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Abstract

We suggest three superpositions of COGARCH (sup-CO-GARCH) volatility processes driven by Lévy
processes or Lévy bases. We investigate second-order properties, jump behaviour, and prove that they
exhibit Pareto-like tails. Corresponding price processes are defined and studied. We find that the sup-
CO-GARCH models allow for more flexible autocovariance structures than the COGARCH. Moreover,
in contrast to most financial volatility models, the sup-CO-GARCH processes do not exhibit a deterministic
relationship between price and volatility jumps. Furthermore, in one sup-CO-GARCH model not all
volatility jumps entail a price jump, while in another sup-CO-GARCH model not all price jumps necessarily
lead to volatility jumps.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

GARCH models have been used throughout the last decades to model returns sampled at reg-
ular intervals on stocks, currencies and other assets. They capture many of the stylized features
of such data; e.g. heavy tails, volatility clustering and dependence without correlation. Also be-
cause of their interesting probabilistic properties as solutions to stochastic recurrence equations,
they have attracted research by probabilists and statisticians; e.g. [16]. Various attempts have
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been made to capture the stylized features of financial time series using continuous-time mod-
els. The interest in continuous-time models originates in the current wide-spread availability of
irregularly spaced and high-frequency data. There was a long debate whether price and volatility
fluctuations are caused by jumps or not. This question was answered convincingly in previous
years by Jacod and collaborators, who developed sophisticated statistical tools to extract jumps
of price and volatility out of high-frequency data (cf. [1,19,21] and references therein).

A prominent continuous-time model is the stochastic volatility model of Barndorff-Nielsen
and Shephard [4], in which the volatility process V and the martingale part of the logarithmic
asset price G satisfy the equations

dVt = −λVt dt + dLλt , (1.1)
dG t =


Vt dWt + ρ dLλt ,

where λ > 0, ρ ≤ 0, L = (L t )t≥0 is a non-decreasing Lévy process with compensated
version L and W = (Wt )t≥0 is a standard Brownian motion independent of L . The volatility
process V is taken to be the stationary solution of (1.1), in other words, a stationary Lévy-driven
Ornstein–Uhlenbeck (OU) process. In this model, price jumps are modelled by (scaled) upwards
jumps in the volatility.

It was noticed early on that the exponential autocovariance function of the OU process may be
too restrictive. Two suggestions have been made to allow for more flexibility in the autocovari-
ance function: Barndorff-Nielsen [2] suggested to replace V by a superposition of such processes
(called supOU process), which yields more flexible monotone autocovariance functions. It is de-
fined as

Vt =


(−∞,t]


(0,∞)

e−λ(t−s) Λ(ds, dλ), t ∈ R, (1.2)

where Λ is an independently scattered infinitely divisible random measure, also called Lévy ba-
sis. Superpositions of CARMA processes can be defined analogously; cf. [6,12]. As shown in
e.g. [15, Proposition 2.6], supOU models can also model long-range dependence for specific
superposition measures.

On the other hand, [10,31] suggested higher-order Lévy-driven CARMA models, which also
allow for non-monotone autocovariance functions. The drawback of both model classes is their
linearity and its consequences towards the stylized features of financial data. For instance, linear
models inherit their distributions from that of the Lévy increments in a linear way. As a con-
sequence, only when the driving Lévy process has heavy-tailed (regularly varying) increments,
they model high-level volatility clusters; cf. [14, Proposition 5]. Moreover, in contrast to empir-
ical findings (cf. [19]), these models allow only for negative price jumps coupled to the jumps in
the volatility.

A continuous-time GARCH (COGARCH) model has been introduced in [23] with volatility
process V and martingale part of the logarithmic asset price given by

dVt = (β − ηVt ) dt + Vt−ϕ d[L , L]t , (1.3)
dG t =


Vt− dL t ,

where β, η, ϕ > 0 and L is an arbitrary mean-zero Lévy process. The volatility process V is
taken to be the stationary solution of (1.3). This model satisfies all stylized features of financial
prices, exactly as the GARCH model for low frequency data. The drawback of an exponentially
decreasing covariance function has been taken care of by higher-order models; cf. [11], like
generalizing from OU to CARMA.
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All models mentioned above have price jumps exactly at the times when the volatility jumps,
since their prices are driven by the same Lévy process. Moreover, with the exception of the
supOU/supCARMA process, all jump sizes in volatility and price exhibit a fixed deterministic
relationship; cf. [19]. As this is not very realistic, multi-factor models are needed. In this paper
we want to construct such a multi-factor model, based on the COGARCH.

In contrast to the OU or CARMA models, the COGARCH model is defined as a stochastic
integral with stochastic integrand. But also in this framework there is a canonical way to construct
a superposition.

Starting by the fact that the ratio of volatility jumps and squared price jumps is always equal to
ϕ in the COGARCH model, we randomize this scale parameter ϕ. There are various ways how to
do this in a meaningful way, and we present three different possibilities, all leading to multi-factor
COGARCH models. Our three models have different qualitative behaviour. For instance, the first
sup-CO-GARCH allows for jumps in the volatility, which do not necessarily lead to jumps in the
price process. On the other hand, for certain choices of the distribution of the random parameter
ϕ, the third sup-CO-GARCH model allows for jumps in the price without having a jump in the
volatility. More properties will be reported.

An interesting feature is that some of the presented new sup-CO-GARCH volatility processes
can be written in terms of a so-called ambit process, which has been introduced in [3] in the
context of turbulence modelling. In our context the ambit process has a stochastic integrand,
which is not independent of the integrator. This implies that we are no longer in the framework
of [27]. Moreover, since COGARCH models are heavy-tailed, having possibly not even a second
finite moment, the theory presented in [32] is also not applicable. Instead we need the concept
presented in [12], which allows to integrate stochastic processes with respect to a Lévy basis in
the generality needed for our sup-CO-GARCH models.

Our paper is organized as follows. In Section 2, we recall the COGARCH model and give
a short summary of Lévy bases. In Section 3, we present three different superpositions of
COGARCH volatility processes. For each of the three models we give necessary and sufficient
conditions for strict stationarity and derive the second-order structure of the stationary process.
The superpositions allow for more flexible autocorrelation structures than the COGARCH model
(Propositions 3.4, 3.12 and 3.18). However, the stationary distributions of the sup-CO-GARCH
processes preserve the Pareto-like tails of the COGARCH process (Propositions 3.5, 3.13 and
3.19). Section 4 is devoted to the corresponding price processes and the second-order properties
of their stationary increments. Again, main characteristics of the COGARCH are preserved like
the uncorrelated increments but positively correlated squared increments (Theorems 4.1–4.3).
Nevertheless, each of the sup-CO-GARCH models has its specific characteristics as highlighted
in Section 5. Furthermore, for all three models there is no longer a deterministic relationship
between the jump sizes in volatility and price. Although in this paper we concentrate on the
probabilistic properties of our new models, statistical issues are shortly addressed here. Finally,
Section 6 contains the proofs of our results.

2. Notation and preliminaries

By the Lévy–Khintchine formula (e.g. [28, Theorem 8.1]) the characteristic exponent of a
real-valued Lévy process X = (X t )t≥0 is given by

ψX (u) := log E

eiu X1


= iγX u −

1
2
σ 2

X u2
+


R
(eiuy

−1 − iuy1{|y|≤1}) νX (dy), u ∈ R,
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where (γX , σ
2
X , νX ) is the characteristic triplet of X with Lévy measure νX satisfying νX ({0}) =

0 and


R 1 ∧ |y|
2 νX (dy) < ∞. If additionally


|y|≤1 |y| νX (dy) < ∞, we may also write the

characteristic exponent in the form

ψX (u) = iγ 0
X u −

1
2
σ 2

X u2
+


R
(eiuy

− 1) νX (dy), u ∈ R,

and call γ 0
X the drift of X . This is in particular the case for subordinators, i.e. Lévy processes

with increasing sample paths. We also recall that the quadratic variation process of the Lévy
process X is given by

[X, X ]t := σ 2
X t + [X, X ]

d
t := σ 2

X t +


0<s≤t

(1Xs)
2, t ≥ 0,

where [X, X ]
d is called the pure-jump part of [X, X ].

Every Lévy process (X t )t≥0 can be extended to a two-sided Lévy process (X t )t∈R by setting
X t = −X ′

−t−, t < 0, for some i.i.d. copy X ′ of X . We say that (X t )t∈R has characteristic triplet
(γX , σ

2
X , νX ) if (X t )t≥0 has characteristic triplet (γX , σ

2
X , νX ).

Throughout we use the notation R+ = (0,∞),R− = (−∞, 0) and N0 = N ∪ {0}.

2.1. The COGARCH model

Let (L t )t≥0 be a Lévy process with characteristic triplet (γL , σ
2
L , νL) and define

St := [L , L]
d
t =


0<s≤t

(1Ls)
2, t ≥ 0. (2.1)

Then (St )t≥0 is a subordinator without drift and its Lévy measure νS is the image measure of νL
under the transformation y → y2. For η > 0 and ϕ ≥ 0 define another Lévy process by

Xϕt = ηt −


0<s≤t

log(1 + ϕ1Ss), t ≥ 0, (2.2)

which is completely determined by S (and hence by L). Then Xϕ has characteristic triplet
(η, 0, νXϕ ), where νXϕ is the image measure of νS under the mapping y → − log(1 + ϕy), and
is therefore a spectrally negative Lévy process, i.e. it only has negative jumps. For t ≥ 0 we have

E[e−u Xϕt ] = etΨ (u,ϕ) with Ψ(u, ϕ) = −ηu +


R+

((1 + ϕy)u − 1) νS(dy), (2.3)

where, whenever ϕ > 0, we have E[e−u Xϕt ] < ∞ for u > 0 for some t > 0 or, equivalently, for
all t > 0 if and only if E[Su

1 ] < ∞ [23, Lemma 4.1]. In particular, if E[S1] < ∞ or E[S2
1 ] < ∞,

respectively, we have from [28, Example 25.12]

Ψ(1, ϕ) = ϕE[S1] − η and Ψ(2, ϕ) = 2ϕE[S1] + ϕ2Var[S1] − 2η. (2.4)

Recall from [23] that the COGARCH (volatility) process driven by the Lévy process L (or the
subordinator S) with parameter ϕ is given by

V ϕ
t = e−Xϕt


V ϕ

0 + β


(0,t]

eXϕs ds


, t ≥ 0, (2.5)

where β > 0 is a constant and V ϕ
0 is a nonnegative random variable, independent of (St )t≥0.
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Moreover, the COGARCH volatility process V ϕ is a special case of a generalized Ornstein–
Uhlenbeck process (cf. [8,25]) and is the solution of the SDE

dV ϕ
t = (β − ηV ϕ

t ) dt + V ϕ
t−ϕ dSt = V ϕ

t−(ϕdSt − η dt)+ β dt, t ≥ 0. (2.6)

It admits the integral representation

V ϕ
t = V ϕ

0 + βt − η


(0,t]

V ϕ
s ds +


0<s≤t

V ϕ
s−ϕ1Ss, t ≥ 0. (2.7)

The corresponding price process or integrated COGARCH process is then defined as

G t =


(0,t]


V ϕ

s− dLs, t ≥ 0. (2.8)

2.2. Stationary COGARCH processes

By [23, Theorem 3.1], the process defined in (2.5) or equivalently in (2.7) has a strictly
stationary distribution if and only if

R+

log(1 + ϕy) νS(dy) =


R

log(1 + ϕy2) νL(dy) < η. (2.9)

In this case, the stationary distribution of the COGARCH process is given by the distribution of
V ϕ

∞ := β


R+
e−Xϕs ds. Note that for ϕ = 0, the stationary COGARCH reduces to V 0

t = β/η for
all t ≥ 0.

In the sequel we denote by the set ΦL all ϕ ≥ 0 where (2.9) is satisfied. By monotone con-
vergence, the left-hand side of (2.9) is continuous in ϕ and converges to +∞ as ϕ → ∞, which
means that ϕmax := sup ΦL is finite and hence ΦL = [0, ϕmax).

Let us recall the moment structure of V ϕ in the stationary case. It follows by direct computa-
tion from [7, Theorem 3.1] that, if κ > 0 is a constant, then

E[Smax{κ,1}

1 ] < ∞ and log E

e−κXϕ1


= Ψ(κ, ϕ) < 0 (2.10)

imply E[(V ϕ
0 )
κ
] < ∞. If (2.10) holds for κ = 1 or κ = 2, respectively, for every t ≥ 0, h ≥ 0

the first two moments of the stationary process V ϕ are given by [23, Corollary 4.1]

E[V ϕ
t ] = −

β

Ψ(1, ϕ)
=

β

η − ϕE[S1]
, (2.11)

E[(V ϕ
t )

2
] = β2 2

Ψ(1, ϕ)Ψ(2, ϕ)
and (2.12)

Cov[V ϕ
t , V ϕ

t+h] = eh Ψ (1,ϕ)Var[V ϕ
0 ] = eh Ψ (1,ϕ)β2


2

Ψ(1, ϕ)Ψ(2, ϕ)
−

1

Ψ(1, ϕ)2


= eh (ϕE[S1]−η)

β2ϕ2Var[S1]

(ϕE[S1] − η)2(2η − 2ϕE[S1] − ϕ2Var[S1])
. (2.13)

From (2.10) we have the clear picture that, although a stationary V ϕ exists for all ϕ ∈ ΦL =

[0, ϕmax), moments only exist on some subinterval, which shrinks with the increasing order
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of the moment. Moreover, it is known that no COGARCH process has moments of all orders
[23, Proposition 4.3]. For later reference we set

Φ(κ)
L := [0, ϕ(κ)max) with ϕ(κ)max = sup{ϕ : E[(V ϕ

0 )
κ
] < ∞}. (2.14)

We have 0 < ϕ
(κ2)
max ≤ ϕ

(κ1)
max < ϕmax < ∞ whenever 0 < κ1 ≤ κ2 < ∞, i.e. Φ(κ2)

L ⊂ Φ(κ1)
L ⊂ ΦL .

In [24] the tail behaviour of the COGARCH process is studied. In particular, it is shown that
under rather weak assumptions the distribution of V ϕ

0 has Pareto-like tails [24, Theorem 6].
Regarding the price process Gϕ in the stationary case, it is known from [23, Proposition 5.1]

that Gϕ has stationary increments that are uncorrelated on disjoint intervals while the squared
increments are, under some technical assumptions, positively correlated, an effect which is
typical for financial time series.

For later reference we extend the stationary COGARCH volatility process (2.5) to a two-
sided process in the following way. For a two-sided Lévy process (L t )t∈R we obtain a two-sided
subordinator (St )t∈R by setting

St :=


0<s≤t

(1Ls)
2, t ≥ 0 and St := −


t<s≤0

(1Ls)
2, t ≤ 0. (2.15)

Now we automatically obtain for every ϕ another two-sided Lévy process (Xϕt )t∈R given by

Xϕt = ηt −


0<s≤t

log(1 + ϕ1Ss), t ≥ 0,

Xϕt = ηt +


t<s≤0

log(1 + ϕ1Ss), t < 0.
(2.16)

The two-sided COGARCH process (V ϕ
t )t∈R is then given by

V ϕ
t := β


(−∞,t]

e−(Xϕt −Xϕs ) ds, t ∈ R, (2.17)

and it is well-defined for every ϕ ∈ ΦL . Obviously, the restriction of this process to t ≥ 0 equals
the process given in (2.5) with starting random variable V ϕ

0 := β

(−∞,0]

eXϕs ds. Hence the
two-sided COGARCH is always stationary with the same finite-dimensional distributions as the
one-sided stationary COGARCH.

