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Abstract

The purpose of this paper is to propose a unifying weak dependence condition. Mixing
sequences, functions of associated or Gaussian sequences, Bernoulli shifts as well as models with
a Markovian representation are examples of the models considered. We establish Marcinkiewicz–
Zygmund, Rosenthal and exponential inequalities for general sequences of centered random vari-
ables. Inequalities are stated in terms of the decay rate for the covariance of products of the
initial random variables subject to the condition that the gap of time between both products
tends to in�nity. As applications of those notions, we obtain a version of the functional CLT
and an invariance principle for the empirical process c© 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We propose a new weak dependence condition for time series. This de�nition makes
explicit the asymptotic independence between ‘past’ and ‘future’; this means that the
‘past’ is progressively forgotten. In terms of the initial time series, ‘past’ and ‘future’
are elementary events given through �nite-dimensional marginal. Roughly speaking, for
convenient functions h and k, we shall assume that

Cov(h(‘past’); k(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is su�ciently large.
Asymptotic are expressed in terms of the distance between indices of the initial time
series in the ‘past’ and ‘future’ terms; the convergence is not assumed to hold uniformly
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on the dimension of the marginal involved. As a special case of such a de�nition,
Rosenblatt (1956) introduced strong mixing conditions but such conditions refer rather
to �-algebra than to random variables.
On the one hand, a main inconvenience of mixing assumptions is the di�culty

of checking them; e.g. Doukhan (1994) provides, with evident di�culties, explicit
bounds of the decay of mixing sequences. On the other hand, an important property of
associated random variables is that zero correlation implies independence (see Newman,
1984). This means that one may hope that dependence will appear in this case only
through the covariance structure, and also justi�es the study of such processes: indeed
a covariance is much easier to compute than a mixing coe�cient.
The aim of this paper is to provide a unifying approach including mixing, association,

Gaussian sequences and Bernoulli shifts. Sometimes we shall not obtain optimal results
when they are particularized to some special subframe. In this frame we obtain moment
inequalities and functional CLT for the partial sums and for the empirical distribution
function. Those results apply to our classes of examples.
In the sequel, N;Z;R denote respectively the set of nonnegative integers, integers,

and the real line.
Let (Xn)n∈N be a sequence of random variables (r.v.s) centered at expectation.

For stationary independent sequences of centered random variables, we recall the
Marcinkiewicz–Zygmund inequality (cf. Petrov, 1995)

E|X1 + · · ·+ Xn|q = O(nq=2) (1.1)

and the Rosenthal inequality (cf. also Petrov, 1995)

E|X1 + · · ·+ Xn|q6Cq


 n∑

i=1

E|Xi|q +
(

n∑
i=1

E|Xi|2
)q=2


 : (1.2)

Our dependence conditions on the process yielding the bound (1.1) or (1.2) only require
a suitable non-correlation between the ‘past’ and the ‘future’ of the process. Indeed,
we preceive that to bound |E(X1 + · · · + Xn)q| for integers q we only have to bound
the covariance quantity |Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)| in terms of the gap tm+1 − tm = r,
between both groups of variables de�ned by t16 · · ·6tq and m, for m ∈ {1; : : : ; q} as
in Doukhan and Portal (1983).
Under positive dependence, the bound (1.1) was developed in Birkel (1988a) under

conditions on the (q + �)th-order moments of Xn and on the decay of the covariance
function of the process (those conditions are optimal). For strongly mixing sequences,
this bound was �rst obtained by Yokoyama (1980). Up to now, the best assumptions
yielding the bound (1.1) under strongly mixing conditions were given in Rio (1994).
His assumptions are given in terms of the quantile function of the sequence (Xn).
A more precise bound for (1.1) for dependent sequences is

E|X1 + · · ·+ Xn|q6Cqnq=2 max
i
(E|Xi|q+�)q=(q+�): (1.3)

