)-process which satisfies the standard assumption and with
1/2 < γ < 1. Assume furthermore that− log F is regularly varying of index α greater than 1 and
that αγ < 1. Let β be the conjugate exponent of α. Then, the maximum M of the process satisfies

log P{M > t} ∼ |g|−αβ log F(t).

as t tends to infinity.

Comparing Theorems 2.1 and 2.2, we see that in Theorem 2.2, the condition αγ < 1 forces
the rate of growth of − log F(t), regularly varying of index α, to be much slower than that of
U (t), regularly varying of index 1/γ .

3. How to go bankrupt?

The purpose of this section is to determine the most likely paths which lead to the maximum
of our (g, F)-processes to reach a high threshold. Beyond its relevance to choosing interesting
alternatives in change point problems, in the context of ruin probability, this amounts to finding
the most likely way of becoming bankrupted. In a different context, high risk scenarios have been
the subject of Balkema and Embrechts [2] monograph where further discussion of the topic may
be found. More closely related to the topic of this paper is the work of Chang et al. [12] in the
continuous setting, who consider the analogous problem for fractional integrals of continuous
time processes. In fact we are seeking more information. Not only are we interested in the
most likely paths, but also we would like to understand how they arise, and, therefore, have a
description of the innovations as well. For the heavy tail case, it is shown in [4] that a large value
of the maximum of the process is most likely caused by a large value of an innovation. In contrast,
in a setting slightly different than that of the current paper, but nonetheless related, for the usual
random walk, [15, Theorem 1] shows that a large deviation is likely caused by a cooperative
behavior of the increments which pushes the sum upward. More precisely, Csiszár’s result
implies that the conditional distribution of the first increment, given that the sum Sn exceeds
an unlikely threshold nu, converges to the distribution dFu(x) = em←(u)x dF(x)/ϕ ◦ m←(u).
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The distribution dFu has mean u. For the usual random walk, since the increments are
exchangeable given their sum, Csiszár’s result asserts that, loosely, a randomly chosen increment,
or a typical increment, has a conditional distribution about dFu . Thus, asymptotically, the bulk
of the increments behave like a random variable of mean u under the conditional distribution
that the random walk at time n exceeds nu. We refer the reader to [17] for a refined result in the
framework of exponential families.

In general, for (g, F)-processes, the innovations are not exchangeable given the value of the
process at time n, and, paralleling what has been done for the random walk, it is of interest to
identify the cooperative behavior of the increments, if any, which makes the process reach a high
level.

Besides a theoretical understanding, this type of conditional limiting result has some bearing
on techniques of simulation of rare events by importance sampling [27]. Indeed, when specialized
to the regular random walk, the work of Sadowsky [45] gives a rationale for using the limiting
conditional distribution of the increments to simulate unlikely paths of random walks using
importance sampling; see also [18]. Our result is a key building block for extending this technique
to some FARIMA processes, and, more generally, to (g, F)-processes.

To investigate these questions, we consider first the rescaled trajectory

St (λ) = SbλV (t)c/t, λ ≥ 0.

Next, to study the behavior of the innovation, we consider the sequential measure

Mt =
1

V (t)

∑
i≥1

δ(i/V (t),X i )

which puts mass 1/V (t) at each pair
(
i/V (t), X i

)
. In contrast with a standard empirical measure

which would put equal mass on each innovation up to some fixed time, the sequential measure
keeps track of the sequential ordering of the innovation through the first component i/V (t).

Of further interest is also the normalized first time that the process reaches the level t ,

Nt =
1

V (t)
min{n : Sn > t}.

In order to speak of convergence of the stochastic process St , we view it in the Skorohod space
D[ 0,∞) equipped with the Skorohod topology [6,35].

In what follows, we call [ 0,∞) × R the right half-space. A subset of the right half-space of
the form [ a, b ] × R is called a vertical strip.

The measure Mt belongs to the space M([ 0,∞) × R) of σ -finite measures on the right
half-space. We consider this space equipped with a topology between those of vague and weak∗
convergences defined as follows. Let CK,b([ 0,∞)×R) be the space of all real-valued continuous
and bounded functions on the right half-space, supported on a vertical strip. A basis for the
topology on M([ 0,∞)× R) is defined by the sets{

µ ∈ M([ 0,∞)× R) : ∀i = 1, . . . , k,

∣∣∣∣∫ fi d(µ− ν)

∣∣∣∣ < ε

}
,

indexed by

ν ∈ M([ 0,∞)× R), fi ∈ CK,b([ 0,∞)× R), ε > 0.

In this paper, except when specified otherwise, all convergences of measures on the right half-
space are for this topology.
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Our next result gives the limit in probability of the various quantities introduced, conditionally
on having the process reaching the level t , and under the assumptions of Theorem 2.1. We assume
that

τ = arg min
x>0

x J (x−γ ) is unique. (3.1)

Furthermore, we define the constant A to be the solution of

τ−γ =

∫ 1

0
kγ (u)m

(
Akγ (u)

)
du. (3.2)

Let L be the Lebesgue measure. We define the measure M by its density with respect to the
product measure L ⊗ F ,

dM
d(L ⊗ F)

(v, x) =
exp

(
Akγ (v/τ)x

)
ϕ
(

Akγ (v/τ)
) . (3.3)

In particular, since kγ vanishes on [ 1,∞), the measure M coincides with L⊗ F on [ τ,∞)×R.
We also define the function

S(λ) =
∫ λ

0
γ (λ− v)γ−1m

(
Akγ (v/τ)

)
dv. (3.4)

Writing

S(λ) = λγ
∫ 1

0
kγ (v)m

(
Akγ (vλ/τ)

)
dv

and using (3.2), we see that S(τ ) = 1.
The following result describes the most likely ruin scenario.

Theorem 3.1. Under the assumptions of Theorem 2.1, the following hold in probability under
the conditional probability given M > t as t tends to infinity:

(i) Nt converges to τ ;
(ii) Mt converges to M;

(iii) moreover, if the moment generating function of |X1| is finite in a neighborhood of the origin,
then St converges locally uniformly to S .

Loosely speaking, the meaning of assertion (ii) is that the conditional distribution of XbvV (t)c
given M > t converges to the measure

eAγ (1−v/τ)γ−1x

ϕ
(

Aγ (1− v/τ)γ−1
)dF(x) if v ≤ τ

dF(x) if v > τ,

with mean m
(

Aγ (1− v/τ)γ−1
)

if v < τ , and µ if v ≥ τ . Thus it asserts that a large value of M
is likely caused by a cooperative behavior of the random variables up to a time τV (t)

(
1+ o(1)

)
,

while the remainder of the innovations keep their original distribution. This somewhat confirms
that the Cramér ruin model might be unrealistic in some situations. Indeed, Theorem 3.1 shows
that for the process to reach the large level t , both the increments and the process, from the
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very beginning, have to follow a very unlikely path. One would think that seeing such a strange
path unfolding, a careful insurer would quickly re-examine the model and raise the premium
accordingly.

