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Abstract

The block counting process and the fixation line of the Bolthausen–Sznitman coalescent are analyzed.
It is shown that these processes, properly scaled, converge in the Skorohod topology to the Mittag-
Leffler process and to Neveu’s continuous-state branching process respectively as the initial state tends to
infinity. Strong relations to Siegmund duality, Mehler semigroups and self-decomposability are pointed out.
Furthermore, spectral decompositions for the generators and transition probabilities of the block counting
process and the fixation line of the Bolthausen–Sznitman coalescent are provided leading to explicit
expressions for functionals such as hitting probabilities and absorption times.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction 1

Exchangeable coalescents are Markovian processes (Πt )t≥0 with state space P , the set of 2

partitions of N := {1, 2, . . .}. These processes have attracted the interest of several researchers, 3

mainly in biology, mathematics and physics, during the last decades. The full family of 4

exchangeable coalescents (with simultaneous multiple collisions) is a class of partition valued 5

Markovian processes with a rich probabilistic structure and hence important for mathematical 6
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studies. Moreover, coalescents are useful in mathematical population genetics to model the1

ancestry of a sample of individuals or genes and therefore important for biological applications.2

Exchangeable coalescents with multiple collisions but without simultaneous multiple col-3

lisions are characterized by a measure Λ on the unit interval [0, 1] and therefore called4

Λ-coalescents. For further information on these processes we refer the reader to the independent5

works of Pitman [32] and Sagitov [37]. The most important coalescent is probably the Kingman6

coalescent [20], which allows only for binary mergers of ancestral lineages. In this case the7

measure Λ is the Dirac measure at 0.8

For t ≥ 0 let Nt denote the number of blocks of Πt and let N (n)
t denote the number of9

blocks of Π (n)
t , where Π (n)

t denotes the partition of Πt restricted to a sample of size n ∈ N. The10

processes (Nt )t≥0 and (N (n)
t )t≥0 are called the block counting processes of (Πt )t≥0 and (Π (n)

t )t≥011

respectively.12

Hénard [17] introduced for n ∈ N the so-called fixation line (L (n)
t )t≥0 of a Λ-coalescent.13

Recently [13] the fixation line was extended to arbitrary exchangeable coalescents. One possible14

definition of the fixation line is based on the lookdown construction going back to Donnelly and15

Kurtz [8,9]. A precise pathwise construction of the Markovian processes (L (n)
t )t≥0, n ∈ N, is16

provided in [17, p. 3010] for the Λ-coalescent and in [13, Section 1] for general exchangeable17

coalescents. By this construction, (L (n)
t )t≥0 has state space {n, n + 1, . . .} ∪ {∞}, initial state18

L (n)
0 = n and non-decreasing paths. Moreover, L (n)

t ≤ L (n+1)
t for all n ∈ N and t ≥ 0. The19

infinitesimal rates of the process (L t )t≥0 := (L (1)
t )t≥0 are provided in [17, Lemma 2.3] for the20

Λ-coalescent and in [13, Proposition 2.2] for arbitrary exchangeable coalescents.21

The fixation line can be traced back to Pfaffelhuber and Wakolbinger [31] for the Kingman22

coalescent. For the Λ-coalescent the fixation line appears in Labbé [22] and was further studied23

by Hénard [16,17].24

Note that we omit the pathwise definition of the fixation line via the lookdown construction25

here because it is provided in detail in [13] and [17]. In fact, our proofs concerning the fixation26

line are mainly based on the infinitesimal rates and do not rely on the pathwise construction27

except for the fact that L (n)
t is non-decreasing in n.28

The fact that the block counting process (Nt )t≥0 of a coalescent with multiple collisions is29

Siegmund dual to the fixation line (L t )t≥0 is explicitly mentioned in [2, Remark 3.6] and already30

contained in Hénard [17, Lemma 2.4] even though the name Siegmund dual is not mentioned31

there. For the full class of coalescents with simultaneous multiple collisions this Siegmund32

duality is provided in [13, Theorem 2.9] and may also be derived from the pathwise relations33

L (n)
t = sup{k ∈ N : N (k)

t ≤ n} and N (n)
t = inf{k ∈ N : L (k)

t ≥ n}, t ≥ 0, n ∈ N.34

In this article we focus on the Bolthausen–Sznitman coalescent [6], which is the particular35

Λ-coalescent with Λ being the uniform distribution on the unit interval. The generator Q =36

(qi j )i, j∈N of the block counting process and the generator Γ = (γi j )i, j∈N of the fixation line37

of the Bolthausen–Sznitman coalescent have entries (see, for example, [27, Eq. (1.1)] and38

[17, p. 3015, Eq. 2.8 with α = 1])39

qi j =

⎧⎪⎪⎨⎪⎪⎩
i

(i − j)(i − j + 1)
for j < i

1 − i for j = i,
0 for j > i .

and40

γi j =

⎧⎪⎪⎨⎪⎪⎩
i

( j − i)( j − i + 1)
for j > i ,

−i for j = i ,
0 for j < i .

41
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The block counting process and the corresponding generator Q have been studied intensively in 1

the literature. In this article we focus on both processes (Nt )t≥0 and (L t )t≥0 with an emphasis 2

on the fixation line (L t )t≥0, which has been studied less intensively so far. As already observed 3

by Hénard [17], it follows from γi,i+ j = i/( j( j + 1)), i, j ∈ N, that (L t )t≥0 is a continuous- 4

time branching process with offspring law pk := 1/(k(k − 1)), k ∈ {2, 3, . . .} and probability 5

generating function (pgf) E(sL(n)
t ) = (1 − (1 − s)e−t

)n , s ∈ [0, 1], t ≥ 0, n ∈ N. These properties 6

of the fixation line turn out to be fundamental and simplify several calculations. We furthermore 7

stress the duality relation between the block counting process and the fixation line. 8

Section 2 deals with the behavior of the block counting process (N (n)
t )t≥0 and the fixation 9

line (L (n)
t )t≥0 as the initial state n tends to infinity. The main convergence result (Theorem 2.1) 10

states that both processes, properly scaled, converge in the Skorohod sense as n → ∞ to the 11

Mittag-Leffler process and to Neveu’s continuous-state branching process respectively. 12

In Section 3 the processes (Nt )t≥0 and (L t )t≥0 are analyzed with an emphasis on spectral de- 13

compositions. These spectral decompositions lead to explicit expressions for several functionals 14

of these processes such as hitting probabilities and absorption times. 15

The proofs provided in Section 4 rely on both analytic and probabilistic arguments which 16

demonstrates the interplay between analysis and probability. The proofs concerning the asymp- 17

totic results in Section 2 do not depend on the proofs of the results concerning the spectral 18

decomposition in Section 3 and vice versa. A short appendix collects some results of independent 19

interest used in the proofs. 20

2. Asymptotics 21

We are interested in the behavior of the block counting process (N (n)
t )t≥0 and the fixation 22

line (L (n)
t )t≥0 of the Bolthausen–Sznitman n-coalescent as the sample size n tends to infinity. 23

In order to state the main convergence result (see Theorem 2.1) let us recall some properties of 24

the Mittag-Leffler process X = (X t )t≥0 and Neveu’s [28] continuous-state branching process 25

Y = (Yt )t≥0. 26

The Mittag-Leffler process X is a Markovian process in continuous time with initial state 27

X0 = 1 and state space E := [0,∞). The name of this process comes from the fact that for every 28

t ≥ 0 the marginal random variable X t is Mittag-Leffler distributed with parameter e−t . Note 29

that X t has moments E(Xm
t ) = Γ (1 + m)/Γ (1 + me−t ), m ∈ [0,∞). The semigroup (T X

t )t≥0 of 30

the Mittag-Leffler process X is given by 31

T X
t f (x) = E( f (xe−t

X t )), t, x ≥ 0, f ∈ B(E), (1) 32

where B(E) denotes the set of all bounded measurable functions f : E → R. Conditional on 33

Xs = x the random variable x−e−t
Xs+t is Mittag-Leffler distributed with parameter e−t . Some 34

further information on the process X can be found in [3] and [26]. 35

Neveu’s [28] continuous-state branching process Y is as well a Markovian process in 36

continuous time with initial state Y0 = 1 and state space E . For every t ≥ 0 the marginal 37

random variable Yt is α-stable with Laplace transform E(e−λYt ) = e−λα , λ ≥ 0, where α := e−t . 38

The semigroup (T Y
t )t≥0 of Neveu’s continuous-state branching process Y is given by 39

T Y
t g(y) = E(g(yet

Yt )), t, y ≥ 0, g ∈ B(E). (2) 40

Conditional on Ys = y the random variable y−et
Ys+t has the same distribution as Yt . Note that 41

(see, for example, [26]) the Mittag-Leffler process X is Siegmund dual to Neveu’s continuous 42

state branching process Y , i.e. P(X t ≤ y | X0 = x) = P(Yt ≥ x | Y0 = y) for all t, x, y ≥ 0. 43
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Define the scaled block counting process X (n)
= (X (n)

t )t≥0 and the scaled fixation line1

Y (n)
:= (Y (n)

t )t≥0 of the Bolthausen–Sznitman n-coalescent via2

X (n)
t :=

N (n)
t

ne−t and Y (n)
t :=

L (n)
t

net , t ≥ 0, n ∈ N. (3)3

Note that, for n ≥ 2, the processes X (n) and Y (n) are time-inhomogeneous because of the time-4

dependent scalings ne−t
and net

. Let us consider the one-dimensional distributions of X (n) and5

Y (n) respectively. We first turn to Y (n). As already mentioned in the introduction, (L t )t≥0 is6

a continuous-time Galton–Watson branching process with offspring law pk := 1/(k(k − 1)),7

k ∈ {2, 3, . . .}, and E(sL(n)
t ) = (1 − (1 − s)e−t

)n , s ∈ [0, 1], t ≥ 0, n ∈ N. See also Eq. (7) in8

Corollary 3.2 in the following Section 3. Thus, for all t, λ ≥ 0,9

E(e−λY (n)
t ) = (1 − (1 − e−λ/net

)e−t
)n

→ e−λe−t
= E(e−λYt ), n → ∞.10

Hence, Y (n)
t → Yt in distribution as n → ∞. The convergence X (n)

t → X t in distribution as11

n → ∞ is now obtained via duality as follows. For n ∈ N, t ≥ 0 and x > 0 define m := ⌊xne−t
⌋12

for convenience. Since (Nt )t≥0 is Siegmund dual to (L t )t≥0 we conclude that13

P(X (n)
t ≤ x) = P(N (n)

t ≤ m) = P(L (m)
t ≥ n) = P(Y (m)

t > (n − 1)/met
)14

→ P(Yt > x−et
) = P(Y −e−t

t < x) = P(Y −e−t

t ≤ x), n → ∞,15

since (n − 1)/met
→ x−et

as n → ∞. It is well known that Y −e−t
t is Mittag-Leffler distributed16

with parameter e−t . Thus, X (n)
t → X t in distribution as n → ∞. An alternative proof (avoiding17

duality) of the latter convergence based on moment calculations is provided in [26, p. 46, Step18