Such inequalities are proved for associated sequences in Birkel (1988a): the constants
Cq only involve correlations Corr(Xi; Xj). Our assumptions seem to be sharp. In par-
ticular, for associated sequences of bounded r.v.s, Birkel’s conditions yielding (1.3)
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specialize to our decay condition, and for strongly mixing sequences Rio’s (1994) as-
sumptions are reached. However, the use of combinatorics restricts us to even integer
exponents.
Rosenthal type inequalities are also given in Doukhan and Portal (1983) and Doukhan

(1994), and we also obtain analogues of the inequalities in Rio (1994) in our more
general frame. For associated sequences, analogues of inequalities (1.2) are proved by
Shao and Yu (1996). We refer also to Bahtin and Bulinski (1997) where moment
inequalities are established for multiindexed sums of random variables in terms of
covariances of some test functions.
Let F be a class of real-valued functions, such that for each f ∈ F there exists

an integer n¿1 such that f is de�ned on Rn. The integer n depends on the speci�c
function considered. We now introduce

De�nition 1. The sequence (Xn)n∈N of r.v.s is called (�;F;  )-weak dependent, if there
exists a class F of real-valued functions, a sequence �=(�r)r∈N decreasing to zero at
in�nity, and a function  with arguments (h; k; u; v) ∈ F2×N2 such that for any u-tuple
(i1; : : : ; iu) and any v-tuple (j1; : : : ; jv) with i16 · · ·6iu ¡ iu+ r6j16 · · ·6jv, one has

|Cov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv))|6 (h; k; u; v)�r; (1.4)

for all functions h; k ∈ F that are de�ned respectively on Ru and Rv.

In the previous de�nition r always denotes the gap in time between ‘past’ and
‘future’. Notice that the sequence � depends both on the class F and on the function
 . The function  may really depend on its arguments, contrarily e.g. to the case of
mixing bounded sequences. An important point in the previous de�nition is its heredity
through appropriate images as is the case for mixing conditions.
Doeblin and Fortet (1937), Rosenblatt (1956), Withers (1981), Tran (1990), Birkel

(1992), among others, obtained limit theorems under some of the notions of weak
dependence from De�nition 1.
In order to justify this de�nition, we reformulate a general case of Theorem 18:4:1

in Ibragimov and Linnik (1971) in terms of our weak dependence conditions.
De�ne the class of “complex” exponential functions

E= {hs;u; (s; u) ∈ R×N}; (1.5)

by hs:=hs;u belongs to E if and only if there exist a real number s and an integer
u¿1 such that hs(x1; : : : ; xu) =f(s(x1 + · · ·+ xu)), where f is the real-valued function
de�ned on R by f(x) = cos x or f(x) = sin x.

Corollary A. Let (Xn)n∈N be a stationary sequence ful�lling EX0 = 0 and EX 2
0 ¡∞.

Suppose that the sequence (Xn)n∈N satis�es a (�;E;  )-weak dependence condition
with some bounded function  de�ned on E2 ×N2. Assume that
1. limn→∞ �n = 0.
2. limn→∞Var Sn=n= �2¿ 0.
3. E|Sn|2+� = O(n1+�=2); for some �¿ 0.

Then Sn=
√
n converges in distribution to N(0; �2).
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Withers (1981) proved the CLT for non-stationary triangular arrays of l-mixing se-
quences by using the blocking technique, his ideas yield us to the present de�nition. We
also refer to Jakubowski (1993) (his condition B is analogous to the weak dependence
condition of Corollary A: covariance for “complex” exponentials).
A paper devoted to investigate the basic properties of the functional estimation of

a density in this framework is in preparation. Extensions of the present notions to
random �elds, continuous time processes or vector-valued sequences will be considered
in forthcoming papers.
The paper is organized as follows. Section 6.2 is devoted to give our main results.

Examples in Section 3 show that (�;F;  )-weak dependence holds in many cases of
interest. Our results are applied to important classes of modelling and the conditions that
yield the bound (1.1) or (1.2) are discussed. Section 6.4 is aimed to give applications
of the previous moment inequalities to a Donsker Corollary and to the convergence of
the empirical process constructed from any stationary and weakly dependent sequences.
The proof of the main results is given in Section 6:5. Section 6:6 is dedicated to the
proofs related to Section 6.3, concerned with modelling.