Theorem 3.1 also explains why Theorem 2.1 implies that for those (g, F)-processes, adding
more drift toward minus infinity may increase the likelihood of a large maximum. Indeed
Theorem 3.1 indicates that a large value of the maximum is likely to be caused by many
innovation being large; but if the weights (gn)n≥0 are made larger, then comparatively smaller
innovation suffices for the maximum of the process to reach a large value, because the coefficients
(gn)n≥0 amplify the innovations.

We now consider an example of processes of interest and for which the limit involved in
Theorems 2.1 or 2.2 can be made explicit. In general this limit must be evaluated by numerical
methods.

We consider a Gaussian FARIMA process. More specifically, we consider F to be the
Gaussian distribution function with mean µ and variance σ 2, and we introduce two polynomials
Θ and Φ, neither of which vanishes at 1. We consider the function g(x) = (1−x)−γΘ(x)/Φ(x),
so the corresponding (g, F)-process is a FARIMA(Φ, γ,Θ) process whose innovations have
a common distribution function F . For this specific function g we may take U (t) =(
tΦ(1)/Θ(1)

)1/γ .

The moment generating function of the innovations is

ϕ(λ) = eλµ+σ
2λ2/2.

The function involved in (2.2) is then

γ

∫ 1

0
µλγ uγ−1

+
σ 2

2
(λγ uγ−1)2du = λµ+

σ 2

2
λ2 γ 2

2γ − 1
.

This implies that

J (a) = sup
λ

(
aλ− λµ−

σ 2

2
λ2 γ 2

2γ − 1

)
=
(a − µ)2(2γ − 1)

2σ 2γ 2 .

Using standard calculus one more time, we obtain

inf
x>0

x J (x−γ ) =
2(2γ − 1)1/γ−1

σ 2 (−µ)2−1/γ .

Therefore, the conclusion of Theorem 2.1 is that

log P{M > t} ∼ −t1/γ
(Φ(1)
Θ(1)

)1/γ
Γ (1+ γ )1/γ 2(2γ − 1)(1/γ )−1

(µ
σ

)2
(−µ)−1/γ

as t tends to infinity.

To calculate the limiting process S , for simplicity we restrict ourselves to the case where the
mean µ is −1 and the standard deviation σ is 1. Then, m(λ) = λ− 1, and

S(λ) = A
∫ λ∧τ

0
γ (λ− v)γ−1γ

(
1−

v

τ

)γ−1
dv − λγ .
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The following graphic shows the shape of the limiting function when γ is 2/3, 1 and 2.

We conclude this section by some remarks concerning Theorem 3.1 and its proof. A close look
at the proofs of Theorems 2.1 and 3.1 reveals that the same technique allows one to derive a large
deviations principle for the process St and the measure Mt under the conditional distribution of
M exceeding t , as t tends to infinity, in the spirit of Collamore [14].

One can also see that under the assumptions of Theorem 2.1, the large deviations principle
for FARIMA processes proved in [3] remains true when the order of differentiation γ is between
1/2 and 1 and that the logarithm of the tail of the distribution function of the innovation is
regularly varying with index greater than 1/γ . This has the following interesting consequence as
regards the standard partial sum process, Πn(λ) = n−1∑

1≤i≤nλ X i , 0 ≤ λ ≤ 1. Consider
the Cramér transform of the increment, I (x) = supλ

(
λx − logϕ(λ)

)
. Mogulskii’s theorem

[36] (see also [16], Section 5.1) asserts that the partial sum process obeys a large deviations
principle, in the supremum norm topology. We can write the partial sum process at time t
as
∫ λ

0 dΠn(v) =
∫
1[0,λ)(v)dΠn(v). One could then wonder whether some fractional integral

of Πn still obeys a large deviations principle. While an integration by parts shows that for
γ greater than 1, the process λ ∈ [ 0, 1 ] 7→

∫ λ
0 (λ − v)

γ−1dΠn(v) obeys a large deviation,
the proof of Theorem 3.1 shows that such a large deviations principle still holds if 1/2 <

γ < 1, provided that log F is regularly varying of index greater than 1/γ . The Gaussian
case, α = 2, appears to be a boundary one corresponding to γ = 1/2; and this matches
the fact that the Brownian motion belongs to any set of functions with Hölder exponent less
than 1/2.

4. Generalities

The study of first-passage times using large deviations is now a classical topic which has
been presented in book form by Freidlin and Wentzell [23]. The purpose of this section is to
give another short variation on this theme, with a formalism more suitable for the problems
considered in this paper. What follows is inspired by the work of Collamore [14] as well as
Duffield and Whitt [20]. However, in contrast to those authors, we are interested in processes
which are not Markovian, not mixing and not monotone.

Some notation will purposely be identical to those used in the previous sections, the reason
being that they have the same meaning when specialized to the context of the previous sections;
this will be clear during the proofs of Theorems 2.1, 2.2 and 3.1.

In what follows, sequences are viewed as functions defined on the nonnegative half-line and
evaluated at the integers. Therefore, if we write (an)n≥1 for a sequence, we will also speak of the
function a, meaning that an = a(n) for every positive integer n. If we are given the sequence,
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it is understood that the function a is obtained by a linear interpolation say; other ‘reasonable’
interpolation procedures would do just as well.

In this section we consider a stochastic process (S0
n)n≥1 and a sequence (sn)n≥1 which

diverges to infinity. We are interested in evaluating the probability that the process (S0
n)n≥1

crosses the moving boundary (t + sn)n≥1 for large values t . In other words, assuming that
M = maxn≥1 S0

n − sn is well defined, we are interested in finding an estimate of

P{∃n ≥ 1 : S0
n > t + sn} = P{M > t}

as t tends to infinity. Assuming that the function

s is regularly varying of positive index γ , (4.1)

there exists a function V , defined, up to asymptotic equivalence, by the relation s ◦ V ∼ Id at
infinity. Also of interest is the normalized first-passage time at which the process crosses the
moving boundary,

Nt =
1

V (t)
min{n ≥ 1 : S0

n > t + sn}.

Suppose that (S0
n)n≥1 obeys a large deviations principle in the sense that there exist two

functions r and I such that for any positive x ,

log P{S0
n > sn x} ∼ −rn I (x) (4.2)

as n tends to infinity. Since the left hand side of (4.2) is monotone in x , so is the right hand side,
and, necessarily, I is monotone as well as continuous almost everywhere. If we assume more,
namely that

I is continuous, (4.3)

then the asymptotic equivalence in (4.2) holds locally uniformly in x over the nonnegative
half-line, because a pointwise convergent sequence of nondecreasing functions whose limit is
continuous converges locally uniformly (see [44], chapter 7, exercise 13).

