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Abstract

We focus on a class of BSDEs driven by a càdlàg martingale and the corresponding Markovian
SDEs which arise when the randomness of the driver appears through a Markov process. To those
SDEs we associate a deterministic equation which, when the Markov process is a Brownian diffusion,

s nothing else but a parabolic semi-linear PDE. We prove existence and uniqueness of a decoupled mild
olution of the deterministic problem, and give a probabilistic representation of this solution through the

aforementioned BSDEs.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In the Brownian context, backward stochastic differential equations (BSDEs) were intro-
uced by E. Pardoux and S. Peng in [24]. A subclass of BSDEs are said to be Markovian, if
he randomness of the so called driver f depends on a Markovian diffusion X , and when
he terminal condition depends on the terminal value XT . Those are naturally linked to

parabolic PDE, which constitutes a particular deterministic problem. In particular, under
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reasonable conditions, which among other ensure well-posedness, the solutions of BSDEs
produce viscosity type solutions for the mentioned PDE. In this paper we focus on Pseudo-

DEs, which are the corresponding deterministic problems associated to Markovian BSDEs
driven by a càdlàg martingale, when the underlying forward process is a general Markov

rocess. In this case, the concept of a viscosity solution (based on comparison theorems) is
ot completely appropriate. For this reason we propose an alternative notion called decoupled
ild solution. This extends the usual formulation of a mild solution, expressed in terms of

emigroups, which is well-known to the experts of PDEs. We establish an existence and
niqueness theorem among Borel functions having a certain growth condition.

Coming back to Brownian BSDEs, let s be an initial time and x an initial value. A
Markovian BSDE appears as{

X s,x
t = x +

∫ t
s µ(r, X s,x

r )dr +
∫ t

s σ (r, X s,x
r )d Br , t ∈ [s, T ]

Y s,x
t = g(X s,x

T ) +
∫ T

t f
(
r, X s,x

r , Y s,x
r , Z s,x

r

)
dr −

∫ T
t Z s,x

r d Br , t ∈ [s, T ],

(1.1)

here B is a Brownian motion. In [26] and in [25] previous Markovian BSDE was linked to
he semilinear PDE{

∂t u +
1
2 T r

(
σσ ⊺

∇
2
x u
)
+ µ · ∇

2
x u + f (·, ·, u, σ∇x u) = 0 on [0, T [ × Rd

u(T, ·) = g.
(1.2)

he first link between (1.1) and (1.2) was established in [26], where the authors showed that
hen the PDE admits a C1,2 solution u, then the couple (Y s,x , Z s,x ) = (u(·, X s,x ),∇u(·, X s,x ))

olves the BSDE. Conversely, if g is continuous (resp. f is continuous in (t, x) and is Lipschitz
n the third and the fourth variable), [25] proved an important probability representation result
f the (unique) viscosity solution u of the PDE, via the solutions of the Markovian BSDE for
ach (s, x). Indeed if (Y s,x , Z s,x ) is the solution of (1.1), then u : (s, x) ↦−→ Y s,x

s is a continuous
iscosity solution of (1.2). In [5], it was shown that, whenever the coefficients belong to some
obolev spaces, then the function u mentioned above is in fact a solution, in the sense of
istributions, of the PDE. Later, [2] justified that, under certain conditions, u is a mild solution
f the PDE.

An interesting fact is that, even without further regularity assumptions made on the
oefficients of the BSDE, there exists another function v such that (Y s,x , Z s,x ) = (u(·, X s,x ),
(·, X s,x )), see [16]. In [20] v was associated to u by use of the operator σ∇ suitably extended.
owever, when the viscosity solution u of the PDE has no additional regularity, it is a

hallenging question to specify the relation of the function v to u, or to the PDE (1.2). This is
he so called identification problem and it will be a central theme in our investigation.

In [4] the authors introduced a new kind of BSDEs driven by a Brownian motion and a
oisson random measure. In the Markovian setup, the randomness of its coefficients comes
rom an underlying forward process X solving an SDE with jumps. They associated this new
SDE with a non-linear Integro-Partial Differential Equation (in short IPDE) and showed

hat, under some continuity and monotonicity conditions on the coefficients, the function
: (s, x) ↦−→ Y s,x

s constructed with the BSDEs, is again a viscosity solution of the IPDE.
emaining in the framework of Poisson random measures, but without any diffusion term,
13] considered BSDEs driven by marked point processes, see also [3].
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From a different perspective, BSDEs driven by a general martingale and involving an
rthogonal term were studied in [10,16], and [12]. In this paper, we consider a reformulation
f such BSDEs, whose given data are a continuous increasing process V̂ , a square integrable
artingale M̂ , a terminal condition ξ and a driver f̂ . A solution will be a couple (Y,M)

atisfying

Y = ξ +

∫ T

·

f̂

(
r, ·, Yr ,

d⟨M, M̂⟩

dV̂
(r )

)
dV̂r − (MT − M·), (1.3)

here Y is càdlàg adapted and M is a square integrable martingale. We show the existence
nd the uniqueness of a solution for (1.3).

We will then be interested in a Markov process (Ps,x )(s,x)∈[0,T ]×E taking values in some
olish space E and solving a martingale problem related to an operator (D(a), a) and a non-
ecreasing function V . By this we mean that, for any φ ∈ D(a), and (s, x) ∈ [0, T ] × E ,

M[φ]s,x
:= φ(·, X ·)−φ(s, x)−

∫
·

s a(φ)(r, Xr )dVr is a Ps,x -martingale. We will fix some function
:= (ψ1, . . . , ψd ) ∈ D(a)d and at Notation 5.7 we will introduce some special BSDEs driven

y a martingale which we will call again Markovian BSDEs.
Each BSDE will be indexed by a couple (s, x) ∈ [0, T ]× E , will hold under the probability

s,x and will have the form

Y s,x
= g(XT ) +

∫ T

·

f
(

r, Xr , Y s,x
r ,

d⟨M s,x ,M[ψ]s,x
⟩

dV
(r )
)

dVr − (M s,x
T − M s,x

·
), (1.4)

here X is the canonical process, g is a Borel function with a growth condition and f is Borel,
ith a growth condition with respect to the second variable, and it is Lipschitz with respect to

he third and fourth variables. In most of the examples, we will set ψ to be the identity, and
M[ψ]s,x will be the martingale part of X under Ps,x . We will however also include the case
when X is not a semimartingale, and in particular I d /∈ D(a)d .

Those Markovian BSDEs will be linked to the Pseudo-PDE{
a(u) + f

(
·, ·, u,Γψ (u)

)
= 0 on [0, T ] × E

u(T, ·) = g,
(1.5)

where Γψ (u) := (a(uψi ) − ua(ψi ) − ψi a(u))i∈[[1;d]], see Definition 5.3. A classical solution
f the Pseudo-PDE will simply be an element of D(a) fulfilling (1.5). We call Γψ the ψ-

generalized gradient, due to the fact that when E = Rd , a = ∂t +
1
2∆ and ψi : (t, x) ↦−→ xi

or all i ∈ [[1, d]] then Γψ (u) = ∇u. In this particular setup, the forward Markov process is of
ourse a Brownian motion and in this case, the space D(a) = C1,2([0, T ] × Rd ).

We show the existence of a Borel function u in some extended domain D(a) such that, for
very (s, x) ∈ [0, T ] × E , Y s,x is a Ps,x -modification of u(·, X ·) At Definition 5.9 we will
ntroduce the notion of martingale solution for the Pseudo-PDE (1.5), where the operators a

nd Gψ are respectively an extension of a and Γψ . We also show that u is the unique decoupled
ild solution of the same equation. We explain below that concept of solution, which will be

ntroduced at Definition 5.13.
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A Borel function u will be called decoupled mild solution if there exists an Rd -valued Borel
unction v := (v1, . . . , vd ) such that, for every (s, x),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(s, x) = Ps,T [g](x) +
∫ T

s Ps,r [ f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x) −
∫ T

s Ps,r [(v1 + ua(ψ1)
−ψ1 f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·

uψd (s, x) = Ps,T [gψd (T, ·)](x) −
∫ T

s Ps,r [(vd + ua(ψd )
−ψd f (·, ·, u, v)) (r, ·)] (x)dVr ,

(1.6)

where P is the time-dependent transition kernel associated to the Markov canonical class and
to the operator a, see Notation 4.1. v coincides with Gψ (u) and the couple (u, v) will be called
solution to the identification problem, see Definition 5.13. The intuition behind this notion of
solution relies on the fact that the equation a(u) = − f (·, ·, u,Γψ (u)) can be decoupled into
the system{

a(u) = − f (·, ·, u, v)
vi = Γψi (u), i ∈ [[1; d]],

(1.7)

which can be rewritten{
a(u) = − f (·, ·, u, v)

a(uψi ) = vi + ua(ψi ) − ψi f (·, ·, u, v), i ∈ [[1; d]].
(1.8)

artingale solutions were introduced in [6] and decoupled mild solutions in [8], but in relation
o a specific type of Pseudo-PDE, for which v is one-dimensional and which does not include
he usual parabolic PDE related to classical BSDEs. A first approach to classical solutions for

general deterministic problem, associated with forward BSDEs with applications to the so
alled Föllmer–Schweizer decomposition, was performed by [23].

The paper is organized as follows. In Section 3 we propose an alternative formulation
1.3) for BSDEs driven by càdlàg martingales discussed in [12]: in Theorem 3.3 (proved in
ppendix A), we state existence and uniqueness for such equations. In Section 4, we refer

o a canonical Markov class and its corresponding martingale problem. In Definition 4.13 we
efine the extended domain D(a); in Definition 4.15 and Notation 4.18, appear the extended
perators a and Gψ . In Section 5, we bring in the Pseudo-PDE (1.5) (see Definition 5.3) and
he associated Markovian BSDEs (1.4), see Notation 5.7. We introduce the notion of martingale
olution of the Pseudo-PDE in Definition 5.9 and the one of decoupled mild solution in
efinition 5.13. Propositions 5.15 and 5.16 show the equivalence between martingale solutions

nd decoupled mild solutions. Proposition 5.17 states that any classical solution is a decoupled
ild solution and conversely that any decoupled mild solution, belonging to D(Γψ ), is a

lassical solution up to (what we call) a zero potential set. Let (Y s,x ,M s,x ) denote the unique
olution of the associated BSDE (1.4), written as BSDE s,x ( f, g). In Theorem 5.18 we show the

existence of some u ∈ D(a) such that for every (s, x) ∈ [0, T ]× E , Y s,x is a Ps,x -modification
f u(·, X ·) on [s, T ]. Theorem 5.20 states that the function (s, x) ↦−→ Y s,x

s is the unique
ecoupled mild solution of (1.5). Proposition 5.23 states that, if the couple (u, v) satisfies (1.6),
hen for any (s, x), the couple

(
u(t, X t ), u(t, X t ) − u(s, x) +

∫ t
s f (·, ·, u, v)(r, Xr )dVr

)
t∈[s,T ]

as a Ps,x -version which solves BSDE s,x ( f, g) on [s, T ]. Finally, in Section 6, we study
ome application examples. In Section 6.1 we deal with parabolic semi-linear PDEs and in
ection 6.2 with parabolic semi-linear PDEs with distributional drift.
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2. Preliminary notions and basic notations

In this short section we introduce some basic notions, notations and vocabulary which will
e used in this paper. T ∈ R+ will be a fixed horizon.

• For any topological spaces E and F , B(E) will denote the Borel σ -field of E . C(E, F)
(resp. Cb(E, F), B(E, F), Bb(E, F)) will denote linear the space of functions from E to
F which are continuous (resp. bounded continuous, Borel, bounded Borel).

• A filtered probability space
(
Ω ,F , (Ft )t∈[0,T ],P

)
will be called a stochastic basis and

said to fulfill the usual conditions if the filtration is complete and right-continuous.
• Given a certain stochastic basis, H2 will denote the space of square integrable martingales,

with the convention that indistinguishable elements are identified. H2
0 will denote the

linear subspace constituted of elements vanishing at zero, and H2
loc will be the space of

locally square integrable martingales.
• For any M, N ∈ H2

loc, [M, N ] will denote the quadratic covariation and ⟨M, N ⟩ their
(predictable) angle bracket. If M = N we will use the notations [M] and ⟨M⟩.

• Pro will denote the progressive σ -field on [0, T ] × Ω .
• If V is a non-decreasing process, dV ⊗ dP will denote the positive measure on (Ω ×

[0, T ],F ⊗ B([0, T ])) defined for any F ∈ F ⊗ B([0, T ]) by
dV ⊗ dP(F) := E

[∫ T
0 1F (ω, r )dVr (ω)

]
.

• If V is a non-decreasing predictable process and A is a predictable process which
is absolutely continuous with respect to V , then d A

dV will denote its Radon–Nikodym
derivative. We recall that thanks to Proposition 3.2 in [6], this process can be chosen
to be predictable.

3. An alternative formulation of BSDEs driven by a càdlàg martingale

We introduce now an alternative formulation for Backward Stochastic Differential Equations
driven by a general càdlàg martingale investigated for instance by [12].

From now on, and until the end of this section, we are given a stochastic basis(
Ω ,F , (Ft )t∈[0,T ],P

)
fulfilling the usual conditions. We are also given some bounded con-

tinuous non-decreasing adapted process V̂ , we will indicate by L2(dV̂ ⊗ dP) the set of (up
o indistinguishability) progressively measurable processes φ such that E[

∫ T
0 φ

2
r dV̂r ] < ∞.

L2,cadlag(dV̂ ⊗ dP) will denote the subspace of càdlàg elements of L2(dV̂ ⊗ dP).
We will now fix an FT -measurable random variable ξ called the final condition, a square

integrable reference martingale M̂ := (M̂1, . . . , M̂d ) taking values in Rd for some d ∈ N∗,
and a driver f̂ : ([0, T ] × Ω) × R × Rd

−→ R, measurable with respect to Pro ⊗ B(R) ⊗

B(Rd ). We will assume that (ξ, f̂ , M̂) satisfies the following.

Hypothesis 3.1.

1. ξ ∈ L2;
2. f̂ (·, ·, 0, 0) ∈ L2(dV̂ ⊗ dP);
3. There exist positive constants K Y , K Z such that, P a.s. for all t, y, y′, z, z′, we have

| f̂ (t, ·, y, z) − f̂ (t, ·, y′, z′)| ≤ K Y
|y − y′

| + K Z
∥z − z′

∥; (3.1)

4. ⟨M̂⟩ is absolutely continuous with respect to V̂ and d⟨M̂⟩

dV̂
is bounded.
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We remark that, thanks to Kunita–Watanabe’s inequality, the last assumption implies that
or any M ∈ H2

loc, ⟨M, M̂⟩ will also be absolutely continuous with respect to V̂ .
We will now formulate precisely our BSDE.