2.3. Lévy bases

Let (Ω ,F ,F = (Ft )t∈R,P) be a filtered probability space satisfying the usual assumptions of
completeness and right-continuity. Denote the space of all P-a.s. finite random variables by L0,
the optional (resp. predictable) σ -field by O (resp. P ) and set P̃ := P ⊗ B(Rd), where B(Rd)

is the Borel-σ -field on Rd . Now let (Ek)k∈N be a sequence of measurable subsets increasing to
Rd and define P̃b as the collection of all P̃ -measurable subsets of Ω × (−k, k] × Ek for k ∈ N.
Similarly, set Bb :=


∞

k=1 B((−k, k] × Ek).
In this set-up, we use the term Lévy basis as follows:

Definition 2.1. A Lévy basis on R × Rd is a mapping Λ: P̃b → L0 satisfying:

(a) Λ(∅) = 0 a.s.
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(b) If (An)n∈N are pairwise disjoint sets in P̃b whose union again lies in P̃b, then

Λ
 ∞

n=1

An


=

∞
n=1

Λ(An) a.s.

(c) If (Bn)n∈N are pairwise disjoint sets in Bb, then (Λ(Ω×Bn))n∈N is a sequence of independent
random variables with each of them having an infinitely divisible distribution.

(d) If A ∈ P̃b is a subset of Ω × (−∞, t] × Rd for some t ∈ R, then Λ(A) is Ft -measurable.
(e) If A ∈ P̃b, t ∈ R and F ∈ Ft , then Λ


A∩(F×(t,∞)×Rd)


= 1FΛ


A∩(Ω×(t,∞)×Rd)


.

(f) For all t ∈ R and measurable U ⊂ Ek for some k ∈ N, we have Λ(Ω × {t} × U ) = 0 a.s.

In the following, we often write Λ(B) = Λ(Ω × B) for a set B ∈ Bb. �

A natural choice for F is certainly the augmented natural filtration G = (Gt )t∈R of the Lévy
basis Λ, which means that for t ∈ R, Gt is the completion of the σ -field generated by the
collection of all Λ(B) with B ∈ Bb, B ⊆ (−∞, t] × Rd .

The first three points of Definition 2.1 are similar to the notion of infinitely divisible
independently scattered random measures in [27]. Further we have added condition (f) because
this ensures that Λ induces a jump measure µΛ by

µΛ(ω, dt, dx, dy)

:=


s∈R


ξ∈Rd

1{Λ({s}×{ξ})(ω)≠0}δ(s,ξ,Λ({s}×{ξ})(ω))(dt, dx, dy), ω ∈ Ω , (2.18)

where δ stands for the Dirac measure. We will follow the usual convention of suppressing ω
in the sequel. Thanks to (d) and (e), µΛ is an optional P̃ -σ -finite random measure in the sense
of [20, Theorem II.1.8]. Therefore, the predictable compensator Π of µΛ is well-defined.

In this paper, we will only consider Lévy bases Λ which are of the form

Λ(ds, dx) =


R

y µΛ(ds, dx, dy). (2.19)

In addition, the predictable compensator of µΛ in the augmented natural filtration G will always
be given by Π (ds, dx, dy) = ds π(dx) ν(ds), where π is some probability measure on Rd and ν
the Lévy measure of a subordinator. In this particular case, if we write

W (s, x, y) ∗ µΛ
t := W ∗ µΛ

t :=



(0,t]×Rd×R

W (s, x, y) µΛ(ds, dx, dy), if t ≥ 0,
(t,0]×Rd×R

W (s, x, y) µΛ(ds, dx, dy), if t < 0,

for some O ⊗ B(Rd)⊗ B(R)-measurable function W which is integrable w.r.t. µΛ (ω-wise as a
Lebesgue integral), then we have

E[W ∗ µΛ
t ] = E[W ∗ Πt ] =


(0,t]×Rd×R

E[W (s, x, y)]Π (ds, dx, dy), t ≥ 0, (2.20)

for all integrable functions W (and similarly for t < 0), see [20, Theorem II.1.8]. Moreover,
when taking stochastic integrals with respect to Λ, these can be expressed in terms of µΛ:

(0,t]×Rd
H(s, x)Λ(ds, dx) =


(0,t]×Rd×R

H(s, x)y µΛ(ds, dx, dy), t ≥ 0,
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for all H which are integrable w.r.t. Λ on (0, t] (similarly for t < 0); see [12] for integrability
conditions and further details on Lévy bases.

For later reference, we also introduce the pure-jump part of the quadratic variation measure
of Λ defined as

[Λ,Λ]
d(A) :=


R×Rd×R

1A(t, x)y2 µΛ(dt, dx, dy), A ∈ P̃b. (2.21)

3. Superposition of COGARCH (sup-CO-GARCH) processes

In the following three subsections we propose different approaches to construct a superposi-
tion of COGARCH processes. As seen in Eq. (2.6), the parameters β and η only influence the
continuous part of the COGARCH process, whereas ϕ scales its jump sizes. Since our goal is to
find a model which shares the basic features of the COGARCH model but has a more flexible
jump structure, we let β and η be fixed in the following three approaches and only allow the
parameter ϕ to vary.

3.1. The sup-CO-GARCH 1 volatility process

The obvious idea of defining a sup-CO-GARCH process as a weighted integral of independent
COGARCH processes with different parameters ϕ yields to consider

V̄ (1)
t :=


[0,∞)

V ϕ
t π(dϕ), t ≥ 0, (3.1)

for some probability measure π on [0,∞), where each COGARCH process V ϕ is driven by
Sϕ = [Lϕ, Lϕ]d and (Lϕ)ϕ∈[0,∞) are i.i.d. copies of a canonical Lévy process L , which, together
with S = [L , L]

d, we only use for notational convenience. As a consequence, (V ϕ)ϕ∈[0,∞) is a
family of independent COGARCH processes such that the integral in (3.1) is only well-defined
if π has countable support. This leads to the sup-CO-GARCH 1 volatility process

V̄ (1)
t =


[0,∞)

V ϕ
t π(dϕ) =

∞
i=1

pi V ϕi
t , t ≥ 0, (3.2)

where π =


∞

i=1 piδϕi for nonnegative weights (pi )i∈N with


∞

i=1 pi = 1.
To avoid degenerate cases we will assume throughout that

V̄ (1)
0 =

∞
i=1

pi V ϕi
0 < ∞ a.s. (3.3)

Note that this does not automatically imply finiteness of the sup-CO-GARCH process at all times
unless we are in the stationary case (see below).

Remark 3.1. The sup-CO-GARCH 1 process can also be written in terms of a Lévy basis. First,
define a Lévy basis on R+ × [0,∞) by

ΛL((0, t] × {ϕi }) :=
√

pi Lϕi
t , t ≥ 0, i ∈ N,

and ΛL(R×([0,∞)\


∞

i=1{ϕi })) := 0. Now with ΛS
= [ΛL ,ΛL

]
d being the pure-jump quadratic

variation measure of ΛL (in particular, ΛS((0, t] × {ϕi }) = pi Sϕi
t ) and inserting (2.7) in (3.2),
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Fig. 1. Sample paths of two independent COGARCH processes with different values for ϕ, scaled with the corresponding
pi , and the resulting sup-CO-GARCH 1 process. The driving Lévy processes are independent compound Poisson
processes with rate 1 and standard normal jumps. The parameters are: β = 1, η = 1, ϕ1 = 0.5, ϕ2 = 0.95 and
π = 0.75δϕ1 + 0.25δϕ2, starting value was the respective mean.

we see that

V̄ (1)
t =

∞
i=1

pi V ϕi
0 + βt − η

∞
i=1

pi


(0,t]

V ϕi
s ds +

∞
i=1


(0,t]

piϕi V ϕi
s− dSϕi

s

= V̄ (1)
0 + βt − η


(0,t]

V̄ (1)
s ds +


(0,t]


[0,∞)

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0. (3.4)

Note that for each i ∈ N, V ϕi is driven by Sϕi .

It follows directly from (3.4) that the jumps of the sup-CO-GARCH 1 process are given by

1V̄ (1)
t =

∞
i=1

pi1V ϕi
t =

∞
i=1

pi V ϕi
t−ϕi1Sϕi

t =


[0,∞)

ϕV ϕ
t− ΛS({t} × dϕ), t ≥ 0. (3.5)

Since the independent subordinators a.s. jump at different times, a.s. only one summand in (3.5)
is nonzero at each jump time.

The following example for a probability measure π with two-point support will be carried
through the three different sup-CO-GARCH processes in this section to clarify their definitions.

Example 3.2. Let π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and ϕ1, ϕ2 ∈ R+. Then the sup-
CO-GARCH 1 process is the weighted sum of two independent COGARCH processes. More
precisely, we have V̄ (1)

t = p1V ϕ1
t + p2V ϕ2

t for t ≥ 0, where V ϕ1 and V ϕ2 are driven by
independent copies of the canonical Lévy process L . From Fig. 1, we clearly see that the sup-CO-
GARCH 1 process inherits both the jumps of V ϕ1 and V ϕ2 , scaled with p1 or p2, respectively.

Stationarity and second-order properties of the sup-CO-GARCH 1 process are given in the
following three results. Proofs are postponed to Section 6.1.

Theorem 3.3. Let π =


∞

i=1 piδϕi be a probability measure on [0,∞), {Lϕi : i ∈ N} a family
of i.i.d. Lévy processes, {Sϕi : i ∈ N} the corresponding family of subordinators and {V ϕi : i ∈ N}

the corresponding family of COGARCH processes. Assuming that (3.3) holds, a finite random

variable V̄0
(1)

can be chosen such that V̄ (1) is strictly stationary if and only if

π(ΦL) = 1. (3.6)
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In the case that a stationary distribution exists, it is uniquely determined by the law of

V̄ (1)
∞ :=


ΦL

V ϕ
∞ π(dϕ) = β


ΦL


R+

e−Xϕt dt π(dϕ) = β

∞
i=1

pi


R+

e−X
ϕi
t dt. (3.7)

Proposition 3.4. Assume we are in the setting of Theorem 3.3 and let V̄ (1) be a strictly stationary
solution of (3.4). Recall the notation Φ(κ)

L from Eq. (2.14).

(a) Suppose that π(Φ(1)
L ) = 1. Then for every t ≥ 0,

E[V̄ (1)
t ] =


ΦL

E[V ϕ
0 ]π(dϕ) = β

∞
i=1

pi

η − ϕi E[S1]
. (3.8)

(b) Suppose that π(Φ(2)
L ) = 1. Then for every t ≥ 0, h ≥ 0 we have

Var[V̄ (1)
t ] =

∞
i=1

p2
i Var[V ϕi

0 ] and (3.9)

Cov[V̄ (1)
t , V̄ (1)

t+h] =

∞
i=1

p2
i Cov[V ϕi

0 , V ϕi
h ], (3.10)

with Var[V ϕi
0 ] and Cov[V ϕi

0 , V ϕi
h ] as given in (2.12) and (2.13).

Note that the quantities in (3.8)–(3.10) may be infinite.

Proposition 3.5. Assume we are in the setting of Theorem 3.3 and let V̄ (1) be a strictly stationary
solution of (3.4). Set ϕ̄ := inf{ϕ > 0:π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there exists
κ̄ > 0 with

E[Sκ̄1 log+(S1)] < ∞ and Ψ(κ̄, ϕ̄) = 0. (3.11)

Then we have for κ > 0

lim
x→∞

xκP[V̄ (1)
0 > x] =


0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

x κ̄P[V̄ (1)
0 > x] =


C if π({ϕ̄}) = p̄ > 0,
0 if π({ϕ̄}) = 0.

Remark 3.6. Recall from [24, Theorem 5] that the stationary distribution of the COGARCH V ϕ

is self-decomposable, i.e. for all b ∈ (0, 1) there exists a random variable Yb such that V ϕ
∞

d
=

b(V ϕ
∞)

′
+Yb where (V ϕ

∞)
′ is an independent copy of V ϕ

∞. Due to the fact that self-decomposability
is preserved under scaling, convolution and taking limits, see e.g. [30, Proposition V.2.2], it
follows directly from (3.7) that the stationary distribution of the sup-CO-GARCH 1 process V̄ (1)

is self-decomposable, too.

Remark 3.7. Unless we are in the degenerate case π = δϕ and the sup-CO-GARCH is in fact
just the COGARCH with parameter ϕ, the sup-CO-GARCH process V̄ (1) is no longer a Markov
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process with respect to its augmented natural filtration, i.e. the smallest filtration such that V̄ (1)

is adapted and which satisfies the usual hypotheses of right-continuity and completeness. But it
follows directly from (3.4) that, letting F(1) = (F (1)

t )t≥0 be the augmented natural filtration of
((V ϕi

t )i∈N)t≥0, we have for every measurable function f : R+ → R and every t ≥ 0

E


f

V̄ (1)

t
F (1)

t


= E


f

V̄ (1)

t
(V ϕi

t )i∈N

.

Remark 3.8. In the representation V̄ (1)
=


∞

i=1 pi V ϕi a priori the ϕi do not have to be pairwise
different and still the results of this section remain valid (apart from some obvious notational
changes).

3.2. The sup-CO-GARCH 2 volatility process

In order to deal with uncountable superpositions, one possibility is to drop the assumption of
independence, which led to the sup-CO-GARCH 1. Hence we fix a Lévy process L , define the
subordinator (St )t≥0 by (2.1) and define the superposition as a weighted integral of COGARCH
processes V ϕ as given in (2.7) with different parameters ϕ, but all driven by the single Lévy
process L , i.e. we set

V̄ (2)
t :=


ΦL

V ϕ
t π(dϕ), t ≥ 0,

for some probability measure π on the parameter space ΦL . To ensure that ϕ → V ϕ
t is measur-

able at all times and in particular at time t = 0, we will use two-sided COGARCH processes as
in (2.17) and define the sup-CO-GARCH 2 volatility process

V̄ (2)
t :=


ΦL

V ϕ
t π(dϕ) = β


ΦL


(−∞,t]

e−(Xϕt −Xϕs ) ds π(dϕ), t ∈ R, (3.12)

for (Xϕt )t∈R as given in (2.16). As a consequence, we have for t ≥ 0

V̄ (2)
t =


ΦL

V ϕ
0 π(dϕ)+ βt − η


ΦL


(0,t]

V ϕ
s ds π(dϕ)+


ΦL


(0,t]

ϕV ϕ
s− dSs π(dϕ)

= V̄ (2)
0 + βt − η


(0,t]

V̄ (2)
s ds +


(0,t]


ΦL

ϕV ϕ
s− π(dϕ) dSs . (3.13)

In order to ensure that (3.12) is finite, we always assume
ΦL

V ϕ
0 π(dϕ) < ∞. (3.14)

If π =


∞

i=1 piδϕi , we obviously have V̄ (2)
=


∞

i=1 pi V ϕi with dependent summands.
Observe that in this setting all single COGARCH processes jump at the same times and thus

we have

1V̄ (2)
t =


ΦL

ϕV ϕ
t− π(dϕ)1St , t ≥ 0. (3.15)

Example 3.9 (Example 3.2 continued). Let π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and
ϕ1, ϕ2 ∈ ΦL . Then the sup-CO-GARCH 2 process is the weighted sum of two COGARCH
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Fig. 2. Sample paths of two COGARCH processes V ϕ1 and V ϕ2 with different parameters, driven by the same Lévy
process L , scaled with the corresponding pi , and the resulting sup-CO-GARCH V̄ (2). The driving Lévy process L is a
compound Poisson process with rate 1 and standard normal jumps. The parameters are the same as in Fig. 1.

processes with parameters ϕ1 and ϕ2, i.e. V̄ (2)
t = p1V ϕ1

t + p2V ϕ2
t . In contrast to the sup-CO-

GARCH 1 process in Example 3.2, V ϕ1 and V ϕ2 are driven by the same subordinator, say S, of
the form (2.1). In Fig. 2 we illustrate the typical relationship between the original COGARCH
processes and the resulting sup-CO-GARCH 2 process. We observe that V ϕ1 , V ϕ2 and V̄ (2) all
jump at the same times, with the jump sizes of the sup-CO-GARCH being the weighted average
jump sizes of the two COGARCH processes.