1]. The convergence of the one-dimensional distributions motivates the following convergence19

result.20

Theorem 2.1 (Asymptotics of the Block Counting Process and the Fixation Line). For the21

Bolthausen–Sznitman coalescent the following two assertions hold.22

(a) As n → ∞ the scaled block counting process X (n), defined in (3), converges in DE [0,∞)23

to the Mittag-Leffler process X = (X t )t≥0.24

(b) As n → ∞ the scaled fixation line Y (n), defined in (3), converges in DE [0,∞) to Neveu’s25

continuous-state branching process Y = (Yt )t≥0.26

The proof of Theorem 2.1 provided in Section 4 indeed shows that it suffices to verify27

the convergence of the one-dimensional distributions. Theorem 2.1 demonstrates the intimate28

relation between the Bolthausen–Sznitman coalescent, the Mittag-Leffler process and Neveu’s29

continuous state branching process. We refer the reader to Bertoin and Le Gall [4] for further30

insights concerning these relations.31

Theorem 2.1(a) is known from the literature [26, Theorem 1.1] and provided here for32

completeness. Our proof of Theorem 2.1(a) is significantly shorter than the proof provided in [26]33

and gives further insights into the structure of the scaled block counting process X (n).34

Part (b) of Theorem 2.1 is likely to be known from branching process theory, however the35

authors have not been able to trace this result in the literature. Note that the offspring distribution36

of the branching process (L (n)
t )t≥0 has pgf f (s) = s + (1−s) log(1−s) and, hence, infinite mean.37

For related convergence results for the critical case when the offspring distribution has mean 138

we refer the reader to Sagitov [36] and the references therein. Note that in Theorem 2.1 of [36]39

the space-scaling is n and an additional time-scaling occurs. Theorem 2.1(b) may be viewed as40
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Fig. 1. Commutative diagram for the block counting process (N (n)
t )t≥0 and the fixation line (L (n)

t )t≥0 of the Bolthausen–
Sznitman coalescent. The right-arrows ‘⇒’ stand for ‘convergence in DE [0,∞) as n → ∞’. The vertical updown-
arrows ‘↕’ stand for ‘duality’, on the left hand side the duality of the block counting process (Nt )t≥0 and the fixation
line (L t )t≥0 with respect to the Siegmund duality kernel H : N2

→ {0, 1} defined via H (i, j) := 1 for i ≤ j and
H (i, j) := 0 otherwise, on the right hand side the duality of (X t )t≥0 and (Yt )t≥0 with respect to the Siegmund duality
kernel H : [0,∞)2

→ {0, 1} defined via H (x, y) := 1 for x ≤ y and H (x, y) := 0 otherwise.

a kind of boundary case of Theorem 2.1 of [36] for α → 1. Similar convergence results for 1

sequences of discrete-time branching processes can be traced back to Lamperti [23,24]. 2

In summary the following commutative diagram holds (see Fig. 1). 3

Let us point out that Theorem 2.1 is strongly related to Mehler semigroups, to self- 4

decomposability and to the Gumbel distribution. Clearly, Theorem 2.1 can be stated logarithmi- 5

cally as follows. The process (log N (n)
t −e−t log n)t≥0 converges in DR[0,∞) to X̃ := (X̃ t )t≥0 := 6

(log X t )t≥0 and the process (log L (n)
t − et log n)t≥0 converges in DR[0,∞) to Ỹ := (Ỹt )t≥0 := 7

(log Yt )t≥0 as n → ∞. Note that the semigroup (T X̃
t )t≥0 of X̃ is given by 8

T X̃
t f (x) = E( f (xe−t

+ X̃ t )), t ≥ 0, f ∈ B(R), x ∈ R, (4) 9

whereas the semigroup (T Ỹ
t )t≥0 of Ỹ is given by 10

T Ỹ
t g(y) = E(g(yet

+ Ỹt )), t ≥ 0, g ∈ B(R), y ∈ R. (5) 11

Semigroups of this form belong to the class of so called generalized Mehler semigroups [5] 12

corresponding to generalized Ornstein–Uhlenbeck type processes. Note that (4) and (5) define 13

the semigroups of X̃ and Ỹ completely, since for every t ≥ 0 the distributions of the 14

marginals X̃ t = log X t and Ỹt = log Yt can be characterized as follows. Let E be standard 15

exponentially distributed and independent of X and Y . Note that G := − log E is standard 16

Gumbel distributed. From E d
= (E/Yt )e−t

(see, for example, [38]) we conclude by an application 17

of the transformation x ↦→ − log x that the distribution of Ỹt is characterized via the self- 18

decomposable distributional equation. 19

G d
= e−t G + e−t Ỹt . 20

Thus, Ỹt has characteristic function u ↦→ Γ (1 − iuet )/Γ (1 − iu), u ∈ R, and cumulants 21

κ j (Ỹt ) = (e j t
−1)κ j (G), j ∈ N, t ≥ 0, where κ j (G) are the cumulants of the Gumbel distribution, 22

i.e. κ1(G) = γ (Euler–Mascheroni constant) and κ j (G) = (−1) jΨ ( j−1)(1) = ( j − 1)!ζ ( j) for 23

j ∈ N \ {1}, where Ψ and ζ denote the digamma function (logarithmic derivative of the gamma 24

function) and the Riemann zeta function respectively. 25
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Similarly, the distribution of X̃ t is characterized via the self-decomposable distributional1

equation.2

S d
= e−t S + X̃ t ,3

where S := −G. Therefore, X̃ t has characteristic function u ↦→ Γ (1 + iu)/Γ (1 + iue−t ), u ∈ R,4

and cumulants κ j (X̃ t ) = (−1) j (1 − e− j t )κ j (G), j ∈ N, t ≥ 0.5

3. Spectral decompositions and applications6

Spectral decompositions are of fundamental interest since they lead to diagonal repre-7

sentations of the corresponding operators or matrices which simplify many mathematical8

calculations and numerical computations significantly. Explicit spectral decompositions for (the9

block counting process of) the Kingman coalescent and the Bolthausen–Sznitman coalescent are10

provided in [21] and [27]. We are interested in analog spectral decompositions for the fixation11

line. A spectral decomposition of the generator Γ of the fixation line of the Kingman coalescent12

is provided in the appendix (Lemma A.2) for completeness. Our first result in this section13

(Theorem 3.1) provides an explicit spectral decomposition for the generator Γ of the fixation14

line of the Bolthausen–Sznitman coalescent. This spectral decomposition is for example used15

afterwards to derive exact expressions and sharp approximations for the absorption time of the16

Bolthausen–Sznitman coalescent (see Corollaries 3.4 and 3.5). It turns out to be convenient to17

express the spectral decomposition in terms of the Stirling numbers s(i, j) and S(i, j) of the18

first and second kind respectively. Note that (−1)i− j s(i, j) is the number of permutations of19

i elements having j cycles whereas S(i, j) counts the number of ways to partition a set of i20

elements into j nonempty subsets. For more insights why the Stirling numbers occur naturally21

in this context we refer the reader to [21], where a spectral decomposition of the generator of the22

full (partition valued) Bolthausen–Sznitman coalescent is provided.23

Theorem 3.1 (Spectral Decomposition of the Generator of the Fixation Line). The generator24

Γ = (γi j )i, j∈N of the fixation line (L t )t≥0 of the Bolthausen–Sznitman coalescent has spectral25

decomposition Γ = RDL, where D = (di j )i, j∈N is the diagonal matrix with entries di j = −i26

for i = j and di j = 0 for i ̸= j , and R = (ri j )i, j∈N and L = (li j )i, j∈N are upper right triangular27

matrices with entries28

ri j =
i !
j !

(−1)i+ j S( j, i) and li j =
i !
j !