Definition 3.2. We say that a couple (Y,M) ∈ L2,cadlag(dV̂ ⊗ dP) × H2
0 is a solution of

BSDE(ξ, f̂ , V, M̂) if it satisfies

Y = ξ +

∫ T

·

f̂

(
r, ·, Yr ,

d⟨M, M̂⟩

dV̂
(r )

)
dV̂r − (MT − M·) (3.2)

in the sense of indistinguishability.

The proof of the theorem below is very similar to the one of Theorem 3.21 in [6]. For the
convenience of the reader, it is therefore postponed to Appendix A.

Theorem 3.3. If (ξ, f̂ , V̂ , M̂) satisfies Hypothesis 3.1, then BSDE(ξ, f̂ , V̂ , M̂) has a unique
olution.

emark 3.4. Let (ξ, f̂ , V̂ , M̂) satisfying Hypothesis 3.1. We can consider a BSDE on a
estricted interval [s, T ] for some s ∈ [0, T [. Theorem 3.3 extend easily to this case. In
articular there exists a unique couple of processes (Y s,M s), indexed by [s, T ] such that Y s

s adapted, càdlàg and satisfies E[
∫ T

s (Y s
r )2dV̂r ] < ∞, such that M s is a martingale vanishing

n s and such that Y s
= ξ +

∫ T
·

f̂
(

r, ·, Y s
r ,

d⟨Ms ,M̂⟩

dV̂
(r )
)

dV̂r − (M s
T − M s

·
) in the sense of

ndistinguishability on [s, T ].
Moreover, if (Y,M) denotes the solution of BSDE(ξ, f̂ , V̂ , M̂) then (Y,M· − Ms) and

Y s,M s) coincide on [s, T ]. This follows by a uniqueness argument resulting by Theorem 3.3
n the time interval [s, T ].

emark 3.5.

1. [12] considers a BSDE driven by a càdlàg martingale which corresponds to the BSDE
(1.1), where the Brownian motion W is replaced with a martingale M with non-
necessarily bounded angular bracket ⟨M⟩, with a remainder orthogonal martingale N .
The solution is given by a triplet (Y, Z , N ). The authors make use of weighted spaces
of the type H2

T,β and L2
β . For instance H2

T,β is the space of all progressively measurable
processes φ such that E(

∫ T
0 φ

2
s eβ⟨M⟩s d⟨M⟩s) < +∞. In particular they find a value for

β such that existence and uniqueness holds within the class of triplets (Y, Z , N ) such
that Y, Z ∈ H2

T,β and N ∈ L2
β .

2. Existence and uniqueness theorems for Brownian BSDEs can be also stated under
more general assumptions than Lipschitz conditions. In [22], the author has obtained
an existence result for possibly quadratic growth BSDEs, when the driver f is of the
form f (t, y, z) = f 1(t, z)y + f 2(t, y, z) where f 1 is bounded a.s., and for all t, y, z,
| f 2(t, y, z)| ≤ K (1 + c(|y|)|z|2) for some continuous function c. On the other hand the
terminal condition ξ is supposed to be bounded.

We believe that several arguments developed in the two previous items can be adapted to
our context. However, in this paper we have chosen not to explore the validity of Theorem 3.3
under more general assumptions along the line of items 1. and 2. It will be the object of future
investigations.
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4. Martingale problem and canonical Markov classes

We now introduce the Markov process which will be the forward underlying of our BSDE
riven by a càdlàg martingale. That process will be defined as the solution of a martingale
roblem described below.

For details concerning the exact mathematical framework for our Markov process, we refer
o our previous paper [7] about canonical Markov classes and additive functionals.

From now on, E is a Polish space and
(
Ω ,F , (X t )t∈[0,T ], (Ft )t∈[0,T ]

)
denotes the canonical

pace defined in Notation 3.1 of [7]. We also fix a canonical Markov class (Ps,x )(s,x)∈[0,T ]×E
ssociated to a transition kernel P = (Ps,t ) measurable in time as defined in Definitions 3.4,
.5 and 3.7 in [7]. For any (s, x) ∈ [0, T ] × E ,

(
Ω ,F s,x , (F s,x

t )t∈[0,T ],P
s,x
)

will denote the
tochastic basis in which Ps,x -null sets are added to F and Ft for all t , and which fulfills the
sual conditions. Es,x will denote the corresponding expectation to Ps,x . If Ps,t only depends
n t − s, P is called time-homogeneous and we will often use the notation Pt instead of P0,t .

otation 4.1. In particular, for any t ∈ [0, T ] and A ∈ B(E)

Ps,x (X t ∈ A) = Ps,t (x, A), (4.1)

nd for any s ≤ t ≤ u

Ps,x (Xu ∈ A|Ft ) = Pt,u(X t , A) Ps,x a.s. (4.2)

et s, t in [0, T ] with s ≤ t , x ∈ E and φ ∈ B(E,R). If φ is integrable with respect to
Ps,t (x, ·), then Ps,t [φ](x) will denote its integral.

We recall two important measurability properties, essentially stated in [8], even though with
V (t) ≡ t .

emark 4.2.

• Let φ ∈ B(E,R) be such that for any (s, x, t), Es,x [|φ(X t )|] < ∞, then (s, x, t) ↦−→

Ps,t [φ](x) is Borel, see Proposition A.11 in [8].
• Let φ ∈ L1

X , then (s, x) ↦−→
∫ T

s Ps,r [φ](x)dVr is Borel, see Lemma A.10 in [8].

efinition 4.3. Let V : [0, T ] → R+ be a non-decreasing continuous function vanishing at
. Let us consider a linear operator a : D(a) ⊂ B([0, T ] × E,R) −→ B([0, T ] × E,R), where
he domain D(a) is a linear space.

We say that (Ps,x )(s,x)∈[0,T ]×E solves the martingale problem associated to (D(a), a, V )
f, for any (s, x) ∈ [0, T ] × E , Ps,x satisfies the following.

(a) Ps,x (∀t ∈ [0, s], X t = x) = 1;
(b) for every φ ∈ D(a), φ(·, X ·)−

∫
·

s a(φ)(r, Xr )dVr , t ∈ [s, T ], is a càdlàg (Ps,x , (Ft )t∈[s,T ])
square integrable martingale.

he Martingale Problem is said to be well-posed if for any (s, x) ∈ [0, T ] × E , Ps,x is the
nique probability measure satisfying those two properties.

We anticipate that well-posedness for the martingale problem will not be a hypothesis in
he sequel.

otation 4.4. For every (s, x) ∈ [0, T ] × E and φ ∈ D(a), the process
t ↦→ 1 (t)

(
φ(t, X ) − φ(s, x) −

∫ t a(φ)(r, X )dV
)

will be denoted M[φ]s,x .
[s,T ] t s r r
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M[φ]s,x is a càdlàg (Ps,x , (F s,x
t )t∈[0,T ]) square integrable martingale vanishing on [0, s].

otation 4.5. Let φ ∈ D(a). For 0 ≤ t ≤ u ≤ T , we set

M[φ]t
u :=

{
φ(u, Xu) − φ(t, X t ) −

∫ u
t a(φ)(r, Xr )dVr if

∫ u
t |a(φ)|(r, Xr )dVr < ∞,

0 otherwise.

(4.3)

M[φ] is a square integrable Martingale Additive Functional (in short MAF), see Definition 4.1
n [7], whose càdlàg version under Ps,x for every (s, x) ∈ [0, T ] × E, is M[φ]s,x .

From now on we fix some d ∈ N∗ and a vector ψ = (ψ1, . . . , ψd ) ∈ D(a)d . For any
s, x) ∈ [0, T ] × E , the Rd -valued martingale (M[ψ1]s,x , . . . ,M[ψd ]s,x ) will be denoted

M[ψ]s,x .

efinition 4.6. For any φ1, φ2 ∈ D(a) such that φ1φ2 ∈ D(a) we set Γ (φ1, φ2) :=

(φ1φ2) − φ1a(φ2) − φ2a(φ1). Γ will be called the carré du champs operator. We set
(Γψ ) :=

{
φ ∈ D(a) : ∀i ∈ [[1; d]], φψ i

∈ D(a)
}

and we define the linear operator Γψ
:

(Γψ ) −→ B([0, T ] × E,Rd ) by

Γψ (φ) :=
(
Γψi (φ)

)
i∈[[1;d]] := (a(φψi ) − φa(ψi ) − ψi a(φ))i∈[[1;d]] . (4.4)

ψ will be called the ψ-generalized gradient operator.

We emphasize that this terminology is justified by the considerations below (1.5). This
perator appears in the expression of the angular bracket of the local martingales that we have
efined.

roposition 4.7. If φ ∈ D(Γψ ), then for any (s, x) ∈ [0, T ] × E and i ∈ [[1; d]] we have

⟨M[φ]s,x ,M[ψi ]s,x
⟩ =

∫
·∨s

s
Γψi (φ)(r, Xr )dVr , (4.5)

n the stochastic basis (Ω ,F s,x , (F s,x
t )t∈[0,T ],P

s,x ).

roof. The result follows from a slight modification of the proof of Proposition 4.7 of [6]
n which D(a) was assumed to be stable by multiplication and M[φ]s,x could potentially be a
ocal martingale which is not a martingale. □

We will later need the following assumption.

ypothesis 4.8. For every i ∈ [[1; d]], the Additive Functional ⟨M[ψi ]⟩ (which is well defined
hanks to Corollary 4.9 in [7]) has càdlàg versions which are absolutely continuous with respect
o dV .

Taking φ = ψi for some i ∈ [[1; d]] in Proposition 4.7, yields the following.

orollary 4.9. If ψ2
i ∈ D(a) for all i ∈ [[1; d]], then Hypothesis 4.8 is fulfilled.

We will now consider suitable extensions of the domain D(a).
For any (s, x) ∈ [0, T ]× E we define the positive bounded potential measure U (s, x, ·) on

[0, T ] × E,B([0, T ]) ⊗ B(E) by
)
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U (s, x, ·) :

B([0, T ]) ⊗ B(E) −→ [0, VT ]

A ↦−→ Es,x
[∫ T

s 1{(t,X t )∈A}dVt

]
.

efinition 4.10. A Borel set A ⊂ [0, T ] × E will be said to be of zero potential if, for any
s, x) ∈ [0, T ] × E we have U (s, x, A) = 0.

otation 4.11. Let p > 0. We introduce
Lp

s,x := Lp(U (s, x, ·)) =

{
f ∈ B([0, T ] × E,R) : Es,x

[∫ T
s | f |

p(r, Xr )dVr

]
< ∞

}
.

For p ≥ 1, that classical Lp-space is equipped with the seminorm

∥ · ∥p,s,x : f ↦→

(
Es,x

[∫ T
s | f (r, Xr )|pdVr

]) 1
p
. We also introduce

L0
s,x := L0(U (s, x, ·)) =

{
f ∈ B([0, T ] × E,R) :

∫ T
s | f |(r, Xr )dVr < ∞ Ps,x a.s.

}
.

For any p ≥ 0 we set

Lp
X =

⋂
(s,x)∈[0,T ]×E

Lp
s,x . (4.6)

Let N be the linear subspace of B([0, T ] × E,R) containing all functions which are equal to
0, U (s, x, ·) a.e. for every (s, x). For any p ≥ 0, we define the quotient space L p

X = Lp
X/N .

If p ≥ 1, L p
X can be equipped with the topology generated by the family of semi-norms(

∥ · ∥p,s,x
)

(s,x)∈[0,T ]×E which makes it a separate locally convex topological vector space, see
Theorem 5.76 in [1].

We recall that Proposition 4.13 in [6] states the following.

Proposition 4.12. Let f and g be in L0
X . Then f and g are equal up to a set of zero potential

if and only if for any (s, x) ∈ [0, T ] × E, the processes
∫

·

s f (r, Xr )dVr and
∫

·

s g(r, Xr )dVr are
ndistinguishable under Ps,x . Of course in this case f and g correspond to the same element
f L0

X .

We introduce now our notion of extended generator starting from its domain.

efinition 4.13. We first define the extended domain D(a) as the set of functions φ ∈

([0, T ] × E,R) for which there exists
χ ∈ L0

X such that under any Ps,x the process

1[s,T ]

(
φ(·, X ·) − φ(s, x) −

∫
·

s
χ (r, Xr )dVr

)
(4.7)

which is not necessarily càdlàg) has a càdlàg modification in H2
0.

A direct consequence of Proposition 4.15 in [6] is the following.

roposition 4.14. Let φ ∈ B([0, T ] × E,R). There is at most one (up to zero potential sets)
∈ L0

X such that under any Ps,x , the process defined in (4.7) has a modification which belongs
o H2.

If moreover φ ∈ D(a), then a(φ) = χ up to zero potential sets. In this case, according to
otation 4.4, for every (s, x) ∈ [0, T ] × E, M[φ]s,x is the Ps,x càdlàg modification in H2

0 of
[s,T ]

(
φ(·, X ·) − φ(s, x) −

∫
·

s χ (r, Xr )dVr
)
.
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Definition 4.15. Let φ ∈ D(a) as in Definition 4.13. We denote again by M[φ]s,x , the unique
càdlàg version of the process (4.7) in H2

0. Taking Proposition 4.12 into account, this will not
generate any ambiguity with respect to Notation 4.4. Proposition 4.12, also permits to define
without ambiguity the operator

a :
D(a) −→ L0

X

φ ↦−→ χ.

a will be called the extended generator.

Remark 4.16. a extends a in the sense that D(a) ⊂ D(a) (comparing Definitions 4.3 and
4.13) and if φ ∈ D(a) then a(φ) is an element of the class a(φ), see Proposition 4.14.

We also introduce an extended ψ-generalized gradient.

Proposition 4.17. Assume the validity of Hypothesis 4.8. Let φ ∈ D(a) and i ∈ [[1; d]].
There exists a (unique up to zero-potential sets) function in B([0, T ] × E,R) which we will
denote Gψi (φ) such that under any Ps,x , ⟨M[φ]s,x ,M[ψi ]s,x

⟩ =
∫

·∨s
s Gψi (φ)(r, Xr )dVr up to

indistinguishability.

Proof. We fix i ∈ [[1; d]]. Let M[ψi ] be the square integrable MAF (see 4.1 in [7]) presented
in Notation 4.5. We introduce the random field M[φ] = (M[φ]t

u)(0≤t≤u≤T ) as follows. We fix
some χ in the class a(φ) and set

M[φ]t
u :=

{
φ(u, Xu) − φ(t, X t ) −

∫ u
t χ (r, Xr )dVr if

∫ u
t |χ |(r, Xr )dVr < ∞, t ≤ u,

0 elsewhere,

(4.8)

We emphasize that, a priori, the function χ is only in L0
X implying that at fixed t ≤ u,∫ u

t |χ |(r, Xr (ω))dVr is not finite for every ω ∈ Ω , but only on a set which is Ps,x -negligible
or all (s, x) ∈ [0, t] × E .

