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Abstract

We study the Fleming–Viot particle process formed by N interacting continuous-time asymmetric
andom walks on the cycle graph, with uniform killing. We show that this model has a remarkable
xact solvability, despite the fact that it is non-reversible with non-explicit invariant distribution. Our
ain results include quantitative propagation of chaos and exponential ergodicity with explicit constants,

s well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain
bound uniform in time for the convergence of the proportion of particles in each state when the number
f particles goes to infinity.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with a continuous-time Markov process describing the position of N
articles moving around on the cycle graph. This type of model is usually known as Fleming–
iot process, or Moran type process [10,20,21]. Consider a continuous-time Markov process
n E ∪ {∂}, where E is finite and ∂ is an absorbing state. Briefly, the Fleming–Viot process
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consists in N particles moving in E as independent copies of the original process, until one
of the particles gets absorbed. When this happens, the absorbed particle jumps instantaneously
and uniformly to one of the positions of the other particles. The Fleming–Viot processes were
originally and independently introduced by Del Moral, Guionnet, Miclo [16,17] and Burdzy,
Hołyst, March [5] to approximate the law of a Markov process conditioned to non-absorption,
and its Quasi-Stationary Distribution (QSD), which is the limit of this conditional law when
t → ∞. See e.g. the works of Méléard and Villemonais [28], Collet et al. [11] and van
Doorn et al. [18], excellent references for an introduction to the theory related to the QSD.
For recent and quite general results about the convergence of Markov processes conditioned to
non-absorption to a QSD, we refer the interested reader to [6,8] and [4].

The convergence of the empirical distributions induced by Fleming–Viot processes defined
on discrete state spaces when the size of the population and the time increase have been assured
under some assumptions. For example, Ferrari and Marić [21] and Asselah et al. [1] study the
convergence of the empirical distribution induced by the Fleming–Viot process to the unique
QSD in countable and finite discrete space settings, respectively. With the aim to study the
convergence of the particle process under the stationary distribution to the QSD, Lelièvre
et al. [24] prove a Central Limit Theorem for the finite state case. Additionally, Villemonais [31]
and Asselah et al. [2] study the convergence to the minimal QSD in a Galton–Watson type
model and in a birth and death process, respectively. Similarly, Asselah and Thai [3] and
Maric̀ [26] address the study of the N -particle system associated to a random walk on N

ith a drift towards the origin, which is an absorbing state. In these scenarios there exist
nfinitely many QSD for each model, so it is important to ensure the ergodicity of the N -
article system and to determine to which QSD it converges. Additionally, Champagnat and
illemonais [7] study the convergence of the Fleming–Viot process to the minimal QSD under
eneral conditions, providing also some specific examples.

In addition, some works have been devoted to the study of the speed of convergence when
he number of particles and time tend to infinity. In particular, Cloez and Thai [10] study the
N -particle system in a discrete state space setting. They study the convergence of the empirical

easure induced by the Fleming–Viot process when both t → ∞ (ergodicity) and N → ∞

propagation of chaos), providing explicit bounds for the speed of convergence. Following
he results in [10], Cloez and Thai [9] study two examples in details: the random walk on
he complete graph with uniform killing and the random walk on the two-site graph. The
imple geometries of the graphs of these models simplify the study of the N -particle dynamic
nd allows them to give explicit expressions for the stationary distributions of the N -particle
rocesses and explicit bounds for its convergence to the QSD.

Consider the quantity λ defined in [10] as

λ = inf
x,y

(
Qx,y + Q y,x +

∑
s ̸=x,y

Qx,s ∧ Q y,s

)
, (1)

here Q =
(
Qx,y

)
x,y is the infinitesimal generator matrix of the process until absorption.

hen λ = 0 some of the results of [10] do not hold and most of the bounds given become too
ough. Note that λ > 0 for the two examples studied in [9], but λ is equal to zero for those
odels where there exist two vertices such that the distance between them is greater than two.
he quantity λ is somehow related to the geometry of the graph associated to the Markov
rocess. Hence, it becomes interesting to find explicit bounds for the speed of convergence of

leming–Viot processes with more complex geometries.
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In this article we focus on the random walk on the cycle graph Z/KZ for K ≥ 3. Note that
for this graph it holds that λ = 0 when K ≥ 6. For simplicity, we assume that the N particles
jump to the absorbing state with the same rate, i.e., we consider a process with uniform killing
(cf. [28]). Even if in this case the distribution of the conditional process is trivial, the study
of the Fleming–Viot process becomes more complicated due to its non reversibility and the
geometry of the cycle graph. We focus on providing bounds for the speed of the convergence
of the empirical distribution induced by the particle system to the unique QSD when t and N
tend to infinity. This example can be seen as a further step towards the study of the speed of
convergence of Fleming–Viot process with more general geometry.

1.1. Model and notations

Consider a Markov process (Z t )t≥0 with state space Z/KZ ∪ {∂}, where K ≥ 3 and ∂ is
an absorbing state. Specifically, the infinitesimal generator of the process is given by

G f (x) = f (x + 1) − f (x) + θ [ f (x − 1) − f (x)] + p[ f (∂) − f (x)],

here x ∈ Z/KZ, G f (∂) = 0, θ, p ∈ R∗
+

and f is a real function defined on Z/KZ ∪ {∂}. In
ords, (Z t )t≥0 is an asymmetric random walk on the K -cycle graph, which jumps with rates 1

nd θ in the clockwise and the anti-clockwise directions, respectively. Also, with uniform rate
p the process jumps to the absorbing state ∂ , i.e., it is killed. Note that Z/KZ is an irreducible
class. The process generated by G is a particular case of the processes with uniform killing in
a finite state space considered by Méléard and Villemonais [28, § 2.3].

Let (X t )t≥0 be the analogous asymmetric random walk on the cycle graph Z/KZ without
killing. The generator of this process, denoted by H, is given by

H f (x) = f (x + 1) − f (x) + θ [ f (x − 1) − f (x)], for all x ∈ Z/KZ.

Note that, because of the uniform killing, the process (Z t )t≥0 could also be defined in the
following way

Z t =

{
X t if t < τp

∂ if t ≥ τp,

where τp is an exponential random variable with mean 1/p and independent of the random
walk (X t )t≥0. This means that the law of the process (Z t )t≥0 conditioned to non-absorption is
given by

Pµ[Z t = k | t < τp] = Pµ[X t = k],

for k ∈ Z/KZ and for every initial distribution µ on Z/KZ. As a consequence, the QSD
of (Z t )t≥0, denoted by νqs, is the stationary distribution of (X t )t≥0, which is the uniform

istribution on Z/KZ, as we will prove in Theorem 1.1.
Recall that the total variation norm of a signed measure µ defined on a discrete probability

space E is given by ∥µ∥TV =
1
2∥µ∥1 where ∥µ∥p = (

∑
x∈E |µ(x)|p)1/p is the p-norm,

see for instance [25, § 4.1]. If ( fN ) and (gN ) are two real sequences, fN ∼
N→∞

gN means
fN − gN = o (gN ).

Now, assume we have N particles with independent behavior driven by the generator G, until
one of them jumps to the absorbing state. When this happens, the particle instantaneously and
uniformly jumps to one of the positions of the other N − 1 particles. We denote by

(
η

(N ))

t t≥0
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the Markov process, which accounts the positions of the N particles in the K -cycle graph at
time t . Consider the state space EK ,N of this process, which is given by

EK ,N =

{
η : Z/KZ → N,

K−1∑
k=0

η(k) = N

}
.

At time t the system is in state ηt = (ηt (0), ηt (1), . . . , ηt (K − 1)) if there are ηt (k) particles
on site k, for k = 0, 1, . . . , K − 1. Note that the cardinality of EK ,N is equal to that of
he set of nonnegative solutions of the integer equation x1 + x2 + · · · + xK = N , which is
ard

(
EK ,N

)
=
(K+N−1

N

)
, see e.g. [12, Thm. D, § 1.7].

The generator of the N -particle process
(
η

(N )
t
)

t≥0, denoted by LK ,N , applied to a function
f on EK ,N reads

(LK ,N f )(η) =

∑
i, j∈Z/KZ

η(i)
(
1{ j=i+1} + θ1{ j=i−1} + p

η( j)
N − 1

)
[ f (Ti→ jη) − f (η)], (2)

here θ, p > 0 and for every η ∈ EK ,N satisfying η(i) > 0, the configuration Ti→ jη is defined
s Ti→ jη = η − ei + e j and ei is the i th canonical vector of RK . Under these dynamics,
ach of the N particles, no matter where it is, can jump to every site j ∈ Z/KZ such that
( j) > 0. Note that the process

(
η

(N )
t
)

t≥0 is irreducible. Consequently, it has a unique stationary
istribution denoted νN .

For every η ∈ EK ,N the empirical distribution m(η) associated to the configuration η is
efined by

m(η) =
1
N

K−1∑
k=0

η(k)δ{k},

where δ{k} is the Dirac distribution at k ∈ Z/KZ.
The (random) empirical distribution m

(
η

(N )
t
)

approximates the QSD of the process (Z t )t≥0

(cf. [1,21,30]) which due to Theorem 1.1 is the uniform distribution. We are interested in
studying how fast m

(
η

(N )
t
)

converges to the uniform distribution on Z/KZ when both t and N
tend to infinity. Consider η

(N )
∞ a random variable with distribution νN , the stationary distribution

of the process
(
η

(N )
t
)

t≥0. In this work we develop a similar analysis to that of the complete graph
dynamics in [9]. We focus on the convergences when both N and t tend to infinity, as shown
in the following diagram

m
(
η

(N )
t
)

−−−→
t→∞

m
(
η

(N )
∞

)
N
⏐⏐↓ ⏐⏐↓N

L(Z t | t < τp) −−−→
t→∞

νqs

where the limits are in distribution. Theorem 1.1 provides lower and upper exponential bounds
for the speed of convergence of L(Z t | t < τp) to νqs in the 2-norm, when t → ∞.
Likewise, Corollary 1.7 and Theorem 1.9 give bounds for the speed of convergence of m

(
η

(N )
t
)

to L(Z t | t < τp) and m
(
η

(N )
∞

)
to νqs, when N → ∞.

The quantitative long time behavior of the N -particle system in countable state spaces is
studied in [10]. Using a coupling technique and under certain conditions, an exponential bound
is provided for the convergence of L

(
η

(N )
t
)

to νN in the sense of a Wasserstein distance [10,

Thm. 1.1]. In particular, the parameter λ defined by (1) needs to be positive. As we said, this is
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not the case of the asymmetric random walk on the K -cycle graph with uniform killing, when
K ≥ 6. A study of this convergence can be carried out using the spectrum of the generator
LK ,N , which is obtained in the recent paper [13]. Indeed, using Example 3 in [13] we can
get the following asymptotic expression for the profile of the convergence in total variation
distance to stationarity:

max
η∈EK ,N

Lη

(
η

(N )
t

)
− νN


TV

= O
(
e−ρK t) ,

where ρK = 2(1 + θ ) sin2 (π/K ), Lη

(
η

(N )
t

)
stands for the law of the process generated by

LK ,N at time t and with initial distribution concentrated at η ∈ EK ,N , and for a real positive
function f we denote by O( f ) another real positive function such that

C1 f (t) ≤ O( f )(t) ≤ C2 f (t),

for two constants 0 < C1 ≤ C2 < ∞ and for all t ≥ T , for T > 0 large enough. It would be
interesting to get non asymptotic results, with explicit constants, for the speed of convergence
of the process generated by LK ,N to stationarity. In order to do that, one possible alternative is
to use the results in the recent paper of Villemonais [32], for a suitable distance, to get upper
bounds for the speed of convergence in the sense of a Wasserstein distance. In addition, the
recent work of Hermon and Salez [22] offers clues to an alternative method for solving this
problem: control the Dirichlet form of the Fleming–Viot process in terms of the Dirichlet form
of a single particle. Moreover, it remains as an open question the study of the existence of a
cutoff phenomenon when the number of particles N tends towards infinity. These are possible
directions for future research.