In the following we present stationarity and second-order properties of the sup-CO-GARCH
process V̄ (2). Proofs are given in Section 6.2.

Theorem 3.10. Assume that (3.14) holds. Then (V̄ (2)
t )t∈R as defined in (3.12) is strictly station-

ary.

Before we can calculate the moments of the stationary sup-CO-GARCH process V̄ (2) in
Proposition 3.12 we need to establish covariances between single COGARCH processes with
different parameters in the following proposition.

Proposition 3.11. Let (St )t∈R be a subordinator without drift, let ϕ, ϕ̃ ∈ ΦL be fixed and define
the stationary two-sided COGARCH processes (V ϕ

t )t∈R, (V
ϕ̃
t )t∈R according to (2.17). If

E[S2
1 ] < ∞, Ψ(2, ϕ) < 0 and Ψ(2, ϕ̃) < 0,

then E[V ϕ
t V ϕ̃

t+h] < ∞ for all t ∈ R and h ≥ 0. In this case, we have for all t ∈ R that

E[V ϕ
t V ϕ̃

t ] =
β2((ϕ + ϕ̃)E[S1] − 2η)

(ϕE[S1] − η)(ϕ̃E[S1] − η)((ϕ + ϕ̃)E[S1] + ϕϕ̃ Var[S1] − 2η)
, (3.16)

Cov[V ϕ
t , V ϕ̃

t ] =
β2ϕϕ̃ Var[S1]

(ϕE[S1] − η)(ϕ̃E[S1] − η)(2η − (ϕ + ϕ̃)E[S1] − ϕϕ̃ Var[S1])
, (3.17)

while for all t ∈ R and h ≥ 0

Cov[V ϕ
t , V ϕ̃

t+h] = ehΨ (1,ϕ̃)Cov[V ϕ
0 , V ϕ̃

0 ]. (3.18)

Both covariances in (3.17) and (3.18) are nonnegative.

Now we can describe the covariance structure of the sup-CO-GARCH process V̄ (2).

Proposition 3.12. Let V̄ (2) be the strictly stationary sup-CO-GARCH 2 process as defined
in (3.12). Recall the notation Φ(κ)

L from Eq. (2.14).
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(a) Suppose that π(Φ(1)
L ) = 1. Then we have for all t ≥ 0

E[V̄ (2)
t ] =


ΦL

E[V ϕ
0 ]π(dϕ) = β


ΦL

1
η − ϕE[S1]

π(dϕ). (3.19)

(b) Suppose that π(Φ(2)
L ) = 1. Then for t ∈ R and h ≥ 0 we have

E[(V̄ (2)
t )2] =


ΦL


ΦL

E[V ϕ
0 V ϕ̃

0 ]π(dϕ) π(dϕ̃), (3.20)

Var[V̄ (2)
t ] =


ΦL


ΦL

Cov[V ϕ
0 , V ϕ̃

0 ]π(dϕ) π(dϕ̃), (3.21)

Cov[V̄ (2)
t , V̄ (2)

t+h] =


ΦL


ΦL

Cov[V ϕ
0 , V ϕ̃

h ]π(dϕ) π(dϕ̃), (3.22)

with E[V ϕ
0 V ϕ̃

0 ] and Cov[V ϕ
0 , V ϕ̃

h ] as given in Proposition 3.11.

Note that the quantities in (3.19)–(3.22) may be infinite.

The tail behaviour of V̄ (2) is similar to the tail behaviour of the sup-CO-GARCH 1 process.

Proposition 3.13. Let V̄ (2) be the strictly stationary sup-CO-GARCH 2 process as defined
in (3.12). Set ϕ̄ := inf{ϕ > 0:π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there exists
κ̄ > 0 such that (3.11) holds. Then we have for κ > 0

lim
x→∞

xκP[V̄ (2)
0 > x] =


0 if κ < κ̄,

∞ if κ > κ̄,

while for κ = κ̄ there exists a constant C > 0 such that

lim
x→∞

x κ̄P[V̄ (2)
0 > x] =


C if π({ϕ̄}) = p̄ > 0,
0 if π({ϕ̄}) = 0.

Remark 3.14. Similarly to V̄ (1), the process V̄ (2) is no Markov process with respect to its aug-
mented natural filtration (unless in the degenerate case π = δϕ), but again we have a Markov
property in a wide sense. More precisely, for F(2) = (F (2)

t )t≥0 being the augmented natural fil-
tration of ((V ϕ

t )ϕ∈ΦL )t≥0, we obtain for every measurable function f : R+ → R and every t ≥ 0

E


f

V̄ (2)

t
F (2)

t


= E


f

V̄ (2)

t
(V ϕ

t )ϕ∈ΦL


.

3.3. The sup-CO-GARCH 3 volatility process

Our third superposition model invokes a Lévy basis ΛL on R × ΦL such that

L t := ΛL((0, t] × ΦL), t ≥ 0, L t := −ΛL((−t, 0] × ΦL), t < 0,

exists for every t ∈ R. With ΛS
:= [ΛL ,ΛL

]
d in the sense of (2.21), ΛS is of the form (2.19)

and we assume that the predictable compensator of µΛS
is Π S(dt, dy, dϕ) = dt νS(dy)π(dϕ),

where π is a probability measure on ΦL and νS the Lévy measure of the following
two-sided subordinator:

St := ΛS((0, t] × ΦL), t ≥ 0, St := −ΛS((−t, 0] × ΦL), t < 0. (3.23)
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Fig. 3. Two COGARCH processes V ϕ1 and V ϕ2 driven by the same Lévy process L and the resulting sup-CO-GARCH
V̄ (3). L is a compound Poisson process with rate 1 and standard normal jumps. The parameters are the same as in Fig. 1.

For every ϕ ∈ ΦL we denote by V ϕ the two-sided COGARCH process driven by S as in (2.17).
The sup-CO-GARCH 3 volatility process V̄ (3) is then defined by the integral equation

V̄ (3)
t = V̄ (3)

0 + βt − η


(0,t]

V̄ (3)
s ds +


(0,t]


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0, (3.24)

where V̄ (3)
0 is some starting random variable independent of the restriction of ΛL to R+ × ΦL

From (3.24) it follows directly that

1V̄ (3)
t =


R+×ΦL

ϕV ϕ
t−y µΛS

({t}, dϕ, dy), t ≥ 0. (3.25)

We present now conditions for stationarity and calculate the second-order properties. The
proofs can be found in Section 6.3.

Proposition 3.15. The stochastic integral equation (3.24) has a unique solution given by

V̄ (3)
t = e−ηt


V̄ (3)

0 + β


(0,t]

eηs ds +


(0,t]

eηs dAs


, t ≥ 0, (3.26)

where

At :=


(0,t]


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0, (3.27)

is a semimartingale with increasing sample paths, finite at every fixed t ≥ 0.

Example 3.16 (Examples 3.2 and 3.9 continued). Let π = p1δϕ1 + p2δϕ2 be a probability
measure with p1 + p2 = 1 and ϕ1, ϕ2 ∈ ΦL . As opposed to the sup-CO-GARCH 1 process in
Example 3.2 or the sup-CO-GARCH 2 process in Example 3.9, the sup-CO-GARCH 3 process
is not the sum of two (independent or dependent) COGARCH processes. In fact, there is a
subordinator S driving two COGARCH processes V ϕ1 and V ϕ2 and each time when S jumps, a
value of ϕ is randomly chosen from {ϕ1, ϕ2}: ϕ takes the value ϕ1 with probability p1 and the
value ϕ2 with probability p2. Now the jump size of the sup-CO-GARCH 3 at a particular jump
time of S is exactly the jump size of the COGARCH with the chosen parameter ϕ. If (Ti )i∈N
denote the jump times of S, we have

1V̄ (3)
Ti

= 1V ϕi
Ti

= ϕi V ϕi
Ti −
1STi , i ∈ N,

and (ϕi )i∈N is an i.i.d. sequence with distribution π . Moreover, (ϕi )i∈N is independent of S. This
effect is illustrated in Fig. 3.
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The next theorem establishes necessary and sufficient conditions for the existence of a
stationary distribution of the sup-CO-GARCH 3 process.

Theorem 3.17. Define the sup-CO-GARCH 3 process (V̄ (3)
t )t≥0 by (3.26). Then a finite random

variable V̄0
(3)

can be chosen such that V̄ (3) is strictly stationary if and only if
R+


ΦL


R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy) < ∞ a.s. (3.28)

In the case that a stationary distribution exists, it is uniquely determined by the law of
β
η

+


R+
e−ηs dAs . In particular, setting V̄ (3)

0 :=
β
η

+

(−∞,0]


ΦL

eηsϕV ϕ
s− ΛS(ds, dϕ), we obtain

the two-sided stationary sup-CO-GARCH 3 process

V̄ (3)
t = e−ηt


β


(−∞,t]

eηs ds +


(−∞,t]

eηs dAs


=
β

η
+


(−∞,t]


ΦL

e−η(t−s)ϕV ϕ
s− ΛS(ds, dϕ) (3.29)

for t ∈ R. Moreover, (3.28) holds in each of the following cases:

(a) π([0, ϕ0]) = 1 with some ϕ0 < ϕmax.
(b) π(Φ(κ)

L ) = 1 for some κ > 0.

The second-order properties of the strictly stationary sup-CO-GARCH 3 process are as
follows.

Proposition 3.18. Let V̄ (3) be the stationary sup-CO-GARCH 3 process given by (3.29). Recall
the notation Φ(κ)

L from Eq. (2.14).

(a) Assume that π(Φ(1)
L ) = 1. Then for t ∈ R

E[V̄ (3)
t ] =


ΦL

E[V ϕ
0 ]π(dϕ) =


ΦL

β

η − E[S1]ϕ
π(dϕ). (3.30)

(b) Assume that π(Φ(2)
L ) = 1. Then with E[V ϕ

0 V ϕ̃
0 ] and Cov[V ϕ

0 , V ϕ̃
0 ] as given in

Proposition 3.11, we have for t ∈ R and h ≥ 0

E[(V̄ (3)
t )2]

=


ΦL


ΦL


E[V ϕ

0 V ϕ̃
0 ] +

β

η

Var[V ϕ
0 ] − Cov[V ϕ

0 , V ϕ̃
0 ]

E[V ϕ
0 ]


π(dϕ̃) π(dϕ), (3.31)

Cov[V̄ (3)
t , V̄ (3)

t+h] =


ΦL


ΦL


ehΨ (1,ϕ)Cov[V ϕ

0 , V ϕ̃
0 ]

+ e−ηh β

η

Var[V ϕ
0 ] − Cov[V ϕ

0 , V ϕ̃
0 ]

E[V ϕ
0 ]


π(dϕ̃) π(dϕ). (3.32)

Note that the quantities in (3.30)–(3.32) may be infinite.

The sup-CO-GARCH 3 process also exhibits Pareto-like tails.
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Proposition 3.19. Let V̄ (3) be the stationary sup-CO-GARCH 3 process given by (3.29). Set
ϕ̄ := inf{ϕ > 0:π((ϕ,∞)) = 0} ≤ ϕmax < ∞ and assume that there exists κ̄ > 0 such
that (3.11) is fulfilled. Then for κ > 0

lim
x→∞

xκP[V̄ (3)
0 > x] =


0 if κ < κ̄,

∞ if κ > κ̄,

and for κ = κ̄ and π({ϕ̄}) = 0 we have

lim
x→∞

x κ̄P[V̄ (3)
0 > x] = 0,

while for κ = κ̄ and π({ϕ̄}) = p̄ > 0

0 < C∗ := lim inf
x→∞

x κ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞

x κ̄P[V̄ (3)
0 > x] =: C∗ < ∞.

Remark 3.20. Just like V̄ (1) and V̄ (2), the process V̄ (3) is not a Markov process with respect to
its augmented natural filtration (unless in the case π = δϕ), but, denoting the augmented nat-
ural filtration of ((V ϕ

t )ϕ∈ΦL )t≥0 by F(3) = (F (3)
t )t≥0, we obtain for every measurable function

f : R+ → R and every t ≥ 0

E


f

V̄ (3)

t
(F (3)

s )s≤t


= E


f

V̄ (3)

t
(V ϕ

t )ϕ∈ΦL


.

4. The price processes

Recall that in the COGARCH model, or its discrete-time analogue, the GARCH model the
driving noises for volatility and price processes are the same, cf. [9] and (2.8). In this section,
we suggest and investigate price processes corresponding to the sup-CO-GARCH volatility
processes. All proofs can be found in Section 6.4.

4.1. The integrated sup-CO-GARCH 1 price process

For the sup-CO-GARCH 1 volatility process V̄ (1) as defined in Section 3.1, there is no
canonical choice for a price process, since a whole sequence (Lϕi )i∈N of Lévy processes is
used in its definition. Hence a priori any function of this sequence is a reasonable candidate for
the driver in the price process. As a simple example we take the Lévy process Lϕ1 as integrator;
i.e. we define

G(1)
t :=


(0,t]


V̄ (1)

s− dLϕ1
s , t ≥ 0. (4.1)

It is an interesting observation that this process not only allows for common jumps of volatility
and price (as it is usual in the standard COGARCH model), but also for jumps only in the
volatility and not in the price process. There is evidence that this happens in real data (cf. [21]).

It is obvious from the definition that, if (V̄ (1)
t )t≥0 is strictly stationary, then (G(1)

t )t≥0 has
stationary increments. Furthermore, its second-order structure is comparable to that of the
integrated COGARCH process [23, Proposition 5.1].

Theorem 4.1. Let V̄ (1)
=


∞

i=1 pi V ϕi , ϕi ∈ ΦL , be a stationary sup-CO-GARCH 1 process
as defined in Section 3.1, where each V ϕi is driven by Sϕi = [Lϕi , Lϕi ]

d and (Lϕi )i∈N are
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i.i.d. copies of a Lévy processes L with zero mean. Define the price process G(1) by (4.1) and
set

∆r G(1)
t := G(1)

t+r − G(1)
t =


(t,t+r ]


V̄ (1)

s− dLϕ1
s , t ≥ 0, r > 0.

Recall the notation Φ(κ)
L from Eq. (2.14) and that the support of π is countable in this case.

(a) Assume that π has support in Φ(1/2)
L . Then

E[∆r G(1)
t ] = 0, t ≥ 0, r > 0.

(b) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ∈ R and h ≥ r > 0

E[(∆r G(1)
t )2] = rE[L2

1]E[V̄ (1)
0 ] = rE[L2

1]


Φ(1)

L

β

η − ϕ(E[L2
1] − σ 2

L)
π(dϕ) and

Cov[∆r G(1)
t ,∆r G(1)

t+h] = 0.

(c) Assume further that E[L4
1] < ∞,


R y3 νL(dy) = 0 and that π ≠ δ0 has support in Φ(2)

L .
Then for t ∈ R and h ≥ r > 0

Cov[(∆r G(1)
t )2, (∆r G(1)

t+h)
2
]

= E[L2
1]


Φ(2)

L

ehΨ (1,ϕ)
− e(h−r)Ψ (1,ϕ)

Ψ(1, ϕ)
Cov[(∆r G(1)

0 )2, V ϕ
r ]π(dϕ)

> 0.