According to Definition 4.1 in [7] M[φ] is an AF whose càdlàg version under Ps,x is
M[φ]s,x . Of course M[ψi ]s,x is the càdlàg version of M[ψi ] under Ps,x .

By Definition 4.15, since φ ∈ D(a), M[φ]s,x is a square integrable martingale for
very (s, x), so M[φ] is a square integrable MAF. Then by Corollary 4.9, the AF ⟨M[ψi ]⟩
s absolutely continuous with respect to dV . The existence of Gψi (φ) now follows from
roposition 4.14 in [7]. and the uniqueness follows by Proposition 4.12. □

otation 4.18. If 4.8 holds, we can introduce the linear operator

Gψ
:

D(a) −→ (L0
X )d

φ ↦−→ (Gψ1 (φ), . . . ,Gψd (φ)),
(4.9)

hich will be called the extended ψ-generalized gradient.

orollary 4.19. Let φ ∈ D(Γψ ). Then Γψ (φ) = Gψ (φ) up to zero potential sets.

roof. Comparing Propositions 4.7 and 4.17, for every (s, x) ∈ [0, T ] × E and i ∈ [[1; d]],∫
·∨s

s Γψi (φ)(r, Xr )dVr and
∫

·∨s
s Gψi (φ)(r, Xr )dVr are Ps,x -indistinguishable. We can conclude

y Proposition 4.12. □
ψ ψ
G therefore extends Γ as well as a extends a, see Remark 4.16.
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5. Pseudo-PDEs and associated Markovian type BSDEs driven by a càdlàg martingale

5.1. The concepts

In this section, we keep working in the framework of the previous Section 4.
We now introduce a subclass of BSDEs driven by a càdlàg martingale which we will call

arkovian. The process V̂ will be the (deterministic) function V introduced in Definition 4.3,
he terminal condition ξ will only depend on the final value of the canonical process XT and
he randomness of the driver f̂ at time t will only depend on X t . In other words, the driver
ill be of type f̂ (t, ω, y, z) = f (t, X t (ω), y, z) where f : [0, T ] × E × R × Rd

→ R is a
easurable function.
Given d functions ψ1, . . . , ψd in D(a), we will set M̂ := (M[ψ1]s,x , . . . ,M[ψd ]s,x ).
That BSDE will be connected with the deterministic problem in Definition 5.3.
We fix an integer d ∈ N∗ and some functions ψ1, . . . , ψd ∈ D(a) which in the sequel, will

atisfy the following hypothesis.

ypothesis 5.1. For any i ∈ [[1; d]] we have the following.

• Hypothesis 4.8 holds;
• a(ψi ) ∈ L2

X ;
• Gψi (ψi ) is bounded.

roposition 5.2. Assume that Hypothesis 5.1 holds. Then for every i ∈ [[1; d]], we have the
ollowing.

• For any (s, x) ∈ [0, T ]× E, M̂ := M[ψ]s,x satisfies item 4. of Hypothesis 3.1 with respect
to V̂ := V .

• for every (s, x) ∈ [0, T ] × E, sup
t∈[s,T ]

|ψi (t, X t )|2 belongs to L1 under Ps,x ;

• ψi ∈ L2
X .

roof. The first item follows from the fact that, for any (s, x) ∈ [0, T ] × E , ⟨M[ψi ]s,x
⟩ =

·∨s
s Gψi (ψi )(r, Xr )dVr (see Proposition 4.17), and the fact that Gψi (ψi ) is bounded. Concern-
ng the second item, for any (s, x) ∈ [0, T ] × E , the martingale problem gives ψi (·, X ) =

i (s, x) +
∫

·

s a(ψi )(r, Xr )dVr + M[ψi ]s,x , see Definition 4.3. By Jensen’s inequality, we have
sup
∈[s,T ]

|ψi (t, X t )|2 ≤ C(ψ2
i (s, x) +

∫ T
s a2(ψi )(r, Xr )dVr + sup

t∈[s,T ]
(M[ψi ]

s,x
t )2) for some C > 0. It

s therefore L1 since a(ψi ) ∈ L2
X and M[ψi ]s,x

∈ H2. The last item is a direct consequence of
he second one. □

efinition 5.3. Let us consider some g ∈ B(E,R) and
f ∈ B([0, T ] × E × R × R,Rd ).
We will call Pseudo-Partial Differential Equation related to ( f, g) (in short Pseudo −

P DE( f, g)) the following equation with final condition:{
a(u) + f

(
·, ·, u,Γψ (u)

)
= 0 on [0, T ] × E

u(T, ·) = g.
(5.1)

e will say that u is a classical solution of Pseudo− P DE( f, g) if u, uψi , i ∈ [[1; d]] belong
o D(a) and if u satisfies (5.1).
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The connection between a Markovian BSDE and a Pseudo − P DE( f, g), will be possible
nder a hypothesis on some generalized moments on X , and some growth conditions on the
unctions ( f, g). Those will be related to two fixed functions ζ, η ∈ B(E,R+).

Hypothesis 5.4. The canonical Markov class will be said to satisfy H mom(ζ, η) if

1. for any (s, x) ∈ [0, T ] × E , Es,x [ζ 2(XT )] is finite;
2. for any (s, x) ∈ [0, T ] × E , Es,x

[∫ T
0 η

2(Xr )dVr

]
is finite.

Until the end of this section, we assume that some ζ, η are given and that the canonical
arkov class satisfies H mom(ζ, η).

ypothesis 5.5. A couple ( f, g) of functions f ∈ B([0, T ]×E×R×Rd ,R) and g ∈ B(E,R)
will be said to satisfy H li p(ζ, η) if there exist positive constants K Y , K Z ,C,C ′ such that

1. ∀x : |g(x)| ≤ C(1 + ζ (x)),
2. ∀(t, x) : | f (t, x, 0, 0)| ≤ C ′(1 + η(x)),
3. ∀(t, x, y, y′, z, z′) : | f (t, x, y, z) − f (t, x, y′, z′)| ≤ K Y

|y − y′
| + K Z

∥z − z′
∥.

( f, g) will be said to satisfy H growth(ζ, η) if the following more general assumption holds.
There exist positive constants C,C ′ such that

1. ∀x : |g(x)| ≤ C(1 + ζ (x));
2. ∀(t, x, y, z) : | f (t, x, y, z)| ≤ C ′(1 + η(x) + |y| + ∥z∥).

Remark 5.6. We fix for now a couple ( f, g) satisfying H li p(ζ, η). For any (s, x) ∈ [0, T ]× E ,
in the stochastic basis

(
Ω ,F s,x , (F s,x

t )t∈[0,T ],P
s,x
)

and setting V̂ := V , the triplet ξ := g(XT ),
f̂ : (t, ω, y, z) ↦−→ f (t, X t (ω), y, z), M̂ := M[ψ]s,x satisfies Hypothesis 3.1.

With the equation Pseudo − P DE( f, g), we will associate the following family of BSDEs
ndexed by (s, x) ∈ [0, T ] × E , driven by a càdlàg martingale.

otation 5.7. For any (s, x) ∈ [0, T ] × E, we consider in the stochastic basis
Ω ,F s,x , (F s,x

t )t∈[0,T ],P
s,x
)

and on the interval [0, T ] the BSDE(ξ, f̂ , V, M̂), where ξ =

g(XT ), f̂ : (t, ω, y, z) ↦−→ f (t, X t (ω), y, z), M̂ = M[ψ]s,x .
From now on that BSDE will be denoted BSDE s,x ( f, g) and its unique solution (see

heorem 3.3 and Remark 5.6) will be denoted (Y s,x ,M s,x ).

If H li p(ζ, η) is fulfilled by ( f, g), then (Y s,x ,M s,x ) is therefore the unique couple in
2(dV ⊗ dPs,x ) × H2

0 satisfying

Y s,x
·

= g(XT ) +

∫ T

·

f
(

r, Xr , Y s,x
r ,

d⟨M s,x ,M[ψ]s,x
⟩

dV
(r )
)

dVr − (M s,x
T − M s,x

·
). (5.2)

emark 5.8. Even if the underlying process X admits no generalized moments, given a
ouple ( f, g) such that f (·, ·, 0, 0) and g are bounded, the considerations of this section still
pply. In particular the connections that we will establish between the BSDE s,x ( f, g) and the
orresponding Pseudo − P DE( f, g) still take place.

Our main contribution consists in illustrating the precise link between the solutions of
quations BSDE s,x ( f, g) and those of Pseudo − P DE( f, g). In particular we will emphasize
hat a solution of BSDE s,x ( f, g) produces a solution of Pseudo−P DE( f, g) and reciprocally.
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We now introduce a probabilistic notion of solution for Pseudo − P DE( f, g).

efinition 5.9. A Borel function u : [0, T ]× E → R will be said to be a martingale solution
f Pseudo − P DE( f, g) if u ∈ D(a) and{

a(u) = − f (·, ·, u,Gψ (u))
u(T, ·) = g.

(5.3)

emark 5.10. The first equation of (5.3) holds in L0
X , hence up to a zero potential set. The

second one is a pointwise equality.

The following lemma was the object of Lemma 5.13 in [6].

Lemma 5.11. Let V be a non-decreasing function. If two measurable processes are
P-modifications of each other, then they are also equal dV ⊗ dP a.e.

Proposition 5.12. Let ( f, g) satisfy H growth(ζ, η). Let u be a martingale solution of Pseudo−

P DE( f, g). Then for any (s, x) ∈ [0, T ] × E, the couple of processes(
u(t, X t ), u(t, X t ) − u(s, x) +

∫ t

s
f (·, ·, u,Gψ (u))(r, Xr )dVr

)
t∈[s,T ]

(5.4)

as a Ps,x -version which is a solution on [s, T ] of BSDE s,x ( f, g), see Remark 3.4.
Moreover, u ∈ L2

X .

roof. Let u ∈ D(a) be a solution of (5.3) and let (s, x) ∈ [0, T ] × E be fixed. By
efinition 4.13 and Remark 3.4, the process u(·, X ·) under Ps,x admits a càdlàg modification
s,x on [s, T ], which is a special semimartingale with decomposition

U s,x
= u(s, x) +

∫
·

s a(u)(r, Xr )dVr + M[u]s,x

= u(s, x) −
∫

·

s f
(
r, Xr , u(r, Xr ),Gψ (u)(r, Xr )

)
dVr + M[u]s,x

= u(s, x) −
∫

·

s f
(

r, Xr ,U s,x
r ,

d⟨M[u]s,x ,M[ψ]s,x
⟩

dV (r )
)

dVr + M[u]s,x ,

(5.5)

here the third equality of (5.5) comes from Lemma 5.11 and Proposition 4.17. Moreover
ince u(T, ·) = g, then U s,x

T = u(T, XT ) = g(XT ) a.s. so the couple (U s,x ,M[u]s,x ) satisfies
he following equation on [s, T ] (with respect to Ps,x ):

U s,x
·

= g(XT )+
∫ T

·

f
(

r, Xr ,U s,x
r ,

d⟨M[u]s,x ,M[ψ]s,x
⟩

dV
(r )
)

dVr −(M[u]s,x
T −M[u]s,x

·
).

(5.6)

M[u]s,x (introduced at Definition 4.15) belongs to H2
0 but we do not have a priori information

n the square integrability of U s,x . However we know that M[u]s,x is equal to zero at time
s, and that U s,x

s is deterministic so square integrable. We can therefore apply Lemma A.12
which implies that (U s,x ,M[u]s,x ) solves BSDE s,x ( f, g) on [s, T ]. In particular, U s,x belongs
to L2(dV ⊗ dPs,x ) for every (s, x), so by Lemma 5.11 and Notation 4.11, u ∈ L2

X . □

5.2. Decoupled mild solutions of Pseudo-PDEs

In this section we introduce an analytical notion of solution of our Pseudo − P DE( f, g),
that we will denominate decoupled mild, taking inspiration from the mild solutions of partial
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differential equation. That notion will be shown to be equivalent to the one of martingale
solution introduced in Definition 5.9. Let P = (Ps,t ) denote the transition kernel of the
canonical Markov class, see Definition 3.4 in [7] and also Notation 4.1.

Our notion of decoupled mild solution relies on the fact that the equation a(u) +

f
(
·, ·, u,Γψ (u)

)
= 0 can be naturally decoupled into{

a(u) = − f (·, ·, u, v)
vi = Γψi (u), i ∈ [[1; d]].

(5.7)

Then, by definition of the carré du champ operator (see Definition 4.6), we formally have
(uψi ) = Γψi (u) + ua(ψi ) + ψi a(u), i ∈ [[1; d]]. So the system of equations (5.7) can be

rewritten as{
a(u) = − f (·, ·, u, v)

a(uψi ) = vi + ua(ψi ) − ψi f (·, ·, u, v), i ∈ [[1; d]].
(5.8)

Inspired by the usual notions of mild solution, this naturally brings us to the following definition
of a (decoupled) mild solution.

Definition 5.13. Assume that ( f, g) satisfies H growth(ζ, η). Let
u ∈ B([0, T ] × E,R) and v ∈ B([0, T ] × E,Rd ).

1. (u, v) is a solution of the identification problem determined by ( f, g) or simply
solution of I P( f, g) if u, v1, . . . , vd belong to L2

X and if for every (s, x) ∈ [0, T ] × E ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(s, x) = Ps,T [g](x) +
∫ T

s Ps,r [ f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x) −
∫ T

s Ps,r [(v1 + ua(ψ1)
−ψ1 f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·

uψd (s, x) = Ps,T [gψd (T, ·)](x) −
∫ T

s Ps,r [(vd + ua(ψd )
−ψd f (·, ·, u, v)) (r, ·)] (x)dVr .

(5.9)

2. u is a decoupled mild solution of Pseudo − P DE( f, g) if there exists a function v
such that (u, v) is a solution of I P( f, g).

The following lemma is very close to Lemma 3.5 in [8] and the arguments for the proof
re similar.

emma 5.14. Let u, v1, . . . , vd ∈ L2
X , let ( f, g) be a couple satisfying H growth(ζ, η)

nd let ψ1, . . . , ψd satisfy Hypothesis 5.1. Then f (·, ·, u, v) belongs to L2
X and for every

∈ [[1; d]], ψi f (·, ·, u, v), and ua(ψi ), belong to L1
X . For any (s, x) ∈ [0, T ] × E, i ∈ [[1; d]],

g(XT )ψi (T, XT ) belongs to L1 under Ps,x . In particular, all terms in (5.9) make sense.

roposition 5.15. Let ( f, g) satisfy H growth(ζ, η). Let u be a martingale solution of Pseudo−

P DE( f, g), then (u,Gψ (u)) is a solution of I P( f, g) and in particular, u is a decoupled mild
olution of Pseudo − P DE( f, g).

roof. Let u be a martingale solution of Pseudo− P DE( f, g). By Proposition 5.12, u ∈ L2
X .

s,x 2 s,x
aking into account Definition 4.15, for every (s, x), M[u] ∈ H0 under P . So by
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Lemma A.2, for any i ∈ [[1; d]], d⟨M[u]s,x ,M[ψ i ]s,x
⟩

dV belongs to L2(dV ⊗ dPs,x ). By use of
roposition 4.17, this means that Gψi (u) ∈ L2

X for every i . By Lemma 5.14, it follows that
f
(
·, ·, u,Gψ (u)

)
belongs to L2

X and so for any i ∈ [[1; d]], ψi f
(
·, ·, u,Gψ (u)

)
and ua(ψi ),

elong to L1
X .