(−1)i+ j s( j, i), i, j ∈ N. (6)29

As already explained in the introduction, the fixation line (L t )t≥0 of the Bolthausen–Sznitman30

coalescent has the branching property. Alternatively, one may derive this branching property31

from the spectral decomposition of the generator (Theorem 3.1). We state the following corollary.32

Corollary 3.2 (Branching Property/Transition Probabilities of the Fixation Line). For the33

Bolthausen–Sznitman coalescent, the random variable L (i)
t has probability generating function34

(pgf)35

E(zL(i)
t ) = (1 − (1 − z)e−t

)i , |z| < 1, t ≥ 0, i ∈ N. (7)36

Thus, (L t )t≥0 is a Markovian continuous-time branching process with state space N and offspring37

distribution pk = 1/(k(k − 1)), k ∈ {2, 3, . . .} having infinite mean. Moreover, the transition38
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probabilities pi j (t) := P(L t = j | L0 = i) = P(L (i)
t = j) are given by 1

pi j (t) = (−1)i+ j i !
j !

j∑
k=i

S(k, i)e−tks( j, k) 2

= (−1) j
i∑

k=1

(−1)k
(

i
k

) (
e−t k

j

)
, i, j ∈ N. (8) 3

Remarks. 4

1. For i = 1 it follows that L t = L (1)
t has pgf E(zL t ) = 1 − (1 − z)α = −

∑
∞

j=1

(
α

j

)
(−z) j

5

and Sibuya distribution 6

P(L t = j) = p1 j (t) = (−1) j+1
(
α

j

)
=

αΓ ( j − α)
Γ (1 − α)Γ ( j + 1)

, j ∈ N, (9) 7

where α := e−t . Note that P(L t = j) ∼ α/(Γ (1 − α) jα+1) as j → ∞ and that L t has a 8

Pareto like tail P(L t ≥ j) = Γ ( j − α)/(Γ (1 − α)Γ ( j)) ∼ 1/(Γ (1 − α) jα) as j → ∞. 9

Thus, E(Lq
t ) =

∑
∞

j=1 jqP(L t = j) < ∞ if and only if q < α. Particular reciprocal factorial 10

moments of L t are known explicitly. For example, 11

E
(

1
(L t + 1)(L t + 2) · · · (L t + k)

)
=

α

Γ (1 − α)

∞∑
j=1

Γ ( j − α)
Γ ( j + k + 1)

12

=
α

k!(α + k)
, k ∈ N. 13

The Sibuya distribution (9) and similar distributions occur in [7, Eq. (2)], [18, p. 9], 14

[19, p. 225] and [33, p. 70, Eq. 3.38]. 15

2. The pgf f (s) :=
∑

∞

k=2 pksk
= s + (1 − s) log(1 − s) of the offspring distribution satisfies 16∫

(1−ε,1)

λ(ds)
f (s) − s

=

∫
(1−ε,1)

λ(ds)
(1 − s) log(1 − s)

=

∫
(0,ε)

λ(dx)
x log x

= −∞ 17

for all ε ∈ (0, 1), where λ denotes Lebesgue measure on (0, 1). This implies (Harris 18

[15, p. 107]) that the fixation line (L t )t≥0 does not explode, in agreement (see [13]) with 19

the fact that the Bolthausen–Sznitman coalescent stays infinite. 20

As a second application we study the probability h(i, j) = P(L (i)
t = j for somet ≥ 0) that the 21

fixation line hits state j ∈ N started from state i ∈ N. 22

Corollary 3.3 (Hitting Probabilities). The hitting probabilities h(i, j) have horizontal generat- 23

ing function 24

∞∑
j=i

h(i, j)z j−1
=

zi

(1 − z)(− log(1 − z))
, i ∈ N, |z| < 1. (10) 25

Moreover, for all i ∈ N, 26

h(i, j) =
1

log j
−

γ

log2 j
+ O

(
1

log3 j

)
, j → ∞, (11) 27
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where γ := −Γ ′(1) ≈ 0.577216 denotes the Euler–Mascheroni constant. The hitting probability1

h(i, j) can be computed via2

h(i, j) =

j−i∑
k=1

P(η1 + · · · + ηk = j − i), 1 ≤ i < j, (12)3

where η1, η2, . . . are iid random variables with distribution P(η1 = n) := un := 1/(n(n + 1)),4

n ∈ N. The hitting probabilities can be also expressed in terms of the Stirling numbers s(., .) and5

S(., .) of the first and second kind as6

h(i, j) = (−1)i+ j i !
( j − 1)!

j∑
k=i

s( j, k)S(k, i)
k

(13)7

= (−1) j−i 1
( j − i)!

j−i+1∑
k=1

s( j − i + 1, k)
k

, 1 ≤ i ≤ j. (14)8

Moreover, h(i, j) has representations9

h(i, j) =
1

( j − i)!

∫ 1

0

Γ ( j − i + x)
Γ (x)

dx =
1

( j − i)!

j−i∑
k=0

|s( j − i, k)|
k + 1

, 1 ≤ i ≤ j. (15)10

Remark. Concrete values of the hitting probabilities h(i, j) for i = 1 and j ∈ {1, . . . , 7} are11

provided in the remark after the proof of Corollary 3.3.12

We now turn to the block counting process (N (n)
t )t≥0 of the Bolthausen–Sznitman n-13

coalescent. For n ∈ N and i ∈ {1, . . . , n} let τni := inf{t > 0 : N (n)
t ≤ i} denote the first14

time the block counting process (N (n)
t )t≥0 jumps to a state smaller than or equal to i . Note that15

τn := τn1 is the absorption time of N (n).16

Corollary 3.4 (Distribution Function and Asymptotics of τni ). For all n ∈ N and i ∈ {1, . . . , n},17

τni has distribution function18

P(τni ≤ t) =

i∑
j=1

(−1)n+ j
(

i
j

) (
je−t

− 1
n − 1

)
, t ∈ (0,∞). (16)19

In particular, for every i ∈ N, τni − log log n → min(G1, . . .,G i ) in distribution as n → ∞,20

where G1,G2, . . . are independent standard Gumbel distributed random variables.21

Remark. Note that min(G1, . . .,G i ) has distribution function Fi (x) := 1 − (1 − F(x))i , where22

F(x) := e−e−x
, x ∈ R. For i = 1 we recover the well known convergence result (see Goldschmidt23

and Martin [14, Proposition 3.4], Freund and Möhle [12, Corollary 1.2] or Hénard [17, Theorem24

3.9]) that the scaled absorption time τn −log log n is asymptotically standard Gumbel distributed.25

The fact that the distribution function (16) of τni is known explicitly can be further exploited.26

For example, the following Edgeworth expansion holds.27

Corollary 3.5 (Edgeworth Expansion). For every i ∈ N and x ∈ R the following Edgeworth28

expansion of order K ∈ N0 holds.29

P(τni − log log n ≤ x) =

K∑
k=0

ckdki (x)
e−kx

logkn
+ O

(
1

logK+1n

)
, n → ∞, (17)30
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Please cite this article in press as: J. Kukla, M. Möhle, On the block counting process and the fixation line of the Bolthausen–Sznitman coalescent,
Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.06.012.

J. Kukla, M. Möhle / Stochastic Processes and their Applications xx (xxxx) xxx–xxx 9

where c0, c1, . . . are the coefficients in the series expansion 1/Γ (1 − x) =
∑

∞

k=0ck xk , |x | < 1, 1

and 2

dki (x) :=

(
ex d

dx

)k

Fi (x) =

i∑
j=1

(F(x)) j (−1) j−1
(

i
j

)
j k, k ∈ N0, i ∈ N, x ∈ R, 3

(18) 4

with Fi and F as defined in the previous remark. Alternatively, d0i (x) = Fi (x) and 5

dki (x) =

k∑
j=1

S(k, j)(−1) j−1(i) j (F(x)) j (1 − F(x))i− j , k, i ∈ N, x ∈ R, (19) 6

where the S(k, j) are the Stirling numbers of the second kind and (i) j := i(i − 1) · · · (i − j + 1). 7

Remarks. 8

1. The coefficients ck , k ∈ N0, are related to the moments of the Gumbel distribution (see 9

Lemma 4.2). The concrete values ck for k ≤ 3 are provided in the remark after the proof of 10

Lemma 4.2. 11

2. For K = 1 Corollary 3.5 reads P(τni − log log n ≤ x) = Fi (x) − γ F ′

i (x)/ log n + 12

O(1/log2n). In particular, for every x ∈ R, P(τni −log log n ≤ x)−Fi (x) ∼ −γ F ′

i (x)/ log n 13

as n → ∞. Thus, the speed of the convergence of τni − log log n to G i is of order 1/ log n. 14

4. Proofs 15

Proof of Theorem 2.1(a). Let Z (n)
:= (X (n)

t , t)t≥0 and Z := (X t , t)t≥0 denote the space–time 16

processes of X (n)
= (X (n)

t )t≥0 and X = (X t )t≥0 respectively. Note that Z (n) has state space 17

Sn := {( j/ne−t
, t) : j ∈ {1, . . . , n}, t ≥ 0} =

⋃
t≥0(En,t × {t}), where En,t := { j/ne−t

: j ∈ 18

{1, . . . , n}}, and that Z has state space S := E × [0,∞) = [0,∞)2. The processes Z (n) and 19

Z are time-homogeneous (see, for example, Revuz and Yor [35, p. 85, Exercise (1.10)]). In the 20

following it is shown that Z (n) converges in DS[0,∞) to Z as n → ∞. Note that this convergence 21

implies the desired convergence of X (n) in DE [0,∞) to X as n → ∞. Define πn : B(S) → B(Sn) 22

via πn f (x, s) := f (x, s) for all f ∈ B(S) and (x, s) ∈ Sn . By Proposition A.4 it suffices to verify 23

that, for every t ≥ 0 and λ,µ > 0, 24

lim
n→∞

sup
s≥0

sup
x∈En,s

|T (n)
t πn fλ,µ(x, s) − πnTt fλ,µ(x, s)| = 0, 25

where (T (n)
t )t≥0 and (Tt )t≥0 denote the semigroups of the space–time processes Z (n) and Z 26

respectively and the test functions fλ,µ : S → R are defined via fλ,µ(x, s) := e−λx−µs for 27

all (x, s) ∈ S. Fix t ≥ 0 and λ,µ > 0. For convenience, define α := e−t and β := e−s . We have 28

T (n)
t πn fλ,µ(x, s) = E( fλ,µ(X (n)

s+t , s + t) | X (n)
s = x) 29

= (αβ)µE(exp(−λ/nαβN (n)
s+t ) | N (n)

s = xnβ) 30

= (αβ)µE(exp(−λ/nαβN (xnβ )
t )), (x, s) ∈ Sn, 31

and 32

πnTt fλ,µ(x, s) = E( fλ,µ(Xs+t , s + t) | Xs = x) 33

= (αβ)µE(exp(−λXs+t ) | Xs = x) 34

= (αβ)µE(exp(−λxαX t )), (x, s) ∈ S. 35
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Please cite this article in press as: J. Kukla, M. Möhle, On the block counting process and the fixation line of the Bolthausen–Sznitman coalescent,
Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.06.012.