4.2. The integrated sup-CO-GARCH 2 price process

Let (L t )t∈R be a two-sided Lévy process, define the subordinator S by (2.15) and let (V̄ (2)
t )t∈R

be the sup-CO-GARCH 2 process driven by S as defined in Section 3.2. In view of the standard
definition of the integrated COGARCH price process (2.8) it makes sense to define the integrated
sup-CO-GARCH 2 price process by

dG(2)
t :=


V̄ (2)

t− dL t , G(2)
0 = 0, t ∈ R. (4.2)

Hence, as in the standard COGARCH model, the process G(2) jumps exactly when the volatility
V̄ (2) jumps. Also (G(2)

t )t∈R has stationary increments if (V̄ (2)
t )t∈R is strictly stationary. As shown

in the following, the integrated sup-CO-GARCH 2 process has a similar second-order structure
to the integrated sup-CO-GARCH 1 and the integrated COGARCH process.

Theorem 4.2. Suppose that the two-sided Lévy process L has expectation 0, define S by (2.15),
the sup-CO-GARCH volatility V̄ (2) as in Section 3.2 with π(ΦL) = 1 and the process G(2)

by (4.2). Set

∆r G(2)
t := G(2)

t+r − G(2)
t =


(t,t+r ]


V̄ (2)

s− dLs, t ∈ R, r > 0.
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(a) Assume that π has support in Φ(1/2)
L . Then

E[∆r G(2)
t ] = 0, t ∈ R, r > 0.

(b) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ∈ R and h ≥ r > 0

E[(∆r G(2)
t )2] = rE[L2

1]E[V̄ (2)
0 ] = rE[L2

1]


Φ(1)

L

β

η − ϕ(E[L2
1] − σ 2

L)
π(dϕ),

Cov[∆r G(2)
t ,∆r G(2)

t+h] = 0.

(c) Assume further that E[L4
1] < ∞,


R y3 νL(dy) = 0 and π ≠ δ0 has support in Φ(2)

L . Then
for t ∈ R and h ≥ r > 0

Cov[(∆r G(2)
t )2, (∆r G(2)

t+h)
2
]

= E[L2
1]


Φ(2)

L

ehΨ (1,ϕ)
− e(h−r)Ψ (1,ϕ)

Ψ(1, ϕ)
Cov[(∆r G(2)

0 )2, V ϕ
r ]π(dϕ)

> 0.

4.3. The integrated sup-CO-GARCH 3 price process

As in the case of the sup-CO-GARCH 2 there is a canonical choice for the driving noise in the
price process of the sup-CO-GARCH 3. With L being a Lévy process and V (3) the stationary sup-
CO-GARCH 3 as defined in (3.29), we define the integrated sup-CO-GARCH 3 price process
by

G(3)
t :=


(0,t]


V̄ (3)

t− dL t , t ≥ 0. (4.3)

Evidently, G(3) has stationary increments and, if π({0}) = 0, it jumps at exactly the times when
V̄ (3) jumps. However, whenever π({0}) > 0, the sup-CO-GARCH 3 model features price jumps
without volatility jumps, a behaviour attested by the empirical findings of [21]. The second-order
structure of G(3) is calculated in the following theorem.

Theorem 4.3. Suppose that L is a Lévy process with expectation 0 and that π(ΦL) = 1. Define
V (3) by (3.29) and set

∆r G(3)
t := G(3)

t+r − G(3)
t =


(t,t+r ]


V̄ (3)

s− dLs, t ≥ 0, r > 0.

(a) Assume that π has support in Φ(1/2)
L . Then

E[∆r G(3)
t ] = 0, t ≥ 0, r > 0.

(b) If further E[L2
1] < ∞ and π has support in Φ(1)

L , then for t ≥ 0 and h ≥ r > 0

E[(∆r G(3)
t )2] = rE[L2

1]E[V̄ (3)
0 ] = rE[L2

1]


Φ(1)

L

β

η − ϕ(E[L2
1] − σ 2

L)
π(dϕ),

Cov[∆r G(3)
t ,∆r G(3)

t+h] = 0.
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(c) Assume further that E[L4
1] < ∞,


R y3 νL(dy) = 0 and π ≠ δ0 has support in Φ(2)

L . Then
for t ≥ 0 and h ≥ r > 0

Cov[(∆r G(3)
t )2, (∆r G(3)

t+h)
2
] = E[L2

1]


e−η(h−r)

− e−ηh

η
Cov[(∆r G(3)

0 )2, V̄ (3)
r ]

+


Φ(2)

L


ehΨ (1,ϕ)

− e(h−r)Ψ (1,ϕ)

Ψ(1, ϕ)
+

e−ηh
− e−η(h−r)

η



× Cov[(∆r G(3)
0 )2, V ϕ

r ]π(dϕ)


> 0.

5. Comparison and conclusions

This section is devoted to highlight the analogies and differences between the three sup-CO-
GARCH processes, and to compare them to the standard COGARCH process. First note that in
all three models, setting π = δϕ for ϕ ∈ ΦL yields the standard COGARCH process (V ϕ

t )t≥0
as defined in (2.5). Hence it seems natural that some features of the COGARCH process are
preserved under superpositioning. The next remark summarizes the most important properties.

Remark 5.1. (a) Comparing the autocovariance functions of the sup-CO-GARCH volatility
processes (cf. (3.10), (3.22) and (3.32)) to those of the COGARCH (cf. (2.13)), we find for
large lags h exponential decay in all three sup-CO-GARCH models, but allowing for more
flexibility than in the COGARCH model for small and medium lags.

(b) The important property of Pareto-like tails of the stationary distribution of a COGARCH
process [24, Theorem 6] persists as shown in Propositions 3.5, 3.13 and 3.19.

(c) Another similarity is given in the behaviour between jumps, where the COGARCH process
exhibits exponential decay [24, Proposition 2]. More precisely, assuming that V̄ (1), V̄ (2) and
V̄ (3) only have finitely many jumps on compact intervals, and fixing two consecutive jump
times T j < T j+1, we obtain for i ∈ {1, 2, 3} and t ∈ (T j , T j+1)

d
dt

V̄ (i)
t = β − ηV̄ (i)

t , V̄ (i)
t =

β

η
+


V̄ (i)

T j
−
β

η


e−η(t−T j ).

(d) An important difference between the sup-CO-GARCH processes and the COGARCH
process is the jump behaviour. This is highlighted in Corollary 5.2 and Example 5.3.

(e) In general, all sup-CO-GARCH models have common jumps in volatility and price as it is
characteristic for the COGARCH model. Additionally, the sup-CO-GARCH 1 model also
features volatility jumps without price jumps and the sup-CO-GARCH 3, if π({0}) > 0, also
price jumps without volatility jumps. Moreover, if we replace Lϕ1 in (4.1) by a (finite or
infinite) linear combination of (Lϕi )i∈N, we can control the proportion of common volatility
and price jumps to sole volatility jumps in the sup-CO-GARCH 1 model.

(f) Our three models have different degrees of randomness in the following sense. The sup-CO-
GARCH 1 is defined via a sequence of independent Lévy processes. So by the adjustment of
π there is an arbitrary degree of randomness in the model. The sup-CO-GARCH 2 model has
only one single source of randomness, namely the driving Lévy process. Finally, the sup-CO-
GARCH 3 incorporates two sources of randomness: one originating from the Lévy process
L = ΛL((0, ·] × ΦL) and one from the sequence (ϕi )i∈N chosen at the jump times of L .
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One of the motivations for this study was the observation made in [19] that for a COGARCH
process (V ϕ,Gϕ) there is always a deterministic relationship between volatility jumps and price
jumps given by

qϕT :=
φ(V ϕ

T −
, V ϕ

T )

ψ(Gϕ
T −
,Gϕ

T )
≡ ϕ

for deterministic functions

ψ(x, y) = (y − x)2, φ(x, y) = y − x, (5.1)

at every jump time T of the driving Lévy process.
From the following corollary, which is a direct consequence of the respective definitions,

we see immediately that for all three sup-CO-GARCH models such a deterministic functional
relationship between volatility and price jumps is no longer present.

Corollary 5.2. Let T be a jump time of Lϕ1 for the sup-CO-GARCH 1, and a jump time of L
for the sup-CO-GARCH 2 and 3. Furthermore, define ϕ̄ := inf{ϕ > 0:π((ϕ,∞)) = 0} and
ϕ := sup{ϕ > 0:π((0, ϕ)) = 0} (using the convention sup ∅ := 0, inf ∅ := ∞).

(a) We have

1V̄ (1)
T = p1ϕ1V ϕ1

T −
(1Lϕ1

T )
2, 1G(1)

T =

 ∞
i=1

pi V ϕi
T −
1Lϕ1

T , (5.2)

1V̄ (2)
T =


ΦL

ϕV ϕ
T −
π(dϕ)(1LT )

2, 1G(2)
T =


ΦL

V ϕ
T −
π(dϕ)1LT , (5.3)

1V̄ (3)
T = ϕT V ϕT

T −
(1LT )

2, 1G(3)
T =


V̄ (3)

T −
1LT , (5.4)

where in the last line ϕT is a random variable which has distribution π and is independent
of L.

(b) Define

q(i)T :=
φ(V̄ (i)

T −
, V̄ (i)

T )

ψ(G(i)
T −
,G(i)

T )
(5.5)

for i = 1, 2, 3 with φ and ψ given in (5.1). Then we have

q(1)T ≤ ϕ̄ and ϕ ≤ q(2)T ≤ ϕ̄;

moreover, if ϕT = ϕ̄ (resp. ϕT = ϕ), we have

q(3)j ≥ ϕ̄ (resp. q(3)j ≤ ϕ).

Example 5.3 (Examples 3.2, 3.9 and 3.16 continued). Let us compare the jumps in the sup-CO-
GARCH volatility processes for π = p1δϕ1 + p2δϕ2 with p1 + p2 = 1 and ϕ1, ϕ2 ∈ ΦL : We
see from (5.2) that in the sup-CO-GARCH 1 model a squared jump of Lϕi is always scaled with
piϕi V ϕi

t− and, hence, the parameter ϕi as well as the weight pi take part in the scaling. In contrast,
defining Sϕi = ΛS((0, ·] × {ϕi }) for i = 1, 2 in the case of the sup-CO-GARCH 3 process, each
jump of S = Sϕ1 + Sϕ2 = [L , L]

d is scaled with ϕ1V ϕ1
t− or ϕ2V ϕ2

t− , depending on whether S1
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Fig. 4. The pictures (from left to right) show the histograms for log(q(1)), log(q(2)) and log(q(3)).

or S2 actually jumps. Here the probabilities pi do not influence the scaling of the jump, but the
intensity of the driving processes Sϕi , in other words, the pi determine the probability for the
value ϕi to be chosen at a specific jump time. Finally, for the sup-CO-GARCH 2 process, the
jump size of the subordinator S = [L , L]

d is always scaled with p1ϕ1V ϕ1
t− + p2ϕ2V ϕ2

t− , so all
weights and parameters are involved here.

Simulation results

To illustrate the theoretical findings above, we present simulations of the different sup-CO-
GARCH volatility processes as well as the different price processes in Figs. 5 and 6. As Lévy
process L we choose a variance gamma process arising through time changing a standard Brow-
nian motion by an independent gamma process with mean and variance 1.

Note that we have chosen different parameters for the simulations presented in Figs. 5 and 6,
respectively, in order to better visualize the differences between the three volatility and the three
price processes.

To illustrate the profound difference between the COGARCH and the three sup-CO-GARCH
models with reference to (5.1), we also compute q(1), q(2) and q(3) as defined in (5.5) for the
jump times of the simulation in Fig. 6. The histograms of log q(i) are given in Fig. 4. We see that
both the sup-CO-GARCH 1 and 2 exhibit a certain interval of values for log q(1) and log q(2).
As we would expect from Corollary 5.2, both log q(1) and log q(2) are bounded from above by
logϕ2, but only log q(2) is bounded from below by logϕ1 whereas the log q(1) has a relatively
long tail on the negative side. Also, in general, the values of q(1) tend to be smaller than those of
q(2). This is due to the fact that at a common jump time of volatility and price, the volatility jump
size is the sum of two terms for the sup-CO-GARCH 2 but only a single term for the sup-CO-
GARCH 1 (see (5.3) and (5.2)). As a result, the nominator in (5.5) is usually smaller for the sup-
CO-GARCH 1 than for the sup-CO-GARCH 2. Finally, again in coincidence with Corollary 5.2,
the sup-CO-GARCH 3 shows two disjoint intervals for the values of q(3), corresponding to the
two different values of ϕ chosen for the superposition.

Estimation

A thorough — statistical analysis of the sup-CO-GARCH processes via parameter estimation
goes far beyond the scope of this paper. Nevertheless let us shortly comment on the main
task, namely the estimation of the superposition measure π , for which no standard estimation
procedure is available as it is typical for multifactor models.

In the case of the supOU stochastic volatility model, several attempts have been made to infer
the underlying superposition measure. For example, assuming the form π =

K
i=1 piδϕi for

some known K ∈ N, in [4,5] a least-square fit of the autocovariance function is employed.
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(a) L .

(b) V ϕ2 .

(c) V̄ (1).

(d) V̄ (2).

(e) V̄ (3).

Fig. 5. The parameters are: β = 1, η = 0.05, ϕ1 = 0.02, ϕ2 = 0.045, π = 0.9δϕ1 + 0.1δϕ2 , starting value is the mean;
(a) L is a variance gamma process with mean 0 and variance 1; (b) COGARCH process driven by L with parameter
ϕ2; (c) sup-CO-GARCH process V̄ (1) where V ϕ2 is driven by L and V ϕ1 is driven by an independent copy of L;
(d) sup-CO-GARCH process V̄ (2) driven by L; (e) sup-CO-GARCH process V̄ (3) driven by L .
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(a) L .

(b) Gϕ2 .

(c) G(1).

(d) G(2).

(e) G(3).

Fig. 6. The parameters are: β = 1, η = 1, ϕ1 = 0.5, ϕ2 = 0.995, π = 0.9δϕ1 + 0.1δϕ2 ; (a) L is the same Lévy
process as in Fig. 5; (b) COGARCH price process driven by L with parameter ϕ2; (c), (d) and (f) sup-CO-GARCH price
processes G(1),G(2) and G(3) driven by L .
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In [29] a generalized method of moments is used to estimate the supOU model under the
hypothesis of a gamma distribution for π . Further, in [17,18] a Bayesian nonparametric approach
is proposed in the case that π is a discrete or continuous measure, respectively. Whether and
how these approaches, or the estimation procedures for the COGARCH model mentioned in the
Introduction can be adapted to the sup-CO-GARCH case, is open.

6. Proofs and auxiliary results

6.1. Proofs for Section 3.1

Proof of Theorem 3.3. First assume that (3.6) holds. Then we know that each COGARCH
process V ϕi in the representation V̄ (1)

=


∞

i=1 pi V ϕi admits a unique stationary distribution

given by the law of V ϕi
∞ = β


R+

e−X
ϕi
t dt and that by choosing V ϕi

0
d
= V ϕi

∞ independently
of Sϕi , the corresponding COGARCH process V ϕi is strictly stationary. Thus, if we set,
V̄ (1)

0 :=


i∈N pi V ϕi
0 , V̄ (1) becomes strictly stationary as shown in the following.

Assume for a moment that π has finite support. Then for every 0 ≤ t1 < t2 < · · · < tn,
n ∈ N, h > 0 we can use the independence of (V ϕi )i∈N to obtain

(V̄ (1)
t1 , . . . , V̄ (1)

tn ) =


m

i=1

pi V ϕi
t1 , . . . ,

m
i=1

pi V ϕi
tn


=

m
i=1

pi (V
ϕi
t1 , . . . , V ϕi

tn )

d
=

m
i=1

pi (V
ϕi
t1+h, . . . , V ϕi

tn+h) = (V̄ (1)
t1+h, . . . , V̄ (1)

tn+h).