Let (s, x) ∈ [0, T ] × E . Below we demonstrate that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(s, x) = Ps,T [g](x) +
∫ T

s Ps,r
[

f
(
·, ·, u,Gψ (u)

)
(r, ·)

]
(x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x) −
∫ T

s Ps,r [(G(u, ψ1) + ua(ψ1)

−ψ1 f
(
·, ·, u,Gψ (u)

))
(r, ·)

]
(x)dVr

· · ·

uψd (s, x) = Ps,T [gψd (T, ·)](x) −
∫ T

s Ps,r [(G(u, ψd ) + ua(ψd )

−ψd f
(
·, ·, u,Gψ (u)

))
(r, ·)

]
(x)dVr .

(5.10)

We refer now to the probability Ps,x : by Definitions 4.13, 4.15 and 5.9, the process u(·, X ·)
dmits a modification U s,x being a special semimartingale with decomposition

U s,x
= u(s, x) −

∫
·

s
f
(
·, ·, u,Gψ (u)

)
(r, Xr )dVr + M[u]s,x , (5.11)

nd M[u]s,x
∈ H2

0.
Definition 5.9 also states that u(T, ·) = g, so

u(s, x) = g(XT ) +

∫ T

s
f
(
·, ·, u,Gψ (u)

)
(r, Xr )dVr − M[u]s,x

T a.s. (5.12)

y Fubini’s theorem we deduce that

u(s, x) = Es,x
[
g(XT ) +

∫ T
s f

(
·, ·, u,Gψ (u)

)
(r, Xr )dVr

]
= Ps,T [g](x) +

∫ T
s Ps,r

[
f
(
r, ·, u(r, ·),Gψ (u)(r, ·)

)]
(x)dVr .

(5.13)

e now fix i ∈ [[1; d]]. By integration by parts, taking (5.11) and Definition 4.3 into account,
e obtain

d(U s,x
t ψi (t, X t )) = −ψi (t, X t ) f

(
·, ·, u,Gψ (u)

)
(t, X t )dVt + ψi (t−, X t− )d M[u]s,x

t

+ U s,x
t a(ψi )(t, X t )dVt + U s,x

t− d M[ψi ]
s,x
t

+d[M[u]s,x ,M[ψi ]s,x ]t ,

(5.14)

ntegrating between s and T ,

uψi (s, x)

= g(XT )ψi (T, XT ) +
∫ T

s ψi (t, X t ) f
(
·, ·, u,Gψ (u)

)
(r, Xr )dVr

−
∫ T

s ψi (r−, Xr− )d M[u]s,x
r

−
∫ T

s U s,x
t a(ψi )(r, Xr )dVr −

∫ T
s U s,x

r− d M[ψi ]s,x
r − [M[u]s,x ,M[ψi ]s,x ]T

= g(XT )ψi (T, XT ) −
∫ T

s

(
ua(ψi ) − ψi f

(
·, ·, u,Gψ (u)

))
(r, Xr )dVr

−
∫ T

s ψi (r−, Xr− )d M[u]s,x
r

−
∫ T

s U s,x
r− d M[ψi ]s,x

r − [M[u]s,x ,M[ψi ]s,x ]T ,

(5.15)
hanks to Lemma 5.11.
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By Proposition 4.17, ⟨M[ψi ]s,x
⟩ =

∫
·∨s

s Gψi (ψi )(r, Xr )dVr . So the angular bracket of
·

s U s,x
r− d M[ψi ]s,x

r at time T is equal to
∫ T

s u2Gψi (ψi )(r, Xr )dVr which is an integrable r.v. since
ψi (ψi ) is bounded and u ∈ L2

X . Therefore
∫

·

s U s,x
r− d M[ψi ]s,x

r is a square integrable martingale.
Then, by Hypothesis 5.1 and Proposition 5.2, sup

t∈[s,T ]
|ψi (t, X t )|2 ∈ L1, and by Definition 4.15,

M[u]s,x
∈ H2 so by Lemma 3.17 in [6],

∫
·

s ψi (r−, Xr− )d M[u]s,x
r is a martingale.

We can now perform the expectation in (5.15), to get

uψi (s, x)

= Es,x
[
g(XT )ψi (T, XT ) −

∫ T
s

(
ua(ψi ) − ψi f

(
·, ·, u,Gψ (u)

))
(r, Xr )dVr

−[M[u]s,x ,M[ψi ]s,x ]T ]

= Es,x
[
g(XT )ψi (T, XT ) −

∫ T
s

(
ua(ψi ) + Gψi (u)

−ψi f
(
·, ·, u,Gψ (u)

))
(r, Xr )dVr

]
,

(5.16)

ince u and ψi belong to D(a). Indeed the second equality follows from the fact
M[u]s,x ,M[ψi ]s,x ] − ⟨M[u]s,x ,M[ψi ]s,x

⟩ is a martingale and Proposition 4.17.
Since we have assumed that u ∈ L2

X , Lemma 5.14 says that f
(
·, ·, u,Gψ (u)

)
∈ L2

X ,
ypothesis 5.1 implies that ψi and a(ψi ) are in L2

X , so all terms in the integral inside the
xpectation in the third line belong to L1

X . We can therefore apply Fubini’s theorem to get

uψi (s, x) = Ps,T [gψi (T, ·)](x) −

∫ T

s
Ps,r

[(
ua(ψi ) + Gψi (u)

−ψi f
(
·, ·, u,Gψ (u)

))
(r, ·)

]
(x)dVr . (5.17)

his concludes the proof. □

Proposition 5.15 admits a converse implication.

roposition 5.16. Let ( f, g) satisfy H growth(ζ, η), then every decoupled mild solution of
Pseudo − P DE( f, g) is a martingale solution. Moreover, if (u, v) solves I P( f, g), then

= Gψ (u), up to zero potential sets.

roof. Let u and vi , i ∈ [[1; d]] in L2
X satisfy (5.9). We observe that the first line of (5.9) with

= T , implies that u(T, ·) = g.
Let (s, x) ∈ [0, T ] × E be fixed. We will now work under the probability Ps,x . On [s, T ],

e set U := u(·, X ) and N := u(·, X ) − u(s, x) +
∫

·

s f (r, Xr , u(r, Xr ), v(r, Xr ))dVr .
For some t ∈ [s, T ], we combine the first line of (5.9) applied with (s, x) = (t, X t ) and the

arkov property, see e.g. (3.4) in [7]. Since f (·, ·, u, v) belongs to L2
X (see Lemma 5.14) we

.s. have that
Ut = u(t, X t )

= Pt,T [g](X t ) +
∫ T

t Pt,r [ f (r, ·, u(r, ·), v(r, ·))] (X t )dVr

= Et,X t
[
g(XT ) +

∫ T
t f (r, Xr , u(r, Xr ), v(r, Xr ))dVr

]
= Es,x

[
g(XT ) +

∫ T
t f (r, Xr , u(r, Xr ), v(r, Xr ))dVr |Ft

]
,

(5.18)

o Nt = Es,x
[
g(XT ) +

∫ T
s f (r, Xr , u(r, Xr ), v(r, Xr ))dVr |Ft

]
− u(s, x) a.s. hence N is a

artingale. Let N s,x denote its càdlàg version which we extend on [0, s] with the value 0.
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Then

U s,x
:= u(s, x) −

∫
·

s
f (r, Xr , u(r, Xr ), v(r, Xr ))dVr + N s,x , (5.19)

ndexed on [s, T ] is a càdlàg version of U . Proceeding as in the proof of Proposition 3.8 in [8],
e can show that N s,x is a square integrable martingale. The process

u(·, X ·) − u(s, x) +
∫

·

s f (r, Xr , u(r, Xr ), v(r, Xr ))dVr
)
1[s,T ] therefore admits for any (s, x)

Ps,x -modification in H2
0. By Definitions 4.13, 4.15 this means that u ∈ D(a), a(u) =

f (·, ·, u, v) and for any (s, x) ∈ [0, T ] × E , M[u]s,x
= N s,x P s,x -a.s.

We are left to show Gψ (u) = v, up to zero potential sets, hence that for every (s, x) ∈

0, T ] × E and i ∈ [[1; d]],

⟨M s,x [u],M s,x [ψi ]⟩ =

∫
·∨s

s
vi (r, Xr )dVr , a.s. (5.20)

et (s, x) ∈ [0, T ] × E , and i ∈ [[1; d]]. Combining the (i + 1)-th line of (5.9) applied to
s, x) = (t, X t ) and the Markov property (see e.g. (3.4) in [7]), taking into account the fact
hat all terms belong to L1

X (see Lemma 5.14, Hypothesis 5.1) we a.s. have

uψi (t, X t ) = Pt,T [gψi (T, ·)](X t ) −
∫ T

t Pt,r [(vi + ua(ψi ) − ψi f (·, ·, u, v)) (r, ·)] (X t )dVr

= Et,X t
[
g(XT )ψi (T, XT ) −

∫ T
t (vi + ua(ψi ) − ψi f (·, ·, u, v)) (r, Xr )dVr

]
= Es,x

[
g(XT )ψi (T, XT ) −

∫ T
t (vi + ua(ψi ) − ψi f (·, ·, u, v)) (r, Xr )dVr |Ft

]
.

(5.21)

etting, for t ∈ [s, T ], N i
t := uψi (t, X t ) −

∫ t
s (vi + ua(ψ)i

− ψi f (·, ·, u, v))(r, Xr )dVr , from
(5.21) we deduce that, for any t ∈ [s, T ],

N i
t = Es,x

[
g(XT )ψi (T, XT ) −

∫ T

s
(vi + ua(ψi ) − ψi f (·, ·, u, v)) (r, Xr )dVr

⏐⏐⏐Ft

]
a.s. So N i is a martingale. Let N i,s,x denote its càdlàg Ps,x -modification. The process∫

·

s
(vi + ua(ψi ) − ψi f (·, ·, u, v)) (r, Xr )dVr + N i,s,x , (5.22)

s a càdlàg Ps,x -version of uψi (·, X ) on [s, T ]. But we have by (5.19), that
U s,x

= u(s, x) −
∫

·

s f (r, Xr , u(r, Xr ), v(r, Xr ))dVr + N s,x is a version of u(·, X ), hence by
integration by parts on U s,xψi (·, X ·) that

uψi (s, x) +
∫

·

s U s,x
r a(ψi )(r, Xr )dVr +

∫
·

s U s,x
r− d M s,x [ψi ]r

−
∫

·

s ψi f (·, ·, u, v)(r, Xr )dVr +
∫

·

s ψi (r−, Xr− )d M s,x [u]r + [M s,x [u],M s,x [ψi ]]

(5.23)

s another càdlàg semimartingale which is a Ps,x -version of uψi (·, X ) on [s, T ]. Now (5.23)
quals

Mi
+ V i , (5.24)

here

Mi
t = uψi (s, x) +

∫ t

s
U s,x

r− d M s,x [ψi ]r +

∫ t

s
ψi (r−, Xr− )d M s,x [u]r

s,x s,x s,x s,x

+ [M [u],M [ψi ]]t − ⟨M [u],M [ψi ]⟩t ,
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is a local martingale and

V i
t = ⟨M s,x [u],M s,x [ψi ]⟩t +

∫ t

s
U s,x

r a(ψi )(r, Xr )dVr −

∫ t

s
ψi f (·, ·, u, v)(r, Xr )dVr ,

s a predictable process with bounded variation vanishing at zero. Now (5.22) and (5.24) are
wo càdlàg versions of uψi (·, X ) on [s, T ].

By the uniqueness of the decomposition of a special semimartingale and using Lemma 5.11
e get∫

·

s
(vi + ua(ψi ) − ψi f (·, ·, u, v))(r, Xr )dVr

= ⟨M s,x [u],M s,x [ψi ]⟩ +

∫
·

s
ua(ψi )(r, Xr )dVr −

∫
·

s
ψi f (·, ·, u, v)(r, Xr )dVr .

his yields ⟨M s,x [u],M s,x [ψi ]⟩ =
∫

·∨s
s vi (r, Xr )dVr , which implies (5.20). □

roposition 5.17. Let ( f, g) satisfy H growth(ζ, η). A classical solution of Pseudo −

P DE( f, g) is a decoupled mild solution.
Conversely, a decoupled mild solution of Pseudo − P DE( f, g) belonging to D(Γψ ) is a

lassical solution of Pseudo − P DE( f, g) up to a zero-potential set, meaning that it satisfies
he first equality of (5.1) up to a set of zero potential.

roof. Let u be a classical solution of Pseudo−P DE( f, g). Definition 5.3 and Corollary 4.19
mply that u(T, ·) = g, and the equalities up to zero potential set

a(u) = a(u) = − f (·, ·, u,Γψ (u)) = − f (·, ·, u,Gψ (u)), (5.25)

hich shows that u is a martingale solution and by Proposition 5.15 it is also a decoupled mild
olution.

Similarly, the second statement follows by Proposition 5.16, Definition 5.9, and again
orollary 4.19. □

.3. Existence and uniqueness of a decoupled mild solution

In this subsection, the positive functions ζ, η and the functions ( f, g) appearing in Pseudo−

P DE( f, g) are fixed. We still assume that the canonical Markov class satisfies H mom(ζ, η).
Theorem 5.18 can be proved using arguments which are very close to those developed in

he proof of Theorem 5.15 in [6]. For the convenience of the reader, we postpone the adapted
roof to Appendix B.

Let (Y s,x ,M s,x ) be for any (s, x) ∈ [0, T ]× E the unique solution of (5.2), see Notation 5.7.

heorem 5.18. Let ( f, g) satisfy H li p(ζ, η). There exists u ∈ D(a) such that for any
s, x) ∈ [0, T ] × E{

∀t ∈ [s, T ] : Y s,x
t = u(t, X t ) Ps,x a.s.