10 J. Kukla, M. Möhle / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

Thus, we have to verify that1

lim
n→∞

sup
s≥0

sup
x∈En,s

(αβ)µ|E(exp(−λ/nαβN (xnβ )
t )) − E(exp(−λxαX t ))| = 0.2

In the following it is shown that it suffices to verify the convergence of the one-dimensional3

distributions X (k)
t → X t in distribution as k → ∞, t ≥ 0. Since both expectations above are4

bounded between 0 and 1 and since (αβ)µ = e−µ(s+t) tends to 0 as s → ∞ it suffices to verify5

that, for every s0 > 0,6

lim
n→∞

sup
s∈[0,s0]

sup
x∈En,s

|E(exp(−λ/nαβN (xnβ )
t )) − E(exp(−λxαX t ))| = 0.7

We will even verify that8

lim
n→∞

sup
s∈[0,s0]

sup
x>0

|E(exp(−λ/nαβN (⌊xnβ⌋)
t )) − E(exp(−λxαX t ))| = 0.9

The difference of the two expectations depends on n and s only via nβ = ne−s
. Since the map10

s ↦→ ne−s
is non-increasing it follows that the convergence for fixed s ∈ [0, s0] is slower as s is11

larger. So the slowest convergence holds at the right end point s = s0. Thus, it suffices to verify12

that, for every s ≥ 0,13

lim
n→∞

sup
x>0

|E(exp(−λ/nαβN (⌊xnβ⌋)
t )) − E(exp(−λxαX t ))| = 0.14

The map x ↦→ E(exp(−λxαX t )) is bounded, continuous, and non-increasing. Moreover, for15

every n ∈ N the map x ↦→ E(exp(−λ/nαβN (⌊xnβ⌋)
t )) is bounded and non-increasing, since16

N (1)
t ≤ N (2)

t ≤ · · · . Thus, by the theorem of Pólya [34, Satz I], it suffices to verify that, for17

every s ≥ 0 and x > 0,18

lim
n→∞

E(exp(−λ/nαβN (⌊xnβ⌋)
t )) = E(exp(−λxαX t )).19

Note that we have reduced the problem to verify the convergence uniformly for all s ≥ 0 and x ∈20

En,s to the problem to verify the convergence pointwise for all points (s, x) ∈ [0,∞) × (0,∞).21

Define τ := nβ and k := ⌊xτ⌋. Using this notation it remains to verify that22

lim
τ→∞

E(exp(−λτ−αN (⌊xτ⌋)
t )) = E(exp(−λxαX t ))23

or, equivalently, that24

lim
k→∞

E(exp(−λk−αN (k)
t )) = E(exp(−λX t )). (20)25

Thus, it suffices to verify the convergence of the one-dimensional distributions X (k)
t =26

k−αN (k)
t → X t in distribution as k → ∞. In the remaining part of the proof this convergence of27

the one-dimensional distributions is verified by the method of moments. We have28

E(exp(−λk−αN (k)
t )) =

∞∑
m=0

(−λ)m

m!

E((N (k)
t )m)

kαm
.29

Note that the series on the right hand side is absolutely convergent, since N (k)
t ≤ k and, hence,30

E((N (k)
t )m) ≤ km . Applying the formula zm

=
∑m

i=0(−1)m−i S(m, i)[z]i , m ∈ N0, z > 0, where31

[z]i := Γ (z + i)/Γ (z) for z, i > 0, it follows that32

E((N (k)
t )m)

kαm
=

m∑
i=0

(−1)m−i S(m, i)
E([N (k)

t ]i )
kαm

=

m∑
i=0

(−1)m−i S(m, i)E(X i
t )

[k]αi

kαm
33
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by Lemma 3.1 of [26]. From [k]αi ∼ kαi as k → ∞ we conclude that only the summand i = m 1

yields asymptotically a non-zero contribution and it follows that 2

lim
k→∞

E((N (k)
t )m)

kαm
= E(Xm

t ). 3

Moreover, 4

E((N (k)
t )m)

kαm
≤

E([N (k)
t ]m)

kαm
= E(Xm

t )
[k]αm

kαm
. 5

It is readily checked that the map k ↦→ [k]αm/kαm is non-increasing in k. Thus, we obtain the 6

upper bound 7

E((N (k)
t )m)

kαm
≤ E(Xm

t )
[k0]αm

kαm
0

for all k ≥ k0. 8

Note that 9

λm

m!
E(Xm

t )
[k0]αm

kαm
0

=
λm

m!

m!

Γ (1 + αm)
Γ (k0 + αm)

kαm
0 Γ (k0)

∼

(
λ

kα0

)m

(αm)k0−1
10

as m → ∞. Thus, if we choose k0 sufficiently large such that λ/kα0 < 1, for example 11

k0 := (2λ)1/α , then the dominating map m ↦→ (λm/m!)E(Xm
t )[k0]αm/kαm

0 is integrable with 12

respect to the counting measure on N. Thus, it is allowed to apply the dominated convergence 13

theorem, which yields 14

lim
k→∞

E(exp(−λk−αN (k)
t )) =

∞∑
m=0

(−λ)m

m!
E(Xm

t ) = E(exp(−λX t )). 15

Thus, (20) is established. The proof is complete. □ 16

Remark. The proof of Theorem 2.1(a) shows (see (20)) that it suffices to verify the convergence 17

of the one-dimensional distributions. The convergence of the one-dimensional distributions is 18

then established by the method of moments. Alternatively, one may first prove Theorem 2.1(b) 19

and then, as already explained before Theorem 2.1, use the fact that the block counting process 20

is Siegmund dual to the fixation line in order to verify the convergence of the one-dimensional 21

distributions X (k)
t → X t in distribution as k → ∞, t ≥ 0. 22

Before we come to the proof of Theorem 2.1(b), we provide a recursion for the Laplace 23

transforms of the finite-dimensional distributions of Neveu’s continuous-state branching process 24

Y = (Yt )t≥0. 25

Lemma 4.1 (Recursion for the Laplace Transforms of Y). Let 0 = t0 ≤ t1 < t2 < · · · . For 26

k ∈ N let ψk : [0,∞)k
→ [0, 1], defined via ψk(λ1, . . . , λk) := E(e−λ1Yt1 · · · e−λk Ytk ) for all 27

λ1, . . . , λk ≥ 0, denote the Laplace transform of Yt1 , . . . , Ytk . Then, ψk satisfies the recursion 28

ψ1(λ1) = e−λ
α1
1 for all λ1 ≥ 0 and 29

ψk(λ1, . . . , λk) = ψk−1(λ1, . . . , λk−2, λk−1 + λ
αk/αk−1
k ), k ∈ N \ {1}, λ1, . . . , λk ≥ 0, 30

where α j := e−t j , 1 ≤ j ≤ k. 31
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Proof of Lemma 4.1. Clearly, ψ1(λ1) = E(e−λ1Yt1 ) = e−λ
α1
1 for all λ1 ≥ 0. Moreover, for all1

λ1, . . . , λk ≥ 0,2

ψk(λ1, . . . , λk) = E(e−λ1Yt1 · · · e−λk Ytk )3

= E(E(e−λ1Yt1 · · · e−λk Ytk | Yt1 , . . . , Ytk−1 ))4

= E(e−λ1Yt1 · · · e−λk−1Ytk−1E(e−λk Ytk |Ytk−1 )).5

Since E(e−λk Ytk |Ytk−1 ) = e−λ
αk /αk−1
k Ytk−1 almost surely it follows that6

ψk(λ1, . . . , λk) = E(eλ1Yt1 · · · e−λk−2Ytk−2 e−(λk−1+λ
αk /αk−1
k )Ytk−1 )7

= ψk−1(λ1, . . . , λk−2, λk−1 + λ
αk/αk−1
k ). □8

We are now able to verify Theorem 2.1(b).9

Proof of Theorem 2.1(b). The proof is divided into two parts. First the convergence of the finite-10

dimensional distributions is verified. Afterwards the convergence in DE [0,∞) is considered. In11

fact Part 2 does not need results from Part 1, so one could omit Part 1. However, we think it is12

helpful for the reader to consider first the convergence of the finite-dimensional distributions.13

Part 1. (Convergence of the finite-dimensional distributions) Fix 0 = t0 ≤ t1 < t2 < · · · . For14

k, n ∈ N let ψ (n)
k : [0,∞)k

→ [0, 1] and ψk : [0,∞)k
→ [0, 1] denote the Laplace transforms15

of (Y (n)
t1 , . . . , Y (n)

tk ) and (Yt1 , . . . , Ytk ) respectively. In the following the pointwise convergence16

ψ
(n)
k → ψk as n → ∞ is verified by induction on k ∈ N.17

Obviously, L (n)
t1 has generating function E(z

L(n)
t1

1 ) = (1 − (1 − z1)α1 )n , z1 ∈ [0, 1], where18

α1 := e−t1 . Replacing z1 by e−λ1/n1/α1 with λ1 ≥ 0 it follows that19

ψ
(n)
1 (λ1) = E(e−λ1Y (n)

t1 ) = (1 − (1 − e−λ1/n1/α1 )α1 )n.20

Clearly, ψ1(λ1) = E(e−λ1Yt1 ) = e−λ
α1
1 . Using the shorthand x := λ1/n1/α1 and the inequality21

|an
− bn

| ≤ n|a − b|, |a|, |b| ≤ 1, it follows that22

|ψ
(n)
1 (λ1) − ψ1(λ1)| = |(1 − (1 − e−x )α1 )n

− (e−xα1 )n
|23

≤ n|1 − (1 − e−x )α1 − e−xα1
| = n(e−xα1

− 1 + (1 − e−x )α1 ),24

since (1−e−x )α1 ≥ 1−e−xα1 by Lemma A.1. From 1−e−x
≤ x , x ∈ R, and e−t

−1+ t ≤ t2/2,25

t ≥ 0, we conclude that26

|ψ
(n)
1 (λ1) − ψ1(λ1)| ≤ n(e−xα1

− 1 + xα1 ) ≤ n
(xα1 )2

2
=
λ

2α1
1

2n
→ 0, n → ∞.27

Thus, the pointwise convergence ψ (n)
1 → ψ1 as n → ∞ is established.28

Now fix k ∈ N \ {1}. The induction step from k − 1 to k works as follows. For convenience29