1.2. Main results

We first prove that the uniform distribution on Z/KZ is the QSD of (Z t )t≥0. We also
establish exponential bounds in the 2-distance and the total variation distance between the
distribution of this process at time t and its QSD.

Let us denote by Lν(Z t | t < τp) the distribution at time t of the asymmetric random walk on
the cycle graph, (Z t )t≥0, with initial distribution ν on Z/KZ and conditioned to non-absorption
up to time t . Let us denote by ϕν the characteristic function of a distribution ν on Z/KZ, which
satisfies

ϕν(t) = Eν

[
eit X ]

=

K−1∑
k=0

ν(k)eitk,

for all t ≥ 0 [19, § 3.3]. Note that

ϕνqs (t) =
1 − eit K

K (1 − eit )
,

or all t ≥ 0. Let us denote by D2(t) and DTV(t) the maximum distances to stationarity in the
-distance and in total variation at time t , respectively, which are defined as follows:

D2(t) = max
ν

Lν(Z t | t < τp) − νqs


2 ,

DTV(t) = max
Lν(Z t | t < τp) − νqs

 ,

ν TV
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where the maximum runs over all possible initial distributions ν on Z/KZ. Since Z/KZ is
finite, we know that the convergence of Lν(Z t | t < τp) to νqs is exponential [14]. The following
theorem gives exponential lower and upper bounds for this convergence.

Theorem 1.1 (Convergence in 2-distance and Total Variation Distance). The QSD of the
process (Z t )t≥0, νqs, is the uniform distribution on Z/KZ. Also, denoting

∆t (µ, ν) = Lν(Z t | t < τp) − Lµ(Z t | t < τp),

we have, for every initial distributions ν and µ on Z/KZ and every t ≥ 0,⏐⏐⏐⏐ϕν

(
2π

K

)
− ϕµ

(
2π

K

)⏐⏐⏐⏐ e−ρK t
≤ ∥∆t (µ, ν)∥2 ≤ ∥ν − µ∥2 e−ρK t , (3)

√
K

2

⏐⏐⏐⏐ϕν

(
2π

K

)
− ϕµ

(
2π

K

)⏐⏐⏐⏐ e−ρK t
≤ ∥∆t (µ, ν)∥TV ≤

√
K

2
∥ν − µ∥2 e−ρK t , (4)

here

ρK = 2(1 + θ ) sin2
( π

K

)
. (5)

oreover, the convergence of Lν(Z t | t < τp) to νqs in the 2-distance and the total variation
istance is exponential with rate −ρK . Indeed, for all t ≥ 0,

1
√

K
e−ρK t

≤ D2(t) ≤

√
K − 1

K
e−ρK t , (6)

1
2

e−ρK t
≤ DTV(t) ≤

1
2

√
K − 1 e−ρK t . (7)

In spite of its simplicity, we did not find this result in the literature. Therefore, for the sake
of completeness, we provide a proof of this theorem in Section 2.

Consider the function φ : EK ,N → EK ,N defined by

φ(η0, η1, . . . , ηK−1) = (η1, η2, . . . , ηK−1, η0) (8)

and its l-composed φ(l)
= φ ◦ φ ◦ · · · ◦ φ (l times) which acts on the cycle graph by rotating it

sites clockwise, for l ∈ {1, 2, . . . , K − 1}.
Even if the dynamics induced by G has some symmetry (in fact, it is symmetric when θ = 1),

e prove that
(
η

(N )
t
)

t≥0 is not reversible when K ≥ 4 or when K = 3 and θ ̸= 1. However,
e show that the stationary distribution of the N -particle process is rotation invariant. Using

his invariance, we calculate the mean of the proportion of particles in each state under the
tationary distribution.

heorem 1.2 (Non-reversibility and Rotation Invariance). The N-particle system with gener-
tor given by (2) has the following properties

(a) It is not reversible, except when K = 3 and θ = 1.
(b) Its stationary distribution, denoted by νN , is invariant by rotations, i.e.

νN = νN ◦ φ(l), l ∈ {1, 2, . . . , K − 1}.

(c) Under the stationary dynamics, the empirical distribution of the N-particle system is an
unbiased estimator of the QSD of (Z t )t≥0, i.e.

EνN

[
η(k)
N

]
=

1
K

, k ∈ Z/KZ.
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Theorem 1.2 is proved in Section 3. Using parts (b) and (c) of Theorem 1.2, the following
esult is immediate.

orollary 1.3 (Cyclic Symmetry). For every K ≥ 3 we have

CovνN

[
η(0)
N

,
η(k)
N

]
= CovνN

[
η(0)
N

,
η(K − k)

N

]
, k ∈ Z/KZ.

Let Tn and Un be the nth degree Chebyshev polynomials of first and second kind,
espectively, for n ≥ 1. We recall that polynomials

(
Tn
)

n≥0 and
(
Un
)

n≥0 satisfy both the
recurrence relation

pn+1(x) = 2x pn(x) − pn−1(x), for all n ≥ 1, (9)

ith initial conditions T0(x) = U0(x) = 1, T1(x) = x and U1(x) = 2x , see e.g. [27]. We also
xtend the definition of the Chebyshev polynomials of second kind for n = −1, by putting
−1(x) = 0.
The following theorem provides explicit expressions for CovνN [η(0)/N , η(k)/N ] in terms

f the Chebyshev polynomials of first and second kind, for k ∈ {0, 1, . . . , K − 1} and the
onstant βN , defined by

βN = 2
(

1 +
p

(N − 1)(1 + θ )

)
. (10)

heorem 1.4 (Explicit Expressions for the Covariances). We have

• If K = 2K2, K2 ≥ 2,

VarνN

[
η(0)
N

]
=

N − 1
K N

2
βN + 2

TK2 (βN /2)
UK2−1(βN /2)

+
1

K N
−

1
K 2 , (11)

CovνN

[
η(0)
N

,
η(k)
N

]
=

N − 1
K N

2
βN + 2

TK2−k(βN /2)
UK2−1(βN /2)

−
1

K 2 , (12)

for all 1 ≤ k ≤ K2 − 1.
• If K = 2K2 + 1, K2 ≥ 1,

VarνN

[
η(0)
N

]
=

N − 1
K N

UK2 (βN /2) − UK2−1(βN /2)
UK2 (βN /2) + UK2−1(βN /2)

+
1

K N
−

1
K 2 , (13)

CovνN

[
η(0)
N

,
η(k)
N

]
=

N − 1
K N

UK2−k(βN /2) − UK2−k−1(βN /2)
UK2 (βN /2) + UK2−1(βN /2)

−
1

K 2 , (14)

for all 1 ≤ k ≤ K2.

Theorem 1.4 is proved in Section 3.2. Using previous result it is possible to show that the
ovariance between the proportions of particles under the stationary distribution in two different
tates decreases as a function of the graph distance between the states.

orollary 1.5 (Geometry of the Cycle Graph and Covariances). The covariance between two
tates under the stationary measure, νN , is decreasing as a function of the graph distance
etween these states, i.e. for all k = 0, 1, . . . , ⌊ K

2 ⌋ − 1 we have

CovνN

[
η(0)
N

,
η(k)
N

]
≥ CovνN

[
η(0)
N

,
η(k + 1)

N

]
.
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With the aim of proving the convergence of the proportion of particles in each state to
/K , we study the behavior of VarνN [η(0)/N ] as a function of 1/N when N tends to infinity.
heorem 2 in [1] states that these variances vanish when N goes to infinity. We thus focus
n the speed of this convergence. For this purpose, we find the asymptotic development of
econd order for CovνN [η(0)/N , η(k)/N ] as a function of 1/N when N tends to infinity, for
∈ Z/KZ.

Theorem 1.6 (Asymptotic Development of Two-Particle Covariances). The asymptotic series
xpansion of order 2 when N → +∞ of CovνN

[
η(0)
N ,

η(k)
N

]
, for k ∈ Z/KZ, is given by

CovνN

[
η(0)
N

,
η(k)
N

]
=

1
K N

(
1{k=0} −

1
K

+
6k(k − K ) + K 2

− 1
6K

p
1 + θ

)
+

1
K 2 N 2

30k(K − k)[k(K − k) + 2] − (K 2
− 1)(K 2

+ 11)
180

×

(
p

1 + θ

)2

+ o
(

1
N 2

)
. (15)

The following result provides a bound for the speed of convergence of the empirical
istribution induced by the N -particle system to the QSD when N → ∞.

orollary 1.7 (Convergence to the QSD). We have

EνN

[m(η) − νqs


2

]
≤

√
K − 1

N

√
1 +

p(K + 1)
6(1 + θ )

+ o
(

1
√

N

)
. (16)

Theorem 1.6 and Corollary 1.7 are proved in Section 3.3. In particular, Corollary 1.7
implies the convergence at rate 1/

√
N under the stationary distribution of m(η) towards the

niform distributions, when N → ∞. Cloez and Thai [9, Cor. 2.10] provide the same rate of
onvergence for the Fleming–Viot process in the K -complete graph. Moreover, Champagnat

and Villemonais [7, Thm. 2.3] provide a general rate of convergence 1/Nα , with α =
γ

2(∥κ∥∞+γ ) .
In particular, as soon as ∥κ∥∞ ̸= 0, one has α < 1/2, which is actually not the optimal rate for
the asymmetric random walk, killed at a uniform rate, studied in this paper. To the best of our
knowledge, there are no general results on Fleming–Viot process in discrete spaces assuring
the rate of convergence 1/

√
N , under the stationary distribution, of the empirical distribution

o the QSD.
Finally, in Section 4 we study the convergence of the empirical distribution, m(ηt ), to the

uasi-stationary distribution of (Z t )t≥0 when t tends to infinity. Let us denote by m
(
η

(N )
t
)

the
mpirical mean measure induced by the N -particle process at time t , defined by m

(
η

(N )
t
)
(k) =

E
[
m
(
η

(N )
t
)
(k)
]

= E
[
η

(N )
t (k)/N

]
. Using (31) we can prove the following two theorems.

Theorem 1.8 (Mean Empirical Distribution). Consider η ∈ EK ,N and
(
η

(N )
t
)

t≥0 the N-particle
process with initial distribution concentrated at η. We have

m
(
η

(N )
t
)

= Lm(η)(Z t | t < τp).

Furthermore, for every probability measure ν on Z/KZ we obtain⏐⏐⏐⏐ϕm(η)

(
2π
)

− ϕν

(
2π
)⏐⏐⏐⏐ e−ρK t

≤

m
(
η

(N )
t
)
− Lν (Z t | t < τp)

 ≤ ∥m(η) − ν∥2 e−ρK t , (17)

K K 2
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where ρK are defined by (5), and ϕm(η) and ϕν denote the characteristic functions associated
to the distributions m(η) and ν, respectively.