2. Results

2.1. Weak dependence

We �rst introduce some classes of function. Set L∞ for the set of real-valued and
bounded functions on some space Ru. Moreover Lip(h)=supx 6=y |h(x)−h(y)|=||x−y||1
denotes the Lipschitz modulus of a function h : Ru → R where Ru is equipped with
its l1-norm. De�ne

L= {set of bounded Lipschitz functions: Ru → R; for some u ∈ N∗}: (2.1)

The class L will be used together with functions  de�ned by

 (h; k; u; v) = c(u; v)�(Lip(h);Lip(k)); (2.2)

where � denotes some locally bounded function on R2+ (here and in the sequel R+ is
the set of non-negative real numbers). The functions h and k are de�ned respectively
on Ru and Rv; c is some function de�ned on N∗2.
In the examples �(x; y) = const: xy or �(x; y) = const: max{x; y} (cf. Section 3). In

some cases, the class L will be replaced by the smaller class

L1 = {h ∈ L; ||h||∞61}: (2.3)

The inclusions E⊂L1⊂L imply that Corollary A holds under L1-weak dependence.
In fact we obtain

Proposition 1. Let (Xn) be a stationary centered sequence. Suppose that EX 2
0¡∞

and that conditions (2) and (3) of Corollary A are ful�lled. Suppose moreover
that the sequence (Xn) is (�;L1;  )-weak dependent; where the function  is de�ned
as in (2:2) by c(u; v) = (u + v)d and  (h; k) = (Lip(h) + Lip(k))c; for some d¿ 0;



P. Doukhan, S. Louhichi / Stochastic Processes and their Applications 84 (1999) 313–342 317

c ∈ [0; 2]. If
�r = O(r−D); for some D¿ (d− c=2) ∨ 0; (2.4)

then the conclusion of Corollary A holds.

(We prove Proposition 1 in Section 4.)
De�ne now for some x¿ 0 the function gx : R→ R by

gx(y) = 5x6y − 5x6−y; (2.5)

where 5A denotes the indicator function of the event A. We shall also consider the
class

I =
{

u⊗
i=1

gxi ; xi ∈ R∗
+; u ∈ N∗

}
(2.6)

with  (h; k; u; v) = c(u; v). In the examples (cf. Section 3), the function c is shown to
be either c(u; v) = min{u; v} or c(u; v) = (u+ v)2.
The following lemma links I-weak dependence with L-weak dependence; indeed,

examples are mainly proved to satisfy a weak dependence condition w.r.t. the class L.
It will show that the weaker L0 ∩ C1b-weak dependence condition de�ned by

L0 =
{

u⊗
i=1

fi; fi ∈ L; fi : R→ R; i = 1; : : : ; u; u ∈ N∗
}

;

C1b denotes the set of di�erentiable functions with continuous and bounded partial
derivatives, and

 c;1(h; k; u; v) = c(u; v)max{Lip(h);Lip(k)} (2.7)

or

 c;2(h; k; u; v) = c(u; v)Lip(h)Lip(k); (2.8)

(for a suitable function c) implies I-weak dependence under concentration
assumptions.

Lemma 1. Let (Xn) be a sequence of r.v.s ful�lling for some �¿ 0; C ¿ 0

C(�) := sup
x∈R

sup
i

P(x6Xi6x + �)6C��: (2.9)

If the sequence (Xn) is (�L0 ;L0 ∩ L1 ∩ C1b;  c;1)-weak dependent; then (Xn) is
(�I;I;  )-weak dependent with

�I;r = ��=(1+�)
L0 ;r and  (h; k; u; v) = 2(8C)1=(1+�)(u+ v)1=(1+�)[c(u; v)]�=(1+�):

If (Xn) is (�L0 ;L0 ∩ L1 ∩ C1b;  c;2)-weak dependent; then it is (�I;I;  )-weak
dependent with

�I;r = ��=(2+�)
L0 ;r and  (h; k; u; v) = (8C)2=(2+�)(u+ v)2=(2+�)[c(u; v)]�=(2+�):

The following lemma allows one to replace L by the wider class L̃ of (perhaps
unbounded) real-valued and Lipschitz functions de�ned on any Ru-space.