define α j := e−t j for all j ∈ N. For all z1, . . . , zk ∈ [0, 1],30

E(z
L(n)

t1
1 · · · z

L(n)
tk

k ) = E(E(z
L(n)

t1
1 · · · z

L(n)
tk

k | L (n)
t1 , . . . , L (n)

tk−1 ))31

= E(z
L(n)

t1
1 · · · z

L(n)
tk−1

k−1 E(z
L(n)

tk
k | L (n)

tk−1 )).32

Since E(z
L(n)

tk
k | L (n)

tk−1 ) = (1 − (1 − zk)αk/αk−1 )L(n)
tk−1 almost surely it follows that33

E(z
L(n)

t1
1 · · · z

L(n)
tk

k ) = E(z
L(n)

t1
1 · · · z

L(n)
tk−2

k−2 u
L(n)

tk−1
k−1 ),34
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where uk−1 := zk−1(1 − (1 − zk)αk/αk−1 ). Replacing for each j ∈ {1, . . . , k} the variable z j by 1

e−λ j /n1/α j with λ j ≥ 0 it follows that 2

ψ
(n)
k (λ1, . . . , λk) = E(e−λ1Y (n)

t1 · · · e−λk Y (n)
tk ) 3

= E(e−λ1Y (n)
t1 · · · e−λk−2Y (n)

tk−2 e−µk−1(n)Y (n)
tk−1 ) 4

= ψ
(n)
k−1(λ1, . . . , λk−2, µk−1(n)), (21) 5

where 6

µk−1(n) := λk−1 − n1/αk−1 log(1 − (1 − e−λk/n1/αk )αk/αk−1 ). 7

A technical but straightforward calculation shows that µk−1(n) → λk−1 + λ
αk/αk−1
k as n → ∞. 8

Moreover, by induction, ψ (n)
k−1 converges pointwise to ψk−1 as n → ∞. It is well known that the 9

convergence ψ (n)
k−1 → ψk−1 of Laplace transforms holds even uniformly on any compact subset 10

of [0,∞)k−1. Taking these facts into account it follows from (21) that 11

lim
n→∞

ψ
(n)
k (λ1, . . ., λk) = lim

n→∞
ψ

(n)
k−1(λ1, . . ., λk−2, µk−1(n)) 12

= ψk−1(λ1, . . . , λk−2, λk−1 + λ
αk/αk−1
k ) = ψk(λ1, . . . , λk), 13

where the last equality holds by Lemma 4.1. The induction is complete. 14

The pointwise convergence ψ (n)
k → ψk of the Laplace transforms implies the convergence 15

(Y (n)
t1 , . . . , Y (n)

tk ) → (Yt1 , . . . , Ytk ) in distribution as n → ∞. 16

Part 2. (Convergence in DE [0,∞)) We proceed essentially in the same way as in the proof of 17

Theorem 2.1(a), however the detail arguments differ slightly from those in the proof of part a). 18

Recall that E := [0,∞) is the state space of the limiting process Y . For n ∈ N and t ≥ 0 define 19

En,t := { j/net
: j = n, n + 1, . . .}. Note that the processes Y (n) are time-inhomogeneous. In 20

order to obtain time-homogeneous processes let Z (n)
:= (Y (n)

t , t)t≥0 and Z := (Yt , t)t≥0 denote 21

the space–time processes of (Y (n)
t )t≥0 and (Yt )t≥0 respectively. Note that Z (n) has state space 22

Sn := {( j/net
, t) : j = n, n + 1, . . . , t ≥ 0} =

⋃
t≥0(En,t × {t}) and that Z has state space 23

S := E × [0,∞) = [0,∞)2. According to Revuz and Yor [35, p. 85, Exercise (1.10)] the 24

processes Z (n) and Z are time-homogeneous. Define πn : B(S) → B(Sn) via πng(y, s) := g(y, s) 25

for all g ∈ B(S) and (y, s) ∈ Sn . In the following it is shown that Z (n) converges in DS[0,∞) to 26

Z as n → ∞. Note that this convergence implies the desired convergence of Y (n) in DE [0,∞) 27

to Y as n → ∞. For λ,µ > 0 define the test function gλ,µ ∈ Ĉ(S) via gλ,µ(y, s) := e−λy−µs , 28

(y, s) ∈ S. By Proposition A.4 it suffices to verify that for every t ≥ 0 and λ,µ > 0, 29

lim
n→∞

sup
s≥0

sup
y∈En,s

|U (n)
t πngλ,µ(y, s) − πnUt gλ,µ(y, s)| = 0, (22) 30

where U (n)
t : B(Sn) → B(Sn) is defined via U (n)

t g(y, s) := E(g(Y (n)
s+t , s + t) | Y (n)

s = y), 31

g ∈ B(Sn), s ≥ 0, y ∈ En,s . Note that (U (n)
t )t≥0 is the semigroup of Z (n). 32

Fix t ≥ 0 and λ,µ > 0. As before define α := e−t . For all n ∈ N, s ≥ 0 and y ∈ En,s we 33

have (with the notation β := e−s) 34

U (n)
t πngλ,µ(y, s) = E(πngλ,µ(Y (n)

s+t , s + t) | Y (n)
s = y) 35

= E(exp(−λY (n)
s+t − µ(s + t)) | Y (n)

s = y) 36

= (αβ)µE(exp(−λ/n1/(αβ)L (n)
s+t ) | L (n)

s = yn1/β) 37

= (αβ)µE(exp(−λ/n1/(αβ)L (yn1/β )
t )) 38
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and1

πnUt gλ,µ(y, s) = Ut gλ,µ(y, s) = E(exp(−λYs+t − µ(s + t)) | Ys = y)2

= (αβ)µE(exp(−λYs+t ) | Ys = y) = (αβ)µE(exp(−λy1/αYt )).3

Thus, one has to verify that4

lim
n→∞

sup
s≥0

sup
y∈En,s

(αβ)µ|E(exp(−λ/n1/(αβ)L (yn1/β )
t )) − E(exp(−λy1/αYt ))| = 0. (23)5

We will even verify that6

lim
n→∞

sup
s≥0

sup
y>0

|E(exp(−λ/n1/(αβ)L (⌊yn1/β
⌋)

t )) − E(exp(−λy1/αYt ))| = 0.7

The quantity inside the absolute values depends on n and s only via n1/β
= nes

. Since the map8

s ↦→ nes
is non-decreasing it follows that the convergence for fixed s ≥ 0 is slower as s is9

smaller. So the slowest convergence holds for s = 0 (⇒ β = 1). Thus it suffices to verify that10

for every t ≥ 0 and λ > 011

lim
n→∞

sup
y>0

|E(exp(−λ/n1/αL (⌊yn⌋)
t )) − E(exp(−λy1/αYt ))| = 0.12

The map y ↦→ E(exp(−λy1/αYt )) is bounded, continuous and non-increasing. Using that13

L (1)
t ≤ L (2)

t ≤ · · · it follows with the same argument as in the proof of Theorem 2.1(a) (Pólya’s14

theorem [34, Satz I]) that it suffices to verify the above convergence pointwise for every y > 0.15

Defining k := ⌊yn⌋ it is readily seen that this is equivalent to the convergence of the one-16

dimensional distributions Y (k)
t = k−1/αL (k)

t → Yt in distribution as k → ∞, t ≥ 0. But the17

convergence of the one-dimensional distributions holds as already shown before Theorem 2.118

(or by Part 1). The proof of part (b) of Theorem 2.1 is complete.19

The following calculations even provide an explicit upper bound for the difference20

d := |E(exp(−λ/n1/(αβ)L (yn1/β )
t )) − E(exp(−λy1/αYt ))|21

= |(1 − (1 − e−λ/n1/(αβ)
)α)yn1/β

− e−yλα
|22

occurring in (23) as well as an alternative proof of the convergence. Define m := yn1/β
∈23

{n, n + 1, . . .} and x := λ/n1/(αβ). In the following it is assumed that n ≥ λ which implies that24

x ≤ 1. Using the inequality |am
− bm

| ≤ mrm−1
|a − b|, m ∈ N, where r := max(|a|, |b|), it25

follows that26

d = |(1 − (1 − e−λ/n1/(αβ)
)α)yn1/β

− e−yλα
|27

= |(1 − (1 − e−x )α)m
− (e−xα )m

|28

≤ mrm−1
|1 − (1 − e−x )α − e−xα

|,29

where r := max(1 − (1 − e−x )α, e−xα ) = e−xα by Lemma A.1. Note that r ∈ (0, 1).30

The map z ↦→ zr z−1, z ≥ 0 takes its maximum at the point z = 1/(− log r ) = 1/xα . Thus,31

mrm−1
≤ 1/xαr1/xα−1

≤ 1/xα , since r ≤ 1 and x ≤ 1, i.e. 1/xα − 1 ≥ 0. Furthermore,32

|1 − (1 − e−x )α − e−xα
| = e−xα

− 1 + (1 − e−x )α ≤ e−xα
− 1 + xα ≤ (xα)2/2. Therefore, we33

obtain the upper bound34

d ≤
1
xα

(xα)2

2
=

xα

2
=

λα

2nes ≤
λα

2n
.35
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Note that this upper bound does not depend on y and s. Thus, for all t ≥ 0, λ,µ > 0 and all 1

n ∈ N with n ≥ λ, 2

sup
s≥0

sup
y∈En,s

|U (n)
t πngλ,µ(y, s) − πnUt gλ,µ(y, s)| 3

= sup
s≥0

sup
y∈En,s

(αβ)µ  
≤1

|(1 − (1 − e−λ/n1/(αβ)
)α)yn1/β

− e−yλα
| ≤

λα

2n
. (24) 4

In particular, (22) holds for all t ≥ 0 and all λ,µ > 0. □ 5

Remark. The presented proof of Theorem 2.1(b) does not use any duality argument and shows 6

that it suffices to verify the convergence of the one-dimensional distributions. The proof gives 7

some more information than stated in Theorem 2.1(b). Note that (24) provides the explicit upper 8

bound λα/(2n), showing that the convergence of the semigroups is of order 1/n, at least for test 9

functions of the form gλ,µ, λ,µ > 0. 10

To the best of the authors’ knowledge the convergence result on the fixation line has no 11

counterpart in the literature on branching processes and may hence trigger further research in 12

the field of continuous-time branching processes (with infinite offspring mean). 13