For our problem, we will be able to assume that

r is regularly varying of positive index ρ. (4.4)

In this case, r is asymptotically equivalent to a nondecreasing function, and we will consider,
without any loss of generality, that r is nondecreasing. We define θ as

θ = inf
x>0

xρ I (x−γ + 1). (4.5)

We will also assume that the process is unlikely to reach the moving boundary t + sn before
a time of order V (t), in the sense that

lim
ε→0

lim sup
t→∞

1
r ◦ V (t)

log P{∃n : 1 ≤ n ≤ εV (t) ; S0
n > t + sn} ≤ −θ. (4.6)

Equipped with these perhaps drastically looking – but to be proved useful – conditions, we
have the following.
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Proposition 4.1. If (4.1)–(4.6) hold, then

log P{M > t} ∼ −θr ◦ V (t)

as t tends to infinity. Moreover, if

τ = arg min
x>0

xρ I (x−γ + 1) exists and is unique, (4.7)

then Nt converges to τ in probability given M > t , as t tends to infinity.

Remark. If we replace assumption (4.2) by

log P{S0
n > xsn} . −rn I (x) (4.8)

as n tends to infinity, the proof of Proposition 4.1 shows that

log P{M > t} . −θr ◦ V (t)

as t tends to infinity. This remark will be useful for proving Theorem 2.2.

In order to prove Proposition 4.1, we recall that if r is a nondecreasing regularly varying
function of positive index, then∑

n≥k

e−rn . e−rk (1+o(1)) (4.9)

as k tends to infinity (see Theorem 4.12.10 in [7])

Proof of Proposition 4.1. The proof of the first assertion consists in establishing the proper
upper and lower bounds.

Upper bound. Let ε be a positive real number less than 1. For t large enough and uniformly in n
between εV (t) and V (t)/ε,

rn = r
(

V (t)
n

V (t)

)
∼ r ◦ V (t)

( n

V (t)

)ρ
and

t

sn
=

t

s
(

V (t) n
V (t)

) ∼ ( n

V (t)

)−γ
as t tends to infinity. In particular,

rn I
( t

sn
+ 1

)
∼ r ◦ V (t)

( n

V (t)

)ρ
I
(( n

V (t)

)−γ
+ 1

)
& r ◦ V (t)θ.

Combining this lower bound with the large deviations assumption (4.2) yields, in the range of n
between εV (t) and V (t)/ε and for t large enough,

P{S0
n > t + sn} ≤ exp

(
−r ◦ V (t)θ(1− ε)

)
. (4.10)

It follows that for t large enough,

P{∃n : εV (t) ≤ n ≤ V (t)/ε ; S0
n > t + sn} ≤

V (t)

ε
exp

(
−r ◦ V (t)θ(1− ε)

)
.
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Still using the large deviations assumption (4.2), for n at least V (t)/ε and t large enough, we
have

P{S0
n > t + sn} ≤ P{S0

n > sn} ≤ e−rn I (1)/2.

Thus, for t large enough, using (4.9),

P{∃n : n ≥ V (t)/ε ; S0
n > t + sn} ≤

∑
n≥V (t)/ε

e−rn I (1)/2

. exp
(
−r ◦ V (t)

I (1)
2ερ

(
1+ o(1)

))
.

Taking ε small enough, it follows that

log P{∃n : n ≥ V (t)/ε ; S0
n > t + sn} . −2r ◦ V (t)θ

as t tends to infinity. Using assumption (4.6), we conclude that

log P{M > t} . −r ◦ V (t)θ

asymptotically.

Lower bound. Let ε be a positive real number and let x be a positive real number such that
xρ I (x−γ + 1) ≤ θ + ε. Let n be the integer part of xV (t). Then

P{M > t} ≥ P{S0
n > t + sn}.

From the large deviations hypothesis (4.2), we then deduce

log P{M > t} & −r ◦ V (t)(θ + ε). (4.11)

Since ε is arbitrary, the first assertion of Proposition 4.1 follows.
To prove the second assertion, note that estimate (4.2), with (4.7), implies that

P{|Nt − τ | > η | M > t} ≤
P{∃n : |n − τV (t)| > ηV (t) ; S0

n > t + sn}

P{M > t}

tends to 0 as t tends to infinity. The second assertion follows. �

5. Proof of results of Section 2

We will assume that the mean of the innovations, µ, is −1. Other values of µ will be dealt
with by a scaling argument.

To obtain pleasing expressions, for every positive real number r we write g[0,r) for
∑

0≤i<r gi
and we also write sn for the negative of the mean of Sn , that is sn = g[0,n) — recall our assumption
that µ is −1 until further notice. With the notation of the previous section, S0

n is the centered
process Sn − E Sn = Sn + sn . Moreover, V is defined by sbV (t)c ∼ t as t tends to infinity.

5.1. Preliminary

The following lemma, relating gn and g[0,n) to g(1 − 1/n), will be very useful. It essentially
restates Karamata’s Tauberian theorem for power series ([7], Corollary 1.7.3) and is proved in
Lemma 5.1.1 in [4]. We state it here for the sake of making the proof easier to read, for it is
fundamental in our problem and we will refer to it often.
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Lemma 5.1.1. The following asymptotic equivalences hold as n tends to infinity, uniformly in x
in any compact subset of the positive half-line:

(i) gbnxc ∼
xγ−1

Γ (γ )
g(1− 1/n)

n ,

(ii) g[0,nx) ∼
xγ

Γ (1+ γ ) g(1− 1/n).

In particular, this implies that gn ∼ γ g[0,n)/n as n tends to infinity, so locally uniformly in
any positive c,

gbcV (t)c ∼ γ cγ−1 t

V (t)
(5.1.1)

as t tends to infinity.
We introduce the notation gi/n for γ gi/gn in which the subscript i/n has clearly nothing to

do with the division of i by n but serves as a mnemonic for the division of gi by gn . In particular,
gn−i/n is γ gn−i/gn . Lemma 5.1.1 asserts that gn−i/n ∼ kγ (i/n) as n tends to infinity and i/n
stays bounded away from 1.

The following easy lemma, whose proof is omitted, is recorded for further reference.

Lemma 5.1.2. Let

c1 = lim inf
n→∞

gn and c2 = lim sup
n→∞

max
0≤i≤n

gi/n .

(i) If c1 is positive, then U . Id/
(
c1Γ (γ )

)
at infinity.

(ii) Assume that c2 is finite. If the sequence (gn)n≥0 is bounded, then U . c2Id/γ maxi≥0 gi ;
otherwise U = o(Id) at infinity.

Our next lemma is perhaps the heart of the proof, which ultimately relies on approximation of
Riemann sums by a Riemann integral, a modicum of regular variation, and the exponential form
of Markov’s inequality.

We define the sequence of probabilities measures

Γn = n−1
∑

1≤i≤n

δ(i/n,gn−i/n), n ≥ 1.