M s,x
= M[u]s,x ,

nd in particular d⟨Ms,x ,M[ψ]s,x
⟩

dV = Gψ (u)(·, X ·) dV ⊗ dPs,x a.e. on [s, T ]. Moreover, for every
s, x), Y s,x

s is Ps,x a.s. equal to a constant (which we shall still denote Y s,x
s ) and u(s, x) = Y s,x

s
or every (s, x) ∈ [0, T ] × E.
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Corollary 5.19. Let ( f, g) satisfy H li p(ζ, η). For any (s, x) ∈ [0, T ] × E, the functions u
btained in Theorem 5.18 satisfy Ps,x a.s. on [s, T ]

u(t, X t ) = g(XT ) +

∫ T

t
f
(
r, Xr , u(r, Xr ),Gψ (u)(r, Xr )

)
dVr − (M[u]s,x

T − M[u]s,x
t ),

nd in particular, a(u) = − f (·, ·, u,Gψ (u)).

roof. The corollary follows from Theorem 5.18 and Lemma 5.11. □

heorem 5.20. Let (Ps,x )(s,x)∈[0,T ]×E be a canonical Markov class associated to a transition
ernel measurable in time (see Definitions 3.4, 3.5 and 3.7 in [7]) which solves a martingale
roblem associated with the triplet (D(a), a, V ). Moreover we suppose Hypothesis H mom(ζ, η)
or some positive ζ, η. Let ( f, g) be a couple satisfying H li p(ζ, η).

Then Pseudo − P DE( f, g) has a unique decoupled mild solution given by

u :
[0, T ] × E −→ R

(s, x) ↦−→ Y s,x
s ,

(5.26)

here (Y s,x ,M s,x ) denotes the (unique) solution of BSDE s,x ( f, g) for fixed (s, x).

roof. Let u be the function exhibited in Theorem 5.18. In order to show that u is a decoupled
ild solution of Pseudo − P DE( f, g), it is enough by Proposition 5.15 to show that it is a
artingale solution.
In Corollary 5.19, we have already seen that a(u) = − f (·, ·, u,Gψ (u)). Concerning the

econd line of (5.3), for any x ∈ E , we have
u(T, x) = u(T, XT ) = g(XT ) = g(x)PT,x a.s., so u(T, ·) = g, in the deterministic pointwise

ense.
We now show uniqueness. By Proposition 5.16, it is enough to show that Pseudo −

P DE( f, g) admits at most one martingale solution. Let u, u′ be two martingale solutions of
Pseudo − P DE( f, g). We fix (s, x) ∈ [0, T ] × E . By Proposition 5.12, both couples, indexed
y [s, T ],(

u(·, X ), u(·, X ) − u(s, x) +
∫

·

s f (·, ·, u,Gψ (u))(r, Xr )dVr
)

and(
u′(·, X ), u′(·, X ) − u′(s, x) +

∫
·

s f (·, ·, u′,Gψ (u))(r, Xr )dVr
)

admit a Ps,x -version which
olves BSDE s,x ( f, g) on [s, T ]. By Theorem 3.3 and Remark 3.4, BSDE s,x ( f, g) admits a
nique solution, so u(·, X ·) and u′(·, X ·) are Ps,x -modifications one of the other on [s, T ]. In
articular, considering their values at time s, we have u(s, x) = u′(s, x). We therefore have
′
= u. □

orollary 5.21. Let ( f, g) satisfy H li p(ζ, η). There is at most one classical solution of
Pseudo − P DE( f, g) and this only possible classical solution is the unique decoupled mild
olution (s, x) ↦−→ Y s,x

s , where (Y s,x ,M s,x ) denotes the (unique) solution of BSDE s,x ( f, g)
or fixed (s, x).

roof. The proof follows from Proposition 5.17 and Theorem 5.20. □

emark 5.22. Let (u, v) be the unique solution of the identification problem I P( f, g), then
also admits a stochastic representation. Indeed, for every (s, x) ∈ [0, T ] × E , on [s, T ],

d⟨Ms,x ,Ms,x [ψ]⟩
dV = v(·, X ·) dV ⊗ dPs,x a.e. where M s,x is the second item of the solution of

BSDE s,x ( f, g).
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The existence of a decoupled mild solution of Pseudo − P DE( f, g) provides in fact an
xistence theorem for BSDE s,x ( f, g) for any (s, x). The following constitutes the converse of
heorem 5.20.

roposition 5.23. Assume ( f, g) satisfies H mom(ζ, η). Let (u, v) be a solution of I P( f, g),
et (s, x) ∈ [0, T ] × E and the associated probability Ps,x be fixed. The couple(

u(t, X t ), u(t, X t ) − u(s, x) +

∫ t

s
f (·, ·, u, v)(r, Xr )dVr

)
t∈[s,T ]

(5.27)

as a Ps,x -version which solves BSDE s,x ( f, g) on [s, T ].
In particular if ( f, g) satisfies the stronger hypothesis H li p(ζ, η) and (u, v) is the unique

olution of I P( f, g), then for any (s, x) ∈ [0, T ] × E,(
u(t, X t ), u(t, X t ) − u(s, x) +

∫ t
s f (·, ·, u, v)(r, Xr )dVr

)
t∈[s,T ]

is a Ps,x -modification of
he unique solution of BSDE s,x ( f, g) on [s, T ].

roof. It follows from Propositions 5.16 and 5.12. □

. Examples of applications

We now develop some examples. In all the items below there will be a canonical Markov
lass with transition kernel being measurable in time which is solution of a martingale Problem
ssociated to some triplet (D(a), a, V ) as introduced in Definition 4.3. Therefore all the results
f this paper will apply to all the examples below. In particular, Propositions 5.16, 5.17,
heorem 5.20, Corollary 5.21 and Proposition 5.23 will apply but we will mainly emphasize
heorem 5.20 and Corollary 5.21. In all the examples T > 0 will be fixed.

.1. A new approach to Brownian BSDEs and associate semilinear PDEs

In this first application, the state space will be E := Rd for some d ∈ N∗.

otation 6.1. A function φ ∈ B([0, T ] × Rd ,R) will be said to have polynomial growth if
here exists p ∈ N and C > 0 such that for every (t, x) ∈ [0, T ]×Rd , |φ(t, x)| ≤ C(1+∥x∥

p).
or any k, p ∈ N, Ck,p([0, T ] × Rd ) (resp. Ck,p

b ([0, T ] × Rd ), resp. Ck,p
pol ([0, T ] × Rd )) will

enote the sublinear algebra of C([0, T ] × Rd ,R) of functions admitting continuous (resp.
ounded continuous, resp. continuous with polynomial growth) derivatives up to order k in the
rst variable and order p in the second.

We consider bounded Borel functions µ ∈ Bb([0, T ] × Rd ,Rd ) and α ∈ Bb([0, T ] ×
d , S+

d (R)) where S+

d (R) is the space of symmetric non-negative d × d real matrices. We
efine for φ ∈ C1,2([0, T ] × Rd ) the operator a by

a(φ) = ∂tφ +
1
2

∑
i, j≤d

αi, j∂
2
xi x j
φ +

∑
i≤d

µi∂xiφ. (6.1)

We will assume the following.

Hypothesis 6.2. There exists a canonical Markov class (Ps,x )(s,x)∈[0,T ]×Rd which solves the
1,2([0, T ] ×Rd ), a, V ≡ t) in the sense of Definition 4.3.
artingale Problem associated to (Cb t
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We now recall a non-exhaustive list of sets of conditions on µ, α under which Hypothesis 6.2
s satisfied.

1. α is continuous non-degenerate, in the sense that for any t, x , α(t, x) is invertible, see
Theorem 4.2 in [30];

2. µ and α are continuous in the second variable, see Exercise 12.4.1 in [31];
3. d = 1 and α is uniformly positive on compact sets, see Exercise 7.3.3 in [31].

emark 6.3.

• When the item 1. or 3. above is satisfied, the mentioned canonical Markov class is unique,
but whenever only 2. holds, uniqueness may fail.

• We emphasize that given a fixed canonical Markov class, we obtain well-posedness results
concerning the martingale solution (and so the decoupled mild solution) of an associated
PDE.

• Nevertheless, for every canonical Markov class solving the martingale problem could
correspond a different solution.

In this context, for φ,ψ in D(a), the carré du champs operator (see Definition 4.6) is given
y Γ (φ,ψ) =

∑
i, j≤d

αi, j∂xiφ∂x jψ .

emark 6.4. By a localization procedure, it is also clear that for every
(s, x) ∈ [0, T ] ×Rd , for any φ ∈ C1,2([0, T ] ×Rd ), φ(·, X ·) −

∫
·

s a(φ)(r, Xr )dr ∈ H2
loc with

espect to Ps,x . Consequently Proposition 4.7 extends to all φ ∈ C1,2([0, T ] × Rd ).

We set now D(a) = C1,2
pol([0, T ] × Rd ).

For any i ∈ [[1; d]], the function I di denotes (t, x) ↦−→ xi which belongs to D(a) and
I d := (I d1, . . . , I dd ). It is clear that for any i , a(I di ) = µi , and for any i, j , I di I d j ∈ D(a)
nd Γ (I di , I d j ) = αi, j . In particular, by Corollary 4.9, (I d1, . . . , I dd ) satisfy Hypothesis 4.8
nd, since µ, α are bounded, they satisfy Hypothesis 5.1.

For any i we can therefore consider the MAF M[I di ] : (t, u) ↦→ X i
u − X i

t −
∫ u

t µi (r, Xr )dr
hose càdlàg version under Ps,x for every (s, x) ∈ [0, T ] × Rd is M[I di ]s,x

1[s,T ]
(
X i

− xi −
∫

·

s µi (r, Xr )dr
)

and for any i, j we have ⟨M[I di ]s,x ,M[I d j ]s,x
⟩ =

·∨s
s αi, j (r, Xr )dr .

emma 6.5. Let (s, x) ∈ [0, T ] × Rd and associated probability Ps,x , i ∈ [[1; d]] and
p ∈ [1,+∞[ be fixed. Then sup

t∈[s,T ]
|X i

t |
p

∈ L1.

roof. We have X i
= xi +

∫
·

s µi (r, Xr )dr + M[I di ]s,x where µi is bounded so it is enough to
how that sup

t∈[s,T ]
|M[I di ]

s,x
t |

p
∈ L1. Since ⟨M[I di ]s,x

⟩ =
∫

·∨s
s αi,i (r, Xr )dr , which is bounded,

he result holds by Burkholder–Davis–Gundy inequality. □

orollary 6.6. (Ps,x )(s,x)∈[0,T ]×Rd solves the Martingale Problem associated to (C1,2
pol([0, T ] ×

d ), a, Vt ≡ t) in the sense of Definition 4.3.

roof. By Remark 6.4, for any φ ∈ C1,2
pol([0, T ] × Rd ) and (s, x) ∈ [0, T ] × Rd ,

(·, X ·)−
∫

·

s a(φ)(r, Xr )dr is a Ps,x -local martingale. Since φ and a(φ) have polynomial growth,
emma 6.5 and Jensen’s inequality imply that it is also a square integrable martingale. □
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We now consider a couple ( f, g) satisfying H li p(∥ · ∥
p, ∥ · ∥

p) for some p ≥ 1. In this case
ypothesis 5.5 can be retranslated into what follows.

• g is Borel with polynomial growth;
• f is Borel with polynomial growth in x (uniformly in t), and Lipschitz in y, z.

e consider the PDE⎧⎨⎩ ∂t u +
1
2

∑
i, j≤d

αi, j∂
2
xi x j

u +
∑
i≤d
µi∂xi u + f (·, ·, u, α∇u) = 0

u(T, ·) = g.
(6.2)

e emphasize that for u ∈ C1,2
pol([0, T ] × Rd ), α∇u = Γ I d (u). The associated decoupled mild

quation is given by⎧⎪⎨⎪⎩
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r [ f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)xi = Ps,T [gI di ](x) −
∫ T

s Ps,r [(vi + uµi

−I di f (·, ·, u, v)) (r, ·)] (x)dr, i ∈ [[1; d]],

(6.3)

(s, x) ∈ [0, T ] × Rd , where P is the transition kernel of the canonical Markov class.

Proposition 6.7. Assume the validity of Hypothesis 6.2 and that ( f, g) satisfies H li p(∥ · ∥
p,

∥ · ∥
p) for some p ≥ 1. Then equation (6.2) has a unique decoupled mild solution u.

Moreover it has at most one classical solution which (when it exists) equals this function u.

Proof. (Ps,x )(s,x)∈[0,T ]×Rd solves a martingale problem in the sense of Definition 4.3 and has a
transition kernel which is measurable in time. Moreover (I d1, . . . , I dd ) fulfills Hypothesis 5.1,
(Ps,x )(s,x)∈[0,T ]×Rd satisfies (by Lemma 6.5) H mom(∥ · ∥

p, ∥ · ∥
p) for some p ≥ 1 and ( f, g)

satisfies H li p(∥ · ∥
p, ∥ · ∥

p). So Theorem 5.20 and Corollary 5.21 apply. □

Remark 6.8. The unique decoupled mild solution mentioned in the previous proposition admits
the probabilistic representation given in Theorem 5.20.

Remark 6.9. In the classical literature, the Brownian BSDE (1.1) has been related to a slightly
different type of parabolic PDE, i.e.⎧⎨⎩ ∂t u +

1
2

∑
i, j≤d

(σσ ⊺)i, j∂
2
xi x j

u +
∑
i≤d
µi∂xi u + f (·, ·, u, σ∇u) = 0

u(T, ·) = g,
(6.4)

(where σ =
√
α in the sense of non-negative symmetric matrices) rather than (6.2). In fact,

the only difference is that the term σ∇u replaces α∇u in the fourth argument of the driver f .
See the introduction of the present paper, or [25] for more details.

Our methodology also allows to represent (6.4). Under the probability Ps,x (for some fixed
(s, x)), one can introduce the square integrable martingale M̃[I d]s,x

:=
∫

·

s (σ ⊺)+(r, Xr )
M[I d]s,x

r where A ↦→ A+ denotes the Moore–Penrose pseudo-inverse operator, see [9]
hapter 1. The Brownian BSDE (1.1) can then be reexpressed here as

Y s,x
t = g(XT ) +

∫ T

f

(
r, Xr , Y s,x

r ,
d⟨M s,x , M̃[I d]s,x

⟩r

dr

)
dr − (M s,x

T − M s,x
t ). (6.5)
t
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Under the assumptions of Proposition 6.7 where α = σσ ⊺, it is possible to show that (6.5)
onstitutes the probabilistic representation of (6.4) performing similar arguments as in our
pproach for (6.2). In particular we can show existence and uniqueness of a function u ∈ L2

X
or which there exists v1, . . . , vd ∈ L2

X such that for all (s, x) ∈ [0, T ] × Rd ,⎧⎪⎨⎪⎩
u(s, x) = Ps,T [g](x) +

∫ T
s Ps,r

[
f
(
·, ·, u, (σ ⊺)+v

)
(r, ·)

]
(x)dr

u(s, x)xi = Ps,T [gI di ](x) −
∫ T

s Ps,r
[(
vi + uµi − I di f

(
·, ·, u, (σ ⊺)+v

))
(r, ·)

]
(x)dr,

i ∈ [[1; d]].