We now turn to the proofs concerning the results in Section 3. 14

Proof of Theorem 3.1. Two proofs are provided. The first proof is self-contained and based on 15

generating functions. The second proof uses duality and the spectral decomposition [27, Theorem 16

1.1] of the generator of the block counting process. 17

Proof 1 (via Generating Functions). The proof is similar to that of Theorem 1.1 of [27]. Let 18

D = (di j )i, j∈N be the diagonal matrix with entries di i := −γi = γi i , i ∈ N. Furthermore, let 19

R = (ri j )i, j∈N be the upper right triangular matrix with entries defined for each j ∈ N recursively 20

via r j j := 1 and 21

ri j :=
1

γi − γ j

j∑
k=i+1

γikrk j , i ∈ { j − 1, j − 2, . . . , 1}. (25) 22

Since γi i = −γi , i ∈ N, we conclude that ri jγ j j =
∑ j

k=iγikrk j . Thus, the entries of R are defined 23

such that RD = Γ R. Define L := R−1. Then, the spectral decomposition Γ = RDL holds. 24

Moreover, DL = LΓ and, hence, γi i li j =
∑ j

k=i likγk j , i, j ∈ N. Since γi i = −γi , i ∈ N, we 25

obtain for each i ∈ N the recursion li i = 1 and 26

li j =
1

γ j − γi

j−1∑
k=i

likγk j , j ∈ {i + 1, i + 2, . . .}. (26) 27

Let U := {z ∈ C : |z| < 1} denote the open unit disc. For i ∈ N define the generating function 28

li : U → C via li (z) :=
∑

∞

j=i li j z j , z ∈ U , and consider the modified function fi : U → C 29

defined via fi (z) :=
∑

∞

j=i ( j − i)li j z j , z ∈ U . We have 30

fi (z) =

∞∑
j=i

jli j z j
− i

∞∑
j=i

li j z j
= zl ′i (z) − ili (z). 31
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Please cite this article in press as: J. Kukla, M. Möhle, On the block counting process and the fixation line of the Bolthausen–Sznitman coalescent,
Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.06.012.

16 J. Kukla, M. Möhle / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

On the other hand, by the recursion (26), we obtain the factorization1

fi (z) =

∞∑
j=i+1

( j − i)li j z j
=

∞∑
j=i+1

j−1∑
k=i

likγk j z j
2

=

∞∑
k=i

lik

∞∑
j=k+1

γk j z j
=

∞∑
k=i

klik zk
∞∑

j=k+1

z j−k

( j − k)( j − k + 1)
3

=

∞∑
k=i

klik zk
∞∑

n=1

zn

n(n + 1)
= zl ′i (z)a(z),4

where the auxiliary function a : U → C is defined via a(z) :=
∑

∞

n=1zn/(n(n + 1)) = 1 − (1 −5

z)(− log(1 − z))/z, z ∈ U . Thus, li satisfies the differential equation zl ′i (z)a(z) = zl ′i (z) − ili (z)6

or, equivalently,7

l ′i (z) =
ili (z)

(1 − a(z))z
=

ili (z)
(1 − z)(− log(1 − z))

.8

The solution of this homogeneous differential equation with initial conditions li (0) = · · · =9

l (i−1)
i (0) = 0 and l (i)

i (0) = i ! is li (z) = (− log(1 − z))i , i ∈ N, z ∈ U . Here l ( j)
i denotes the j th10

derivative of li . For f (z) =
∑

∞

j=0a j z j let [z j ] f (z) := a j denote the coefficient in front of z j in11

the series expansion of f . By [1, p. 824], li (z) = (− log(1 − z))i
= i !

∑
∞

j=i |s( j, i)|z j/j ! and,12

hence,13

li j = [z j ]li (z) =
i !
j !

|s( j, i)| =
i !
j !

(−1)i+ j s( j, i),14

which is the second formula in (6). Let us now turn to the inverse R = L−1 of L . We15

have L(z, z2, . . .)⊤ = (l1(z), l2(z), . . .)⊤. Multiplying from the left with R it follows that16

(z, z2, . . .)⊤ = R(l1(z), l2(z), . . .)⊤. Thus, zi
=

∑
∞

j=iri j l j (z) =
∑

∞

j=iri j (− log(1 − z)) j .17

Replacing z by 1 − e−z leads to (1 − e−z)i
=

∑
∞

j=iri j z j
=: ri (z), i ∈ N, z ∈ U . The calculations18

between Eq. (2.9) and (2.10) in [27] show that ri has expansion19

ri (z) = (1 − e−z)i
=

∞∑
j=0

(−1)i+ j i !
j !

S( j, i)z j ,20

which yields the formula in (6) for the coefficient ri j = [z j ]ri (z) in front of z j . □21

Proof 2 (via Duality). The duality kernel H can be interpreted as a non-singular matrix22

H = (hi j )i, j∈N with entries hi j = 1 for j ≥ i and hi j = 0 for j < i . The entries of its inverse23

H−1
=: (gi j )i, j∈N are given by gi j = δi, j − δi+1, j . It is known [27] that the generator matrix24

Q of the block counting process has spectral decomposition Q = R̃ D̃ L̃ , where the matrices25

R̃ = (r̃i j )i, j∈N, D̃ = (d̃i j )i, j∈N and L̃ = (l̃i j )i, j∈N are given by r̃i j = (( j − 1)!/(i − 1)!)|s(i, j)|,26

d̃i j = (i − 1)δi, j and l̃i j = (−1)i+ j (( j − 1)!/(i − 1)!)S(i, j) respectively. The entries of27

D = (di j )i, j∈N can be read from the diagonal of Γ and are therefore given by di j = iδi, j .28

Define the matrices A = (ai j )i, j∈N and B = (bi j )i, j∈N by ai j = δi+1, j and bi j = δi−1, j . Clearly29

D̃ = B D A. This together with the duality relation HΓ⊤
= Q H and the spectral decomposition30

of the block counting process Q = R̃ D̃ L̃ yields31

Γ⊤
= H−1 R̃ D̃ L̃ H = (−H−1 R̃B)D(−AL̃ H ).32
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Hence Γ = RDL with R := (−AL̃ H )⊤ and L := (−H−1 R̃B)⊤. It remains to calculate the 1

entries of R and L . Using the recursion S(i + 1, j) = j S(i, j) + S(i, j − 1) we obtain 2

r j i = (−AL̃ H )i j = −(L̃ H )i+1, j = −

j∑
k=1

l̃i+1,k =

j∑
k=1

(−1)i+k (k − 1)!
i !

S(i + 1, k) 3

=

j∑
k=1

(−1)i+k k!

i !
S(i, k) +

j∑
k=1

(−1)i+k (k − 1)!
i !

S(i, k − 1) 4

=

j∑
k=1

(−1)i+k k!

i !
S(i, k) −

j−1∑
k=0

(−1)i+k k!

i !
S(i, k) = (−1)i+ j j !

i !
S(i, j). 5

Using the recursion |s(i + 1, j + 1)| = |s(i, j)| + i |s(i, j + 1)| we get 6

l j i = (−H−1 R̃B)i j = −(H−1 R̃)i, j+1 = r̃i+1, j+1 − r̃i, j+1 7

=
j !
i !

|s(i + 1, j + 1)| −
j !

(i − 1)!
|s(i, j + 1)| =

j !
i !

|s(i, j)|. □ 8

Proof of Corollary 3.2. By Theorem 3.1, Γ = RDL , where R and L = R−1 have entries (6). 9

Hence, the transition matrix P(t) = etΓ has spectral decomposition P(t) = et RDL
= Ret D L . 10

Thus, pi j (t) = P(L t = j | L0 = i) = (Ret D L)i j =
∑ j

k=irike−γk t lk j . The first formula in (8) for 11

pi j (t) follows from γk = k and from (6). Recall that α := e−t . Conditional on L0 = i the random 12

variable L t has probability generating function 13

E(zL t | L0 = i) =

∞∑
j=i

z j pi j (t) =

∞∑
j=i

z j (−1)i+ j i !
j !

j∑
k=i

S(k, i)αks( j, k) 14

= (−1)i i !
∞∑

k=i

S(k, i)αk
∞∑
j=k

(−z) j

j !
s( j, k) 15

= (−1)i i !
∞∑

k=i

S(k, i)αk (log(1 − z))k

k!
16

= (−1)i (eα log(1−z)
− 1)i

= (1 − (1 − z)α)i , |z| < 1, t ≥ 0, i ∈ N. 17

Expansion leads to 18

E(zL t | L0 = i) =

i∑
k=0

(
i
k

)
(−1)k(1 − z)αk

=

i∑
k=0

(
i
k

)
(−1)k

∞∑
j=0

(
αk
j

)
(−z) j

19

=

∞∑
j=0

(−z) j
i∑

k=0

(−1)k
(

i
k

) (
αk
j

)
. 20

The coefficient in front of z j in this expansion yields the second formula for pi j (t). □ 21

Proof of Corollary 3.3. The hitting probability h(i, j) is related to the entry g(i, j) := 22∫
∞

0 P(L (i)
t = j) dt of the Green matrix via h(i, j) = γ j g(i, j) = jg(i, j) (see, for example, 23

Norris [29, p. 146]). Thus, for all i ∈ N and |z| < 1, 24

hi (z) :=

∞∑
j=i

h(i, j)z j−1
=

∫
∞

0

∞∑
j=i

jP(L (i)
t = j)z j−1 dt =

∫
∞

0

d
dz

∞∑
j=i

P(L (i)
t = j)z j dt. 25
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Please cite this article in press as: J. Kukla, M. Möhle, On the block counting process and the fixation line of the Bolthausen–Sznitman coalescent,
Stochastic Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.06.012.