Thus, the proportion of particles in each state is an unbiased estimator of the distribution of
the conditioned process for all t ≥ 0. Using [21, Thm. 1.2] we know that the variance of the
proportion of particles in each state at time t ≥ 0 vanishes when N goes to infinity, for every
≥ 0. The following result provides a bound for this convergence.

heorem 1.9 (Convergence to the Conditioned Process). We have the following uniform upper
bound for the variance of the proportion of particles in each state

max
η∈EK ,N
k∈Z/KZ

⏐⏐⏐⏐⏐Varη

[
η

(N )
t (k)

N

]
− VarνN

[
η(k)
N

]⏐⏐⏐⏐⏐ ≤ CK ,N
e−pN t

− e−ρK t

ρK − pN
+ e−pN t VarνN

[
η(0)
N

]
,

(18)

where ρK is given by (5) and

pN =
2p

N − 1
, (19)

CK ,N =
2
N

(
1 + θ +

p
N − 1

+
pN (K + 1)

√
K − 1

K
√

K (N − 1)

)
. (20)

urthermore,⏐⏐ϕm(η)(t) − ϕν(t)
⏐⏐e−ρK t

≤ Eη

[m
(
η

(N )
t

)
− Lν(Z t | t ≤ τp)


2

]
≤

√
K
N

(
DK

1 − e−ρK t

ρK
+ EK

)1/2

+ e−ρK t
∥m(η) − ν∥2 + o

(
1

√
N

)
,

(21)

for every η ∈ EK ,N and every initial distribution ν on Z/KZ, where ρK is given by (5), and

DK = 2

(
1 + θ +

p(K + 1)
√

K − 1

K
√

K

)
, EK =

K − 1
K 2 +

K 2
− 1

6K 2(1 + θ )
. (22)

Theorems 1.8 and 1.9 are proved in Section 4. Similar results are proved in [9] for the
leming–Viot process on the complete graph and for the two-point process.

emark 1.1 (Uniform Bound). Note that the bound given by (18) tends exponentially towards
ero when t → ∞. In particular, the right side of (18) is bounded in t and can be used to
btain a uniform bound for the variance of the proportion of particles in each state of order
/N . Namely, using (18) and the inequality (e−pN t

− e−ρK t )/(ρK − pN ) ≤ 1/ max(ρK , pN ),
e obtain

sup
t≥0

max
η∈EK ,N
k∈Z/KZ

Varη

[
η

(N )
t (k)

N

]
≤

CK ,N

max(ρK , pN )
+ 2 VarνN

[
η(0)
N

]
=

(
DK

ρK
+ 2EK

)
1
N

+ o
(

1
N

)
,

here ρ , p , C and D and E , are given by (5), (19), (20) and (22), respectively.
K N K ,N k k
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Similar bounds are obtained for the convergence to the conditional distribution for Fleming–
iot process in discrete state spaces, see e.g. [17, Thm. 1.1] and [30, Thm. 2.2]. However, these

esults are not uniform in t ≥ 0. Corollary 1.5 in [10] does provide a uniform bound under
certain conditions of order 1/N γ , with γ < 1/2, for the 1-distance between the empirical
law associated to the Fleming–Viot process at time t and the law of the conditioned process.
However, this result does not hold for the Fleming–Viot process on the K -cycle graph we study

ere, for K ≥ 6, since the parameter λ given by (1) is null.

The rest of this paper is organized as follows. Section 2 gives the proof of Theorem 1.1.
n Section 3 we study the covariances of the proportions of particles in each state under the
tationary distribution, and we thus prove Theorems 1.2, 1.4 and 1.6. Finally, Section 4 is
evoted to the proof of Theorems 1.8 and 1.9 related to the variance of the proportion of
articles in each site at a given time t ≥ 0.

2. The asymmetric random walk on the cycle graph

We first prove that the QSD of (Z t )t≥0, denoted by νqs, which is the stationary distribution
f (X t )t≥0, is the uniform distribution on Z/KZ. We also provide exponential bounds for the
peed of convergence in the 2-distance and the total variation distance of Lν(Z t | t < τp) to
qs.

Recall that a square matrix C is called circulant if it takes the form

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 . . . cn−2 cn−1

cn−1 c0
. . . cn−3 cn−2

...
...

. . .
. . .

...

c2 c3
. . . c0 c1

c1 c2 . . . cn−1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

t is evident that a circulant matrix is completely determined by its first row, therefore we will
enote a circulant matrix with the form given by (23) by C = circ(c0, c1, . . . , cn−1).

Let Q be the infinitesimal generator matrix of the process (X t )t≥0. Then, Q is circulant and
t satisfies

Q = circ(−(1 + θ ), 1, 0, . . . , 0, θ). (24)

et us also denote by i the complex root of −1. Since the matrix Q is circulant, its spectrum
s explicitly known, as follows in the next lemma.

emma 2.1 (Spectrum of Q). The matrix Q satisfies Q = FKΛF⋆
K , where

• FK is the K -dimensional Fourier matrix, i.e. the unitary matrix defined by

[FK ]r,c =
1

√
K

(ωK )−r c, (25)

for each r, c ∈ {0, 1, . . . , K − 1}, where ωK = ei 2π
K ,

• F⋆
K is the conjugate of FK (and also its inverse because FK is unitary and symmetric),

• Λ is the K × K diagonal matrix with [Λ]k,k = λk , for all 0 ≤ k ≤ K − 1, where

λk = −(1 + θ ) sin2
(

πk
K

)
+ i(1 − θ ) sin

(
2πk
K

)
,

for k = 0, 1, . . . , K − 1.
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Proof of Lemma 2.1. Let us define the polynomial pQ : s ↦→ −(1 + θ ) + s + θsK−1. Since
Q is a circulant matrix, we can use [15, Thm. 3.2.2] to diagonalize Q in the following way

Q = FK Diag(λ0, λ1, . . . , λK−1)F⋆
K ,

where FK is the Fourier matrix defined by (25) and

λk = pQ
(
ei 2kπ

K
)

= −(1 + θ ) + ei 2kπ
K + θ

(
ei 2kπ

K

)K−1

= −(1 + θ )
[

1 − cos
(

2πk
K

)]
+ i(1 − θ ) sin

(
2πk
K

)
= −2(1 + θ ) sin2

(
πk
K

)
+ i(1 − θ ) sin

(
2πk
K

)
,

for k = 0, 1, . . . , K − 1. □

Remark 2.1 (Eigenvalues of Q). Note that [ℜ(λk )+(1+θ )]2

(1+θ )2 +
[ℑ(λk )]2

(1−θ )2 = 1, for all θ ̸= 1, where

(λk) and ℑ(λk) are the real and the imaginary parts of λk , respectively, for k = 0, 1, . . . , K −1.
hus, all the eigenvalues λk are on the ellipse with center (0, −(1 + θ )) and equation

(x + 1 + θ )2

(1 + θ )2 +
y2

(1 − θ )2 = 1.

f course, for θ = 1, since the matrix Q is symmetric, all the eigenvalues are real.
Also, the second largest eigenvalue in modulus (SLEM) of Q, denoted by ρK , is given by

5) and it is reached for −ℜ(λ1) and −ℜ(λK−1). The minimum of ℜ(λk) is reached for ℜ(λK/2),
f K is even, and for ℜ(λ(K−1)/2) and ℜ(λ(K+1)/2), if K is odd.

.1. Proof of Theorem 1.1

roof of Theorem 1.1. We know that Q = FKΛF⋆
K . Therefore et Q

= FK etΛF⋆
K , and it follows

hat

et Q
=

K−1∑
k=0

eλk t FK Uk F⋆
K =

K−1∑
k=0

eλk tΩk,

here Uk, 0 ≤ k ≤ K − 1, is the K × K matrix with [Uk]k,k = 1 and 0 elsewhere, and
k is defined as Ωk = FK Uk F⋆

K . In fact, Ωk is the symmetric circulant matrix satisfying
[Ωk]r,c =

1
K ωk(r−c), for all 0 ≤ r, c ≤ K − 1 and for every k ∈ {0, 1, . . . , K − 1}. In particular

Ω0]r,c =
1
K for all 0 ≤ r, c ≤ K − 1, and Ωk Ωl = 0, for all k ̸= l. Then, for two probability

easures µ and ν on {0, 1, . . . , K − 1} we have

(µ − ν)Ω0 = 0 (26)

nd therefore

(µ − ν)et Q
=

K−1∑
k=1

eλk t (µ − ν)Ωk . (27)

Let us denote by ⟨·, ·⟩ the usual inner product in C and for a matrix A let us denote by AT

ts transpose. Note that for every K -dimensional vector x and k ̸= l we have

⟨xΩ , xΩ ⟩ = xΩ
[(
Ω T )⋆] (x⋆)T

= xΩ Ω (x⋆)T
= 0.
k l k l k l
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Thus, the set of vectors (xΩk)
K−1
k=1 are orthogonal in (C, ⟨·, ·⟩). Now, using (27) and Pythagoras’

theorem we have(µ − ν)et Q
2

2 =

K−1∑
k=1

eλk t (µ − ν)Ωk
2

2

=

K−1∑
k=1

e2ℜ(λk )t
∥(µ − ν)Ωk∥

2
2 .

Since ρK = − maxk=1,...,K−1 ℜ(λk) we obtain

(µ − ν)et Q
2

2 ≤ e−2ρK t
K−1∑
k=1

∥(µ − ν)Ωk∥
2
2

= e−2ρK t


K−1∑
k=1

(µ − ν)Ωk


2

2

= e−2ρK t


K−1∑
k=0

(µ − ν)Ωk


2

2

= e−2ρK t
∥µ − ν∥

2
2.

Note that the first equality holds due the Pythagoras’ theorem, the second one uses (26) and
the last one uses the fact that

K−1∑
k=0

(µ − ν)Ωk = µ − ν.

Note that the upper bound in (4) is proved using the Cauchy–Schwarz inequality, which implies

∥∆t (µ, ν)∥TV ≤

√
K

2
∥∆t (µ, ν)∥2 ,

here ∆t (µ, ν) is as defined in the statement of Theorem 1.1, and the inequality holds for
very pair of distributions ν and µ on Z/KZ, and for all t ≥ 0.

To prove the lower bounds in (3) and (4) we recall the r -norm of a function f on Z/KZ,
allows the following characterization:

∥ f ∥r = max
g

|⟨ f, g⟩|

∥g∥q
,

here q ∈ [1, ∞] is the conjugate of r ∈ [1, ∞], i.e. 1/r + 1/q = 1, and the maximum runs
ver all the functions on Z/KZ. Now, take g : k ∈ Z/KZ ↦→

1
√

K
(ωK )k as a test function,

here ωK = e
2π
K i. Note that viewed as a column vector, g is equal to the last column of the

ourier matrix FK . Then, g is a right eigenfunction of Q with associated eigenvalue −ρK .
oreover, ∥g∥2 = 1 and ∥g∥∞ = 1/

√
K . Therefore,

∥νet Q
− µet Q

∥2 ≥
|⟨νet Q

− µet Q, g⟩|

∥g∥2
=

⏐⏐⏐⏐ϕν

(
2π

K

)
− ϕµ

(
2π

K

)⏐⏐⏐⏐ e−ρK t ,

νet Q
− µet Q


TV ≥

|⟨νet Q
− µet Q, g⟩|

2∥g∥∞

=

√
K

2

⏐⏐⏐⏐ϕν

(
2π

K

)
− ϕµ

(
2π

K

)⏐⏐⏐⏐ e−ρK t ,
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To prove (6) first note that the 2-distance and the total variation distances satisfy

D2(t) = max
k∈Z/KZ

Lk(Z t | t < τp) − νqs


2 ,

DTV(t) = max
k∈Z/KZ

Lk(Z t | t < τp) − νqs


TV ,

which is a consequence of the convexity of these distances. Thus, the upper bounds in
expression (6) and (7) are consequence of the equality ∥δk −νqs∥2 =

√
K−1

K . The lower bounds

n (6) and (7) are obtained using that ϕνqs (2π/K ) = 0 and ϕδk (2π/K ) = |g(k)| = 1/
√

K , for
every k ∈ Z/KK. □

3. Covariances of the proportions of particles under the stationary distribution

The following lemma gives us informations about the invariance of the generator LK ,N ,
defined in (2), by the rotation function φ defined in (8).