Lemma 5.1.3. The sequence of probability measures (Γn)n≥1 converges weakly ∗ to the measure∫ 1
0 δ(u,kγ (u))du.

Proof. Let f be a nonnegative continuous and bounded function on [ 0, 1 ] × R. We write
| f |[0,1]×R for its supremum on the strip [ 0, 1 ] × R. Let ε be a positive real number less than 1.
Note that

n−1
∑

(1−ε)n<i≤n

f (i/n, gn−i/n) ≤ ε| f |[0,1]×R.

The result then follows from Lemma 5.1.1, which implies that gn−i/n ∼ kγ (i/n) whenever i/n
stays bounded away from 1, and from the approximation of a Riemann sum by the corresponding
integral. �

In order to simplify the notation during the proof and make a later scaling argument easier
to follow, we write ϕ0 for the moment generating function of the centered random variable
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X1/(−µ)

)
+ 1. Furthermore, we write

J0(a) = sup
λ>0

(
aλ−

∫ 1

0
logϕ0

(
λkγ (u)

)
du
)
. (5.1.2)

The equality ϕ0(λ) = eλϕ(λ/− µ), valid for all λ positive, yields

J0(a + 1) = J (−µa). (5.1.3)

5.2. Proof of Theorem 2.1

Recall that except if specified otherwise, we consider the mean µ to be −1. Also, throughout
this subsection, we assume that the hypotheses of Theorem 2.1 hold, even if this is not specified.

The proof is based on a large deviations estimate which is the analogue for the (g, F)-process
of the classical estimate of Chernoff for the sample mean. The proof requires several lemmas.

Our first lemma will be useful in taking limits in various sums involving the moment
generating function.

Lemma 5.2.1. Let h be a continuous function on the nonnegative half-line. Assume g satisfies the
assumption of Theorem 2.1. If limn→∞max0≤i≤n gi/n = ∞, assume further that h is regularly
varying of index β less than 1/(1− γ ). Then, locally uniformly in λ in (0,∞),

lim
n→∞

n−1
∑

1≤i≤n

h(λgn−i/n) =

∫ 1

0
h
(
λkγ (u)

)
du,

and this limit is finite.

When limn→∞max0≤i≤n gi/n = ∞ and γ is 1, the condition on h should simply be read as h is
regularly varying of some positive index.

Proof. Note first that in both cases, limε→0
∫ ε

0 h(λuγ−1)du = 0 and the integral involved in the
limit in the lemma is indeed finite.

Once the limit is established for a fixed λ, it will be clear that using the uniform convergence
theorem for regularly varying functions, the limit is locally uniform in λ. Thus, up to changing
the function h, it suffices to prove the result only when λ is 1.

For any positive real number c we define the function hc = h( · ∧ c). These functions are
continuous and bounded.

If lim supn→∞max0≤i≤n gi/n is finite, we take c to be twice this limit, so that for n large
enough, max0≤i≤n gi/n is at most c. Then the result follows from Lemma 5.1.3 and the local
uniform continuity in λ of the functions hc(λ · ).

If limn→∞max0≤i≤n gi/n is infinite, let ε be a positive real number less than 1. Since
limn→∞maxεn≤i≤n gi/n = ε

γ−1 is finite, it suffices to prove that

lim
ε→0

lim sup
n→∞

n−1
∑

0≤i≤εn

h(gi/n) = 0. (5.2.1)

This follows from Lemma 5.1.1 and standard regular variation theoretic arguments, using Potter’s
bound ([7], Theorem 1.5.3). �

Equipped with Lemma 5.2.1, we can prove the following large deviation principle. Recall that
we assume for the time being that the distribution function F has mean −1. We write F0 for the
cumulative distribution function F(· − 1). As the subscript indicates, its mean is 0.
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Proposition 5.2.2. Let (S0
n)n≥0 be a centered (g, F0)-process. Under the assumptions of

Theorem 2.1, for any nonnegative x,

lim
n→∞

n−1 log P{S0
n > xg[0,n)} = −J0(x).

Moreover, the limit is locally uniform in x on the set where J0 is finite.

Proof. The proof is modeled after the standard one for the mean. We will concentrate on
proving a pointwise version in x because the following purely analytical argument gives the local
uniformity. If the pointwise result holds, it asserts that the sequence of nonincreasing functions
(n−1 log P{Sn > g[0,n) · })n≥1 converges to the function −J0; since the limit is continuous,
and monotone as a limit of monotone functions, the convergence is locally uniform (see [44],
chapter 7, exercise 13).

Lemma 5.1.1 implies that γ g[0,n) ∼ ngn while Lemma 5.2.1 yields, in view of the fact that
logϕ0 is regularly varying with index β, the conjugate exponent to α, and αγ > 1, that

n−1
∑

1≤i≤n

logϕ0(λgn−i/n) ∼

∫ 1

0
logϕ0

(
λkγ (u)

)
du

as n tends to infinity. The result follows from the Gartner–Ellis theorem (see e.g. [16], Theorem
2.3.6). �

Proving Theorem 2.1 requires a couple more lemmas related to the function J0.

Lemma 5.2.3. The function J0 is positive on the positive half-line.

Proof. Let J ∗0 be the function

J ∗0 (λ) =
∫ 1

0
logϕ0

(
λkγ (u)

)
du.

Both J ∗0 and J ∗0
′ vanish at the origin, while J ∗0

′′(0) is positive. In particular, referring to (5.1.2),
taking λ to be x/J ∗0

′′(0), we see that as x tends to 0,

J0(x) ≥
x2

2J ∗0
′′(0)
+ o(x2).

Thus, J0 is positive on an open interval with left endpoint the origin. Since J0 is a supremum of
nondecreasing functions of x it is also nondecreasing and the result follows. �

Lemma 5.2.4. For any positive real number c, the function x ∈ [ 0,∞) 7→ x J0(x−γ + c) tends
to infinity at 0 and infinity. Moreover, it reaches its minimum at a positive argument.

Proof. Let c be a positive real number. Lemma 5.2.3 ensures that J0(c) is positive. It follows that
x J0(x−γ + c) tends to infinity with x .

Assume that γ is at least 1. Since for any positive θ the inequality J0(x) ≥ xθ − J ∗0 (θ) holds,
we see that J0 ultimately grows faster than any multiple of the identity. Thus, x J0(x−γ +c) tends
to infinity as x tends to 0, and this proves the lemma in this case.

Assume that γ is less than 1. The assumption αγ > 1 ensures that− log F is regularly varying
of index α greater than 1. By Kasahara’s [32] Tauberian theorem ([7], Theorem 4.12.7), logϕ0 is
regularly varying of index β, the exponent conjugate to α. This implies that J ∗0 is also regularly
varying of index β at infinity. By Bingham and Teugels’ [8] theorem (see [7], Theorem 1.8.10),
this implies that J0 is regularly varying of index α. Since αγ is greater than 1, it then follows
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that x J0(x−γ + c) tends to infinity as x tends to 0 ([7], Proposition 1.3.6). This proves the first
part of the lemma.