Due to the fact that
m

i=1 pi V ϕi
t is strictly increasing in m, the case for π having countable

support follows now by a standard monotonicity argument.
Conversely, assume that (3.6) is violated, i.e. there exists a ϕ j with π({ϕ j }) > 0 such that V ϕ j

has no stationary distribution. Then by [23, Theorem 3.1] V
ϕ j
t converges in probability to ∞ as

t → ∞. This yields that also V̄ (1)
t = p j V

ϕ j
t +


∞

i=1,i≠ j pi V ϕi
t converges in probability to ∞ as

t → ∞ since


∞

i=1,i≠ j pi V ϕi
t is nonnegative. Hence V̄ (1)

t cannot be strictly stationary. �

Proof of Proposition 3.4. The moment conditions as well as the formulas for expectation and
covariance follow directly from (3.7) together with the corresponding results for the COGARCH
process (2.10), (2.11) and (2.13) observing that all appearing processes are strictly positive. �

Proof of Proposition 3.5. Throughout this proof we slightly change our notation as follows.
Given i.i.d. subordinators (Si )i∈N, we denote the COGARCH process driven by Si with
parameter ϕ > 0 by V i,ϕ such that we have V̄ (1)

=


∞

i=1 pi V i,ϕi . If κ < κ̄ , then we know
by the definition of Ψ in (2.3) and [23, Lemma 4.1(d)] that for every ϕ ∈ (0, ϕ̄] there exists a
unique constant κ(ϕ) > 0 which satisfies (3.11) with κ̄ replaced by κ(ϕ) and such that κ(ϕ)
is strictly decreasing in ϕ. Moreover, as shown in [24, Theorem 6], for each i ∈ N the tail of
V i,ϕ is asymptotically equivalent to C(ϕ)x−κ(ϕ) with some specific constant C(ϕ) > 0. So by
[13, Lemma A3.26] we have

xκP[V̄ (1)
0 > x] ≤ xκ−κ̄ x κ̄P


∞

i=1

pi V i,ϕ̄
0 > x


→ 0
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as x → ∞ for all κ < κ̄ . Conversely, if κ > κ(ϕi ) for some i ∈ N, then

xκP[V̄ (1)
0 > x] ≥ xκP[pi V i,ϕi

0 > x] = xκ−κ(ϕi ) pκ(ϕi )
i (x/pi )

κ(ϕi )P[V i,ϕi
0 > x/pi ] → ∞.

Recalling that κ(ϕ) is defined via the equation Ψ(κ(ϕ), ϕ) = 0, this result is still valid for κ > κ̄

since we have infi∈N κ(ϕi ) = κ̄ by the implicit function theorem.
Finally, it remains to consider the case κ = κ̄ . If π({ϕ̄}) = 0, then using [24, Lemma 2] and

again [13, Lemma A3.26], we obtain

x κ̄P[V̄ (1)
0 > x] ≤ x κ̄P


ϕi ≤ϕ

pi V i,ϕ
0 +


ϕi>ϕ

pi V i,ϕ̄
0 > x


∼ x κ̄P


ϕi>ϕ

pi V i,ϕ̄
0 > x


→


ϕi>ϕ

pκ̄i C(ϕ̄)

as x → ∞ for every ϕ ∈ (0, ϕ̄). Letting ϕ → ϕ̄, the assertion follows. The case π({ϕ̄}) =: p̄ > 0
now follows from the results above and (ī is the index corresponding to ϕ̄)

x κ̄P[V̄ (1)
0 > x] = x κ̄P


ϕi<ϕ̄

pi V i,ϕi
0 + p̄V ī,ϕ̄

0 > x



≤ x κ̄P[ p̄V ī,ϕ̄
0 > x(1 − ε)] + x κ̄P


ϕi<ϕ

pi V i,ϕi
0 > εx


→


p̄

1 − ε

κ̄
C(ϕ̄).

Letting ε → 0, we may set C := p̄κ̄C(ϕ̄). �

6.2. Proofs for Section 3.2

For the proof of Theorem 3.10 we need the following lemma.

Lemma 6.1. Let (St )t∈R be a subordinator without drift and define the double-indexed processes
(Xϕt )t∈R,ϕ∈ΦL and (V ϕ

t )t∈R,ϕ∈ΦL according to (2.16) and (2.17). Then for all n ∈ N,
−∞ < t1 < t2 < · · · < tn < ∞, h > 0

((V ϕ
t1 )ϕ∈ΦL , (V

ϕ
t2 )ϕ∈ΦL , . . . , (V

ϕ
tn )ϕ∈ΦL )

d
=((V ϕ

t1+h)ϕ∈ΦL , (V
ϕ
t2+h)ϕ∈ΦL , . . . , (V

ϕ
tn+h)ϕ∈ΦL ),

i.e. the RΦL -valued stochastic process ((V ϕ
t )ϕ∈ΦL )t∈R is strictly stationary. In particular, every

finite-dimensional process (V ϕ1
t , . . . , V ϕm

t )t∈R, m ∈ N, is strictly stationary.

Proof. Imitating the proof of [23, Theorem 3.2] for the finite-dimensional process (V ϕ1
t , . . . ,

V ϕm
t )t∈R, m ∈ N, one readily sees that

(V ϕ1
t1 , . . . , V ϕm

t1 ), . . . , (V ϕ1
tn , . . . , V ϕm

tn )


d
=


(V ϕ1

t1+h, . . . , V ϕm
t1+h), . . . , (V

ϕ1
tn+h, . . . , V ϕm

tn+h)

.

As stochastic processes with the same index space are equal in distribution, whenever their
finite-dimensional distributions are equal (e.g. [22, Proposition 2.2]), this already yields the
assertion. �

Proof of Theorem 3.10. The result follows from the definition of V̄ (2) and Lemma 6.1. �

To prove Proposition 3.11, another auxiliary lemma will be established.
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Lemma 6.2. Let (St )t∈R be a subordinator without drift, let ϕ, ϕ̃ ≥ 0 be fixed and define the
processes (Xϕt )t∈R and (X ϕ̃t )t∈R according to (2.16). Set X t := Xϕt + X ϕ̃t , t ∈ R.

(a) The process (X t )t∈R is a Lévy process with characteristic triplet (2η, 0, νX ) where
νX = νS ◦ T −1 for T : R+ → R−, y → − log(1 + (ϕ + ϕ̃)y + ϕϕ̃y2).

(b) Let ϕ, ϕ̃ > 0. Then E[e−κX t ] is finite at κ > 0 for some t > 0, or, equivalently, for all t > 0
if and only if E[S2κ

1 ] < ∞. In this case we have E[e−κX t ] = ethκ (ϕ,ϕ̃), where

hκ(ϕ, ϕ̃) = −2ηκ +


R+


((1 + ϕy)(1 + ϕ̃y))κ − 1


νS(dy).

For κ = 1 we have

h(ϕ, ϕ̃) := h1(ϕ, ϕ̃) = −2η + (ϕ + ϕ̃)E[S1] + ϕϕ̃ Var[S1]. (6.1)

Proof. (a) Observe that by definition

X t = 2ηt −


0<s≤t

log

(1 + ϕ1Ss)(1 + ϕ̃1Ss)


= 2ηt −


0<s≤t

log(1 + (ϕ + ϕ̃)1Ss + ϕϕ̃(1Ss)
2)

for t ≥ 0, which directly yields the assertion.
(b) By [28, Theorem 25.17] E[e−κX t ] is finite for some, or, equivalently, for every t > 0 if

and only if
|y|>1

e−κy νX (dy) =


|y|>1

e−κy νS(T
−1(dy))

=


y∈Dc

(1 + (ϕ + ϕ̃)y + ϕϕ̃y2)κ νS(dy) < ∞

where D =


−(ϕ+ϕ̃)−

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃ ,
−(ϕ+ϕ̃)+

√
(ϕ−ϕ̃)2+4ϕϕ̃e

2ϕϕ̃


. This directly yields (b). �

Proof of Proposition 3.11. Due to Lemma 6.1 (V ϕ
t , V ϕ̃

t )t∈R is strictly stationary such that it
suffices to consider t > 0. Assume w.l.o.g. that 0 < ϕ ≤ ϕ̃. Then it follows from the
definition of the COGARCH process that V ϕ

≤ V ϕ̃ . Hence E[V ϕ
t V ϕ̃

t ] ≤ E[V ϕ̃
t V ϕ̃

t ] and similarly
E[V ϕ

t V ϕ̃
t+h] ≤ E[V ϕ̃

t V ϕ̃
t+h], which are both finite as (2.10) is given for κ = 2. We start with the

computation of E[V ϕ
t V ϕ̃

t ] and use (2.5) to obtain

E[V ϕ
t V ϕ̃

t ] = β2E


(0,t]
eXϕs −Xϕt ds


(0,t]

eX ϕ̃r −X ϕ̃t dr


+βE[V ϕ̃

0 ]E


(0,t]
eXϕs −Xϕt −X ϕ̃t ds


+βE[V ϕ

0 ]E


(0,t]
eX ϕ̃r −X ϕ̃t −Xϕt dr


+ E[V ϕ

0 V ϕ̃
0 ]E[e−Xϕt −X ϕ̃t ]

=: β2 I1 + βE[V ϕ̃
0 ]I2 + βE[V ϕ

0 ]I3 + E[V ϕ
0 V ϕ̃

0 ]I4. (6.2)
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Recall the Lévy process X defined in Lemma 6.2 and observe that the increments of X and Xϕ

on disjoint intervals are mutually independent. Thus we have by (2.3) and Lemma 6.2(b)

I1 = E


(0,t]


(0,r ]

eXϕs −Xϕr +Xϕr −Xϕt +X ϕ̃r −X ϕ̃t ds dr


+ E


(0,t]


(r,t]

eX ϕ̃r −X ϕ̃s +X ϕ̃s −X ϕ̃t +Xϕs −Xϕt ds dr


=


(0,t]


(0,r ]

e(r−s)Ψ (1,ϕ)+(t−r)h(ϕ,ϕ̃) ds dr +


(0,t]


(r,t]

e(s−r)Ψ (1,ϕ̃)+(t−s)h(ϕ,ϕ̃) ds dr

=
−aect

+ ceat
+ a − c

a2c − ac2 +
−bect

+ cebt
+ b − c

b2c − bc2 ,

where a := Ψ(1, ϕ), b := Ψ(1, ϕ̃) and c := h(ϕ, ϕ̃). Very similar calculations lead to

I2 =
ebt

− ect

b − c
, I3 =

eat
− ect

a − c

while we know from Lemma 6.2(b) that I4 = ect .
According to (2.11) we have E[V ϕ

0 ] = −β/a and E[V ϕ̃
0 ] = −β/b. Furthermore, we have

E[V ϕ
0 V ϕ̃

0 ] = E[V ϕ
t V ϕ̃

t ] due to stationarity. Putting all this into (6.2), we obtain

(1 − ect )E[V ϕ
t V ϕ̃

t ] = β2(1 − ect )


1

ac
+

1
bc


.

Since t > 0 we have 1 − ect
≠ 0, so dividing the last equation by this term yields

E[V ϕ
t V ϕ̃

t ] =
β2

Ψ(1, ϕ̃)h(ϕ, ϕ̃)
+

β2

Ψ(1, ϕ)h(ϕ, ϕ̃)
,

from which (3.16) and (3.17) follow immediately.
To obtain the formula for Cov[V ϕ

t , V ϕ̃
t+h], observe first that

V ϕ̃
t+h = Aϕ̃t,t+h V ϕ̃

t + Bϕ̃t,t+h, (6.3)

where

Aϕ̃t,t+h = e−(X ϕ̃t+h−X ϕ̃t ) and Bϕ̃t,t+h = β


(t,t+h]

e−(X ϕ̃t+h−X ϕ̃s ) ds.

In particular, we see that Aϕ̃t,t+h and Bϕ̃t,t+h are independent of (V ϕ
t , V ϕ̃

t ) such that

E[V ϕ
t V ϕ̃

t+h] = E[V ϕ
t (A

ϕ̃
t,t+h V ϕ̃

t + Bϕ̃t,t+h)]

= E[Aϕ̃t,t+h]E[V ϕ
t V ϕ̃

t ] + E[V ϕ
t ]E[Bϕ̃t,t+h]. (6.4)

Now since

E[Aϕ̃t,t+h] = E[e−(X ϕ̃t+h−X ϕ̃t )] = E[e−X ϕ̃h ] = ehΨ (1,ϕ̃)

and

E[Bϕ̃t,t+h] = β


(t,t+h]

e(t+h−s)Ψ (1,ϕ̃) ds =
β

Ψ(1, ϕ̃)


ehΨ (1,ϕ̃)

− 1


= E[V ϕ̃
0 ]


1 − ehΨ (1,ϕ̃)


,
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Eq. (6.4) directly yields

E[V ϕ
t V ϕ̃

t+h] = ehΨ (1,ϕ̃)E[V ϕ
0 V ϕ̃

0 ] +


1 − ehΨ (1,ϕ̃)


E[V ϕ

0 ]E[V ϕ̃
0 ],

which gives (3.18). �

Proof of Proposition 3.12. Due to the fact that all appearing processes are nonnegative, we can
use Tonelli’s Theorem to determine the given formulas directly from the definition of V̄ (2). �

Proof of Proposition 3.13. The proof is mainly the same as the proof of Proposition 3.5, so
we only indicate the differences. For κ < κ̄ use the estimation P[V̄ (2)

0 > x] ≤ P[V ϕ̄
0 > x].

For κ > κ̄ and π({ϕ̄}) = 0, it suffices to consider κ > κ(ϕi ) after having chosen se-
quences (ϕi )i∈N and (εi )i∈N with π((ϕi − εi , ϕi ]) > 0 for each i ∈ N. Using the fact
P[V̄ (2)

0 > x] ≥ P

π((ϕi − εi , ϕi ])V

ϕi
0 > x


gives the result. Similarly, use π({ϕ̄}) = 0 and

P[V̄ (2)
0 > x] ≤ P


π((0, ϕ])V ϕ

0 +π((ϕ, ϕ̄])V ϕ̄
0 > x


for κ = κ̄ . For κ = κ̄ and π({ϕ̄}) =: p̄ > 0,

we may use V̄ 2
0 =


(0,ϕ̄) V ϕ

0 π(dϕ)+ p̄V ϕ̄
0 . Finally, the case κ > κ̄ and π({ϕ̄}) > 0 follows from

the preceding arguments. �

6.3. Proofs for Section 3.3

Proof of Proposition 3.15. By (2.16) and (2.17), the function ϕ → V ϕ
s is increasing in ϕ for

every s ∈ R. As a consequence, we have for all t ≥ 0

At ≤


(0,t]


ΦL

ϕmaxV ϕmax
s ΛS(ds, dϕ) = ϕmax


(0,t]

V ϕmax
s dSs < ∞.

Since A is by definition càdlàg, G(3)-adapted and increasing, A is a semimartingale [20, e.g. Def-
inition I.4.21] such that uniqueness of the solution of (3.24) follows from [26, Theorem V.7].
It remains to show that (3.26) solves (3.24). Using integration by parts [20, Definition I.4.45]
and [20, Proposition I.4.49d], we obtain

dV̄ (3)
t =


V̄ (3)

0 +


(0,t]

eηs dAs + β


(0,t]

eηs ds


d

e−ηt

+ e−ηt (eηt dAt + βeηt dt)

= −ηV̄ (3)
t dt + dAt + β dt = (β − ηV̄ (3)

t ) dt + dAt . �

In order to show that the sup-CO-GARCH 3 process V̄ (3) from (3.24) has a stationary solution
we need a series of lemmata.