Lemma 3.1 (Rotation Invariance of the Generator). The generator LK ,N of (η(N )
t )t≥0 satisfies

LK ,N1η = LK ,N1φ(η) ◦ φ, (28)

or every η ∈ EK ,N .

roof. Note that

(LK ,N1η)(η′) = η′(i)
(
1{ j=i+1} + θ1{ j=i−1} + p

η′( j)
N − 1

)
, (29)

if η = Ti→ jη
′, for some i, j ∈ Z/KZ, and it is null otherwise. Now, if η = Ti→ jη

′, then we
have φ(η) = T(i+1)→( j+1)φ(η′). Thus,(

LK ,N1φ(η)
)

(φ(η′)) = φ(η′)(i + 1)
(
1{ j=i+1} + θ1{ j=i−1} + p

φ(η′)( j + 1)
N − 1

)
. (30)

sing (29) and (30) we can see that (28) holds, since η′(i) = φ(η′)(i + 1) and η( j) =

φ(η)( j + 1). □

3.1. Proof of Theorem 1.2

We will now prove Theorem 1.2, which describes some properties of νN , the stationary
distribution of the N -particle process

(
η

(N )
t
)

t≥0.

Proof of Theorem 1.2.

(a) The process
(
η

(N )
t
)

t≥0 is not reversible, except when K = 3 and θ = 1.
For K = 3 and N ≥ 2, let us consider the three states in E3,N ,

η1 = [N , 0, 0], η2 = [N − 1, 1, 0], η3 = [N − 1, 0, 1].

It is straightforward to verify that

(LK ,N1η2 )(η1) = N , (LK ,N1η3 )(η1) = Nθ, (LK ,N1η1 )(η2) = p + θ,
(LK ,N1η3 )(η2) = 1, (LK ,N1η1 )(η3) = p + 1, (LK ,N1η2 )(η3) = θ.
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Moreover,

(LK ,N1η1 )(η3) · (LK ,N1η2 )(η1) · (LK ,N1η3 )(η2) = (p + 1)N ,

(LK ,N1η3 )(η1) · (LK ,N1η2 )(η3) · (LK ,N1η1 )(η2) = Nθ2(p + θ ),

the Kolmogorov cycle reversibility criterion, see [23, Thm. 1.8], is not satisfied unless
θ = 1. Indeed, note that a necessary condition to have reversibility is that the polynomial

α(θ ) = θ3
+ p(N − 1)θ2

− p(N − 1) − 1 = (θ − 1)[θ2
+ (θ + 1)(p + 1)]

is equal to zero. Now, since θ2
+ (θ + 1)(p + 1) > 0 for all θ ≥ 0, the polynomial α(θ )

only has one positive root, which is θ = 1.
For K ≥ 4, N ≥ 2 and p > 0, let us consider the two states in EK ,N : η1 = [N , 0, . . . , 0]
and η2 = [N − 1, 0, 1, . . . , 0]. Because (LK ,N1η2 )(η1) = 0 and (LK ,N1η1 )(η2) =

p ̸= 0, the detailed balanced property for a reversible process, see [23, Thm. 1.3],
νN (η1)(LK ,N1η2 )(η1) = νN (η2)(LK ,N1η1 )(η2), is not satisfied.
Therefore, (a) is proved except in the special case K = 3, N ≥ 2 and θ = 1. Note that in
this case the model is a complete graph model, which was proved to be reversible in [9,
Thm. 2.4].

(b) The stationary distribution νN is invariant by rotation.
Since νN is the unique stationary distribution of

(
η

(N )
t
)

t≥0, we know that νN (LK ,N f ) = 0
for every function f on EK ,N . Thus, in order to prove that νN is invariant by rotation, it
is sufficient to prove that νN ◦ φ also satisfies (νN ◦ φ)(LK ,N f ) = 0 for every function
f on EK ,N . Since EK ,N is finite, it is enough to consider the indicator functions 1η, for
every η ∈ EK ,N . Using Lemma 3.1, we have

(νN ◦ φ)(LK ,N1η) = νN
(
LK ,N1η ◦ φ−1)

= νN
(
LK ,N1φ(η)

)
= 0,

for every η ∈ EK ,N , where the second equality holds due to (28) and the third is due to
the fact that νN is stationary for LK ,N . Consequently, by the uniqueness of the stationary
distribution, we have νN = νN ◦ φ. The result trivially holds for any rotation φ(l), l ≥ 1.

(c) Mean of the proportion of particles in each state.
Using part (b) we have EνN [η(0)] = EνN [φ(k)(η)(0)] = EνN [η(k)], for all k =

0, 1, . . . , K − 1. Also, we know that η(0) + η(1) + · · · + η(K − 1) = N . Thus,
EνN [η(k)] =

N
K , for all k = 0, 1, . . . , K − 1. □

Let us define the functions fk and fk,l on EK ,N as fk : η ↦→ η(k) and fk,l : η ↦→ η(k)η(l),
or all k, l ∈ {0, 1, . . . , K − 1}. The following lemma provides explicit expressions for the
valuation of the generator of the N -particle process on these functions.

emma 3.2 (Dynamics of the N-particle Process). We have that

LK ,N fk = fk−1 − (1 + θ ) fk + θ fk+1, (31)

LK ,N fk,k = 2
[

fk−1,k −

(
1 + θ +

p
N − 1

)
fk,k + θ fk,k+1

]

+ fk−1 +

(
1 + θ +

2pN
N − 1

)
fk + θ fk+1, (32)

LK ,N fk,k+1 = −2
(

1 + θ +
p

)
fk,k+1 + fk−1,k+1 + θ fk+1,k+1 + fk,k + θ fk,k+2
N − 1

70



J. Corujo Stochastic Processes and their Applications 136 (2021) 57–91

f

(
i
t

f
u

T
s

s

a

f

S
T

D

− fk − θ fk+1, (33)

LK ,N fk,l = −2
(

1 + θ +
p

N − 1

)
fk,l + fk−1,l + θ fk+1,l + fk,l−1 + θ fk,l+1, (34)

or all k, l ∈ Z/KZ such that |k − l| > 2.

The proof of Lemma 3.2 is mostly technical and it is deferred to Appendix. The expression
31) given by this lemma is used to study the behavior of the mean of the proportion of particles
n each state. Also, (32)–(34) are used to study the covariances of the number of particles when
and N tend to infinity.
Let us denote

sk = EνN

[
fl,l+k(η)

N 2

]
= EνN

[
f0,k(η)

N 2

]
= EνN

[
η(0)
N

η(k)
N

]
, (35)

or all k, l ∈ Z/KZ. Note that the second equality comes from part (b) of Theorem 1.2. Let
s define the constant

γN = −2
(

1 +
N p

(N − 1)(1 + θ )

)
. (36)

he following two lemmas will be useful for obtaining explicit expressions for the quantities
k , for k = 0, 1, . . . , K − 1.

Lemma 3.3. Then, for K ≥ 3, the values sk , for 0 ≤ k ≤ K − 2, satisfy the following linear
ystem:

−sK−1 + βN s0 − s1 = −
γN

K N
, (37)

−s0 + βN s1 − s2 = −
1

K N
, (38)

nd when K ≥ 4:

−sl−1 + βN sl − sl+1 = 0, (39)

or 2 ≤ l ≤ K − 2, where βN and γN are defined by (10) and (36), respectively.

Proof of Lemma 3.3. Using (32) we have

EνN

[
(LK ,N fk,k)(η)

]
= 2

[
EνN

[
fk−1,k(η)

]
−

(
1 + θ +

p
N − 1

)
EνN

[
fk,k(η)

]
+θEνN

[
fk,k+1(η)

]]
+

EνN

[
fk−1(η)

]
+

(
1 + θ +

2pN
N − 1

)
EνN

[
fk(η)

]
+ θEνN

[
fk+1(η)

]
.

ince νN is the stationary distribution, we know that EνN

[
(LK ,N f )(η)

]
= 0, for all f on EK ,N .

hus, using parts (a) and (b) of Theorem 1.2 and dividing by N 2, we have the equality

2(1 + θ )s1 − 2
(

1 + θ +
p

N − 1

)
s0 = −

2
K N

(
1 + θ +

pN
N − 1

)
.

ividing by (1 + θ ), this last equality is equivalent to

βN s0 − 2s1 = −
γN

. (40)

K N
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Note that s1 = sK−1 due to Corollary 1.3. Using this fact, we deduce that (40) is equivalent to
(37).

Furthermore, using (33) we get

EνN

[
(LK ,N fk,k+1)(η)

]
= −2

(
1 + θ +

p
N − 1

)
EνN

[
fk,k+1(η)

]
+ EνN

[
fk−1,k+1(η)

]
+ θ EνN

[
fk+1,k+1(η)

]
+ EνN

[
fk,k(η)

]
+ θ EνN

[
fk,k+2(η)

]
−EνN

[
fk(η)

]
− θ EνN

[
fk+1(η)

]
.

n a similar way to the previous case we obtain the equation −s0 + βN s1 − s2 = −1/K N ,

hich is equivalent to (38).
Similarly, using (34), the equality (39) is proved for all 2 ≤ l ≤ K − 2. □

Note that using Corollary 1.3 and formula (38) we can obtain the following relation

− sK−2 + βN sK−1 − s0 = −
1

K N
. (41)

Let us define the K × K circulant matrix AK and the K -vector bK by

AK = circ(βN , −1, 0, . . . , . . . , 0, −1),

bK = (γN , 1, 0, 0, . . . , 0, 1)T ,

or K ≥ 3, where βN and γN are defined by (10) and (36), respectively.
Using Eqs. (37)–(39) and (41), the quantities sk, 0 ≤ k ≤ K −1, defined in (35) are proved

o verify the linear system of equations

AK sK = −
1

K N
bK , (42)

where sK = (s0, s1, . . . , sK−1)T and βN and γN are defined by (10).
Note that the vector bK is almost symmetric, in the sense that bk = bK−k, 1 ≤ k ≤ K − 1,

here bk, 0 ≤ k ≤ K − 1, are the K components of bK . Moreover, a vector b is almost
symmetric if and only if the equality Jb = b holds, where

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
0 0 0 . . . 0 1

0 0 0 . .
.

1 0
...

... . .
.

. .
. ...

...

0 0 1 . . . 0 0
0 1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In addition, any symmetric circulant matrix of size n can be expressed as follows

A = a0 I + a1Π + a2Π
2
+ · · · + an−1Π

n−1,

where (a0, a1, . . . , an−1) is an almost symmetric vector and Π = circ(0, 1, 0, . . . , 0).
The following result gives us information about the solution of a symmetric circulant system

when the vector of constant terms is almost symmetric.