The second part of the lemma follows, because the function x J0(x−γ + c) is continuous on
the positive half-line. �

Our next lemma shows that the process S0
n is unlikely to reach a high threshold t before a time

of order V (t).

Lemma 5.2.5. The following holds:

lim
ε→0

lim sup
t→∞

1
V (t)

log P{∃n : n ≤ εV (t) ; S0
n > t} = −∞.

Proof. We distinguish according to whether max0≤i≤n gi/n remains bounded or not.
Assume first that lim supn→∞max0≤i≤n gi/n is some finite positive number c. Necessarily, γ

is at least 1. In that case, (5.1.1) implies

max
0≤i≤εV (t)

gi .
c

γ
gbεV (t)c ∼ cεγ−1 t

V (t)

as t tends to infinity. In particular, uniformly in i nonnegative and at most εV (t), and as t tends
to infinity, t/gi & V (t)ε1−γ /c. Moreover, Lemma 5.2.1 shows that∑

1≤i≤n

logϕ0(λgn−i/n) . n
∫ 1

0
logϕ0

(
λkγ (u)

)
du

as n tends to infinity. Then, using the Markov exponential inequality, for any fixed positive λ, for
any n large enough and at most εV (t),

log P{S0
n > t} . −λγ

V (t)

2c
ε1−γ

+ 2n
∫ 1

0
logϕ0

(
λkγ (u)

)
du

provided t is large enough, n is large enough and less than εV (t).
Since γ is at least 1, for n at most εV (t), this upper bound is at most

−V (t)
(
λγ
ε1−γ

2c
− 2ε

∫ 1

0
logϕ0

(
λkγ (u)

)
du
)
.

It can be made smaller than any negative multiple of V (t) by first taking λ positive and then ε
small enough. Hence, there exists n0 such that

lim
ε→0

lim sup
t→∞

max
n0≤n≤εV (t)

1
V (t)

log P{S0
n > t} = −∞. (5.2.2)

For n at most n0, recalling that the mean of X i is −1, we have, since t is positive,

P{S0
n > t} ≤ n0 F0

( t

n0 max
0≤i≤n0

gi

)
.

Since the moment generating function of F0 is finite on the nonnegative half-line, Chernoff’s
inequality implies that − log F � Id at infinity. Lemma 5.1.2 shows that in the present case, U
grows at most like a multiple of the identity at infinity. This implies that the function U−1 log F
tends to minus infinity at infinity. We conclude that (5.2.2) holds with n0 being 1.

We now consider the case where max0≤i≤n gi/n tends to infinity with n. In this case, the
sequence (gn)n≥0 converges to 0, and, for any η positive, logϕ0 . Idβ+η at infinity. Again, we
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use the exponential Markov inequality

log P{S0
n > t} ≤ −λt +

∑
0≤i<n

logϕ0(λgi ), (5.2.3)

taking now λ of the form cV (t)/t for some positive constant c to be determined.
Since the standard assumption ensures that (gn)n≥0 is asymptotically equivalent to a

monotone sequence, min0≤i≤εV (t) gi & gbεV (t)c as t tends to infinity. Using (5.1.1), it follows
that λgi & cγ εγ−1 is large whenever c is large and ε is small. Thus, provided c is large enough,
ε is small enough and n is at most εV (t),∑

0≤i<n

logϕ0(λgi ) ≤ 2
∑

0≤i<n

(λgi )
β+η
≤ 2

(
c

V (t)

t

)β+η ∑
0≤i≤εV (t)

gβ+ηi . (5.2.4)

Since β(γ − 1)+ 1 is positive,∑
0≤i<n

gβ+ηi ∼
n

1+ (γ − 1)(β + η)

(g(1− 1/n)

Γ (γ )n

)β+η
as n tends to infinity, and the bound (5.2.4) is at most

2(γ c)β+ηε(γ−1)(β+η)+1 V (t)

1+ (γ − 1)(β + η)
.

For any fixed ε, the upper bound (5.2.4) can be made less than any a priori given negative number
times V (t) by taking c large enough. This proves the lemma. �

Proof of Theorem 2.1. Comparing (4.2) with Proposition 5.2.2, we may take r to be the identity,
so that ρ is 1; furthermore, still referring to assumption (4.2) and Proposition 5.2.2, we see that
I (x) = J0(x). Using (5.1.3), and since the mean µ is −1, it follows that θ , as defined in (4.5), is

θ = inf
x>0

x J0(x
−γ
+ 1) = inf

x>0
x J (x−γ ). (5.2.5)

The assumptions needed to apply the first part of Proposition 4.1 are satisfied thanks to
Lemma 5.1.1, Proposition 5.2.2 and Lemma 5.2.5. Thus Proposition 4.1 yields Theorem 2.1
when µ is −1.

The result when µ is different than −1 is obtained by a simple rescaling. �

5.3. Proof of Theorem 2.2

As for Theorem 2.1, we first prove Theorem 2.2 whenµ is−1, which we assume from now on.
Our first lemma is an analogue of Lemma 5.2.1 but in the context of Theorem 2.2.
Note that in the context of Theorem 2.2, the conditions αγ < 1 and γ > 1/2 force α to be

less than 2. Therefore, its conjugate exponent, β, is greater than 2.

Lemma 5.3.1. Let λ be a regularly varying function of index greater than (2γ − 1)/(β − 2) and
set λn = λ(n). Under the assumptions of Theorem 2.2,∑

0≤i<n

logϕ0(λngi ) ∼ logϕ0(λn)|g|
β
β

as n tends to infinity.
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Proof. Let σ 2 be the variance of X i . Since logϕ0 ∼ Id2σ 2/2 at the origin, for any positive R
there exists a positive c such that logϕ0 ≤ cId2 on [ 0, R ]. Using Lemma 5.1.1, this implies∑

0≤i<n

1{λngi ≤ R} logϕ0(λngi ) . λ
2
n

g(1− 1/n)2

n
. (5.3.1)

Let ε be a positive real number. Using Potter’s bound, we see that provided λn and λngi are large
enough, and provided that i is large enough for gi to be less than 1,

1
2

gβ+εi ≤
logϕ0(λngi )

logϕ0(λn)
≤ 2gβ−εi .