(6.6)

6.6) constitutes indeed a suitable decoupled mild formulation corresponding to (6.4). More-
ver, this function u, whenever it belongs to C1,2

pol([0, T ] ×Rd ), is the unique classical solution
f (6.4).

This technique is however technically more complicated and for purpose of illustration we
refer to remain in our setup (which is by the way close to (6.4)) to keep our notion of
ecoupled-mild solution more comprehensible.

emark 6.10. It is also possible to treat jump diffusions instead of continuous diffusions
see [30]), and under suitable conditions on the coefficients, it is also possible to prove existence
nd uniqueness of a decoupled mild solution for equations of type⎧⎪⎨⎪⎩

∂t u +
1
2 T r (α∇

2u) + (µ,∇u) +
∫ (

u(·, · + y) − u −
(y,∇u)
1+∥y∥2

)
K (·, ·, dy)

+ f (·, ·, u,Γ I d (u)) = 0
u(T, ·) = g,

(6.7)

where K is a Lévy kernel: this means that for every (t, x) ∈ [0, T ]×Rd , K (t, x, ·) is a σ -finite
easure on Rd

\{0}, sup
t,x

∫
∥y∥

2

1+∥y∥2 K (t, x, dy) < ∞ and for every Borel set A ∈ B(Rd
\{0}),

t, x) ↦−→
∫

A
∥y∥

2

1+∥y∥2 K (t, x, dy) is Borel. In that framework we have

Γ I d
: φ ↦−→ α∇φ +

(∫
yi (φ(·, · + y) − φ(·, ·))K (·, ·, dy)

)
i∈[[1;d]]

. (6.8)

.2. Parabolic semi-linear PDEs with distributional drift

The context of this subsection is the one introduced by Flandoli, Russo & Wolf in [18]
nd [19]), see also [14,28] for recent developments. We refer to Section 4.3 of [8] for
more detailed introduction. In particular [18,19] consider stochastic differential equations
ith distributional drift, whose solution are possibly non-semimartingales. These authors

ntroduced a suitable framework of a martingale problem related to a PDE operator involving
distributional drift b′ which is the derivative of a continuous function. [17] approached the

-dimensional setting for the first time and later developments were discussed by [11] studying
ingular SDEs involving paracontrolled distributions. Other Markov processes associated to
iffusion operators which are not semimartingales were produced when the diffusion operator
s in divergence form, see e.g. [27]. [29] linked second order ODEs with a distributional
oefficient and BSDEs. In those BSDEs the final horizon was a stopping time. [21] and [17]

ave considered a class of BSDEs involving distributions in their setting.
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Let b, σ ∈ C0(R) such that σ > 0. In [18], the authors introduce a (generalized) notion for
the equation L f = ℓ, for f ∈ C1(R). They suppose the existence of a function Σ : R → R

hich formally equals 2
∫

·

0
b′

σ 2 (y)dy and it is defined via mollification. A typical situation when
exists arises when either b or σ 2 have locally bounded variation. If Σ exists then the function

h : R → R defined by h(0) = 0 and h′
= e−Σ is L-harmonic function, in the sense that it

ulfills Lh = 0, see Proposition 2.3 of [18]. DL is defined as the set of f ∈ C1(R) such that
here exists some ℓ ∈ C0(R) with L f = ℓ and it is a linear algebra.

Let v be the unique solution to Lv = 1, v(0) = v′(0) = 0, see Remark 2.4 in [18]; we will
ssume

v(−∞) = v(+∞) = +∞, (6.9)

hich represents a non-explosion condition. In this case, Proposition 3.13 in [18] states that
certain martingale problem associated to (DL , L) is well-posed. Its solution will be denoted
Ps,x )(s,x)∈[0,T ]×Rd .

The canonical process X is a Ps,x -Dirichlet process for every (s, x), i.e. the sum of a local
artingale and a zero quadratic variation process and it is a semimartingale if and only if Σ is

ocally of bounded variation, see Corollary 5.11 in [19]. (Ps,x )(s,x)∈[0,T ]×Rd defines a canonical
arkov class and Proposition B.2 in [8] implies that its transition kernel is measurable in time.
We introduce below the domain that we will indeed use.

efinition 6.11. We set

Dmax (a) =

{
φ ∈ C1,1([0, T ] × R) :

∂xφ

h′
∈ C1,1([0, T ] × R)

}
. (6.10)

n Dmax (a), we set Lφ :=
σ 2h′

2 ∂x ( ∂xφ
h′ ) and a(φ) := ∂tφ + Lφ. We then define the smaller

omain

D(a) =

{
φ ∈ Dmax (a) : σ∂xφ ∈ C0,0

pol([0, T ] × R)
}
. (6.11)

We formulate here some supplementary assumptions that we will make, the first one being
alled (TA) in [18].

ypothesis 6.12.

• There exist c1,C1 > 0 such that c1 ≤ σh′
≤ C1;

• σ has linear growth.

The first item states in particular that σh′ is bounded so h ∈ D(a). Proposition 3.2
n [18] states that for every (s, x), ⟨M[h]s,x

⟩ =
∫

·∨s
s (σh′)2(Xr )dr . Moreover the AF defined

y ⟨M[h]⟩t
u =

∫ u
t (σh′)2(Xr )dr , is absolutely continuous with respect to V̂t ≡ t . Therefore

ypothesis 4.8 is satisfied (for ψ = h) and Gh(h) = (σh′)2. Since this function is bounded
nd clearly a(h) = 0 then h satisfies Hypothesis 5.1.

We will therefore consider the h-generalized gradient Γ h associated to a; Proposition 4.23
n [8] implies the following.

roposition 6.13. Let φ ∈ D(Γ h), then Γ h(φ) = σ 2h′∂ φ.
x
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The deterministic equation considered in this section is a semilinear PDE with singular (or
istributional) drift b′ given by{

∂t u +
1
2σ

2∂2
x u + b′∂x u + f (·, ·, u, σ 2h′∂x u) = 0 on [0, T ] × R

u(T, ·) = g.
(6.12)

he associated PDE in the decoupled mild sense is given by{
u(s, x) = PT −s[g](x) +

∫ T
s Pr−s [ f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)h(x) = PT −s[gh](x) −
∫ T

s Pr−s [(v − h f (·, ·, u, v)) (r, ·)] (x)dr,
(6.13)

(s, x) ∈ [0, T ] × R, where P is the (time-homogeneous) transition kernel of the canonical
Markov class.

In order to consider the BSDE s,x ( f, g) for functions ( f, g) having polynomial growth in x ,
we had shown in [8] the following result, stated as Proposition 4.24.

Proposition 6.14. We suppose that Hypothesis 6.12 is fulfilled. Then, for any p ∈ N and
(s, x) ∈ [0, T ] × R, Es,x [|XT |

p] < ∞ and Es,x [
∫ T

s |Xr |
pdr ] < ∞. In other words, for

any p ≥ 1, the canonical Markov class (Ps,x )(s,x)∈[0,T ]×Rd satisfies H mom(| · |
p, | · |

p), see
ypothesis 5.4.

Next we have the following.

roposition 6.15. We suppose that Hypothesis 6.12 is fulfilled. Then (Ps,x )(s,x)∈[0,T ]×Rd solves
he Martingale Problem associated to (a,D(a), Vt ≡ t) in the sense of Definition 4.3.

roof. Let (s, x) ∈ [0, T ]×R be fixed. Proposition 4.23 in [8] implies that for any φ ∈ D(a),
(·, X ·) −

∫
·

s a(φ)(r, Xr )dr is a (continuous) Ps,x -local martingale, so taking Definition 4.3
nto account, it is enough to show that this local martingale is a square integrable martingale.
onsidering Definition 4.21, Proposition 4.22 and Proposition 2.6 in [8], we know that the
ngular bracket of this local martingale is given by

∫
·

s (σ∂xφ)2(r, Xr )dr . Since φ ∈ D(a)
hen σ∂xφ has polynomial growth, so by Proposition 6.14,

∫ T
s (σ∂xφ)2(r, Xr )dr ∈ L1 and this

mplies that the aforementioned local martingale is a square integrable martingale. □

We can now state the main result of this section.

roposition 6.16. Assume the non-explosion condition (6.9), Hypothesis 6.12 and that ( f, g)
atisfies H li p(| · |

p, | · |
p) for some p ≥ 1, see Hypothesis 5.5. Then, Eq. (6.12) has a unique

ecoupled mild solution u. Moreover, there is at most one classical solution which can only be
qual to u.

roof. The assertions come from Theorem 5.20 and Corollary 5.21 which applies thanks to
ropositions 6.15, 6.14, and the fact that h satisfies Hypothesis 5.1. □

emark 6.17. The unique decoupled mild solution u can be of course represented by (5.26),
heorem 5.20.
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ppendix A. Proof of Theorem 3.3 and related technicalities

We adopt here the same notations as at the beginning of Section 3. We will denote
L2(dV̂ ⊗ dP) the quotient space of L2(dV̂ ⊗ dP) with respect to the subspace of processes
qual to zero dV̂ ⊗ dP a.e.

L2(dV̂ ⊗dP) is a Hilbert space equipped with its usual norm. L2,cadlag(dV̂ ⊗dP)) will stand
or the subspace of L2(dV̂ ⊗ dP)) of elements having a càdlàg representative. We emphasize
hat L2,cadlag(dV̂ ⊗ dP) is not a closed subspace of L2(dV̂ ⊗ dP). The application which to
process associate its class will be denoted φ ↦→ φ̇.

roposition A.1. If (Y,M) solves BSDE(ξ, f̂ , V, M̂), and if we denote
f̂
(

r, ·, Yr ,
d⟨M,M̂⟩

dV̂
(r )
)

by f̂r , then for any t ∈ [0, T ], a.s. we have⎧⎨⎩ Yt = E
[
ξ +

∫ T
t f̂r dV̂r

⏐⏐⏐Ft

]
Mt = E

[
ξ +

∫ T
0 f̂r dV̂r

⏐⏐⏐Ft

]
− E

[
ξ +

∫ T
0 f̂r dV̂r

⏐⏐⏐F0

]
.

(A.1)

roof. Since Yt = ξ +
∫ T

t f̂r dV̂r − (MT − Mt ) a.s., Y being an adapted process and M a
artingale, taking the expectation in (3.2) at time t , we directly get Yt = E

[
ξ +

∫ T
t f̂r dV̂r

⏐⏐⏐Ft

]
nd in particular that Y0 = E

[
ξ +

∫ T
0 f̂r dV̂r

⏐⏐⏐F0

]
. Since M0 = 0, looking at the BSDE at time

we get

MT = ξ +

∫ T

0
f̂r dV̂r − E

[
ξ +

∫ T

0
f̂r dV̂r

⏐⏐⏐F0

]
.

aking the expectation with respect to Ft in the above inequality, gives the second line of
A.1). □

emma A.2. Let M ∈ H2 and φ be a bounded positive process. Then there exists a constant
> 0 such that for any i ∈ [[1; d]],∫ T

0 φr

(
d⟨M,M̂ i

⟩

dV̂
(r )
)2

dV̂r ≤ C
∫ T

0 φr d⟨M⟩r . In particular, d⟨M,M̂ i
⟩

dV̂
belongs to L2(dV̂ ⊗ dP).

roof. We fix i ∈ [[1; d]]. By Hypothesis 3.1 d⟨M̂ i
⟩

dV̂
is bounded; using Proposition B.1 and

emark 3.3 in [6], we show the existence of C > 0 such that∫ T
0 φr

(
d⟨M,M̂ i

⟩

dV̂
(r )
)2

dV̂r ≤
∫ T

0 φr
d⟨M̂ i

⟩

dV̂
(r ) d⟨M⟩

dV̂
(r )dV̂r

≤ C
∫ T

0 φr
d⟨M⟩

dV̂
(r )dV̂r∫ T

(A.2)
≤ C 0 φr d⟨M⟩r .
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In particular, setting φ = 1, we have
∫ T

0

(
d⟨M,M̂ i

⟩

dV̂
(r )
)2

dV̂r ≤ C⟨M⟩T which belongs to L1

ince M ∈ H2
0. □

We fix for now a couple (U̇ , N ) ∈ L2(dV̂ ⊗ dP) ×H2
0 and we consider a representative U

f U̇ . Until Proposition A.6 included, we will use the notation f̂r := f̂
(

r, ·,Ur ,
d⟨N ,M̂⟩

dV̂
(r )
)

.

roposition A.3. For any t ∈ [0, T ],
∫ T

t f̂ 2
r dV̂r belongs to L1 and

(∫ T
t f̂r dV̂r

)
is in L2.

roof. By Jensen’s inequality and by Lemma A.2, taking into account the Lipschitz conditions
n f̂ in Hypothesis 3.1, there exist positive constants C,C ′,C” such that, for any t ∈ [0, T ],
e have(∫ T

t f̂r dV̂r

)2
≤ C

∫ T
t f̂ 2

r dV̂r

≤ C ′

(∫ T
t f̂ 2 (r, ·, 0, 0) dV̂r +

∫ T
t U 2

r dV̂r +

d∑
i=1

∫ T
t

(
d⟨N ,M̂ i

⟩

dV̂
(r )
)2

dV̂r

)
≤ C”

(∫ T
t f̂ 2 (r, ·, 0, 0) dV̂r +

∫ T
t U 2

r dV̂r + (⟨N ⟩T − ⟨N ⟩t )
)
.