Proposition 3.4 (Circulant Matrices). Let A be a n-dimensional invertible circulant symmetric
matrix and let b be an almost symmetric vector of dimension n, then x = A−1b, the solution
of the linear system Ax = b, is an almost symmetric vector.
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Proof. Since A is a invertible matrix, we know that x is the unique vector of dimension n
satisfying Ax = b and this vector x is almost symmetric if and only if x = Jx. So, it is
sufficient to prove that Jx is also a solution of the linear system, i.e. A(Jx) = b. Since b is
almost symmetric, the equation A(Jx) = b becomes equivalent to

J A(Jx) = b. (43)

It is sufficient to prove that J AJ = A. Note that the matrix J is an involutory matrix, i.e.
J−1

= J , and

J AJ = J
(
a0 I + a1Π + a2Π

2
+ · · · + an−1Π

n−1)J

= a0 I + a1 JΠ J + a2 JΠ 2 J + · · · + an−1 JΠ n−1 J.

The matrix Π is orthogonal, satisfying Π −1
= Π T . Moreover,

JΠ J = J (Π J ) = J

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1
0 0 . . . 0 1 0
0 0 . . . 1 0 0
...

... . .
.

. .
. ...

...

0 1 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Π T ,

hich implies JΠ n J = JΠ J 2Π n−1 J = Π T JΠ n−1 J = · · · =
(
Π T

)n
. Thus, we get

J AJ = a0 I + a1Π
T

+ a2
(
Π T )2

+ · · · + an−1
(
Π T )n−1

=
(
a0 I + a1Π + a2(Π )2

+ · · · + an−1(Π )n−1)T

= AT
= A.

Thus, (43) holds and hence Jx is solution of the equation Ax = b. By uniqueness of the
solution we get x = Jx, proving that x is almost symmetric. □

Because the K × K matrix AK in (42) is a symmetric circulant matrix, it is possible to
obtain explicit formulas for all its eigenvalues and eigenvectors using [15, Thm. 3.2.2]. Since
all its eigenvalues are non-null, we conclude that the matrix AK is invertible. Thus, using
Proposition 3.4, the linear system (42) has as its unique solution the vector sK , which is
almost symmetric. In addition to its almost symmetry, the vector bK satisfies b1 = bK−1,
bk = 0, 2 ≤ k ≤ K − 2. This simple structure of bK allows us to deduce explicit expressions
for sk, 0 ≤ k ≤ K − 1, given in Theorem 1.4, which is proved below.

3.2. Proof of Theorem 1.4

Consider the four families of orthogonal polynomials Neven,n(x), Deven,n(x), Nodd,n(x),
Dodd,n(x), n ≥ 0, defined by

Neven,0(x) = 2, Deven,0(x) = 0, Nodd,0(x) = 1, Dodd,0(x) = 1
Neven,1(x) = x, Deven,1(x) = x + 2, Nodd,1(x) = x − 1, Dodd,1(x) = x + 1,

satisfying all of them the recurrence relation

pn+1(x) = x pn(x) − pn−1(x), (44)

for all n ≥ 1.
The next proposition will prove useful in the sequel.
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Lemma 3.5. The following relations hold, for all n ≥ 0:

2Neven, n(x) − x Neven, n+1(x) + (x − 2)Deven, n+1(x) = 0, (45)
2Nodd, n(x) − x Nodd, n+1(x) + (x − 2)Dodd, n+1(x) = 0. (46)

urthermore, we have the following identities involving the Chebyshev polynomials of first and
econd kind, for all n ≥ 0:

Neven, n(x) = 2 Tn(x/2), (47)
Deven, n(x) = (x + 2) Un−1(x/2), (48)
Nodd, n(x) = Un(x/2) − Un−1(x/2), (49)
Dodd, n(x) = Un(x/2) + Un−1(x/2). (50)

roof. Setting Pn(x) = 2Neven,n(x) − x Neven,n+1(x) + (x − 2)Deven,n+1(x), for all n ≥ 0, it
ollows from the definitions of Neven,n(x) and Deven,n(x) that P0(x) = 0, P1(x) = 0 and Pn(x)
atisfies the recurrence relation (44). Therefore Pn(x) = 0 for every n ≥ 0 and (45) is proved.
he proof of (46) is similar.

Now, note that the sequence of polynomials (2 Tn(x/2))n≥0 satisfy the recurrence relation
9). Furthermore, 2 T0(x/2) = 2 = Neven, 0(x) and 2 T1(x/2) = x = Neven, 1(x). Consequently,
dentity (47) is proved. Analogously, identities (48)–(50) are proved. □

We now prove Lemma 3.6, which provides explicit expressions for sk , k ∈ {0, 1, . . . , K −1},
n terms of the polynomials Neven,n(x), Deven,n(x), Nodd,n(x) and Dodd,n(x).

emma 3.6 (Explicit Formulas for sk). The values of sk , 0 ≤ k ≤ K − 1, are given by

(a) If K = 2K2, K2 ≥ 2,

s0 =
N − 1
K N

Neven,K2 (βN )
Deven,K2 (βN )

+
1

K N
, (51)

sk =
N − 1
K N

Neven,K2−k(βN )
Deven,K2 (βN )

, 1 ≤ k ≤ K2, (52)

sK−k = sk, 1 ≤ k ≤ K2 − 1,

(b) If K = 2K2 + 1, K2 ≥ 1,

s0 =
N − 1
K N

Nodd,K2 (βN )
Dodd,K2 (βN )

+
1

K N
,

sk =
N − 1
K N

Nodd,K2−k(βN )
Dodd,K2 (βN )

, 1 ≤ k ≤ K2,

sK−k = sk, 1 ≤ k ≤ K2,

here βN is defined by (10).

roof. We separate the proof into two cases: when K is even and when K is odd.
(a) When K is even, say K = 2K2, Eq. (42) is equivalent to the following linear system

or sk, 0 ≤ k ≤ K2,

βN s0 − 2s1 = −
1

K N
γN , (53)

−s0 + βN s1 − s2 = −
1

, (54)

K N
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−sk−1 + βN sk − sk+1 = 0, (55)

or 2 ≤ k ≤ K2 − 1 and

βN sK2 − 2sK2−1 = 0. (56)

Note that (56) follows from the equality sK2−1 = sK2+1.
Consider A ∈ R such that sK2 = 2A = Neven,0(βN )A. Eq. (56) implies

sK2−1 = AβN = ANeven,1(βN ).

q. (55) may be written as

sk−1 = βN sk − sk+1,

or 2 ≤ k ≤ K2 − 1. This proves that sk , for k decreasing from K2 to 1, may be written

sk = ANeven,K2−k(βN ).

From Eq. (54), we get

s0 = βN s1 − s2 +
1

K N

= A
[
βN Neven,K2−1(βN ) − Neven,K2−2(βN )

]
+

1
K N

= ANeven,K2 (βN ) +
1

K N
. (57)

Plugging (57) into Eq. (53), we get

A
[
βN Neven,K2 (βN ) − 2Neven,K2−1(βN )

]
= −

1
K N

(βN + γN )

=
1

K N
2p

1 + θ
. (58)

sing Eq. (45) we get

A[βN Neven,K2 (βN ) − 2Neven,K2−1(βN )] = A(βN − 2)Deven,K2 (βN )

= A
2p

(N − 1)(1 + θ )
Deven,K2 (βN ). (59)

hus, using (58) and (59), we obtain A =
1

K N
N−1

Deven,K2 (βN ) , that achieves the proof of (52) for
n even value of K .

(b) The proof when K is odd is similar. Indeed, for K = 2K2 + 1, the linear system for sk ,
ith 0 ≤ k ≤ K2, is

βN s0 − 2s1 = −
1

K N
γN , (60)

−s0 + βN s1 − s2 = −
1

K N
, (61)

−sk−1 + βN sk − sk+1 = 0, (62)

or 2 ≤ k ≤ K2 − 1 and

−sK2 + βN sK2 − sK2−1 = 0. (63)

Eq. (63) may be written as

(β − 1)s = s ,
N K2 K2−1

75



J. Corujo Stochastic Processes and their Applications 136 (2021) 57–91

F

F

s

s

w
a

a

f

and so

sK2 = B = B Nodd,0(βN ), sK2−1 = B(βN − 1) = B Nodd,1(βN ).

rom Eqs. (46) and (62), it follows that

sk = B Nodd,K2−k(βN ), 1 ≤ k ≤ K2.

Then, from Eq. (61), we get

s0 = βN s1 − s2 +
1

K N

= B
[
βN Nodd,K2−1(βN ) − Nodd,K2−2(βN )

]
+

1
N K

= B Nodd,K2 (βN ) +
1

K N
.

rom (60), it follows, using (46), that B =
N−1

K N Dodd,K2 (βN ) . The proof of Lemma 3.6 is therefore
complete. □

We are now able to prove Theorem 1.4, which provides explicit expressions for the
covariances of the proportions of particles in two states under the stationary distribution, in
terms of the orthogonal Chebyshev polynomials of first and second kind.

Proof of Theorem 1.4. Using expressions (47)–(50), and Lemma 3.6 we obtain explicit
expressions for sk in terms of the Chebyshev polynomials of first and second kind, for
0 ≤ k ≤ K − 1. Since CovνN [η(0)/N , η(k)/N ] = sk − 1/K 2, for all 0 ≤ k ≤ K − 1, we
deduce that (11)–(14) hold. □

Now, using Theorem 1.4 we are able to study the monotony of the covariance of the
proportions of particles in two sites as a function of the graph distances between these two
sites.

Proof of Corollary 1.5. Note that CovνN

[
η(0)
N ,

η(k)
N

]
≥ CovνN

[
η(0)
N ,

η(k+1)
N

]
holds if and

only if sk ≥ sk+1, for all k = 0, 1, . . . , ⌊ K
2 ⌋. So, for K even, using (11) and (12), it is

ufficient to prove that Tk+1(βN /2) ≥ Tk(βN /2). Let us prove it by induction. We know that
T1(βN /2) = βN /2 ≥ 1 = T0(βN /2). Assume that Tk(βN /2) ≥ Tk−1(βN /2). Since

(
Tn(x)

)
n≥0

atisfies the recurrence relation (9) we have

Tk+1(βN /2)−Tk(βN /2) = (βN −1)Tk(βN /2)−Tk−1(βN /2) ≥ Tk(βN /2)−Tk−1(βN /2) ≥ 0,

here the first inequality is due to the inequality βN ≥ 2 and the second one because, by
ssumption, Tk(βN /2) ≥ Tk−1(βN /2). Then, Tk+1(βN /2) ≥ Tk(βN /2), for all k ≥ 0.

Analogously, for K odd the inequality CovνN

[
η(0)
N ,

η(k)
N

]
≥ CovνN

[
η(0)
N ,

η(k+1)
N

]
holds for

ll k = 0, 1, . . . , ⌊ K
2 ⌋ if

Uk+1(βN /2) − Uk(βN /2) ≥ Uk(βN /2) − Uk−1(βN /2), (64)

or all k ≥ 1. For k = 1 we have that (64) is equivalent to β2
− 2β ≥ 0, which is trivially
N N
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true since βN ≥ 2. Assume that (64) holds and let us prove the inequality for k + 1. Indeed,
sing that

(
Un
)

n≥0 satisfies the recurrence relation (9), we have

Uk+2(βN /2)−Uk+1(βN /2) = (βN −1)Uk+1(βN /2)−Uk(βN /2) ≥ Uk+1(βN /2)−Uk(βN /2).