Lemma 6.3. Let n,m ∈ N. For −∞ < t1 < · · · < tm+1 < ∞, 0 < ϕ1 < · · · < ϕn+1 < ϕmax
and h > 0 we have

(V ϕi
t j
,ΛS((t j , t j+1] × (ϕi , ϕi+1]): i ≤ n, j ≤ m)

d
= (V ϕi

t j +h,Λ
S((t j + h, t j+1 + h] × (ϕi , ϕi+1]): i ≤ n, j ≤ m). (6.5)

Proof. For 1 ≤ i ≤ n and 1 ≤ j ≤ m write Λi
j := ΛS((t j , t j+1] × (ϕi , ϕi+1]) and

Λi
j,h := ΛS((t j + h, t j+1 + h] × (ϕi , ϕi+1]), and let Zm and Zm

h denote the left- and right-hand
side of (6.5), respectively. We first consider m = 1. On the one hand, we obtain from Lemma 6.1

that (V ϕ1
t1 , . . . , V ϕn

t1 )
d
= (V ϕ1

t1+h, . . . , V ϕn
t1+h). On the other hand, due to the independence of their
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single components, the vectors (Λ1
1, . . . ,Λ

n
1) and (Λ1

1,h, . . . ,Λ
n
1,h) have the same distribution.

Since additionally the V -vector is independent of the ΛS-vector, the assertion in the case m = 1
follows. For m ≥ 2, using induction and the independence of Λi

m and Zm−1, it suffices to
show that the conditional distribution of (V ϕi

tm : i = 1, . . . , n) given Zm−1 does not change
if shifted by h. By Markovianity (see [23, Theorem 3.2]) this distribution only depends on
(V ϕi

tm−1
,Λi

m−1: i = 1, . . . , n) such that by (6.3) and using the notation there, we only need to
consider the distribution of (Aϕi

tm−1,tm , Bϕi
tm−1,tm : i = 1, . . . , n) given (Λi

m−1: i = 1, . . . , n). Since
the former vector is a measurable transformation of (1Ss : tm−1 ≤ s ≤ tm), it is evident that this
distribution is invariant under a shift by h, which finishes the proof. �

In connection to (3.27), we show a further auxiliary result. To this end, define

At :=


(0,t]


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t ≥ 0,

At := −


(t,0]


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), t < 0.

(6.6)

Lemma 6.4. The process (At )t∈R defined in (6.6) has stationary increments, i.e. for every
n ∈ N, − ∞ < t1 < · · · < tn+1 < ∞ and h > 0 we have

(At2 − At1 , . . . , Atn+1 − Atn )
d
= (At2+h − At1+h, . . . , Atn+1+h − Atn+h). (6.7)

Proof. By an approximation via Riemann sums (note that ϕ → V ϕ
s is continuous in ϕ for all s),

cf. [20, Proposition I.4.44], we may use Lemma 6.3 to obtain

(At2 − At1 , . . . , Atn+1 − Atn )

=

 t2

t1


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), . . . ,

 tn+1

tn


ΦL

ϕV ϕ
s− ΛS(ds, dϕ)


d
=

 t2+h

t1+h


ΦL

ϕV ϕ
s− ΛS(ds, dϕ), . . . ,

 tn+1+h

tn+h


ΦL

ϕV ϕ
s− ΛS(ds, dϕ)


= (At2+h − At1+h, . . . , Atn+1+h − Atn+h). �

Proof of Theorem 3.17. Since e−ηt

(0,t] eηs ds → η−1 as t → ∞ the process (V (3)

t )t≥0
converges in distribution to a finite random variable as t → ∞ if and only if

e−ηt

(0,t]

eηs dAs =


(0,t]

eη(s−t) dAs

=


(−t,0]

eηs dAs+t
d
=


(−t,0]

eηs dAs
d
=


(0,t]

e−ηs dAs

converges to a finite random variable in distribution as t → ∞, where we used Lemma 6.4 for
the distributional equalities. By monotonicity this is equivalent to the existence of

R+

e−ηs dAs =


R+


ΦL

e−ηsϕV ϕ
s− ΛS(ds, dϕ)

in probability. As shown in [12, Theorem 3.1] and the following remark, this holds if and only if
(3.28) is valid.
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Hence in case that (3.28) is violated, no stationary distribution can exist. On the other hand,
given (3.28), following the above computations, the process (V (3)

t )t≥0 converges in distribution
to V̄ (3)

∞ :=
β
η

+


∞

0 e−ηs dAs , which is thus the only possible stationary distribution.

To show that (V (3)
t )t≥0 is actually strictly stationary when started in a random variable

V (3)
0

d
= V̄ (3)

∞ which is independent of ΛL on R+ × ΦL , we set V̄ (3)
0 :=

β
η

+

(−∞,0]

eηs dAs .
Then using Lemma 6.4 we obtain for all 0 ≤ t1 < · · · < tn and h > 0

(V̄ (3)
t1 , . . . , V̄ (3)

tn )

d
=


(−∞,t1]

e−η(t1−s) dAs + β


(−∞,t1]

e−η(t1−s) ds, . . . ,

(−∞,tn ]

e−η(tn−s) dAs

+β


(−∞,tn ]

e−η(tn−s) ds


=


(−∞,0]

eηs dAs+t1 + β


R+

e−ηs ds, . . . ,

(−∞,0]

eηs dAs+tn + β


R+

e−ηs ds


d
=


(−∞,0]

eηs dAs+t1+h + β


R+

e−ηs ds, . . . ,

(−∞,0]

eηs dAs+tn+h + β


R+

e−ηsds


d
= (V̄ (3)

t1+h, . . . , V̄ (3)
tn+h),

and hence the process (V (3)
t )t≥0 is strictly stationary.

It remains to show that (a) and (b) imply (3.28). First observe from (2.16) and (2.17) that for
fixed s the function ϕ → V ϕ

s is increasing in ϕ. So if (a) holds, we have
R+


ΦL


R+

1 ∧ (yϕV ϕ
s e−ηs) ds π(dϕ) νS(dy)

≤


R+


R+

1 ∧ (yϕ0V ϕ0
s e−ηs) ds νS(dy) < ∞

because (3.28) holds for π = δϕ0 (in this case V̄ (3) is just the COGARCH process V ϕ0 ).

Finally, (b) follows from (a) together with the fact that ϕ(κ)max < ϕmax. �

For the proof of Proposition 3.18 we need the following lemma.

Lemma 6.5. Let (At )t∈R, V ϕ and V̄ (3) be defined as in (6.6), (2.17) and (3.29), respectively.
Then, under the assumptions of Proposition 3.18, we have for t ≥ 0

[A, A]t =


(0,t]


ΦL


R+

ϕ2(V ϕ
s−)

2 y2 µΛS
(ds, dϕ, dy) and

[V̄ (3), V ϕ
]t = [A, V ϕ

]t = ϕ


(0,t]


ΦL


R+

ϕ̃V ϕ
s−V ϕ̃

s−y2 µΛS
(ds, dϕ̃, dy),

with µΛS
as defined in (2.18). For t < 0, let the expressions on the left-hand side denote the

respective quadratic (co-)variation on (t, 0]. Then the integrals have to be computed on (−t, 0]

instead of (0, t].
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Proof. Obviously it suffices to consider t ≥ 0. Since A is an increasing pure-jump process,

[A, A]t =


0<s≤t

(1As)
2

=


0<s≤t


∆(ϕV ϕ

·−y ∗ µΛS
)s
2

=


0<s≤t


ϕ∈ΦL

ϕV ϕ
s−ΛS({s} × {ϕ})

2

.

Noting that for almost every ω there is at most one ϕ ∈ ΦL at time s with ΛS({s}× {ϕ})(ω) ≠ 0,
we obtain

[A, A]t =


0<s≤t


ϕ∈ΦL

ϕ2(V ϕ
s−)

2ΛS({s} × {ϕ})2,

as desired. Similarly,

[A, V ϕ
]t =


0<s≤t

1As1V ϕ
s =


0<s≤t


ϕ̃∈ΦL

ϕ̃V ϕ̃
s−ΛS({s} × {ϕ̃})

ϕV ϕ
s−1Ss

according to (2.6). Now observe that for all s ∈ R, 1Ss = ΛS({s}×R+) =

ϕ∈ΦL

ΛS({s}×{ϕ})

where again for almost every ω there is at most one ϕ ∈ ΦL at time s with ΛS({s}×{ϕ})(ω) ≠ 0.
As a result,

[A, V ϕ
]t =


0<s≤t

ϕV ϕ
s−


ϕ̃∈ΦL

ϕ̃V ϕ̃
s−ΛS({s} × {ϕ̃})2 = ϕ(ϕ̃V ϕ

·−V ϕ̃
·−y2

∗ µΛS

t ).

Finally, we have [V̄ (3), V ϕ
] = [A, V ϕ

] by (3.24). �

Proof of Proposition 3.18. First observe that Theorem 3.17(c) ensures the existence of the given
stationary version of V̄ (3) under the assumptions of the present theorem.

We set m1 :=


R+
y νS(dy) = E[S1],m2 :=


R+

y2 νS(dy) = Var[S1] and assume w.l.o.g.
π({0}) = 0. For the mean we use (2.11) and obtain

E[V̄ (3)
t ] = E[V̄ (3)

0 ] =
β

η
+ E


(−∞,0]

eηs dAs


=
β

η
+ m1


(−∞,0]

eηs ds

ΦL

ϕE[V ϕ
0 ]π(dϕ)

=
β

η
−
β

η


ΦL


1 +

η

m1ϕ − η


π(dϕ)

= −


ΦL

β

m1ϕ − η
π(dϕ) =


ΦL

E[V ϕ
0 ]π(dϕ).

To compute the autocovariance function of V̄ (3), observe that for t ≥ 0 and h ≥ 0 we have from
(3.29)

Cov[V̄ (3)
t , V̄ (3)

t+h] = e−2ηt e−ηhE


(−∞,t]
eηs dAs


(−∞,t+h]

eηs dAs


− E


(−∞,t]

e−η(t−s) dAs


E


(−∞,t+h]

e−η(t+h−s) dAs


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= e−2ηt e−ηh


E


(−∞,t]

eηs dAs

2


+ E


(−∞,t]
eηs dAs

 t+h

t
eηs dAs



−
m2

1

η2


ΦL

ϕE[V ϕ
0 ]π(dϕ)

2

=: e−2ηt e−ηh(E1 + E2)−
m2

1

η2


ΦL

ϕE[V ϕ
0 ]π(dϕ)

2

. (6.8)

For E1 we can use integration by parts (see [20, Eq. I.4.45]) together with [26, Theorems II.19
and VI.29] and Lemma 6.5 to obtain

E1 = 2E


(−∞,t]


(−∞,s)

eηr dAr


eηs dAs


+ E


(−∞,t]

e2ηs d[A, A]s


= 2m1


ΦL


(−∞,t]

E


(−∞,s]
eηr dAr


V ϕ

s


eηsϕ ds π(dϕ)

+ m2


ΦL


(−∞,t]

e2ηsϕ2E[(V ϕ
s )

2
] ds π(dϕ)

= 2m1


ΦL


(−∞,t]

g(s, ϕ)eηsϕ ds π(dϕ)+
m2

2η
e2ηt


ΦL

ϕ2E[(V ϕ
0 )

2
]π(dϕ), (6.9)

where g(s, ϕ) := E

V ϕ

s

(−∞,s] eηr dAr


. Then again using integration by parts, Lemmas 6.3

and 6.5 and Eqs. (2.4), (2.6), (2.20) and (2.11), we obtain

g(s, ϕ) = E


(−∞,s]


(−∞,r)

eηu dAu dV ϕ
r


+ E


(−∞,s]

V ϕ
r−eηr dAr


+ E


(−∞,s]

eηr d[A, V ϕ
]r


= E


(−∞,s]


(−∞,r ]

eηu dAu


(β − ηV ϕ

r ) dr


+ E


(−∞,s]


(−∞,r)

eηu dAu


ϕV ϕ

r− dSr


+ E


(−∞,s]

V ϕ
r−eηr dAr


+ E


(−∞,s]

eηr d[A, V ϕ
]r


= βm1


(−∞,s]


(−∞,r ]

eηu du dr

ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)

+ (m1ϕ − η)


(−∞,s]

g(r, ϕ) dr + m1


(−∞,s]

eηr dr

ΦL

ϕ̃E[V ϕ
0 V ϕ̃

0 ]π(dϕ̃)

+ m2ϕ


(−∞,s]

eηr dr

ΦL

ϕ̃E[V ϕ
0 V ϕ̃

0 ]π(dϕ̃)

=
eηs

η


m1β

η


ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)+ (m1 + m2ϕ)


ΦL

ϕ̃E[V ϕ
0 V ϕ̃

0 ]π(dϕ̃)

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+Ψ(1, ϕ)

(−∞,s]

g(r, ϕ) dr

=
eηs

η
C(ϕ)+ Ψ(1, ϕ)


(−∞,s]

g(r, ϕ) dr,

with

C(ϕ) :=


ΦL

C(ϕ, ϕ̃) π(dϕ̃),

C(ϕ, ϕ̃) := −
m1

η
Ψ(1, ϕ)ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ] + (m1 + m2ϕ)ϕ̃E[V ϕ

0 V ϕ̃
0 ].

Solving this integral equation yields g(s, ϕ) =
C(ϕ)eηs

η−Ψ (1,ϕ) . Inserting this result in (6.9) gives

E1 =
m1

η
e2ηt


ΦL

ϕC(ϕ)

η − Ψ(1, ϕ)
π(dϕ)+

m2

2η
e2ηt


ΦL

ϕ2E[(V ϕ
0 )

2
]π(dϕ).

Let us turn to E2 and denote the augmented natural filtration of ΛL by G(3)
= (G(3)t )t∈R. Now

taking conditional expectation w.r.t. G(3)t and observing that V ϕ, V̄ (3) as well as A are all adapted
to G(3), we obtain

E2 = E


(−∞,t]
eηs dAs


E
 t+h

t


ΦL

eηsϕV ϕ
s− ΛS(ds, dϕ)

G(3)t


.

Observing that the restriction of ΛS on (t, t + h] is independent of Ft , we have

E2 = E


(−∞,t]
eηs dAs


m1


ΦL


(t,t+h]

eηsϕE[V ϕ
s−|G(3)t ] ds π(dϕ)


.