By a standard regular variation theoretic argument, this implies∑
0≤i<n

1{λngi > R} logϕ0(λngi ) ∼ logϕ0(λn)
∑

0≤i<n

gβi 1{λngi > R}

∼ logϕ0(λn)|g|
β
β (5.3.2)

as n tends to infinity — recall that |g|β is finite here, since β(1− γ ) > 1.
Write ρ for the index of regular variation of λ. Since logϕ0 ◦ λ is regularly varying of index

βρ, and λ2g(1 − 1/Id)2/Id is regularly varying of index 2ρ + 2γ − 1, our assumption that ρ is
greater than (2γ −1)/(β−2) ensures that the right hand side of (5.3.2) dominates the right hand
side of (5.3.1), and the result holds. �

We define the Cramér transform of the centered random variables,

I0(x) = sup
λ>0

(
λx − logϕ0(λ)

)
.

Recall that we assume that µ is −1. We then write F0 for the distribution of the centered random
variable X i + 1.

We can now state and prove the following large deviations inequality.

Proposition 5.3.2. Let (S0
n)n≥0 be a centered (g, F0)-process. Under the assumptions of

Theorem 2.2, for any positive x,

log P{S0
n > xg[0,n)} . −

xα

|g|αβ
I0(g[0,n))

as n tends to infinity.

Proof. Recall that under the assumptions of Theorem 2.2, logϕ0 is regularly varying of index β
and I0 is regularly varying of index α — see the proof of Lemma 5.2.4. Define

λ(t) =
x1/(β−1)

|g|αβ
m←0 (g[0,t)).

This function is regularly varying of positive index γ /(β − 1). We define λn as λ(n). Using
the exponential form of Markov’s inequality and Lemma 5.3.1 – applicable since the inequality
αγ < 1 implies γ /(β − 1) > (2γ − 1)/(β − 2),

log P{S0
n > xg[0,n)} ≤ −λn xg[0,n) +

∑
0≤i<n

logϕ0(λngi )

≤ −
xα

|g|αβ
g[0,n)m

←

0 ◦ g[0,n) + |g|
β
β

xα

|g|αββ
logϕ0 ◦ m←0 (g[0,n))

(
1+ o(1)

)
.
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Since by regular variation logϕ0 ∼ Idm0/β at infinity, the right hand side of the above upper
bound is asymptotically equivalent to

xα

|g|αβ
(Idm←0 )(g[0,n))(−1+ 1/β). (5.3.3)

Upon noting that the maximizing value of λ in the definition of I0(·) is m←0 (·), the chain rule
yields I ′0 = m←0 . Therefore, Idm←0 ∼ α I0 at infinity. We obtain that (5.3.3) is asymptotically
equivalent to −xα|g|−αβ I0(g[0,n)) as n tends to infinity. This proves Proposition 5.3.2. �

Our next result is yet another large deviations inequality. Its statement is suitable for our
application, though its proof gives a somewhat more precise estimate.

Proposition 5.3.3. For any positive real number ζ ,

max
1≤n<ζV (t)

log P{S0
n > t} . −

I0(t)

|g|αβ

as t tends to infinity.

Proof. Let λ(t) = m←0 (t)|g|
−α
β . The exponential Markov inequality implies

log P{S0
n > t} ≤ −λ(t)t +

∑
0≤i<n

logϕ0
(
λ(t)gi

)
. (5.3.4)

Using Potter’s bound and regular variation of logϕ0, there exists a positive R such that uniformly
in n positive and less than ζV (t),∑

0≤i<n

logϕ0
(
λ(t)gi

)
1{λ(t)gi > R} . logϕ0

(
λ(t)

)
|g|ββ . (5.3.5)

Moreover, as was shown in the proof of Lemma 5.3.1, there exists a positive real number c such
that for any n less than ζV (t),∑

0≤i<n

logϕ0
(
λ(t)gi

)
1{λ(t)gi ≤ R} ≤ c

∑
0≤i<n

λ(t)2g2
i

≤ cλ(t)2
∑

0≤i<ζV (t)

g2
i

= O
(
λ(t)2

t2

V (t)

)
.

As a function of t , this asymptotic upper bound is regularly varying of index 2
β−1 + 2 − 1

γ
=

2α − 1
γ
. The upper bound (5.3.5) is regularly varying of index β/(β − 1) = α. Since αγ is less

than 1, we see that 2α − 1/γ is less than α, and, consequently, for n less than ζV (t),∑
0≤i<n

logϕ0
(
λ(t)gi

)
. logϕ0

(
λ(t)

)
|g|ββ ∼ (logϕ0) ◦ m←0 (t)|g|

−α
β .

This implies that the exponent in the upper bound (5.3.4) is asymptotically bounded by an
equivalent of

−|g|−αβ m←0 (t)t + |g|
−α
β logϕ0 ◦ m←0 (t) = −|g|

−α
β I0(t).

The result follows. �
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We now prove a trivial lower bound.

Lemma 5.3.4. For any positive n,

log P{Sn > t} & log F(t)
( ∑

0≤i<n

gβi

)−α/β
as t tends to infinity.

Proof. Let xi be g1/(α−1)
i /

∑
0≤i<n gβi , so that

∑
0≤i<n gi xi = 1. We have

log P{Sn > t} =
∑

0≤i<n

log F(t xi ) ∼ log F(t)
∑

0≤i<n

xαi

as t tends to infinity. The result follows. �

Proof of Theorem 2.2. Lower bound. Applying Lemma 5.3.4, for any positive integer n,

log P{M > t} ≥ log P{Sn > t}

& log F(t)
( ∑

0≤i<n

gβi

)−α/β
.

Consequently, as t tends to infinity,

log P{M > t} & log F(t)|g|−αβ .

Upper bound. We apply the remark following Proposition 4.1. In the present context,
Proposition 5.3.2 shows that (4.8) holds with rn = I0(g[0,n)) and I (x) = |g|−αβ xα . Note that

log F0 ∼ log F at infinity. Since Broniatowski and Fuchs’ [9] Theorem 3.1 implies that, under
the assumption of Theorem 2.2, − log F0 ∼ I0 at infinity, the function r is regularly varying of
index αγ . Referring to Proposition 4.1, we see that θ = |g|−αβ for

inf
x≥0

xαγ (x−γ + 1)α = inf
x≥0
(1+ xγ )α = 1.

Since g[0,V (t)) ∼ t ,

−r ◦ V (t) = −I0(g[0,V (t))) ∼ −I0(t) ∼ log F(t)

as t tends to infinity. Therefore, in view of this and Proposition 5.3.3, we see that condition (4.6)
holds. This proves Theorem 2.2 when µ is −1. The same scaling argument as in the end of the
proof of Theorem 2.1 allows for the extension to other values of µ. �

6. Proof of Theorem 3.1

As for the proof of the results of Section 2, we will prove the result when the mean µ is −1.
In the first two subsections, we prove assertions (i) and (ii). Assertion (iii) follows from assertion
(ii) with standard arguments which are outlined in the last subsection. A scaling argument, which
we omit, similar to that used to prove Theorem 2.1 yields Theorem 3.1 when the mean µ is
arbitrary.