Thus, (64) holds for all k = 0, 1, . . . , K2. □

3.3. Proof of Theorem 1.6

Theorem 1.4 allows us to get a Taylor series expansion for sk , 0 ≤ k ≤ K − 1 as a function
of 1

N , as soon as we are able to obtain such a series expansion for βN , as a function of 1/N ,
s well as for the polynomials Nodd,n(x), Neven,n(x), Dodd,n(x), Deven,n(x), n ≥ 0 around x = 2,

using their definitions by induction given in (44).

Lemma 3.7. The polynomials Nodd,n(x), Neven,n(x), Dodd,n(x), Deven,n(x), for n ≥ 0, satisfy
he following Taylor series expansion of order 2 around x = 2:

Neven,n(x) = 2 + n2(x − 2) +
n4

− n2

12
(x − 2)2

+ o(x − 2)2, (65)

Deven,n(x) = 4n +
2n3

+ n
3

(x − 2) +
n5

− n
30

(x − 2)2
+ o(x − 2)2, (66)

Nodd,n(x) = 1 +
n2

+ n
2

(x − 2) +
n4

+ 2n3
− n2

− 2n
24

(x − 2)2
+ o(x − 2)2, (67)

Dodd,n(x) = 2n + 1 +
2n3

+ 3n2
+ n

6
(x − 2) +

2n5
+ 5n4

− 5n2
− 2n

120
(x − 2)2

+ o(x − 2)2. (68)

roof. Assume Neven,n(x) = a(n)
0 + a(n)

1 (x − 2) + a(n)
2 (x − 2)2

+ o(x − 2)2, for all n ≥ 0. Note
that the polynomials Neven,n(x) can also be defined as

Neven,0(x) = 2,

Neven,1(x) = (x − 2) + 2,

Neven,n(x) = (x − 2)Neven,n−1(x) + 2Neven,n−1(x) − Neven,n−2(x), n ≥ 2. (69)

hus, the coefficients
(
a(n)

0

)
n≥0 satisfy the recurrence relation a(0)

0 = a(1)
0 = 2 and a(n)

0 =

a(n−1)
0 − a(n−2)

0 , for every n ≥ 2, which yields a(n)
0 = 2, for all n ≥ 0.

Also, using (69), the coefficients
(
a(n)

1

)
n≥0 satisfy a(0)

1 = 0, a(1)
1 = 1 and

a(n)
1 = 2a(n−1)

1 − a(n−2)
1 + a(n−1)

0 = 2a(n−1)
1 − a(n−2)

1 + 2,

or all n ≥ 0. Solving this recurrence gives a(n)
= n2, for all n ≥ 2.
1
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Similarly, the coefficients
(
a(n)

2

)
n≥0 satisfy a(0)

2 = a(1)
2 = 0 and

a(n)
2 = 2a(n−1)

2 − a(n−2)
2 + a(n−1)

1 = 2a(n−1)
2 − a(n−2)

2 + (n − 1)2,

or all n ≥ 0. which yields a(n)
2 =

n4
−n2

12 , for all n ≥ 2, proving (65).
The proofs of (66)–(68) are similar. □

We now prove Theorem 1.6, which provides a second order Taylor series expansion of the
ariance of the proportion of particles in each state, as a function of 1/N , when N tends to
nfinity.

roof of Theorem 1.6. Suppose K is even, say K = 2K2. Using Lemma 3.6, we have

sk =
1
K

(
1 −

1
N

)
Neven,K2−k(βN )
Deven,K2 (βN )

,

or all k = 1, 2, . . . , K2. Note that βN , defined by (10), tends to 2 when N tends to infinity,
pecifically

βN − 2 =
2p

(N − 1)(1 + θ )
=

2p
1 + θ

(
1
N

+
1

N 2

)
+ o

(
1

N 2

)
.

sing (65) and (66), we have

Neven,K2−k(βN )
Deven,K2 (βN )

=
2 + (K2 − k)2(βN − 2) +

(K2−k)4
−(K2−k)2

12 (βN − 2)2
+ o

(
(βN − 2)2

)
4K2 +

2K 3
2 +K2
3 (βN − 2) +

K 5
2 −K2
30 (βN − 2)2 + o

(
(βN − 2)2

)
=

1
K

+

(
6k(k − K ) + K 2

− 1
)

12K
(βN − 2)

+
30k(K − k)[k(K − k) + 2] − (K 2

− 1)(K 2
+ 11)

720K
(βN − 2)2

+ o
(
(βN − 2)2) , (70)

here K = 2K2.
Finally,

sk =
1

K 2 +

(
−1 +

(6k(k − K ) + K 2
− 1)

6
p

1 + θ

)
1

K 2 N

+
30k(K − k)[k(K − k) + 2] − (K 2

− 1)
(
K 2

+ 11
)

180

(
p

1 + θ

)2 1
K 2 N 2

+ o
(

1
N 2

)
.

Using (51), we get the following expression for s0,

s0 =
1

K 2 +

(
K − 1 +

K 2
− 1
6

p
1 + θ

)
1

K 2 N
+

(
K 2

− 1
) (

K 2
+ 11

)
180

(
p

1 + θ

)2 1
K 2 N 2

+ o
(

1
N

)
.

Now, the expression (15) for CovνN [η(0)/N , η(k)/N ] with K even follows by noting that

ν

[
η(k)
]

=
1 , for all k = 0, 1, 2, . . . , K − 1.
N N K
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Considering K odd, specifically K = 2K2 + 1, and using (67) and (68), we have

Nodd,K2−k(βN )
Dodd,K2 (βN )

=
1
K

+

(
6k(k − K ) + K 2

− 1
)

12K
(βN − 2)

+
30k(K − k)[k(K − k) + 2] − (K 2

− 1)(K 2
+ 11)

720K
(βN − 2)2

+ o
(
(βN − 2)2) ,

hich is the same expression we get for
Neven,K2−k (βN )

Deven,K2 (βN ) in (70). So, the general result is
roved. □

roof of Corollary 1.7. Using Jensen’s inequality, we have

EνN

[m(η) − νqs


2

]
≤

(
EνN

m(η) − νqs
2

2

)1/2

=

(
K−1∑
k=0

VarνN

[
η(k)
N

])1/2

=
√

K
(

VarνN

[
η(0)
N

])1/2

. (71)

inally, (16) is proved using (71) and Theorem 1.6. □

. Covariances of the proportions of particles at a given time

.1. Proof of Theorem 1.8

roof of Theorem 1.8. Consider η ∈ EK ,N and the function fk : η ↦→ η(k), for k ∈

0, 1, . . . , K − 1}. Using the expression of LK ,N fk , for k = 0, 1, . . . , K − 1, given by (31),
nd the Kolmogorov equation, we get

d
d t

Eη

[
fk
(
η

(N )
t
)

N

]
= Eη

[
LK ,N fk

(
η

(N )
t
)

N

]

= Eη

[
fk−1

(
η

(N )
t
)

N

]
− (1 + θ )Eη

[
fk
(
η

(N )
t
)

N

]

+ θ Eη

[
fk+1

(
η

(N )
t
)

N

]
, (72)

or k = 0, 1, . . . , K − 1.
Let us define st (k) = Eη

[
fk
(
η

(N )
t
)
/N
]

= Eη

[
η

(N )
t (k)/N

]
= m

(
η

(N )
t
)
(k), for k =

0, 1, . . . , K − 1, and the vector st = (st (0), st (1), . . . , st (K − 1))T . Using (72), we get that
st satisfies the differential equation

d st

d t
= st Q,

where Q is the circulant infinitesimal rate matrix defined in (24), with initial condition s0 =

η/N . Note that the solution of this differential equation is given by

st =
η

et Q .

N
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Thus, m
(
η

(N )
t
)

is actually equal to the distribution of the asymmetric random walk on the cycle
raph Z/KZ with infinitesimal generator matrix Q and initial distribution m(η) at time t = 0,
hich is Lm(η)

(
Z t | t < τp

)
. So, the proof of formula (17) follows from (3) in Theorem 1.1. □

.2. Proof of Theorem 1.9

In order to study the convergence of the empirical distribution m
(
η

(N )
t
)

induced by the
N -particle system, we will analyze the behavior of the covariance functions in time. Let
η ∈ EK ,N be fixed and let us define the functions s(2)

t (k, r ) as s(2)
t (k, r ) = Eη

[
f (k, r )/N 2

]
=

η

[
η(k)η(r )/N 2

]
, for all k, r ∈ Z/KZ. Using (32)–(34), we have

d s(2)
t (k, k)

d t
= 2

[
s(2)

t (k, k − 1) −

(
1 + θ +

p
N − 1

)
s(2)

t (k, k) + θs(2)
t (k, k + 1)

]
+

1
N

[
st (k − 1) +

(
1 + θ + 2

p
N − 1

)
st (k) + θst (k + 1)

]
,

d s(2)
t (k, k + 1)

d t
= −2

(
1 + θ +

p
N − 1

)
s(2)

t (k, k + 1) + s(2)
t (k − 1, k + 1)

+ θs(2)
t (k + 1, k + 1)

+ s(2)
t (k, k) + θs(2)

t (k, k + 2) −
1
N

[st (k) + θst (k + 1)]

d s(2)
t (k, k + l)

d t
= −2

(
1 + θ +

p
N − 1

)
s(2)

t (k, k + l) + s(2)
t (k − 1, k + l)

+ θs(2)
t (k + 1, k + l)

+ s(2)
t (k, k + l − 1) + θs(2)

t (k, k + l + 1).

Consider the functions gt (k, r ) defined as

gt (k, r ) = Covη

[
ηt (k)

N
,

ηt (r )
N

]
= s(2)

t (k, r ) − st (k)st (r ),

for all k, r ∈ Z/KZ.
Then, we obtain the following system of differential equations

d gt (k, k)
d t

= 2
[

gt (k, k − 1) −

(
1 + θ +

p
N − 1

)
gt (k, k) + θgt (k, k + 1)

]
+

1
N

[
st (k − 1) +

(
1 + θ + 2

p
N − 1

)
st (k) + θst (k + 1)

]
−

2p
N − 1

st (k)2,

d gt (k, k + 1)
d t

= −2
(

1 + θ +
p

N − 1

)
gt (k, k + 1) + gt (k − 1, k + 1)

+θgt (k + 1, k + 1)

+ gt (k, k) + θgt (k, k + 2) −
1
N

[st (k) + θst (k + 1)]

−
2p

st (k)st (k + 1),

N − 1
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d gt (k, l)
d t

= −2
(

1 + θ +
p

N − 1

)
gt (k, l) + gt (k − 1, l) + θgt (k + 1, l)

+ gt (k, l − 1) + θgt (k, l + 1) −
2p

N − 1
st (k)st (l).