(A.3)

ll terms on the right-hand side are in L1. Indeed, N is taken in H2, U̇ in L2(dV̂ ⊗ dP) and
y Hypothesis 3.1, f (·, ·, 0, 0) is in L2(dV̂ ⊗ dP). This concludes the proof. □

We can therefore state the following definition.

efinition A.4. The random function

t ↦→ E

[
ξ +

∫ T

0
f̂r dV̂r

⏐⏐⏐Ft

]
− E

[
ξ +

∫ T

0
f̂r dV̂r

⏐⏐⏐F0

]
, (A.4)

s a square integrable martingale by Proposition A.3. Since the stochastic basis fulfills the usual
onditions, by Theorem 4 in Chapter IV of [15], (A.4) admits a càdlàg version, that we denote

M . We denote by Y the càdlàg process defined by Yt = ξ +
∫ T

t f̂r dV̂r − (MT − Mt ). This will
e called the càdlàg reference process and we will omit its dependence to (U̇ , N ).

roposition A.5. Y and M are square integrable processes.

roof. We already know that M is a square integrable martingale. As we have seen in
roposition A.3,

∫ T
t f̂r dV̂r belongs to L2 for any t ∈ [0, T ] and by Hypothesis 3.1, ξ ∈ L2.

o by (A.1) and Jensen’s inequality for conditional expectation we have

E
[
Y 2

t

]
= E

[
E
[
ξ +

∫ T
t f̂r dV̂r

⏐⏐⏐Ft

]2
]

≤ E

[
E

[(
ξ +

∫ T
t f̂r dV̂r

)2 ⏐⏐⏐Ft

]]
≤ E

[
2ξ 2

+ 2
∫ T

t f̂ 2
r dV̂r

]
,

hich is finite. □
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Proposition A.6. sup
t∈[0,T ]

|Yt | ∈ L2 and in particular, Y ∈ L2,cadlag(dV̂ ⊗ P).

roof. Since dYr = − f̂r dV̂r + d Mr , by integration by parts formula we get

d(Y 2
r e−V̂r ) = −2e−V̂r Yr f̂r dV̂r + 2e−V̂r Yr−d Mr + e−V̂r d[M]r − e−V̂r Y 2

r dV̂r .

o integrating from 0 to some t ∈ [0, T ], yields

Y 2
t e−V̂t = Y 2

0 − 2
∫ t

0 e−V̂r Yr f̂r dV̂r + 2
∫ t

0 e−V̂r Yr−d Mr

+
∫ t

0 e−V̂r d[M]r −
∫ t

0 e−V̂r Y 2
r dV̂r

≤ Y 2
0 +

∫ t
0 e−V̂r Y 2

r dV̂r +
∫ t

0 e−V̂r f̂ 2
r dV̂r

+ 2
⏐⏐⏐∫ t

0 e−V̂r Yr−d Mr

⏐⏐⏐+ ∫ t
0 e−V̂r d[M]r −

∫ t
0 e−V̂r Y 2

r dV̂r

≤ Z + 2
⏐⏐⏐∫ t

0 e−V̂r Yr−d Mr

⏐⏐⏐ ,
here Z = Y 2

0 +
∫ T

0 e−V̂r f̂ 2
r dV̂r +

∫ T
0 e−V̂r d[M]r . Therefore, for any t ∈ [0, T ] we have

Yt e−V̂t )2
≤ Y 2

t e−V̂t ≤ Z + 2
⏐⏐⏐∫ t

0 e−V̂r Yr−d Mr

⏐⏐⏐. Thanks to Propositions A.3 and A.5, Z is

ntegrable, so we can conclude by Lemma 3.18 in [6] applied to the process Y e−V̂ , and the
act that V̂ is bounded.

Since Y is càdlàg progressively measurable, sup
t∈[0,T ]

|Yt | ∈ L2 and since V̂ is bounded, it is

lear that Y ∈ L2,cadlag(dV̂ ⊗ dP) and the corresponding class Ẏ belongs to L2,cadlag(dV̂ ⊗

P). □

Thanks to Propositions A.5 and A.6, we are allowed to introduce the following.

otation A.7. We denote by Φ the operator which associates to a couple (U̇ , N ) the couple
Ẏ ,M).

Φ :
L2(dV̂ ⊗ dP) × H2

0 −→ L2,cadlag(dV̂ ⊗ dP) × H2
0

(U̇ , N ) ↦−→ (Ẏ ,M).

roposition A.8. The mapping (Y,M) ↦−→ (Ẏ ,M) induces a bijection between the set of
olutions of BSDE(ξ, f̂ , V̂ , M̂) and the set of fixed points of Φ.

roof. First, let (U, N ) be a solution of BSDE(ξ, f̂ , V, M̂), let (Ẏ ,M) := Φ(U̇ , N ) and let Y
e the reference càdlàg process associated to U as in Definition A.4. By this same definition,

M is the càdlàg version of
t ↦→ E

[
ξ +

∫ T
0 f̂

(
r, ·,Ur ,

d⟨N ,M̂⟩

dV̂
(r )
)

dV̂r

⏐⏐⏐Ft

]
E
[
ξ +

∫ T
0 f̂

(
r, ·,Ur ,

d⟨N ,M̂⟩

dV̂
(r )
)

dV̂r

⏐⏐⏐F0

]
, but by Proposition A.1, so is N , meaning M =

N . Again by Definition A.4, Y = ξ+
∫ T
·

f̂
(

r, ·,Ur ,
d⟨N ,M̂⟩

dV̂
(r )
)

dV̂r −(NT − N·) which is equal
o U thanks to (3.2), consequently Y = U in the sense of indistinguishability. In particular,
˙ = Ẏ , implying (U̇ , N ) = (Ẏ ,M) = Φ(U̇ , N ). Therefore, the mapping (Y,M) ↦−→ (Ẏ ,M)
oes indeed map the set of solutions of BSDE(ξ, f̂ , V, M̂) into the set of fixed points of Φ.

The map Φ is surjective. Indeed let (U̇ , N ) be a fixed point of Φ, the couple (Y,M)
of Definition A.4 satisfies Y = ξ +

∫ T f̂
(

r, ·,Ur ,
d⟨N ,M̂⟩ (r )

)
dV̂r − (MT − M·) in the
· dV̂
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sense of indistinguishability, and (Ẏ ,M) = Φ(U̇ , N ) = (U̇ , N ), so by Lemma 3.9 in [6],∫ T
·

f̂
(

r, ·, Yr ,
d⟨M,M̂⟩

dV̂
(r )
)

dV̂r and
∫ T
·

f̂
(

r, ·,Ur ,
d⟨N ,M̂⟩

dV̂
(r )
)

dV̂r are indistinguishable and Y =

+
∫ T
·

f̂
(

r, ·, Yr ,
d⟨M,M̂⟩

dV̂
(r )
)

dV̂r − (MT − M·), meaning that (Y,M) (which is a preimage of

U̇ , N )) solves BSDE(ξ, f̂ , V, M̂).
We finally show that it is injective. Let us consider two solutions (Y,M) and (Y ′,M) of

BSDE(ξ, f̂ , V, M̂) with Ẏ = Ẏ ′. By Lemma 3.9 in [6] the processes
∫ T
·

f̂
(

r, ·, Yr ,
d⟨M,M̂⟩

dV̂
(r )
)

V̂r and
∫ T
·

f̂
(

r, ·, Y ′
r ,

d⟨M,M̂⟩

dV̂
(r )
)

dV̂r are indistinguishable, so taking (3.2) into account, we
have Y = Y ′. □

Proposition A.9. Let λ ∈ R, let (U̇ , N ), (U̇ ′, N ′) ∈ L2(dV̂ ⊗ dP) ×H2
0, let (Ẏ ,M), (Ẏ ′,M ′)

e their images through Φ and let Y, Y ′ be the càdlàg representatives of Ẏ , Ẏ ′ introduced in
efinition A.4. Then

∫
·

0 eλV̂r Yr−d Mr ,
∫

·

0 eλV̂r Y ′

r−d M ′
r ,
∫

·

0 eλV̂r Yr−d M ′
r and

∫
·

0 eλV̂r Y ′

r−d Mr are
artingales.

roof. V̂ is bounded and thanks to Proposition A.6 we know that sup
t∈[0,T ]

|Yt | and sup
t∈[0,T ]

|Y ′
t |

re L2. Moreover, since M and M ′ are square integrable, the statement yields therefore as a
onsequence of Lemma 3.17 in [6]. □

Starting from now, if (Ẏ ,M) is the image by Φ of some (U̇ , N ) ∈ L2(dV̂ ⊗ dP) ×H2
0, by

efault, we will always refer to the càdlàg reference process Y of Ẏ defined in Definition A.4.
For any λ ≥ 0, on L2(dV̂ ⊗ dP) × H2

0 we define the norm
∥(Ẏ ,M)∥2

λ := E
[∫ T

0 eλV̂r Y 2
r dV̂r

]
+ E

[∫ T
0 eλV̂r d⟨M⟩r

]
. Since V̂ is bounded, these norms

re all equivalent.

roposition A.10. There exists λ > 0 such that for any (U̇ , N ) ∈ L2(dV̂ ⊗ dP) × H2
0,

Φ(U̇ , N )
2
λ

≤
1
2

(U̇ , N )
2
λ
. In particular, Φ is a contraction in L2(dV̂ ⊗ dP) × H2

0 for the
orm ∥ · ∥λ.

roof.
Let (U̇ , N ) and (U̇ ′, N ′) be two couples belonging to L2(dV̂ ⊗ dP) × H2

0, let (Ẏ ,M) and
Ẏ ′,M ′) be their images via Φ and let Y, Y ′ be the càdlàg reference process of Ẏ , Ẏ ′ introduced
n Definition A.4. We will write Ȳ for Y−Y ′ and we adopt a similar notation for other processes.

e will also write
f̄t := f̂

(
t, ·,Ut ,

d⟨N ,M̂⟩

dV̂
(t)
)

− f̂
(

t, ·,U ′
t ,

d⟨N ′,M̂⟩

dV̂
(t)
)

.

By additivity, we have dȲt = − f̄t dV̂t +d M̄t . Since ȲT = ξ−ξ = 0, applying the integration
y parts formula to Ȳ 2

t eλV̂t between 0 and T we get

Ȳ 2
0 − 2

∫ T

0
eλV̂r Ȳr f̄r dV̂r + 2

∫ T

0
eλV̂r Ȳr−d M̄r +

∫ T

0
eλV̂r d[M̄]r + λ

∫ T

0
eλV̂r Ȳ 2

r dV̂r = 0.

ince, by Proposition A.9, the stochastic integral with respect to M̄ is a real martingale, by
aking the expectations we get

E
[
Ȳ 2

0

]
− 2E

[∫ T

eλV̂r Ȳr f̄r dV̂r

]
+ E

[∫ T

eλV̂r d⟨M̄⟩r

]
+ λE

[∫ T

eλV̂r Ȳ 2
r dV̂r

]
= 0.
0 0 0
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So by re-arranging previous expression, by the Lipschitz condition on f̂ stated in
ypothesis 3.1, by the linearity of the Radon–Nikodym derivative and by Lemma A.2, we
et

λE
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+ E

[∫ T
0 eλV̂r d⟨M̄⟩r

]
≤ 2E

[∫ T
0 eλV̂r |Ȳr ∥ f̄r |dV̂r

]
≤ 2K YE

[∫ T
0 eλV̂r |Ȳr ∥ Ūr |dV̂r

]
+ 2K Z

d∑
i=1

E
[∫ T

0 eλV̂r |Ȳr |

⏐⏐⏐ d⟨N̄ ,M̂ i
⟩

dV̂
(r )
⏐⏐⏐ dV̂r

]
≤ (K Yα + d K Zβ)E

[∫ T
0 eλV̂r Ȳ 2

r dV̂r

]
+

K Y

α
E
[∫ T

0 eλV̂r Ū 2
r dV̂r

]
+

K Z

β

d∑
i=1

E

[∫ T
0 eλV̂r

(
d⟨N̄ ,M̂ i

⟩

dV̂
(r )
)2

dV̂r

]
≤ (K Yα + d K Zβ)E

[∫ T
0 eλV̂r Ȳ 2

r dV̂r

]
+

K Y

α
E
[∫ T

0 eλV̂r Ū 2
r dV̂r

]
+

Cd K Z

β
E
[∫ T

0 eλV̂r d⟨N̄ ⟩r

]
,

or some positive C and any positive α and β. The latter equality holds by Hypothesis 3.1 4.
hen we pick α = 2K Y and β = 2Cd K Z , which gives us

λE
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+ E

[∫ T
0 eλV̂r d⟨M̄⟩r

]
≤ 2((K Y )2

+ C(d K Z )2)E
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+

1
2E

[∫ T
0 eλV̂r Ū 2

r dV̂r

]
+

1
2E

[∫ T
0 eλV̂r d⟨N̄ ⟩r

]
.

We choose now λ = 1 + 2((K Y )2
+ C(d K Z )2) and we get

E
[∫ T

0 eλV̂r Ȳ 2
r dV̂r

]
+ E

[∫ T
0 eλV̂r d⟨M̄⟩r

]
≤

1
2E

[∫ T
0 eλV̂r Ū 2

r dV̂r

]
+

1
2E

[∫ T
0 eλV̂r d⟨N̄ ⟩r

]
,

(A.5)

which proves the contraction for the norm ∥ · ∥λ. □

Proof of Theorem 3.3. The space L2(dV̂ ⊗ dP) × H2
0 is complete and Φ defines on it

a contraction for the norm ∥(·, ·)∥λ for some λ > 0, so Φ has a unique fixed point in
L2(dV̂ ⊗ dP) ×H2

0. Then by Proposition A.8, BSDE(ξ, f̂ , V, M̂) has a unique solution. □

emark A.11. Let (Y,M) be the solution of BSDE(ξ, f̂ , V, M̂) and Ẏ the class of Y in
L2(dV̂ ⊗ dP). Thanks to Proposition A.8, we know that (Ẏ ,M) = Φ(Ẏ ,M) and therefore by

ropositions A.6 and A.9 that sup
t∈[0,T ]

|Yt | is L2 and that
∫

·

0 Yr−d Mr is a real martingale.

The lemma below shows that, in order to check if a couple (Y,M) is the solution of
BSDE(ξ, f̂ , V, M̂), it is not necessary to verify the square integrability of Y since it will
e automatically fulfilled.

emma A.12. We consider (ξ, f̂ , V, M̂) such that ξ, M̂ satisfy items 1., 2. of Hypothesis 3.1
ut where item 3. is replaced by the weaker following hypothesis on f̂ . There exists C > 0
uch that P a.s., for all t, y, z,

| f̂ (t, ω, y, z)| ≤ C(1 + |y| + ∥z∥). (A.6)
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Assume that there exists a càdlàg adapted process Y with Y0 ∈ L2, and M ∈ H2
0 such that

Y = ξ +

∫ T

·

f̂

(
r, ·, Yr ,

d⟨M, M̂⟩

dV̂
(r )

)
dV̂r − (MT − M·), (A.7)

n the sense of indistinguishability. Then sup
t∈[0,T ]

|Yt | is L2. In particular, Y ∈ L2(dV̂ ⊗dP) and if

ξ, f̂ , V, M̂) satisfies Hypothesis 3.1, then (Y,M) is the unique solution of BSDE(ξ, f̂ , V, M̂)
n the sense of Definition 3.2.