Throughout this section we will use the following obvious fact. Let Et be an event indexed
by t . To prove that P(Et | M > t) tends to 0 as t tends to infinity, it suffices to prove that
P(Et ) = o(P{M > t}) as t tends to infinity.
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6.1. Proof of Theorem 3.1.i

Assume that µ is −1. The assumptions of Proposition 4.1 are satisfied by virtue of
Proposition 5.2.2 and Lemma 5.2.5. From the second assertion of Proposition 4.1 and equality
(5.1.3), we deduce that Nt converges to τ in probability as t tends to infinity and conditionally
on M exceeding t . This is assertion (i) when the mean is −1.

6.2. Proof of Theorem 3.1.ii

We assume that µ is −1. Our next lemma is the analogue of Lemma 5.2.1 specialized to the
context of the proof of Theorem 3.1. Recall that X i has mean −1 for the time being, and that ϕ0
is the moment generating function of the centered random variable X i + 1.

Lemma 6.2.1. Let f be a continuous real-valued and bounded function on [ 0, 1 ] × R. For any
fixed λ,

lim
n→∞

n−1
∑

1≤i≤n

E
(

f
( i

n
, X i

)eλgn−i/n(X i+1)

ϕ0(λgn−i/n)

)
=

∫
f (v, x)

eλkγ (v)(x+1)

ϕ0
(
λkγ (v)

)1[0,1)(v)d(L ⊗ F)(v, x).

Proof. Let c be a number larger than limn→∞max0≤i≤n gi/n . Consider the function

ψ(v, y, x) = f (v, x)
eλ(y∧c)(x+1)

ϕ0
(
λ(y ∧ c)

) .
For n large enough and with Γn the measure defined prior to Lemma 5.1.3,

n−1
∑

1≤i≤n

E
(

f
( i

n
, X i

)eλgn−i/n(X i+1)

ϕ0
(
λgn−i/n)

)
= E

∫
ψ(v, y, X1)dΓn(v, y).

For any fixed x the function ψ(v, y, x) is a continuous and bounded function of (v, y) in
[ 0, 1 ] × R. By Lemma 5.1.3, the sequence of functions

ψn(x) =
∫
ψ(v, y, x)dΓn(v, y), n ≥ 1,

converges pointwise to the function

ψ(x) =
∫ 1

0
ψ
(
u, kγ (u), x

)
du.

Since

|ψ(v, y, x)| ≤ | f |[0,1]×Reλc|x+1|
∣∣∣∣ 1
ϕ0

∣∣∣∣
[0,λc]

,

the dominated convergence theorem implies that Eψn(X1) tends to Eψ(X1) as n tends to infinity,
which is what the lemma asserts. �

Recall that in Section 2 we used the notation θ for

θ = − lim
t→∞

V (t)−1 log P{M > t}.
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Considering the definition of τ in (3.1), that of J0 in (5.1.2), equality (5.1.3), and how θ was
obtained in (5.2.5),

θ = τ J0(τ
−γ
+ 1)

= τ sup
λ>0

(
(τ−γ + 1)λ−

∫ 1

0
logϕ0

(
λkγ (u)

)
du
)
. (6.2.1)

Since m0 is onto the nonnegative half-line, the supremum in λ in the above formula is achieved
for some value A. By considering the derivative in λ, which must vanish at the maximizer A, we
obtain

τ−γ + 1 =
∫ 1

0
kγ (u)m0

(
Akγ (u)

)
du. (6.2.2)

When µ is −1 as currently, we have ϕ(λ) = e−λϕ0(λ) and, consequently, m = −1 + m0.
Therefore, the definition of A in (6.2.2) matches that in (3.2).

As will be apparent in the bound (6.2.8) to come and in its evaluation, the following result is
strongly related to Proposition 5.2.2 if one takes n to be about τV (t) and x to be about τ in that
proposition.

Lemma 6.2.2. The following holds:

lim
ε→0

lim sup
t→∞

sup
n : | n

V (t)−τ |<ε

∣∣∣∣∣Aγ t + sn

gn V (t)
−

1
V (t)

∑
1≤i≤n

logϕ0(Agn−i/n)− θ

∣∣∣∣∣ = 0.

Proof. Write n = νV (t). Since s is regularly varying, sn ∼ ν
γ t . Moreover, (5.1.1) shows that

gn ∼ γ ν
γ−1 t

V (t)
,

and those equivalences hold locally uniformly in ν thanks to the uniform convergence Theorem
([7], Theorem 1.2.1). In particular,

γ
t + sn

gn V (t)
∼

1+ νγ

νγ−1 , (6.2.3)

as t tends to infinity. Applying Lemma 5.2.1, we also have

1
V (t)

∑
1≤i≤n

logϕ0(Agn−i/n) ∼
n

V (t)

∫ 1

0
logϕ0

(
Akγ (v)

)
dv

∼ ν

∫ 1

0
logϕ0

(
Akγ (v)

)
dv, (6.2.4)

again locally uniformly in ν positive and as t tends to infinity. Combining (6.2.3) and (6.2.4), we
obtain that

Aγ
t + sn

gn V (t)
−

1
V (t)

∑
1≤i≤n

logϕ0(Agn−i/n)

= ν
(

A(ν−γ + 1)−
∫ 1

0
logϕ0

(
Akγ (v)

)
dv
)
+ o(1) (6.2.5)
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as t tends to infinity. When ν is τ , equality (6.2.1) shows that the right hand side in (6.2.5) is
θ . The result follows from the continuity in ν of the function involved in the right hand side of
(6.2.5). �

We can now prove the second assertion of Theorem 3.1. Let f be a continuous function
supported by a vertical strip of the right half-space. Whenever ν is a measure on the right half-
space, we write ν f for

∫
f dν. Let ε be a positive real number. Assume that we have proved that

for any real number h greater than M f ,

lim
t→∞

P{Mt f > h | M > t} = 0. (6.2.6)

If h is less than M f , then applying the above relation to − f and −h, we see that the condi-
tional probability of Mt f < h given that M exceeds t tends to 0 as t tends to infinity. We then
conclude that

lim
t→∞

P{|(Mt −M) f | > ε | M > t} = 0.

Thus, as t tends to infinity, Mt f converges in probability to M f conditionally on M exceeding
t . Since f is arbitrary, this shows that Mt converges to M in probability, under the conditional
probability that M exceeds t . This would prove the second assertion of Theorem 3.1, and there-
fore, it suffices to prove (6.2.6), which we do now.