According to [23, Eq. (4.5)] we have E[V ϕ
s−|G(3)t ] = (V ϕ

t − E[V ϕ
0 ])e(s−t)Ψ (1,ϕ)

+ E[V ϕ
0 ] for

s > t . So we get

E2 = m1E


(−∞,t]
eηs dAs


ΦL


(t,t+h]

eηsϕ

(V ϕ

t − E[V ϕ
0 ])e(s−t)Ψ (1,ϕ)

+ E[V ϕ
0 ]


ds π(dϕ)


= m1


ΦL

ϕE


V ϕ
t


(−∞,t]

eηs dAs

 
(t,t+h]

eηse(s−t)Ψ (1,ϕ) ds π(dϕ)

+ m1E


(−∞,t]
eηs dAs

 
ΦL

ϕE[V ϕ
0 ]


(t,t+h]

eηs(1 − e(s−t)Ψ (1,ϕ)) ds π(dϕ)

=


ΦL

g(t, ϕ)eηt (em1ϕh
− 1) π(dϕ)+ m2

1


(−∞,t]

eηs ds

ΦL

ϕE[V ϕ
0 ]π(dϕ)

×


ΦL

ϕE[V ϕ
0 ]eηt


eηh

− 1
η

−
em1ϕh

− 1
m1ϕ


π(dϕ)

= e2ηt


ΦL

C(ϕ)

η − Ψ(1, ϕ)
(em1ϕh

− 1) π(dϕ)+
m2

1

η2 (e
ηh

− 1)


ΦL

ϕE[V ϕ
0 ]π(dϕ)

2

−
m1

η


ΦL

ϕE[V ϕ
0 ]π(dϕ)


ΦL

E[V ϕ
0 ](em1ϕh

− 1) π(dϕ)

.
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Now inserting the results for E1 and E2 in (6.8), we obtain

Cov[V̄ (3)
t , V̄ (3)

t+h] = e−ηh


m1

η


ΦL

ϕC(ϕ)

η − Ψ(1, ϕ)
π(dϕ)+

m2

2η


ΦL

ϕ2E[(V ϕ
0 )

2
]π(dϕ)


+


ΦL

C(ϕ)

η − Ψ(1, ϕ)
(eΨ (1,ϕ)h

− e−ηh) π(dϕ)−
m2

1

η2 e−ηh


ΦL

ϕE[V ϕ
0 ]π(dϕ)

2

−
m1

η


ΦL

ϕ̃E[V ϕ̃
0 ]π(dϕ̃)


ΦL

E[V ϕ
0 ](eΨ (1,ϕ)h

− e−ηh) π(dϕ)

=


ΦL


ΦL


C(ϕ, ϕ̃)

η − Ψ(1, ϕ)
−

m1

η
ϕ̃E[V ϕ̃

0 ]E[V ϕ
0 ]


eΨ (1,ϕ)h π(dϕ) π(dϕ̃)

+ e−ηh

ΦL


ΦL


m1ϕC(ϕ, ϕ̃)

η(η − Ψ(1, ϕ))
+

m2ϕ
2E[(V ϕ

0 )
2
]

2η
−

C(ϕ, ϕ̃)

η − Ψ(1, ϕ)

−
m2

1

η2 ϕϕ̃E[V ϕ
0 ]E[V ϕ̃

0 ] +
m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]


π(dϕ) π(dϕ̃), (6.10)

where using Proposition 3.11 together with Eqs. (2.4) and (6.1) gives

C(ϕ, ϕ̃)

η − Ψ(1, ϕ)
−

m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

= −
m1Ψ(1, ϕ)ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

η(η − Ψ(1, ϕ))
+
(m1 + m2ϕ)ϕ̃E[V ϕ

0 V ϕ̃
0 ]

η − Ψ(1, ϕ)
−

m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
(m1 + m2ϕ)ϕ̃

η − Ψ(1, ϕ)
E[V ϕ

0 V ϕ̃
0 ] −

m1ϕ̃

η(η − Ψ(1, ϕ))
E[V ϕ

0 ]E[V ϕ̃
0 ](Ψ(1, ϕ)+ η − Ψ(1, ϕ))

=
η + Ψ(1, ϕ̃)+ h(ϕ, ϕ̃)− Ψ(1, ϕ)− Ψ(1, ϕ̃)

η − Ψ(1, ϕ)
E[V ϕ

0 V ϕ̃
0 ]

−
η + Ψ(1, ϕ̃)
η − Ψ(1, ϕ)

E[V ϕ
0 ]E[V ϕ̃

0 ]

=


1 +

h(ϕ, ϕ̃)

η − Ψ(1, ϕ)


E[V ϕ

0 V ϕ̃
0 ] −


1 +

Ψ(1, ϕ)+ Ψ(1, ϕ̃)
η − Ψ(1, ϕ)


E[V ϕ

0 ]E[V ϕ̃
0 ]

= Cov[V ϕ
0 , V ϕ̃

0 ], (6.11)

while for the second part of (6.10) by Eqs. (2.4), (2.11) and (2.13)

m1ϕC(ϕ, ϕ̃)

η(η − Ψ(1, ϕ))
+

m2ϕ
2E[(V ϕ

0 )
2
]

2η
−

C(ϕ, ϕ̃)

η − Ψ(1, ϕ)

−
m2

1

η2 ϕϕ̃E[V ϕ
0 ]E[V ϕ̃

0 ] +
m1

η
ϕ̃E[V ϕ

0 ]E[V ϕ̃
0 ]

=
Ψ(1, ϕ)C(ϕ, ϕ̃)
η(η − Ψ(1, ϕ))

+


Ψ(2, ϕ)− 2Ψ(1, ϕ)


2η

E[(V ϕ
0 )

2
] −

m1ϕ̃Ψ(1, ϕ)
η2 E[V ϕ

0 ]E[V ϕ̃
0 ]

=: F1 + F2 + F3. (6.12)
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Now observe that by (2.12) and (2.11)

F2 =
Ψ(2, ϕ)

2η
E[(V ϕ

0 )
2
] −

Ψ(1, ϕ)
η

E[(V ϕ
0 )

2
] = −

β

η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )

2
]

E[V ϕ
0 ]

,

while

F3 = −
(Ψ(1, ϕ̃)+ η)Ψ(1, ϕ)

η2 E[V ϕ
0 ]E[V ϕ̃

0 ]

= −
β2

η2 +
Ψ(1, ϕ)
η

Cov[V ϕ
0 , V ϕ̃

0 ] −
Ψ(1, ϕ)
η

E[V ϕ
0 V ϕ̃

0 ]

= −
β2

η2 −
β

η

Cov[V ϕ
0 , V ϕ̃

0 ]

E[V ϕ
0 ]

+
β

η

E[V ϕ
0 V ϕ̃

0 ]

E[V ϕ
0 ]

.

On the other hand we obtain by similar means

Ψ(1, ϕ)C(ϕ, ϕ̃) =
(m1 + m2ϕ)ϕ̃β

2(Ψ(1, ϕ)+ Ψ(1, ϕ̃))
h(ϕ, ϕ̃)Ψ(1, ϕ̃)

−
m1β

2ϕ̃Ψ(1, ϕ)
ηΨ(1, ϕ̃)

=
β2

ηΨ(1, ϕ̃)h(ϕ, ϕ̃)
(η(m1 + m2ϕ)ϕ̃(Ψ(1, ϕ)+ Ψ(1, ϕ̃))

− m1ϕ̃Ψ(1, ϕ)h(ϕ, ϕ̃))

=
β2(η − Ψ(1, ϕ))
ηΨ(1, ϕ̃)h(ϕ, ϕ̃)


h(ϕ, ϕ̃)Ψ(1, ϕ̃)+ η(Ψ(1, ϕ)+ Ψ(1, ϕ̃))


such that by Proposition 3.11

F1 =
β2

η2 −
β

η

E[V ϕ
0 V ϕ̃

0 ]

E[V ϕ
0 ]

.

Finally inserting (6.11) and (6.12) with the obtained formulas for F1, F2 and F3 in (6.10) gives

Cov[V̄ (3)
t , V̄ (3)

t+h] =


ΦL


ΦL


Cov[V ϕ

0 , V ϕ̃
0 ]eΨ (1,ϕ)h

+ e−ηh


−
β

η
E[V ϕ

0 ] +
β

η

E[(V ϕ
0 )

2
]

E[V ϕ
0 ]

−
β

η

Cov[V ϕ
0 , V ϕ̃

0 ]

E[V ϕ
0 ]


π(dϕ) π(dϕ̃),

which yields the result. �

Proof of Proposition 3.19. To show the assertion for κ < κ̄ we use P[V̄ (3)
0 > x] ≤ P[V ϕ̄

0 > x]

and proceed as in the proof of Proposition 3.5. For the other cases, observe that

V̄ (3)
0

d
=
β

η
+


R+


ΦL

e−ηtϕV ϕ
t− ΛS(dt, dϕ) =

∞
i=1

e−ηTiϕi V ϕi
Ti −
1STi ,

where (Ti )i∈N are the jump times of S and (ϕi )i∈N is an i.i.d. sequence with common distribution
π which is also independent of S. We start by proving that, if I is a measurable subset of ΦL
with π(I ) =: p > 0 and ϕ ∈ ΦL , then there are constants 0 < C∗(ϕ, p),C∗(ϕ, p) < ∞, only
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dependent on I via p, with

C∗(ϕ, p) = lim inf
x→∞

xκ(ϕ)P

ϕi ∈I

e−ηTiϕV ϕ
Ti −
1STi > x


≤ lim sup

x→∞

xκ(ϕ)P

ϕi ∈I

e−ηTiϕV ϕ
Ti −
1STi > x


= C∗(ϕ, p), (6.13)

and moreover, if p → 0, then C∗(ϕ, p),C∗(ϕ, p) → 0.
We abbreviate the sum in (6.13) by V (ϕ, I ) or V (I ). Since the sequence (ϕi )i∈N is

independent of everything else, the distribution of V (I ) only depends on p, which means
that the constants C∗(ϕ, p) =: C∗(p) and C∗(ϕ, p) =: C∗(p) only depend on p. Also, they
are obviously decreasing in p. Hence, for the claimed convergence to 0, it suffices to show
C∗(2−n) ≤ ((1 + 2−κ(ϕ))/2)nC(ϕ) for all n ∈ N0, where C(ϕ) is the tail constant of V ϕ

0 as

in the proof of Proposition 3.5. The case n = 0 corresponds to V (I )
d
= V ϕ

0 and the statement
is clear. For n ≥ 1, find a set I ′ disjoint with I such that π(I ′) = π(I ) = 2−n and therefore
π(J ) = 2−(n−1) for J = I ∪ I ′. Since

P[V (J ) > x] = P[V (I )+ V (I ′) > x] ≥ 2P[V (I ) > x] − P[V (I ) > x, V (I ′) > x]

≥ 2P[V (I ) > x] − P[V (J ) > 2x],

we have by induction

C∗(2−n) = lim sup
x→∞

xκ(ϕ)P[V (I ) > x] ≤
1 + 2−κ(ϕ)

2
C∗(2−(n−1)).

It remains to show that C∗(p) < ∞ and C∗(p) > 0 for all p > 0. Again by monotonicity, the
first inequality is obvious and in the second inequality we only need to consider p = 1/n. To
this end, partition ΦL into n disjoint sets (Ik)k=1,...,n , each with π(Ik) = 1/n. Then observe that

P[V ϕ
0 > x] ≤ P[V (I1) > x/n or . . . or V (In) > x/n] ≤ nP[V (I1) > x/n],

which implies

C∗(1/n) = lim inf
x→∞

xκ(ϕ)P[V (I1) > x] ≥ Cn−(κ(ϕ)+1) > 0.

Let us come back to the main line of the proof of Proposition 3.19. If ϕ < ϕ̄, then we have by
the above

lim inf
x→∞

xκP[V̄ (3)
0 > x] ≥ lim inf

x→∞
xκP


V (ϕ, [ϕ, ϕ̄]) > x


→ ∞

for all κ > κ(ϕ) and therefore, by the same argument as in the proof of Proposition 3.5, for all
κ > κ̄ .

Next, consider the case κ = κ̄ and p̄ = 0. Then, again by the above and the proof of
[24, Lemma 2]

lim sup
x→∞

x κ̄P[V̄ (3)
0 > x] ≤ lim sup

x→∞

x κ̄P

V (ϕ, (0, ϕ])+ V (ϕ̄, (ϕ, ϕ̄]) > x


= lim sup

x→∞

x κ̄P

V (ϕ̄, (ϕ, ϕ̄]) > x


= C∗(ϕ̄, π((ϕ, ϕ̄])),

which converges to 0 as ϕ → ϕ̄. For the case p̄ > 0 first decompose

V̄ (3)
0 =

β

η
+


ϕi ≠ϕ̄

e−Tiϕi V ϕi
Ti −
1STi + V (ϕ̄, {ϕ̄}) =:

β

η
+ Z + V (ϕ̄, {ϕ̄})
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and observe that lim supx→∞ x κ̄P[Z > x] = 0 by the results so far. Reading along the lines of
the proof of [24, Lemma 2], we obtain

lim inf
x→∞

x κ̄P[V̄ (3)
0 > x] = lim inf

x→∞
x κ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

lim sup
x→∞

x κ̄P[V̄ (3)
0 > x] = lim sup

x→∞

x κ̄P[V (ϕ̄, {ϕ̄}) > x] = C∗(ϕ̄, p̄),

which finishes the proof. �

6.4. Proofs for Section 4

Proof of Theorem 4.1. First observe that the assumption that π has support in Φ(κ)
L implies

E

(V̄ (1)

t )κ

< ∞. Therefore, E[Lϕ1

1 ] = 0 implies

E[∆r G(1)
t ] = E


(t,t+r ]


V̄ (1)

s dLϕ1
s


= 0.

Next assume E[L2
1] < ∞. Using integration by parts and the fact that G(1) has stationary

increments, we have

E[(∆r G(1)
t )2] = E[(G(1)

r )2]

= 2E


(0,r ]

G(1)
s−


V̄ (1)

s− dLϕ1
s


+ E


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s


= 0 + Var[L1]E[V̄ (1)

0 ]r,

which, together with Proposition 3.12 and the relation between S and L in (2.1), gives the stated
formula. Furthermore, for h ≥ r > 0 we have, in view of the above computations and again
using integration by parts,

Cov[∆r G(1)
t ,∆r G(1)

t+h] = E

∆r G(1)

t ∆r G(1)
t+h


= E


(0,t+h+r ]

1(t,t+r ](s)


V̄ (1)
s− dLϕ1

s


(0,t+h+r ]

1(t+h,t+h+r ](u)


V̄ (1)
u− dLϕ1

u


= E


(0,t+h+r ]

1(t,t+r ](s)1(t+h,t+h+r ](s)V̄
(1)
s− d[Lϕ1 , Lϕ1 ]s


+ E


(0,t+h+r ]


(0,u]

1(t,t+r ](s)


V̄ (1)
s− dLϕ1

s


1(t+h,t+h+r ](u)


V̄ (1)

u− dLϕ1
u


+ E


(0,t+h+r ]


(0,u]

1(t+h,t+h+r ](s)


V̄ (1)
s− dLϕ1

s


1(t,t+r ](u)


V̄ (1)

u− dLϕ1
u


= 0.

To compute the covariance of the squared increments, let G(1)
= (G(1)t )t≥0 denote the augmented

natural filtration of (Lϕi )i∈N and observe that

E

(∆r G(1)

0 )2(∆r G(1)
h )2


= E


E

(∆r G(1)

0 )2(∆r G(1)
h )2|G(1)r


= E


(∆r G(1)

0 )2E

(∆r G(1)

h )2|G(1)r


,
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where again by integration by parts

E

(∆r G(1)

h )2|G(1)r


= E


(h,h+r ]


V̄ (1)

s dLϕ1
s

2
G(1)r



= 2E


(h,h+r ]


(0,s]


V̄ (1)

u− dLϕ1
u


V̄ (1)

s− dLϕ1
s

G(1)r



+ E


(h,h+r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s

G(1)r


= 0 + E[L2

1]


(h,h+r ]

E[V̄ (1)
s− |G(1)r ] ds.

Next, for s > r we obtain, using the notation as in the proof of Proposition 3.11,

E

V̄ (1)

s |G(1)r


=


Φ(1)

L

E

V ϕ

s |G(1)r


π(dϕ) =


Φ(1)

L

E

(Aϕr,s V ϕ

r + Bϕr,s)|G(1)r


π(dϕ)

=


Φ(1)

L


E[Aϕr,s]V

ϕ
r + E[Bϕr,s]


π(dϕ)

=


Φ(1)

L


e(s−r)Ψ (1,ϕ)V ϕ

r + E[V ϕ
0 ]


1 − e(s−r)Ψ (1,ϕ)


π(dϕ).