Then, the K 2-dimensional vector gt =
(
gt (k, r )

)
k,r satisfies the differential equation

d gt

d t
= gt Q(2)

p + wt , (73)

here Q(2)
p = Q(2)

−2 p
N−1 I , I is the K 2-dimensional identity matrix, the matrix Q(2)

∈ MR(K 2)
s defined as

Q(2)
(u,v),(k,r ) =

⎧⎨⎩ 1 if (k = u + 1 ∧ r = v) ∨ (k = u ∧ r = v + 1),
θ if (k = u − 1 ∧ r = v) ∨ (k = u ∧ r = v − 1),

−2(1 + θ ) if (k = u) ∧ (r = v).
(74)

nd wt = (wt (k, r ))k,r is the K 2-vector defined by

wt (k, r ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
N

[
st (k − 1) +

(
1 + θ + 2

p
N − 1

)
st (k) + θst (k + 1)

]
−

2p
N − 1

st (k)2 if r = k

−
1
N

[st (k ∧ r ) + θst (k ∨ r )] −
2p

N − 1
st (k)st (r ) if |k − r | = 1

−
2p

N − 1
st (k)st (r ) if |k − r | > 1,

for all k, r ∈ Z/KZ.
Note also that

g0(k, r ) = 0,

g∞(k, r ) = lim
t→∞

gt (k, r ) = CovνN

[
η(k)
N

,
η(r )
N

]
,

and

w∞(k, r ) = lim
t→∞

wt (k, r ) =

⎧⎪⎪⎨⎪⎪⎩
2

K N

(
1 + θ +

p
N−1

)
−

2p
K 2(N−1)

if k = r,

−
1

K N (1 + θ ) −
2p

K 2(N−1)
if |k − r | = 1,

−
2p

(N−1)
1

K 2 if |k − r | > 1,

or all k, r ∈ Z/KZ.
Let A = (ar,c) and B = (br,c) be two matrices of dimensions m ×n and w ×q, respectively.

Recall that the Kronecker product of A and B, denoted by A ⊗ B, is the mw × nq matrix
defined as

A ⊗ B =

⎛⎜⎝ a0,0 B a0,1 B . . . a0,n−1 B
...

...
. . .

...

am−1,0 B am−1,1 B . . . am−1,n−1 B

⎞⎟⎠ .

It is convenient to index the elements of A ⊗ B with two 2-dimensional index in the following
way

(A ⊗ B)(r1,r2),(c1,c2) = (A ⊗ B)r1m+r2,c1n+c2 = ar1,c1 br2,c2 ,

or all 0 ≤ r1 ≤ m − 1, 0 ≤ r2 ≤ w − 1, 0 ≤ c1 ≤ n − 1, 0 ≤ c2 ≤ q − 1. Now, consider that

m = n and w = q , i.e. A and B are square matrices of dimension n and q , respectively. The
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Kronecker sum of A and B, denoted by A ⊕ B, is defined as A ⊕ B = A ⊗ Iq + In ⊗ B, where
Iq and In are the identity matrices of dimension q and n, respectively. It is well known that
he exponential of matrices transforms Kronecker sums in Kronecker products as follows

eA⊕B
= eA

⊗ eB . (75)

See e.g. Chapter XIV of [29] and [15] for the proofs of these results and more details about
he Kronecker product and sum of matrices.

emma 4.1. The following properties hold:

1. Q(2)
= Q ⊕ Q,

2. et Q(2)
= et Q

⊗ et Q .

onsequently, the matrix Q(2) is the infinitesimal rate matrix of the independent coupling of
wo processes driven by the infinitesimal generator matrix Q.

roof of Lemma 4.1. Note that using (74) for all r1, r2, c1, c2 ∈ {0, 1, . . . , K − 1}, we have

Q(2)
(r1,r2),(c1,c2) = Qr1,c1 Ir2,c2 + Ir1,c1 Qr2,c2 = (Q ⊕ Q)(r1,r2),(c1,c2),

here I is the K -dimensional identity matrix. Then, property 1 holds. Also, using (75) we can
asily prove the property 2.

All the non-diagonal entries of matrix Q(2) are positive and the sum of each row is null,
hus Q(2) is an infinitesimal matrix. Furthermore,

et Q(2)

(r1,r2),(c1,c2) = et Q
r1,c1

et Q
r2,c2

,

hich means that Q(2) is the infinitesimal rate matrix of the independent coupling of two
rocesses driven by Q. □

Note also that, when t goes to infinity in (73), we get g∞ Q(2)
p + w∞ = 0. Since Q(2) is the

nfinitesimal matrix generator of a Markov process and Q(2)
p = Q(2)

− pN I , where pN =
2p

N−1 ,
ll the eigenvalues of Q(2)

p are strictly negative and thus, Q(2)
p is invertible. Then,

g∞ = −w∞

(
Q(2)

p

)−1
. (76)

We will now prove Theorem 1.9, which gives us the solution of the system of differential
equations (73) and studies the convergence of the proportion of particles at time t in each state

hen t and N tend to infinity.

Proof of Theorem 1.9. The solutions of the system of differential equations (73) is given by

gt =

(∫ t

0
wue−uQ(2)

p du
)

et Q(2)
p

=

(∫ t

0

(
wu − w∞

)
e−uQ(2)

p du + w∞

∫ t

0
e−uQ(2)

p du
)

et Q(2)
p

=

(∫ t

0

(
wu − w∞

)
e−uQ(2)

p du + w∞

(
Q(2)

p

)−1
(

I − e−t Q(2)
p
))

et Q(2)
p

=

∫ t(
wu − w∞

)
e(t−u)Q(2)

p du + g∞

(
I − et Q(2)

p
)

.

0
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Note that the last equality comes from (76). Therefore, we have

∥gt − g∞∥∞ ≤

∫ t

0

(
wu − w∞

)
e(t−u)Q(2)

p du


∞

+

g∞

(
et Q(2)

p
)

∞

≤

∫ t

0
∥wu − w∞∥∞

e(t−u)Q(2)
p


∞

du + ∥g∞∥∞

et Q(2)
p


∞

(77)

e getes Q(2)
p


∞

= e−pN s
es Q(2)


∞

= e−pN s, (78)

or all s ≥ 0, where pN =
2p

N−1 . Note that the second equality in (78) comes from the
fact that the rows of es Q(2)

has sum equal to one, for all s ≥ 0. Using Corollary 1.5, or the
Cauchy–Schwarz inequality, we get

∥g∞∥∞ = VarνN

[
η(0)
N

]
. (79)

sing the inequality (6) we get⏐⏐⏐⏐st (k) −
1
K

⏐⏐⏐⏐ ≤ ∥Lm(η)(Z t | t < τp) − νqs∥2 ≤

√
K − 1

K
e−ρK t ,

or every k ∈ Z/KZ and all t ≥ 0. Therefore,

|wu(k, k) − w∞(k, k)| ≤
2
N

(
1 + θ +

p
N − 1

)
e−ρK u

+
2p

N − 1

⏐⏐⏐⏐su(k)2
−

1
K 2

⏐⏐⏐⏐ .
ut ⏐⏐⏐⏐su(k)2

−
1

K 2

⏐⏐⏐⏐ =

(
su(k) +

1
K

) ⏐⏐⏐⏐su(k) −
1
K

⏐⏐⏐⏐ ≤
K + 1

K

√
K − 1

K
e−ρK u .

hus,

|wu(k, k) − w∞(k, k)| ≤
2
N

(
1 + θ +

p
N − 1

+
p

N − 1
N (K + 1)

√
K − 1

K
√

K

)
e−ρK u . (80)

Similarly we get,

|wu(k, k + 1) − w∞(k, k + 1)| ≤
2
N

(
1 + θ +

p
N − 1

N (K + 1)
√

K − 1

K
√

K

)
e−ρK u, (81)

|wu(k, l) − w∞(k, l)| ≤
2p

N − 1
(K + 1)

√
K − 1

K
√

K
e−ρK u, |k − l| ≥ 2. (82)

nequalities (80)–(82) imply that

∥wu − w∞∥∞ ≤ CK ,N e−ρK u, (83)

here CK ,N is defined by (20). Plugging (78), (79) and (83) into (77), we obtain

∥gt − g∞∥∞ ≤ CK ,N

∫ t

0
e−ρK ue−pN (t−u)du + e−pN t

∥g∞∥∞

= CK ,N e−pN t
∫ t

e−(ρK −pN )udu + e−pN t VarνN

[
η(0)

]

0 N
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w

I
(
c

w

w
J

D

r

A

P
e
t

= CK ,N
e−pN t

− e−ρK t

ρK − pN
+ e−pN t VarνN

[
η(0)
N

]
(84)

= CK ,N
1 − e−ρK t

ρK
+ VarνN

[
η(0)
N

]
+ o

(
1
N

)
=

1
N

{
DK

1 − e−ρK t

ρK
+ EK

}
+ o

(
1
N

)
,

here DK and EK are given by (22). Note that (18) is obtained from (84).
In order to prove (21), note that for every initial distribution µ in Z/KZ and any initial

configuration η ∈ EK ,N , we getm (ηt ) − Lµ(Z t | t ≤ τp)


2 ≤ Eη

[m (ηt ) − Lµ(Z t | t ≤ τp)


2

]
(85)

≤ Eη

[
∥m (ηt ) − m (ηt )∥2

]
+
m (ηt ) − Lµ(Z t | t ≤ τp)


2 . (86)

nequality (85) is obtained using the convexity of the 2-norm and Jensen’s inequality. Inequality
86) is proved using the triangular inequality. From Theorem 1.8 we know that for any initial
onfiguration η ∈ EK ,N , we obtain

e−ρK t
⏐⏐⏐⏐ϕm(η)

(
2π

K

)
− ϕµ

(
2π

K

)⏐⏐⏐⏐ ≤
m (ηt ) − Lµ(Z t | t ≤ τp)


2 ≤ e−ρK t

∥m(η) − µ∥2 ,

(87)

here ρK is given by (5). Also,

Eη

[
∥m (ηt ) − m (ηt )∥

2
2

]
=

K−1∑
k=0

Varη

[
ηt (k)

N

]
≤ K ∥gt∥∞

≤
2K
N

(
DK

1 − e−ρK t

ρK
+ EK

)
+ o

(
1
N

)
, (88)

here DK and EK are defined by (22). Finally, (21) is proved using (85), (86), (87), (88) and
ensen’s inequality. □
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Appendix. Proof of Lemma 3.2

In order to calculate LK ,N fk , note that

(LK ,N fk)(η) =

∑
i, j

η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

) [
fk
(
Ti→ jη

)
− fk

(
η
)]

.

But fk
(
Ti→ jη

)
= fk

(
η
)

if i ̸= k and j ̸= k. Thus,

(LK ,N fk)(η) = η(k)
∑
j ̸=k

(
1{ j=k+1} + θ1{ j=k−1} + η( j)

p
N − 1

) [
Tk→ jη(k) − η(k)

]
+

∑
i ̸=k

η(i)
(
1{k=i+1} + θ1{k=i−1} + η(k)

p
N − 1

)
[Ti→kη(k) − η(k)]

= −η(k)
[

1 + θ + p
N − η(k)

N − 1

]
+ η(k − 1) + θη(k + 1) + p η(k)

N − η(k)
N − 1

= η(k − 1) − (1 + θ )η(k) + θ η(k + 1),

or all η ∈ EK ,N . Thus, (31) is proved.
Now, for computing LK ,N fk,l for all 1 ≤ k, l ≤ K , we separate the proof in three cases:

= k, l = k + 1 and l > k + 1, for all 0 ≤ k ≤ K − 2.
Case l = k:
From (2) we have

(LK ,N fk,k)(η) =

∑
i, j

η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

) [
fk,k

(
Ti→ jη

)
− fk,k

(
η
)]

,

or all η ∈ EK ,N . Denote

Si, j (η) = η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

) [
Ti→ jη(k)2

− η(k)2] .
ote that if {i, j} ∩ {k} = ∅, then we have Si, j (η) = 0. So,

(LK ,N fk,k)(η) =

∑
j ̸=k

Sk, j (η) +

∑
i ̸=k

Si,k(η).