The proof of the second assertion of Proposition 4.1 shows that for any positive ε,

P{Mt f > h ; M > t} ≤
∑

n : | n
V (t)−τ |≤ε

P{Mt f > h; S0
n > t + sn} + o(P{M > t}) (6.2.7)

as t tends to infinity.
The basic inequality for our proof is the exponential form of Markov’s, which implies that for

any positive λ,

log P{Mt f > h; S0
n > t + sn}

≤ log P
{
λV (t)Mt f + Aγ

S0
n

gn
> λV (t)h + Aγ

t + sn

gn

}
≤ −V (t)

(
λh + Aγ

t + sn

gn V (t)
−

1
V (t)

log E exp
(
λV (t)Mt f + Aγ

S0
n

gn

))
. (6.2.8)

Now, we define some small – arguably, bewildering – constants. Let δ be a positive real
number less than 1 such that h > (1+ 2δ)M f . Let λ be positive and small enough that

λ| f |[0,∞)×R < sup{x : ex < 1+ (1+ δ)x} ∧ (1+ δ)−1. (6.2.9)

Next, let η be small enough that λ
(
h− (1+ 2δ)M f

)
> 3η. Finally, using Lemma 6.2.2, let ε be

a positive real number so that

lim sup
t→∞

sup
n : | n

V (t)−τ |<ε

∣∣∣∣∣Aγ t + sn

gn V (t)
−

1
V (t)

∑
1≤i≤n

logϕ0(Agn−i/n)− θ

∣∣∣∣∣ < η. (6.2.10)

To evaluate the upper bound (6.2.8), we first bound the term containing an expectation. Given
the constraint (6.2.9) on λ,

eλ f (i/V (t),X i ) ≤ 1+ (1+ δ)λ f
( i

V (t)
, X i

)
.
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Recall that X i is of mean −1 currently. Since

λV (t)Mt f + Aγ S0
n/gn

=

∑
1≤i≤n

(
λ f
( i

V (t)
, X i

)
+ Agn−i/n(X i + 1)

)
+

∑
i>n

λ f
( i

V (t)
, X i

)
,

the term E exp
(
λV (t)Mt f + Aγ S0

n
gn

)
in (6.2.8) is at most

∏
1≤i≤n

E
(

1+ (1+ δ)λ f
( i

V (t)
, X i

))
eAgn−i/n(X i+1)

∏
i>n

E
(

1+ (1+ δ)λ f
( i

V (t)
, X i

))
.

(6.2.11)

Note the inequality log(a + b) ≤ log a + b/a, valid for any positive a and any b larger than −a.
To apply this inequality with

a = EeAgn−i/n(X i+1)

and

b = (1+ δ)λE f
( i

V (t)
, X i

)
eAgn−i/n(X i+1),

we first observe that

|b| ≤ (1+ δ)λ| f |[0,∞)×REeAgn−i/n(X i+1)

and (6.2.9) ensures that |b| is less than a. Therefore, a + b is positive. We then have, referring to
the first product of (6.2.11),

log E
(

1+ (1+ δ)λ f
( i

V (t)
, X i

))
eAgn−i/n(X i+1)

≤ log EeAgn−i/n(X i+1)
+ (1+ δ)λ

E f
(
i/V (t), X i )eAgn−i/n(X i+1)

EeAgn−i/n(X i+1)

= logϕ0(Agn−i/n)+ (1+ δ)λE
(

f
( i

V (t)
, X i

)eAgn−i/n(X i+1)

ϕ0(Agn−i/n)

)
.

Consequently, using the inequality log(1 + x) ≤ x to handle the second product in the upper
bound (6.2.11), we see that the logarithm of (6.2.11) is at most∑

1≤i≤n

logϕ0(Agn−i/n)+ (1+ δ)λ
∑

1≤i≤n

E
(

f
( i

V (t)
, X i

)eAgn−i/n(X i+1)

ϕ0(Agn−i/n)

)
+(1+ δ)λ

∑
i>n

E f
( i

V (t)
, X i

)
.

Referring to the upper bound (6.2.8),

λh + Aγ
t + sn

gn V (t)
−

1
V (t)

log E exp
(
λV (t)Mt f + Aγ

S0
n

gn

)
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is then at least

Aγ
t + sn

gn V (t)
−

1
V (t)

∑
1≤i≤n

logϕ0(Agn−i/n)+ λh

−(1+ δ)λ
n

V (t)

1
n

∑
1≤i≤n

E
(

f
( i

V (t)
, X i

)eAgn−i/n(X i+1)

ϕ0(Agn−i/n)

)
−(1+ δ)λ

n

V (t)

1
n

∑
i>n

E f
( i

V (t)
, X i

)
. (6.2.12)

Define ν as n/V (t). Using (6.2.10), Lemma 6.2.1, and the equality ϕ0(λ) = eλϕ(λ) valid here
since µ is −1, we obtain that (6.2.8) is at most the exponential of −V (t) times

θ − η + λh − (1+ δ)λν
∫

f (vν, x)
eAγ (1−v)γ−1(x+1)

ϕ0
(

Aγ (1− v)γ−1
)1[0,1)(v)d(L ⊗ F)(v, x)

−(1+ δ)λν
∫

f (vν, x)1[1,∞)(v)d(L ⊗ F)(v, x)

= θ − η + λ
(

h − (1+ δ)
ν

τ

∫
f
(ν
τ
v, x

)
dM(v, x)

)
. (6.2.13)

If ε is small enough that ν/τ is close enough to 1, then∣∣∣∣∫ ν

τ
f
(ν
τ
v, x

)
dM(v, x)−M f

∣∣∣∣ < η/λ

and (6.2.13) is at least

θ − η + λ
(
h − (1+ δ)M f )− η,

which, by our choice of η, is greater than θ + (1− δ)η. Hence

log P{Mt f > h; S0
n > t + sn} . −V (t)

(
θ + (1− δ)η

)
as t tends to infinity. Since V is regularly varying, (6.2.7) shows that (6.2.6) holds, and this proves
assertion (ii) of Theorem 3.1 when µ is −1.

6.3. Proof of Theorem 3.1.iii

In essence, the proof consists in writing the process St as a functional of Mt and showing that
the convergence of Mt to M implies that of the functional of Mt to the functional of M. The
main difficulty is that the functional is not continuous with respect to our topology on measures.
This forces us to develop various approximation results to show that St is approximable by a well
behaved functional of Mt . The proofs are rather routine in large deviation theory and are omitted.

To proceed with a sketch of the proof, for any measure ν on the right half-space for which the
integrals∫

1[0,λ)(v)(λ− v)γ−1
|x |dν(v, x), λ > 0,

are finite, we define the functional S of ν evaluated at λ by

S(ν)(λ) =

∫
1[0,λ)(v)γ (λ− v)γ−1xdν(v, x),

with the convention that S(ν)(0) is 0.
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The proof then consists in showing that provided t is large, St is locally uniformly close
to S(Mt ) given M > t . Then one proves that Theorem 3.1.ii implies that S(Mt ) converges
locally uniformly to S(M) under the conditional distribution given M > t . Since the functional
S is not continuous for the topology that we are using on measures, the argument consists in
approximating it in a natural way by a continuous functional, using a standard technique from
large deviations theory — see e.g. [1,26,28].
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