18 J. Kukla, M. Möhle / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

Plugging in the formula (7) for the pgf of L (i)
t it follows that1

hi (z) =

∫
∞

0

d
dz

(1 − (1 − z)e−t
)i dt =

∫
∞

0
i(1 − (1 − z)e−t

)i−1e−t (1 − z)e−t
−1 dt.2

Substituting x := e−t and noting that dt/dx = −1/x leads to hi (z) = (1 − z)−1
∫ 1

0 i(1 −3

(1 − z)x )i−1(1 − z)x dx . Substituting further y := 1 − (1 − z)x and noting that dx/dy =4

1/((1 − y)(− log(1 − z))) we obtain5

hi (z) =
1

(1 − z)(− log(1 − z))

∫ z

0
iyi−1 dy =

zi

(1 − z)(− log(1 − z))
, i ∈ N, |z| < 1.6

In particular, h(i, j) = h(1, j − i + 1). The asymptotic expansion (11) follows from Panholzer7

[30, Eq. (19)]. Formula (12) is obtained as follows. Let (Jk)k∈N0 denote the jump chain of8

the fixation line (L t )t≥0. Given this chain is in state i it jumps to state i + j with probability9

γi,i+ j/γi = 1/( j( j + 1)) =: u j , j ∈ N. From this property it is easily seen that the jump chain10

has independent increments, i.e. J0 = 1, J1 = 1 + η1, J2 = 1 + η1 + η2 and so on, where11

η1, η2, . . . are iid random variables with distribution P(η1 = j) = u j , j ∈ N. For 1 ≤ i < j it12

follows that h(i, j) = h(1, j − i +1) =
∑ j−i

k=1P(Jk = j − i +1) =
∑ j−i

k=1P(η1 +· · ·+ηk = j − i).13

Formula (13) for h(i, j) follows from h(i, j) = jg(i, j) = j
∫

∞

0 P(L (i)
t = j) dt and14 ∫

∞

0
P(L (i)

t = j) dt =

∫
∞

0
(−1)i+ j i !

j !

j∑
k=i

S(k, i)e−tks( j, k) dt15

= (−1)i+ j i !
j !

j∑
k=i

S(k, i)s( j, k)
k

.16

Eq. (14) follows from h(i, j) = h(1, j − i + 1) and S(k, 1) = 1 for all k ∈ N. Moreover, for17

i = 1 we have P(L t = j) = αΓ ( j − α)/( j !Γ (1 − α)) with α := e−t . Thus,18

g(1, j) =

∫
∞

0
P(L t = j) dt =

1
j !

∫ 1

0

Γ ( j − α)
Γ (1 − α)

dα =
1
j !

∫ 1

0

Γ ( j − 1 + x)
Γ (x)

dx19

and, hence, we obtain the integral representation20

h(i, j) = h(1, j − i + 1) = ( j − i + 1)g(1, j − i + 1)21

=
1

( j − i)!

∫ 1

0

Γ ( j − i + x)
Γ (x)

dx, 1 ≤ i ≤ j.22

The last formula for h(i, j) in (15) follows from Γ (n + x)/Γ (x) =
∑n

k=0|s(n, k)|xk , n ∈ N0,23

x ∈ R. The proof of Corollary 3.3 is complete. □24

Remark. Note that P(η1+· · ·+ηk = j −i) =
∑

i1,...,ik
ui1 · · · uik , where the sum extends over all25

i1, . . . , ik ∈ N satisfying i1 +· · ·+ ik = j − i . Hence, concrete values of the hitting probabilities26

are h(1, 1) = 1, h(1, 2) = P(η1 = 1) = u1 = 1/2, h(1, 3) = P(η1 = 2) + P(η1 + η2 =27

2) = u2 + u2
1 = 1/6 + 1/4 = 5/12 ≈ 0.41667, h(1, 4) = P(η1 = 3) + P(η1 + η2 =28

3) + P(η1 + η2 + η3 = 3) = u3 + 2u1u2 + u3
1 = 1/12 + 1/6 + 1/8 = 3/8 = 0.375,29

h(1, 5) = u4 + (2u1u3 + u2
2) + 3u2

1u2 = 1/20 + 1/9 + 1/8 = 251/720 ≈ 0.34861,30

h(1, 6) = 95/288 ≈ 0.32986, h(1, 7) = 19087/60480 ≈ 0.31559 and so on.31

Proof of Corollary 3.4. By the definition of τni and the duality of (Nt )t≥0 and (L t )t≥0 we have32

P(τni ≤ t) = P(N (n)
t ≤ i) = P(L (i)

t ≥ n) =
∑

∞

j=n pi j (t). Using the second formula for pi j (t) in33
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(8) yields 1

P(τni ≤ t) =

∞∑
j=n

(−1) j
i∑

k=1

(−1)k
(

i
k

) (
e−t k

j

)
2

=

i∑
k=1

(−1)k
(

i
k

) ∞∑
j=n

(−1) j
(

e−t k
j

)
3

=

i∑
k=1

(−1)k
(

i
k

)
(−1)n

(
e−t k − 1

n − 1

)
, 4

where the last equality holds since
∑

∞

j=n(−1) j
(

z
j

)
= (−1)n

(
z−1
n−1

)
for all n ∈ N and all z ∈ R. 5

Fix x ∈ R and define F(x) := e−e−x
for convenience. Assume that n is sufficiently large such 6

that x + log log n > 0. Choosing t := x + log log n and noting that for all sufficiently large n 7

(−1)n−1
(

e−t k − 1
n − 1

)
=

Γ (n − ke−x/ log n)
Γ (n)Γ (1 − ke−x/ log n)

8

∼
Γ (n − ke−x/ log n)

Γ (n)
→ e−ke−x

= (F(x))k
9

as n → ∞ by an application of Stirling’s formula Γ (n+1) ∼ (n/e)n
√

2πn as n → ∞, it follows 10

that 11

P(τni − log log n ≤ x) = P(τni ≤ x + log log n) 12

→

i∑
k=1

(−1)k−1
(

i
k

)
(F(x))k

= 1 − (1 − F(x))i , n → ∞. 13

It remains to note that x ↦→ 1 − (1 − F(x))i , x ∈ R, is the distribution function of the minimum 14

of i standard Gumbel distributed random variables. □ 15

Before we will prove Corollary 3.5 we provide the Taylor expansion of the map x ↦→ 16

1/Γ (1 − x). 17

Lemma 4.2. The map x ↦→ 1/Γ (1− x) has Taylor expansion 1/Γ (1− x) =
∑

∞

k=0ck xk , |x | < 1, 18

where the coefficients c0, c1, . . . are related to the moments mk = (−1)kΓ (k)(1), k ∈ N0, of the 19

Gumbel distribution via c0 = m0 = 1 and 20

ck =

k∑
j=1

(−1) j
∑

k1,...,k j ∈N
k1+···+k j =k

mk1 · · · mk j

k1! · · · k j !
, k ∈ N. (27) 21

Alternatively, 22

ck =
(−1)k

k!

k∑
l=1

(−1)l
(

k + 1
l + 1

)
(Γ l)(k)(1) k ∈ N, (28) 23

where (Γ l)(k) denotes the kth derivative of the lth power of Γ . 24

Remark. Concrete values are c1 = −m1 = −γ ≈ −0.577216, c2 = m2
1 − m2/2 = 25

γ 2
− (γ 2

+ ζ (2))/2 = γ 2/2 − π2/12 ≈ −0.655878, c3 = −m3/6 + m1m2 − m3
1 = 26

γ ζ (2)/2 − ζ (3)/3 − γ 3/6 = π2γ /12 − ζ (3)/3 − γ 3/6 ≈ 0.042003 and so on. 27
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Proof. A Gumbel distributed random variable τ has moment generating function E(exτ ) =1

Γ (1 − x), x < 1. Thus, the map x ↦→ Γ (1 − x) has Taylor expansion Γ (1 − x) =
∑

∞

k=0ak xk ,2

|x | < 1,where ak := mk/k! and mk = E(τ k), k ∈ N0, are the moments of the Gumbel3

distribution. For the reciprocal map 1/Γ (1 − x) it follows that4

1
Γ (1 − x)

=

∞∑
j=0

(1 − Γ (1 − x)) j
=

∞∑
j=0

( ∞∑
k=1

−ak xk
) j

5

= 1 +

∞∑
j=1

∑
k1,...,k j ∈N

(−ak1 ) · · · (−ak j )x
k1+···+k j6

= 1 +

∞∑
j=1

(−1) j
∞∑

k=1

xk
∑

k1,...,k j ∈N
k1+···+k j =k

ak1 · · · ak j =

∞∑
k=0

ck xk
7

with c0 := 1 and ck , k ∈ N, as given in (27), since ak = mk/k!, k ∈ N0. Since mk = (−1)kΓ (k)(1),8

(27) can be rewritten as9

ck =

k∑
j=1

(−1) j+k
∑

k1,...,k j ∈N
k1+···+k j =k

Γ (k1)(1) · · ·Γ (k j )(1)
k1! · · · k j !