Together with the preceding computations, this yields

Cov[(∆r G(1)
0 )2, (∆r G(1)

h )2]

= E

(∆r G(1)

0 )2E[L2
1]


(h,h+r ]

E[V̄ (1)
s− |G(1)r ] ds


− E


(∆r G(1)

0 )2


E

(∆r G(1)

h )2


= E[L2
1]E


(∆r G(1)

0 )2

(h,h+r ]


Φ(1)

L


e(s−r)Ψ (1,ϕ)V ϕ

r + E[V ϕ
0 ]


1 − e(s−r)Ψ (1,ϕ)



×π(dϕ) ds


−


E

(∆r G(1)

0 )2
2

= E[L2
1]E


(∆r G(1)

0 )2

Φ(1)

L

1
Ψ(1, ϕ)


ehΨ (1,ϕ)

− e(h−r)Ψ (1,ϕ)


× (V ϕ
r − E[V ϕ

0 ])+ rE[V ϕ
0 ]π(dϕ)


−


E

(∆r G(1)

0 )2
2

= E[L2
1]


Φ(1)

L

1
Ψ(1, ϕ)


ehΨ (1,ϕ)

− e(h−r)Ψ (1,ϕ)


×


E[(∆r G(1)

0 )2V ϕ
r ] − E[(∆r G(1)

0 )2]E[V ϕ
r ]


π(dϕ)
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+ E[(∆r G(1)
0 )2]rE[L2

1]


Φ(1)

L

E[V ϕ
0 ]π(dϕ)−


E

(∆r G(1)

0 )2
2

= E[L2
1]


Φ(1)

L

1
Ψ(1, ϕ)


ehΨ (1,ϕ)

− e(h−r)Ψ (1,ϕ)


Cov[(∆r G(1)
0 )2, V ϕ

r ]π(dϕ).

It remains to prove Cov[(∆r G(1)
0 )2, V ϕ

r ] ≥ 0 with strict inequality if π({ϕ}) > 0 in order to
obtain the claimed positivity of the covariance of the squared increments. Again using integration
by parts, we get

(∆r G(1)
0 )2 =


(0,r ]


V̄ (1)

s− dLϕ1
s

2

= 2Mr +


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s,

where

Mr :=


(0,r ]


V̄ (1)

s−


(0,s)


V̄ (1)

u− dLϕ1
u


dLϕ1

s

satisfies E[Mr ] = 0 due to E[L1] = 0 and

E[Mr V ϕ
r ] = E


(0,r ]

Ms(β − ηV ϕ
s ) ds


+ E


(0,r ]

Ms−ϕV ϕ
s− dSϕs


+ E


(0,r ]

V ϕ
s− dMs


+ E


[V ϕ,M]r


= Ψ(1, ϕ)


(0,r ]

E[Ms V ϕ
s ] ds + E


[V ϕ,M]r


. (6.14)

Applying


R y3 νL(dy) = 0 and the independence of Lϕ and Lϕ1 , if ϕ ≠ ϕ1, we have

E

[V ϕ,M]r


= ϕE


(0,r ]

V ϕ
s−


V̄ (1)

s−


(0,s)


V̄ (1)

u− dLϕ1
u


d[Lϕ1 , Sϕ]s



=


0 if ϕ ≠ ϕ1,

ϕ


R

y3 νL(dy)

(0,r ]

E


V ϕ
s−


V̄ (1)

s−


(0,s)


V̄ (1)

u− dLϕ1
u


ds if ϕ = ϕ1,

= 0. (6.15)

Therefore, (6.14) together with the fact that E[M0V ϕ
0 ] = 0 implies that E[Mr V ϕ

r ] = 0 for all
r ≥ 0. As a consequence, we have

Cov[(∆r G(1)
0 )2, V ϕ

r ] = Cov


2Mr +


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s, V ϕ

r


= E


V ϕ

r


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s


− E[V ϕ

1 ]E


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s


= E


V ϕ

r


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s


− rE[L2

1]E[V̄ (1)
0 ]E[V ϕ

0 ],
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where an application of the integration by parts formula yields

f (r) := E


V ϕ
r


(0,r ]

V̄ (1)
s− d[Lϕ1 , Lϕ1 ]s


= E[L2

1]


(0,r ]

E[V ϕ
s V̄ (1)

s ] ds + β


(0,r ]

E


(0,s]
V̄ (1)

u− d[Lϕ1 , Lϕ1 ]u


ds

+Ψ(1, ϕ)

(0,r ]

E


V ϕ
s


(0,s]

V̄ (1)
u− d[Lϕ1 , Lϕ1 ]u


ds

+ E


(0,r ]

V̄ (1)
s− d


Sϕ1 , V ϕ


s


= E[L2

1]E[V ϕ
0 V̄ (1)

0 ]r + βE[L2
1]E[V̄ (1)

0 ]
r2

2
+ Ψ(1, ϕ)


(0,r ]

f (s) ds

+1{ϕ=ϕ1}ϕ


R

y2 νS(dy)E[V ϕ
0 V̄ (1)

0 ]r,

f (0) = 0.

Solving this integral equation yields (m2 :=


R y2 νS(dy))

f (r) =
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄ (1)

0 ]Ψ(1, ϕ)(eΨ (1,ϕ)r
− 1)

Ψ(1, ϕ)2

+
βE[L2

1]E[V̄ (1)
0 ](−Ψ(1, ϕ)r + eΨ (1,ϕ)r

− 1)

Ψ(1, ϕ)2
,

which by (2.11) yields the claimed positive correlation since

Cov[(∆r G(1)
0 )2, V ϕ

r ] = f (r)− E[L2
1]E[V ϕ

0 ]E[V̄ (1)
0 ]r

=
(E[L2

1] + 1{ϕ=ϕ1}ϕm2)E[V ϕ
0 V̄ (1)

0 ]Ψ (1, ϕ)(eΨ (1,ϕ)r
− 1)+ βE[L2

1]E[V̄ (1)
0 ](eΨ (1,ϕ)r

− 1)

Ψ (1, ϕ)2

=
eΨ (1,ϕ)r

− 1
Ψ (1, ϕ)


E[L2

1]Cov[V ϕ
0 , V̄ (1)

0 ] + 1{ϕ=ϕ1}ϕ


R

y2 νS(dy)E[V ϕ
0 V̄ (1)

0 ]


≥ 0 (6.16)

with Cov[V ϕ
0 , V̄ (1)

0 ] = π({ϕ})Var[V ϕ
1 ]. �

Proof of Theorem 4.2. The proof works similarly to the proof of Theorem 4.1 with obvious
changes when independence of the single COGARCH processes was used (e.g. (6.15)). Also
replace G(1) by G(2)

= (G(2)t )t∈R, the augmented natural filtration of L , and notice that
Cov[V ϕ

0 , V̄ (2)
0 ] =


Φ(2)

L
Cov[V ϕ

0 , V ϕ̃
0 ]π(dϕ̃) > 0 by Proposition 3.11. �

Proof of Theorem 4.3. Analogously to the proof of Theorem 4.1, one can show that (a) and (b)
hold and that for (c) we have

E

(∆r G(3)

0 )2(∆r G(3)
h )2


= E[L2

1]E

(∆r G(3)

0 )2

(h,h+r ]

E[V̄ (3)
s− |G(3)r ] ds


, (6.17)
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where from (3.29) and [23, Eq. (4.5)] we have

E[V̄ (3)
s− |G(3)r ] = e−η(s−r)V̄ (3)

r + βe−ηs

(r,s)

eηudu

+ E


(r,s)


Φ(2)

L

e−η(s−u)ϕV ϕ
u− ΛS(du, dϕ)

G(3)r



= e−η(s−r)V̄ (3)
r +

β

η
(1 − e−η(s−r))+ E[S1]


(r,s]


Φ(2)

L

e−η(s−u)ϕE[V ϕ
u−|G(3)r ]π(dϕ) du

= e−η(s−r)V̄ (3)
r +

β

η
(1 − e−η(s−r))

+ E[S1]


(r,s]


Φ(2)

L

e−η(s−u)ϕ

(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ (1,ϕ)

+ E[V ϕ
0 ]

π(dϕ) du.

Applying (2.11) we obtain

E[S1]


(r,s]


Φ(2)

L

e−η(s−u)ϕ

(V ϕ

r − E[V ϕ
0 ])e(u−r)Ψ (1,ϕ)

+ E[V ϕ
0 ]

π(dϕ) du

= E[S1]


Φ(2)

L


ϕ(V ϕ

r − E[V ϕ
0 ])

ϕE[S1]


eΨ (1,ϕ)(s−r)

− e−η(s−r)


+
ϕE[V ϕ

0 ]

η


1 − e−η(s−r)


π(dϕ)

=


Φ(2)

L

eΨ (1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ]) π(dϕ)− e−η(s−r)


Φ(2)

L

V ϕ
r π(dϕ)− E[V̄ (3)

0 ]



+


1 − e−η(s−r)

 
Φ(2)

L

E[S1]ϕ

η

−β

Ψ(1, ϕ)
π(dϕ)

=


Φ(2)

L

eΨ (1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ]) π(dϕ)− e−η(s−r)


Φ(2)

L

V ϕ
r π(dϕ)− E[V̄ (3)

0 ]



−
β

η


1 − e−η(s−r)

 
Φ(2)

L


1 +

η

Ψ(1, ϕ)


π(dϕ)

=


Φ(2)

L

eΨ (1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ]) π(dϕ)− e−η(s−r)

×


Φ(2)

L

V ϕ
r π(dϕ)−

β

η


1 − e−η(s−r)


+ E[V̄ (3)

0 ]

such that

E[V̄ (3)
s− |G(3)r ] = e−η(s−r)


V̄ (3)

r −


Φ(2)

L

V ϕ
r π(dϕ)



+


Φ(2)

L

eΨ (1,ϕ)(s−r)(V ϕ
r − E[V ϕ

0 ]) π(dϕ)+ E[V̄ (3)
0 ].
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Inserting this into (6.17) yields

Cov[(∆r G(3)
0 )2, (∆r G(3)

h )2]

= E[L2
1]E


(∆r G(3)

0 )2

(h,h+r ]

E[V̄ (3)
s− |G(3)r ] ds


− E[(∆r G(3)

0 )2]2

= E[L2
1]E


(∆r G(3)

0 )2


e−ηh

− e−η(h−r)

−η


V̄ (3)

r −


Φ(2)

L

V ϕ
r π(dϕ)



+


Φ(2)

L

eΨ (1,ϕ)h
− eΨ (1,ϕ)(h−r)

Ψ(1, ϕ)
(V ϕ

r − E[V ϕ
0 ]) π(dϕ)



= E[L2
1]


e−ηh

− e−η(h−r)

−η
Cov[(∆r G(3)

0 )2, V̄ (3)
r ]

+


Φ(2)

L


eΨ (1,ϕ)h

− eΨ (1,ϕ)(h−r)

Ψ(1, ϕ)
−

e−ηh
− e−η(h−r)

−η



× Cov[(∆r G(3)
0 )2, V ϕ

r ]π(dϕ)


.

Since Ψ(1, ϕ) > −η and the function x → (ehx
− e(h−r)x )/x is increasing in x for x < 0,

it remains to prove Cov[(∆r G(3)
0 )2, V̄ (3)

r ] > 0 and Cov[(∆r G(3)
0 )2, V ϕ

r ] > 0. For the latter,

proceed as in the proof of Theorem 4.1 and note that Cov[V ϕ
0 , V̄ (3)

0 ] > 0. Indeed, using
integration by parts,

V ϕ
r V̄ (3)

r = V ϕ
0 V̄ (3)

0 +


(0,r ]

V̄ (3)
s− dV ϕ

s +


(0,r ]

V ϕ
s− dV̄ (3)

s + [V ϕ, V̄ (3)
]r

= V ϕ
0 V̄ (3)

0 +


(0,r ]

V̄ (3)
s (β − ηV ϕ

s ) ds +


(0,r ]

V̄ (3)
s− ϕV ϕ

s− dSs

+


(0,r ]

V ϕ
s−(β − ηV̄ (3)

s ) ds +


(0,r ]


Φ(2)

L

V ϕ
s−ϕ̃V ϕ̃

s− ΛS(ds, dϕ̃)

+ϕ


(0,r ]


Φ(2)

L


R+

V ϕ
s−ϕ̃V ϕ̃

s−y2 µΛS
(ds, dϕ̃, dy),

with [V ϕ, V̄ (3)
]r as given in Lemma 6.5. Taking expectations, differentiating w.r.t. r and using the

stationarity of V ϕ V̄ (3), which is a consequence of Lemma 6.3, we find that (m1 :=


R+
y νS(dy)

and m2 :=


R+
y2 νS(dy))

β(E[V̄ (3)
0 ] + E[V ϕ

0 ])+ (ϕm1 − 2η)E[V ϕ
0 V̄ (3)

0 ] + (m1 + ϕm2)


Φ(2)

L

ϕ̃E[V ϕ
0 V ϕ̃

0 ]π(dϕ̃)

= 0,

which implies that

Cov[V̄ (3)
0 , V ϕ

0 ]

=

β(E[V̄ (3)
0 ] + E[V ϕ

0 ])+ (m1 + ϕm2)

Φ(2)

L
ϕ̃E[V ϕ

0 V ϕ̃
0 ]π(dϕ̃)− (η − Ψ (1, ϕ))E[V̄ (3)

0 ]E[V ϕ
0 ]

η − Ψ (1, ϕ)
.
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To show the positivity of this term, we only have to consider the numerator, which by (2.11),
(3.30) and (6.1) can be simplified to

Φ(2)
L

(m1 + ϕm2)ϕ̃Cov[V ϕ
0 , V ϕ̃

0 ]π(dϕ̃)+ β(E[V̄ (3)
0 ] + E[V ϕ

0 ])+ h(ϕ, ϕ̃)E[V ϕ
0 ]E[V̄ (3)

0 ]

=


Φ(2)

L

(m1 + ϕm2)ϕ̃Cov[V ϕ
0 , V ϕ̃

0 ]π(dϕ̃)+ β2m2


Φ(2)

L

ϕϕ̃

Ψ(1, ϕ)Ψ(1, ϕ̃)
π(dϕ̃) > 0.

Finally, using the same methods as in the proof of Theorem 4.1, one can derive the following
analogue of Eq. (6.16):

Cov[(∆r G(3)
0 )2, V̄ (3)

0 ] = g(r)− E[L2
1]E[V̄0]

2r,

where

g(r) = e−ηr


(0,r ]

eηs


a + bs +


Φ(2)

L

m1ϕ f (ϕ, s) π(dϕ)


ds


, r ≥ 0,

a = E[L2
1]E[(V̄ (3)

0 )2] +


R+

y2 νS(dy)

Φ(2)

L

ϕE[V ϕ
0 V̄0]π(dϕ),

b = βE[L2
1]E[V̄ (3)

0 ] and f (ϕ, r) = E


V ϕ
r


(0,r ]

V̄ (3)
u− d[L , L]u


.

The positivity now follows from

Cov[(∆r G(3)
0 )2, V̄ (3)

0 ] ≥ eηr

(0,r ]

e−ηs dsE[L2
1]E[(V̄ (3)

0 )2] − E[L2
1]E[V̄ (3)

0 ]
2r

and the fact that eηr

(0,r ]

e−ηs ds = (eηr
− 1)/η > r for all r > 0. �
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[12] C. Chong, C. Klüppelberg, Integrability conditions for space–time stochastic integrals: theory and applications,

Bernoulli (2014) in press.
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[19] J. Jacod, C. Klüppelberg, G. Müller, Functional relationships between price and volatility jumps and its

consequences for discretely observed data, J. Appl. Probab. 49 (4) (2012) 901–914.
[20] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, second ed., Springer, Berlin, 2003.
[21] J. Jacod, V. Todorov, Do price and volatility jump together? Ann. Appl. Probab. 20 (4) (2010) 1425–1469.
[22] O. Kallenberg, Foundations of Modern Probability, second ed., Springer, New York, 2002.
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[27] B.S. Rajput, J. Rosiński, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields

82 (3) (1989) 451–487.
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