Note that∑
j ̸=k

Sk, j (η) =

∑
j ̸=k

η(k)
(
1{ j=k+1} + θ1{ j=k−1} + η( j)

p
N − 1

) [
Tk→ jη(k)2

− η(k)2]

= η(k)

⎛⎝1 + θ +
p

N − 1

∑
j ̸=k

η( j)

⎞⎠[(η(k) − 1)2
− η(k)2]

=

(
η(k) + θ η(k) + p η(k)

N − η(k)
N − 1

)
[−2η(k) + 1] , (A.1)

∑
i ̸=k

Si,k(η) =

∑
i ̸=k

η(i)
(
1{k=i+1} + θ1{k=i−1} + η(k)

p
N − 1

) [
Ti→kη(k)2

− η(k)2]

=

⎛⎝η(k − 1) + θ η(k + 1) + η(k)
p

N − 1

∑
η(i)

⎞⎠[(η(k) + 1)2
− η(k)2]
i ̸=k
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f
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=

(
η(k − 1) + θ η(k + 1) + p η(k)

N − η(k)
N − 1

)
[2η(k) + 1] . (A.2)

Summing (A.1) and (A.2), we obtain

(LK ,N fk,k)(η) =

∑
j ̸=k

Sk, j (η) +

∑
i ̸=k

Si,k(η)

= 2η(k) [η(k − 1) − η(k) + θ (η(k + 1) − η(k))]

+ (η(k) + η(k − 1)) + θ (η(k + 1) + η(k)) + 2p η(k)
N − η(k)

N − 1

= 2
[
η(k − 1)η(k) −

(
1 + θ +

p
N − 1

)
η(k)2

+ θη(k)η(k + 1)
]

+ η(k − 1) +

(
1 + θ +

2pN
N − 1

)
η(k) + θη(k + 1),

or all η ∈ EK ,N . Thus, (32) holds.
Case l = k + 1:
From (2), similarly to the previous case, we have

(LK ,N fk,k+1)(η) =

∑
i, j

η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

)
× [ fk,k+1

(
Ti→ jη

)
− fk,k+1(η)].

Denote

Ri, j (η) = η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

)
× [Ti→ jη(k) Ti→ jη(k + 1) − η(k)η(k + 1)].

f {i, j} ∩ {k, k + 1} = ∅, then Ri, j = 0. Thus,

(LK ,N fk,k+1)(η) =

∑
j ̸=k

Rk, j (η) +

∑
i ̸=k,k+1

Ri,k+1(η) +

∑
j ̸=k+1

Rk+1, j (η) +

∑
i ̸=k,k+1

Ri,k(η).

Note that∑
j ̸=k

Rk, j (η) = Rk,k+1(η) +

∑
j ̸=k,k+1

Rk, j (η)

= η(k)[(η(k) − 1)(η(k + 1) + 1) − η(k)η(k + 1)]
[

1 + p
η(k + 1)
N − 1

]
+

∑
j ̸=k,k+1

η(k)[(η(k) − 1)η(k + 1) − η(k)η(k + 1)]

×

(
1{ j=k+1} + θ1{ j=k−1} + η( j)

p
N − 1

)
= η(k)[η(k) − η(k + 1) − 1]

[
1 + p

η(k + 1)
N − 1

]

− η(k)η(k + 1)

⎛⎝θ +
p

N − 1

∑
η( j)

⎞⎠

j ̸=k,k+1
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T

= η(k)[η(k) − 1]
[

1 + p
η(k + 1)
N − 1

]
− η(k)η(k + 1)(1 + θ ) − p η(k)η(k + 1)

N − η(k)
N − 1

,∑
i ̸=k,k+1

Ri,k+1(η) =

∑
i ̸=k,k+1

η(i)[η(k)(η(k + 1) + 1) − η(k)η(k + 1)]

×

(
1{k+1=i+1} + θ1{k+1=i−1} + η(k + 1)

p
N − 1

)
= η(k)

(
θη(k + 2) + p η(k + 1)

∑
i ̸=k,k+1 η(i)

N − 1

)
= θη(k)η(k + 2) + p η(k)η(k + 1)

N − η(k) − η(k + 1)
N − 1

,∑
j ̸=k+1

Rk+1, j (η) = Rk+1,k(η) +

∑
j ̸=k,k+1

Rk+1, j (η)

= η(k + 1)[(η(k) + 1)(η(k + 1) − 1) − η(k)η(k + 1)]
[
θ + p

η(k)
N − 1

]
+

∑
j ̸=k,k+1

η(k + 1)[η(k)(η(k + 1) − 1) − η(k)η(k + 1)]

×

(
1{ j=k+2} + θ1{ j=k} + p

η( j)
N − 1

)
= η(k + 1)[η(k + 1) − η(k) − 1]

[
θ + p

η(k)
N − 1

]

− η(k)η(k + 1)

⎛⎝1 +
p

N − 1

∑
j ̸=k,k+1

η( j)

⎞⎠
= η(k + 1)[η(k + 1) − 1]

[
θ + p

η(k)
N − 1

]
− η(k)η(k + 1)(1 + θ )

− p η(k)η(k + 1)
N − η(k + 1)

N − 1
,∑

i ̸=k,k+1

Ri,k(η) =

∑
i ̸=k,k+1

η(i)[(η(k) + 1)η(k + 1) − η(k)η(k + 1)]

×

(
1{k=i+1} + θ1{k=i−1} + η(k)

p
N − 1

)
= η(k + 1)

(
η(k − 1) + p η(k)

N − η(k) − η(k + 1)
N − 1

)
= η(k − 1)η(k + 1) + p η(k)η(k + 1)

N − η(k) − η(k + 1)
N − 1

.

hen,

(LK ,N fk,k+1)(η) = −η(k)η(k + 1)
[

2(1 + θ ) + p
2N − η(k) − η(k + 1) − 2[N − η(k) − η(k + 1)]

N − 1

]
+ η(k)[η(k) − 1]

(
1 + p

η(k + 1)
)

+ η(k + 1)[η(k + 1) − 1]
(

θ + p
η(k)

)

N − 1 N − 1
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O

+ η(k − 1)η(k + 1) + θη(k)η(k + 2)

= −η(k)η(k + 1)
[

2(1 + θ ) + p
η(k) + η(k + 1)

N − 1

]
+ η(k)[η(k) − 1]

(
1 + p

η(k + 1)
N − 1

)
+ η(k + 1)[η(k + 1) − 1]

(
θ + p

η(k)
N − 1

)
+ η(k − 1)η(k + 1) + θη(k)η(k + 2)

= −2η(k)η(k + 1)(1 + θ ) + η(k)[η(k) − 1] + θη(k + 1)[η(k + 1) − 1]

− 2p
η(k)η(k + 1)

N − 1
+ η(k − 1)η(k + 1) + θη(k)η(k + 2)

= −2
(

1 + θ +
p

N − 1

)
η(k)η(k + 1) + η(k − 1)η(k + 1)

+ θη(k + 1)2
+ η(k)2

+ θη(k)η(k + 2) − η(k) − θη(k + 1),

for all η ∈ EK ,N , which is equivalent to (33).
Case l > k + 1:
In this case we have

(LK ,N fk,l)(η) =

∑
i, j∈F

η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

) [
fk,l
(
Ti→ jη

)
− fk,l

(
η
)]

.

Denote

Ti, j (η) = η(i)
(
1{ j=i+1} + θ1{ j=i−1} + η( j)

p
N − 1

)
[Ti→ jη(k) Ti→ jη(l) − η(k)η(l)].

bviously, if {i, j} ∩ {k, k + l} = ∅, then Ti, j (η) = 0. Thus

(LK ,N fk,l)(η) =

∑
j ̸=k

Tk, j (η) +

∑
i ̸=k,k+l

Ti,k+l(η) +

∑
j ̸=k+l

Tk+l, j (η) +

∑
i ̸=k,k+l

Ti,k(η).

Note that∑
j ̸=k

Tk, j (η) = Tk,k+l(η) +

∑
j ̸=k,k+l

Tk, j (η)

= η(k)[(η(k) − 1)(η(k + l) + 1) − η(k)η(k + l)]p
η(k + l)
N − 1

+

∑
j ̸=k,k+l

η(k)[(η(k) − 1)η(k + l) − η(k)η(k + l)]

×

(
1{ j=k+1} + θ1{ j=k−1} + p

η( j)
N − 1

)
= η(k)[η(k) − η(k + l) − 1]p

η(k + l)
N − 1

− η(k)η(k + l)

⎛⎝1 + θ +
p

N − 1

∑
j ̸=k,k+l

η( j)

⎞⎠
= η(k)η(k + l)

[
p

(η(k) − 1) − (1 + θ ) − p
N − η(k)

]
,

N − 1 N − 1
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∑
i ̸=k,k+l

Ti,k+l(η) =

∑
i ̸=k,k+l

η(i) [η(k)(η(k + l) + 1) − η(k)η(k + l)]

×

(
1{k+l=i+1}

1
K

+ 1{k+l=i−1}

θ

K
+ η(k + l)

p
N − 1

)
= η(k)

[
η(k + l − 1) + θη(k + l + 1) + p η(k + l)

×
N − η(k) − η(k + l)

N − 1

]
= η(k)η(k + l − 1) + θη(k)η(k + l + 1) + p η(k)η(k + l)

×
N − η(k) − η(k + l)

N − 1
,∑

j ̸=k+l

Tk+l, j (η) = Tk+l,k(η) +

∑
j ̸=k,k+l

Tk+l, j (η)

= η(k + l) [(η(k) + 1)(η(k + l) − 1) − η(k)η(k + l)] p
η(k)

N − 1

+

∑
j ̸=k,k+l

η(k + l)[η(k)(η(k + l) − 1) − η(k)η(k + l)]

×

(
1{ j=k+l+1} + θ1{ j=k+l−1} + p

η( j)
N − 1

)
= η(k + l) [η(k + l) − η(k) − 1] p

η(k)
N − 1

− η(k)η(k + l)

⎡⎣1 + θ +
p

N − 1

∑
j ̸=k,k+l

η( j)

⎤⎦
= η(k + l) [η(k + l) − η(k) − 1] p

η(k)
N − 1

− η(k)η(k + l)
[

1 + θ + p
N − η(k) − η(k + l)

N − 1

]
= η(k)η(k + l)

[
(η(k + l) − 1)

p
N − 1

−
1 + θ

N
− p

N − η(k + l)
N − 1

]
,∑

i ̸=k,k+l

Ti,k(η) =

∑
i ̸=k,k+l

η(i)[(η(k) + 1)η(k + l) − η(k)η(k + l)]

×

(
1{k=i+1} + θ1{k=i−1} + p

η(k)
N − 1

)
= η(k + l)

[
η(k − 1) + θη(k + 1) + p η(k)

N − η(k) − η(k + l)
N − 1

]
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T

f

R

= η(k − 1)η(k + l) + θη(k + 1)η(k + l)

+p η(k)η(k + l)
N − η(k) − η(k + l)

N − 1
.

hus,

(LK ,N fk,l )(η) = η(k)η(k + l)
(

p
N − 1

[η(k) + η(k + l) − 2] − 2(1 + θ )

−
p

N − 1
[2N − η(k) − η(k + l) − 2[N − η(k) − η(k + l)]]

)
+ η(k) [η(k + l − 1) + θη(k + l + 1)] + η(k + l) [η(k − 1) + θη(k + 1)]

= −2η(k)η(k + l)
(

1 + θ +
p

N − 1

)
+ η(k) [η(k + l − 1) + θη(k + l + 1)]

+ η(k + l) [η(k − 1) + θη(k + 1)] ,

or all η ∈ EK ,N , proving (34).
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