10

=

k∑
j=1

(−1) j+k

k!

j∑
l=1

(−1) j−l
(

j
l

)
(Γ l)(k)(1), k ∈ N,11

where the last equality holds by Lemma 1 in the appendix of [25]. Interchanging the sums and12

noting that
∑k

j=l

(
j
l

)
=

(
k+1
l+1

)
yields (28). □13

Proof of Corollary 3.5. Fix x ∈ R and define F(x) := e−e−x
. By Corollary 3.4, for all14

sufficiently large n,15

P(τni − log log n ≤ x) =

i∑
j=1

(−1) j−1
(

i
j

)
Γ (n − je−x/ log n)

Γ (n)Γ (1 − je−x/ log n)
. (29)16

For every c ∈ R it is easily checked that Γ (n +c/ log n)/Γ (n) = ec
+ O(1/(n log n)) as n → ∞.17

For c = − je−x we obtain18

Γ (n − je−x/ log n)
Γ (n)

= (F(x)) j
+ O

(
1

n log n

)
. (30)19

Moreover (see Lemma 4.2), from 1/Γ (1 − x) =
∑

∞

k=0ck xk we conclude that, for all K ∈ N0,20

1
Γ (1 − je−x/ log n)

=

K∑
k=0

ck

(
je−x

log n

)k

+ O
(

1
(log n)K+1

)
. (31)21

Multiplying (30) with (31) yields22

Γ (n − je−x/ log n)
Γ (n)Γ (1 − je−x/ log n)

= (F(x)) j
K∑

k=0

ck

(
je−x

log n

)k

+ O
(

1
(log n)K+1

)
.23
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Plugging this expansion into (29) and exchanging the sums yields 1

P(τni − log log n ≤ x) =

K∑
k=0

ck

(
e−x

log n

)k i∑
j=1

(F(x)) j (−1) j−1
(

i
j

)
j k

+ O
(

1
(log n)K+1

)
, 2

which is the desired Edgeworth expansion with coefficients dki (x) as defined in (18). It remains 3

to verify the alternative representation (19) of the coefficients dki (x). It is readily checked by 4

induction on k ∈ N0 that (t ∂
∂t )k f (t) =

∑k
j=0S(k, j)t j f ( j)(t) for every k-times differentiable 5

function f : R → R, where the S(k, j) denote the Stirling numbers of the second kind. Applying 6

this formula to f (t) := 1 − (1 − t)i with i ∈ N it follows for all k ∈ N0 and t ∈ R that 7

i∑
j=1

(−1) j−1
(

i
j

)
j k t j

=

(
t
∂

∂t

)k i∑
j=1

(−1) j−1
(

i
j

)
t j

=

(
t
∂

∂t

)k

(1 − (1 − t)i ) 8

=

k∑
j=0

S(k, j)t j
(
∂

∂t

) j

(1 − (1 − t)i ) 9

= S(k, 0)(1 − (1 − t)i ) +

k∑
j=1

S(k, j)t j (−1) j−1(i) j (1 − t)i− j , 10

where (i) j := i(i − 1) · · · (i − j + 1). Replacing t by F(x) and noting that S(k, 0) = 0 for k ∈ N 11

shows that (18) coincides for k ∈ N with (19). □ 12
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Appendix A 16

Lemma A.1. For all x ≥ 0 and all α ∈ [0, 1] we have (1 − e−x )α ≥ 1 − e−xα . 17

Proof. Fix α ∈ [0, 1]. If x ≥ 1 then xα ≤ x and, hence, (1 − e−x )α ≥ 1 − e−x
≥ 1 − e−xα . 18

Assume now that x ∈ [0, 1]. Then xα ≥ x . The function f (x) := (1 − e−x )α − 1 + e−xα satisfies 19

f (0) = 0 and has derivative f ′(x) = αe−x (1 − e−x )α−1
− αxα−1e−xα , which is nonnegative on 20

[0, 1], since e−x
≥ e−xα and (1 − e−x )α−1

≥ xα−1 for x ∈ [0, 1]. From f (0) = 0 and f ′(x) ≥ 0 21

for x ∈ [0, 1] it follows that f (x) ≥ 0 for x ∈ [0, 1], which is the desired inequality. □ 22

Lemma A.2 (Spectral Decomposition of Γ for the Kingman Coalescent). The generator 23

Γ = (γi j )i, j∈N of the fixation line (L t )t≥0 of the Kingman coalescent has spectral decomposition 24

Γ = RDL, where D = (di j )i, j∈N is the diagonal matrix with entries di j = −i(i +1)/2 for i = j 25

and di j = 0 for i ̸= j , and R = (ri j )i, j∈N and L = (li j )i, j∈N are upper right triangular matrices 26

with entries 27

ri j = (−1) j−i j ! ( j − 1)! (i + j)!
( j − i)! i ! (i − 1)! (2 j)!

, i, j ∈ N, i ≤ j, (32) 28

and 29

li j =
j ! ( j − 1)! (2i + 1)!

i ! (i − 1)! ( j − i)! (i + j + 1)!
, i, j ∈ N, i ≤ j. (33) 30
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Remark. Note that li (z) :=
∑

∞

j=i li j z j+1 satisfies the differential equation z2(1 − z)l ′′i (z) =1

i(i + 1)li (z), i ∈ N, |z| < 1.2

Proof. For a pure birth process the recursion (25) reduces to ri j = γi/(γi − γ j )ri+1, j ,3

i ∈ { j − 1, j − 2, . . . , 1}, with solution ri j =
∏ j−1

k=i γk/(γk − γ j ), i ≤ j . Thus, for the Kingman4

coalescent, for all i, j ∈ N with i ≤ j ,5

ri j =

j−1∏
k=i

k(k + 1)
k(k + 1) − j( j + 1)

=

j−1∏
k=i

k(k + 1)
(k − j)(k + j + 1)

6

= (−1) j−i j ! ( j − 1)! (i + j)!
( j − i)! i ! (i − 1)! (2 j)!

.7

Similarly, the recursion (26) reduces to li j = γ j−1/(γ j − γi )li, j−1, j ∈ {i + 1, i + 2, . . .}, with8

solution li j =
∏ j

k=i+1γk−1/(γk − γi ), i ≤ j . Thus, for the Kingman coalescent, for all i, j ∈ N9

with i ≤ j ,10

li j =

j∏
k=i+1

k(k − 1)
k(k + 1) − i(i + 1)

=

j∏
k=i+1

k(k − 1)
(k − i)(k + i + 1)

11

=
j ! ( j − 1)! (2i + 1)!

i ! (i − 1)! ( j − i)! (i + j + 1)!
. □12

Let E be locally compact, i.e. every point x ∈ E has a compact neighborhood. A function13

f : E → R vanishes at infinity, if for every ε > 0 there exists a compact K ⊆ E such that14

| f (x)| < ε for all x ∈ E \ K . In other words {x ∈ E : | f (x)| ≥ ε} is compact. In the following15

Ĉ(E) denotes the set of all real-valued continuous functions on E vanishing at infinity.16

Lemma A.3. Let d ∈ N. The set D of all functions g : [0,∞)d
→ R of the form17

g(y) =
∑m

i1,...,id=1ai1,...,id e−(i1 y1+···+id yd ) with m ∈ N and ai1,...,id ∈ R is dense in Ĉ([0,∞)d ).18

Proof. Let g ∈ Ĉ([0,∞)d ). Define f : [0, 1]d
→ R via f (x) := g(− log x1, . . .,− log xd ) for19

x ∈ (0, 1]d and f (x) := 0 if x j = 0 for some j ∈ {1, . . . , d}. Since g is continuous and vanishes20

at infinity it follows that f is continuous. For n ∈ N and x = (x1, . . . , xd ) ∈ [0, 1]d let21

pn(x) :=

n∑
k1,...,kd=1

f
(k1

n
, . . . ,

kd

n

) d∏
j=1

(
n
k j

)
x

k j
j (1 − x j )n−k j .22

denote the nth multivariate Bernstein polynomial of f . Note that the sum runs only over23

k = (k1, . . . , kd ) ∈ {1, . . . , n}
d (not as usual over k ∈ {0, . . . , n}

d ) since f (x) = 0 if x j = 0 for24

some j ∈ {1, . . . , d}. By a d-dimensional version of Bernstein’s approximation theorem (see,25

for example, [10, Theorem 8]), pn → f as n → ∞ uniformly on [0, 1]d . Replacing x j by e−y j26

it follows that gn → g as n → ∞ uniformly on [0,∞)d , where gn(y) := pn(e−y1 , . . . , e−yd ). It27

remains to note that gn ∈ D. □28

Proposition A.4 (Convergence of Markov Processes). Let d ∈ N, E := [0,∞)d and X =29

(X t )t≥0 be an E-valued time-homogeneous Markov process. Furthermore, for every n ∈ N let30

X (n)
= (X (n)

t )t≥0 be an En-valued time-homogeneous Markov process with state space En ⊆ E.31

Let (Tt )t≥0 and (T (n)
t )t≥0 denote the corresponding semigroups. Define πn : B(E) → B(En) via32
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πn f (x) := f (x) for all f ∈ B(E) and x ∈ En . If, for every t ≥ 0 and λ ∈ Nd , 1

lim
n→∞

∥T (n)
t πn fλ − πnTt fλ∥ := lim

n→∞
sup
x∈En

|T (n)
t πn fλ(x) − πnTt fλ(x)| = 0, 2

where fλ(x) := e−⟨λ,x⟩
:= e−(λ1x1+···+λd xd ) for all λ ∈ Nd and x ∈ E, then X (n) converges in 3

DE [0,∞) to X as n → ∞. 4

Proof. By assumption, limn→∞∥T (n)
t πn f − πnTt f ∥ = 0 for all f ∈ D, where D := { f : E → 5

R : f (x) =
∑m

i=1ai e−⟨λ,x⟩,m ∈ N, λ ∈ Nd , ai ∈ R} Let f ∈ Ĉ(E) and fix ε > 0. Since D is 6

dense in Ĉ(E) by Lemma A.3 there exists h ∈ D such that ∥ f − h∥ < ε. It follows that 7

∥T (n)
t πn f − πnTt f ∥ ≤ ∥T (n)

t πn( f − h)∥ + ∥T (n)
t πnh − πnTt h∥ + ∥πnTt (h − f )∥ 8

≤ ∥T (n)
t ∥ ∥ f − h∥ + ∥T (n)

t πnh − πnTt h∥ + ∥Tt∥ ∥h − f ∥ 9

≤ 2ε + ∥T (n)
t πnh − πnTt h∥ → 2ε, n → ∞. 10

Since ε > 0 can be chosen arbitrarily we conclude that limn→∞∥T (n)
t πn f − πnTt f ∥ = 0 for all 11

f ∈ Ĉ(E). The result follows from [11, p. 172, Theorem 2.11]. □ 12
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[10] Miloslav Duchoň, A generalized Bernstein approximation theorem, Tatra Mt. Math. Publ. 49 (2011) 99–109, 33

MR2867253. 34

[11] Stewart N. Ethier, Thomas G. Kurtz, Markov Processes, in: Wiley Series in Probability and Mathematical Statistics: 35

Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986, p. x+534. Characterization and 36

convergence, MR0838085. 37
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