On the other hand if (Y,M) satisfies (A.7) on [s, T ] with s < T , Ys ∈ L2 and Ms = 0 then
sup
∈[s,T ]

|Yt | is L2. Consequently if (ξ, f̂ , V, M̂) satisfies Hypothesis 3.1 and if we denote (U, N )

he unique solution of BSDE(ξ, f̂ , V, M̂), then (Y,M) and (U, N· − Ns) are indistinguishable
n [s, T ].

roof.
Let λ > 0 and t ∈ [0, T ]. By integration by parts formula applied to Y 2e−λV̂ between 0 and

we get

Y 2
t e−λV̂t − Y 2

0 = −2
∫ t

0 e−λV̂r Yr f̂
(

r, ·, Yr ,
d⟨M,M̂⟩

dV̂
(r )
)

dV̂r + 2
∫ t

0 e−λV̂r Yr−d Mr

+
∫ t

0 e−λV̂r d[M]r − λ
∫ t

0 e−λV̂r Y 2
r dV̂r .

y re-arranging the terms and using the Lipschitz conditions stated in item 3. of in
ypothesis 3.1, we get

Y 2
t e−λV̂t + λ

∫ t
0 e−λV̂r Y 2

r dV̂r

≤ Y 2
0 + 2

∫ t
0 e−λV̂r |Yr ∥ f̂ |

(
r, ·, Yr ,

d⟨M,M̂⟩

dV̂
(r )
)

dV̂r + 2
⏐⏐⏐∫ t

0 e−λV̂r Yr−d Mr

⏐⏐⏐
+
∫ t

0 e−λV̂r d[M]r

≤ Y 2
0 +

∫ t
0 e−λV̂r f̂ 2(r, ·, 0, 0)dV̂r + (2K Y

+ 1 + K Z )
∫ t

0 e−λV̂r Y 2
r dV̂r

+ K Z
d∑

i=1

∫ t
0 e−λV̂r

(
d⟨M,M̂ i

⟩

dV̂
(r )
)2

dV̂r + 2
⏐⏐⏐∫ t

0 e−λV̂r Yr−d Mr

⏐⏐⏐+ ∫ t
0 e−λV̂r d[M]r .

icking λ = 2K Y
+ 1 + K Z and using Lemma A.2, this gives

Y 2
t e−λV̂t ≤ Y 2

0 +
∫ t

0 e−λV̂r | f̂ |
2
(r, ·, 0, 0)dV̂r + K Z C

∫ t
0 e−λV̂r d⟨M⟩r

+ 2
⏐⏐⏐∫ t

0 e−λV̂r Yr−d Mr

⏐⏐⏐+ ∫ t
0 e−λV̂r d[M]r ,

or some C > 0. Since V̂ is bounded, there is a constant C ′ > 0, such that for any t ∈ [0, T ]

Y 2
t ≤ C ′

(
Y 2

0 +

∫ T

0
| f̂ |

2
(r, ·, 0, 0)dV̂r + ⟨M⟩T + [M]T +

⏐⏐⏐⏐∫ t

0
Yr−d Mr

⏐⏐⏐⏐) .
y Hypothesis 3.1, Y0 ∈ L2 and M ∈ H2, the first four terms on the right-hand side are

ntegrable so that we can conclude by Lemma 3.18 in [6].
An analogous proof also holds on the interval [s, T ] taking into account Remark 3.4. In

articular, if (U, N ) is the unique solution of BSDE(ξ, f̂ , V, M̂) then (U, N −Ns) is a solution
n [s, T ]. The final statement result follows by the uniqueness argument of Remark 3.4. □

2 ˆ 2
otation A.13. Let Φ : L (dV ⊗ dP) × H0 be the operator introduced in Notation A.7.
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In the sequel we will not distinguish between a couple (Ẏ ,M) in L2(dV̂ ⊗ dP) × H2
0 and

Y,M), where Y is the reference càdlàg process of Ẏ , according to Definition A.4. We then
onvene the following.

1. (Y 0,M0) := (0, 0);
2. ∀k ∈ N∗

: (Y k,Mk) := Φ(Y k−1,Mk−1),

eaning that for k ∈ N∗, (Y k,Mk) is the solution of the BSDE

Y k
= ξ +

∫ T

·

f̂

(
r, ·, Y k−1,

d⟨Mk−1, M̂⟩

dV̂
(r )

)
dV̂r − (Mk

T − Mk
·
). (A.8)

efinition A.14. The processes (Y k,Mk)k∈N will be called the Picard iterations associated to
BSDE(ξ, f̂ , V̂ , M̂).

We know that Φ is a contraction in L2(dV̂ ⊗dPs,x )×H2
0 for a certain norm, so that (Y k,Mk)

ends to (Y,M) in this topology. The proposition below also shows an a.e. corresponding
onvergence, adapting the techniques of Corollary 2.1 in [16].

roposition A.15. Y k
−→
k→∞

Y dV̂ ⊗ dP a.e. and for any i ∈ [[1; d]], d⟨Mk ,M̂ i
⟩

dV̂
−→
k→∞

d⟨M,M̂ i
⟩

dV̂

V̂ ⊗ dP a.e.

roof. For any i ∈ [[1; d]] and k ∈ N we set Z i,k
:=

d⟨Mk ,M̂ i
⟩

dV̂
and Z i

:=
d⟨M,M̂ i

⟩

dV̂
. By

roposition A.10, there exists λ > 0 such that for any k ∈ N∗

E
[∫ T

0 e−λV̂r |Y k+1
r − Y k

r |
2dV̂r +

∫ T
0 e−λV̂r d⟨Mk+1

− Mk
⟩r

]
≤

1
2E

[∫ T
0 e−λV̂r |Y k

r − Y k−1
r |

2dV̂r +
∫ T

0 e−λV̂r d⟨Mk
− Mk−1

⟩r

]
,

onsequently∑
k≥0

E
[∫ T

0 e−λV̂r |Y k+1
r − Y k

r |
2dV̂r

]
+ E

[∫ T
0 e−λV̂r d⟨Mk+1

− Mk
⟩r

]
≤

∑
k≥0

1
2k

(
E
[∫ T

0 e−λV̂r |Y 1
r |

2dV̂r

]
+ E

[∫ T
0 e−λV̂r d⟨M1

⟩r

])
< ∞.

(A.9)

or every fixed (i, k), we have Z i,k+1
r − Z i,k

r =
d⟨Mk+1

−Mk ,M̂ i
⟩

dV̂
. Therefore combining equation

A.9) and Lemma A.2, we get∑
k≥0

(
E

[∫ T

0
e−λV̂r |Y k+1

r − Y k
r |

2
dV̂r

]
+

d∑
i=1

E

[∫ T

0
e−λV̂r |Z i,k+1

r − Z i,k
r |

2
dV̂r

])
< ∞.

So by Fubini’s theorem we have

E

[∫ T

0
e−λV̂r

(∑
k≥0

(
|Y k+1

r − Y k
r |

2
+

d∑
i=1

|Z i,k+1
r − Z i,k

r |
2

))
dV̂r

]
< ∞.

Consequently the sum
∑
k≥0

(
|Y k+1

r (ω) − Y k
r (ω)|2 +

d∑
i=1

|Z i,k+1
r (ω) − Z i,k

r (ω)|2
)

is finite on a set

of full dV̂ ⊗ dP-measure. So on this set, the sequence (Y k
t (ω), (Z i,k

t (ω))i∈[[1;d]]) converges,
i ˆ
and the limit is necessarily equal to (Yt (ω), (Z t (ω))i∈[[1;d]]) dV ⊗ dP a.e. Indeed, as we have
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C

d
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a

P
P
i

u
r

N
i

P
[

R

mentioned in the lines before the statement of the present Proposition A.15, we already know
that Y k converges to Y in L2(dV̂ ⊗dP). Since by Lemma A.2, E

[∫ T
0 e−λV̂r |Z i,k

r − Z i
r |

2dV̂r

]
≤

E
[∫ T

0 e−λV̂r d⟨Mk
− M⟩r

]
, for every (i, k), where C is a positive constant which does not

epend on (i, k), the convergence of Mk to M in H2
0 also implies the convergence of Z i,k to

Z i in L2(dV̂ ⊗ dP). □

ppendix B. Proof of Theorem 5.18

emma B.1. Let f̃ ∈ L2
X . For every (s, x) ∈ [0, T ] × E, let (Ỹ s,x , M̃ s,x ) be the unique (by

heorem 3.3 and Remark 3.4) solution of

Ỹ s,x
·

= g(XT ) +

∫ T

·

1[s,T ](r ) f̃ (r, Xr ) dVr − (M̃ s,x
T − M̃ s,x

·
) (B.1)

n
(
Ω ,F s,x , (F s,x

t )t∈[0,T ],P
s,x
)
. Then there exist ũ ∈ D(a)

such that for any (s, x) ∈ [0, T ] × E{
∀t ∈ [s, T ] : Ỹ s,x

t = ũ(t, X t ) Ps,x a.s.

M̃ s,x
= M[ũ]s,x

nd in particular d⟨M̃s,x ,M[ψ]s,x
⟩

dV = Gψ (ũ)(·, X ·) dV ⊗ dPs,x a.e. on [s, T ].

roof. We set ũ : (s, x) ↦→ Es,x
[
g(XT ) +

∫ T
s f̃ (r, Xr ) dVr

]
which is Borel by

roposition A.10 and Lemma A.11 in [8]. Therefore by the Markov property (see e.g. (3.4)
n [7]), for every fixed t ∈ [s, T ] we have Ps,x - a.s.

ũ(t, X t ) = Et,X t
[
g(XT ) +

∫ T
t f̃ (r, Xr ) dVr

]
= Es,x

[
g(XT ) +

∫ T
t f̃ (r, Xr ) dVr

⏐⏐⏐Ft

]
= Es,x

[
Ỹ s,x

t + (M̃ s,x
T − M̃ s,x

t )|Ft

]
= Ỹ s,x

t .

By (B.1) we have dỸ s,x
t = − f̃ (t, X t )dVt + d M̃ s,x

t , so for every fixed t ∈ [s, T ], ũ(t, X t ) =

˜(s, x) −
∫ t

s f̃ (r, Xr )dVr − M̃ s,x
t Ps,x - a.s. Since M̃ s,x is square integrable and since previous

elation holds for any (s, x) and t , Definition 4.15 implies that ũ ∈ D(a), a(ũ) = − f̃ and
M̃ s,x

= M[ũ]s,x for every (s, x), hence the announced results. □

otation B.2. For a fixed (s, x) ∈ [0, T ]× E, we will denote by (Y k,s,x ,Mk,s,x )k∈N the Picard
terations associated to BSDE s,x ( f, g).

roposition B.3. For each k ∈ N, there exists uk ∈ D(a), such that for every (s, x) ∈

0, T ] × E{
∀t ∈ [s, T ] : Y k,s,x

t = uk(t, X t ) Ps,x a.s.

Mk,s,x
= M[uk]s,x

(B.2)

emark B.4. In particular, (B.2) implies that d⟨Mk,s,x ,M[ψ]s,x
⟩

dV = Gψ (uk)(·, X ·) dV ⊗ dPs,x

a.e. on [s, T ].
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P
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(

w
d
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N

v

c
t
t

(

Proof. We proceed by induction on k. It is clear that u0 = 0 satisfies the assertion for k = 0.
Now let us assume that the function uk−1 exists, for some integer k ≥ 1, satisfying (B.2)

nd in particular Remark B.4, for k replaced with k − 1.
We fix (s, x) ∈ [0, T ] × E . By Lemma 5.11, (Y k−1,s,x ,

d⟨Mk−1,s,x ,M[ψ]s,x
⟩

dV )
(uk−1,G

ψ (uk−1))(·, X ·) dV ⊗ Ps,x a.e. on [s, T ]. Therefore by (A.8), on [s, T ] Y k,s,x
=

g(XT ) +
∫ T
·

f
(
r, Xr , uk−1(r, Xr ),Gψ (uk−1)(r, Xr )

)
dVr − (Mk,s,x

T − Mk,s,x
·

).
Since Φs,x maps L2(dV ⊗ dPs,x ) × H2

0 into itself (see Notation A.7), obviously all the
Picard iterations belong to L2(dV ⊗dPs,x )×H2

0. In particular, by Lemma A.2 Y k−1,s,x and for
every i ∈ [[1; d]], d⟨Mk−1,s,x ,M[ψi ]s,x

⟩

dV belong to L2(dV ⊗ dPs,x ). So, by recurrence assumption
on uk−1, it follows that uk−1 and for any i ∈ [[1; d]], Gψi (uk−1) belong to L2

X .
Combining H mom(ζ, η) and the growth condition of f (item 3.) in H li p(ζ, η) (see

ypotheses 5.4 and 5.5), one shows that f (·, ·, 0, 0) also belongs to L2
X . Therefore thanks

o the Lipschitz conditions on f assumed in H li p(ζ, η), we have f (·, ·, uk−1,G
ψ (uk−1)) ∈ L2

X .
The existence of uk now comes from Lemma B.1 applied to f̃ := f (·, ·, uk−1,G

ψ (uk−1)),
hich establishes the induction step for a general k and allows to conclude the proof. □

roof of Theorem 5.18. We set ū := limsup
k∈N

uk , in the sense that for any (s, x) ∈ [0, T ] × E ,

¯(s, x) = limsup
k∈N

uk(s, x) and v := limsup
k∈N

vk . ū and v are Borel functions. Let us fix now

s, x) ∈ [0, T ] × E . We know by Propositions B.3, A.15 and Lemma 5.11 that⎧⎨⎩ uk(·, X ·) −→
k→∞

Y s,x dV ⊗ dPs,x a.e. on [s, T ]

Gψ (uk)(·, X ·) −→
k→∞

Z s,x dV ⊗ dPs,x a.e. on [s, T ],

here Z s,x
:=

d⟨Ms,x ,M[ψ]s,x
⟩

dV . Therefore, and on the subset of [s, T ] × E of full dV ⊗

Ps,x -measure on which these convergences hold, we have⎧⎨⎩
ū(t, X t (ω)) = limsup

k∈N
uk(t, X t (ω)) = lim

k∈N
uk(t, X t (ω)) = Y s,x

t (ω)

v(t, X t (ω)) = limsup
k∈N

Gψ (uk)(t, X t (ω)) = lim
k∈N

Gψ (uk)(t, X t (ω)) = Z s,x
t (ω).

(B.3)

Thanks to the dV ⊗ dPs,x equalities concerning v and ū stated in (B.3), under Ps,x we
ctually have

Y s,x
= g(XT ) +

∫ T

·

f (r, Xr , ū(r, Xr ), v(r, Xr )) dVr − (M s,x
T − M s,x

·
). (B.4)

ow (B.4) can be considered as a BSDE where the driver does not depend on y and z. Since
Y s,x and Z s,x belong to L2(dV ⊗dPs,x ) (see Lemma A.2), then by (B.3), so do ū(·, X ·)1[s,T ] and

(·, X ·)1[s,T ], meaning that ū and v belong to L2
X . Combining H mom(ζ, η) and the Lipschitz

ondition on f assumed in H li p(ζ, η), f (·, ·, ū, v) is also proved to belong to L2
X . We can

herefore apply Lemma B.1 to f̃ := f (·, ·, ū, v), and conclude the proof of the first part of the
heorem.

Concerning the last statement of Theorem 5.18, for any (s, x) ∈ [0, T ] × E , we have
Y s,x

s = u(s, Xs) = u(s, x)Ps,x a.s. so Y s,x
s is Ps,x a.s. equal to a constant and u is the mapping

s, x) ↦−→ Y s,x
s . □
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