318 P. Doukhan, S. Louhichi / Stochastic Processes and their Applications 84 (1999) 313–342

Lemma 2. If the sequence (Xn)n∈N is (�;L;  )-weak dependent; with  associated to
a coordinatewise non-decreasing function � and if supn∈N EX 2

n ¡∞; then the sequence
(Xn)n∈N is also (�; L̃;  )-weak dependent.

Remark. Contrarily to the covariance inequalities for mixing sequences we do not need
higher moments or tail assumptions (see Rio, 1993) to obtain bounds for a covariance
in the case of L-weak dependence. Thus, we rederive Rio’s (1993) results without
additional tail assumptions.

Proof of Lemma 2. First we note that for any function f∈L̃ there holds |f(x1; : : : ; xu)|
6|f(0; : : : ; 0)| + Lip(f)∑u

j=1 |xj|. Square integrability implies Ef2(Xi1 ; : : : ; Xiu)¡∞
for any indices i1; : : : ; iu ∈ N. Consider now the continuous and piecewise linear
function iM : R → [ − M;M ], which is the identity on [ − M;M ] and is constant
outside this interval. Then Lip(iM ) = 1 and the function iMof is in L and satis�es
Lip(iMof)6Lip(f). We thus conclude by using the dominated convergence Corollary
and �′s monotonicity.

2.2. Moment inequalities

Let (Xn)n∈N be a sequence of centered r.v.s. Let Sn =
∑n

i=1 Xi. In this section, we
obtain bounds for |ESq

n |, when q ∈ N and q¿2.

De�nition 2. Let (Xn) be a sequence of centered r.v.s. De�ne, for positive integer r,
the coe�cient of weak dependence as non-decreasing sequences (Cr; q)q¿2 such that

sup |Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|= : Cr; q;

where the supremum is taken over all {t1; : : : ; tq} such that 16t16 · · ·6tq and m; r
satisfy tm+1 − tm = r.

In this paper, we provide explicit bounds of Cr; q in order to obtain inequalities for
moments of the partial sums Sn. We shall consider two types of assumptions, either
there exist constants c; 
¿ 0 such that for any convenient q-tuple {t1; : : : ; tq} (as in the
de�nition):

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6cq
Mq−2�r; (2.10)

or, denoting by QX the quantile function of |X | (inverse of the tail function t →
P(|X |¿t)),

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6c
∫ �r

0
QXt1

(x) : : : QXtq
(x) dx: (2.11)

The bound (2.10) holds mainly for bounded sequences such that ||Xn||∞6M .
E.g. (�;L1;  )-weak dependence yields the bounds

Cr; q6 max
16m¡q

 (j⊗m; j⊗(q−m); m; q− m)Mq�r;



P. Doukhan, S. Louhichi / Stochastic Processes and their Applications 84 (1999) 313–342 319

where j(x)=x5|x|61+5x¿1−5x¡−1. As in Lemma 2, we see that under (�;L;  )-weak
dependence with  (h; k; u; v) = c(u; v)Lip(h)Lip(k) a bound is

Cr; q6 max
16m¡q

c(m; q− m)Mq−2�r:

The bound (2.11) holds for more general r.v.s, using moment or tail assumptions.
Our �rst result is the following Marcinkiewicz–Zygmund inequality.

Theorem 1. Let (Xn)n∈N be a sequence of centered r.v.s ful�lling for some �xed
q ∈ N; q¿2

Cr; q =O(r−q=2) as r → ∞: (2.12)

Then there exists a positive constant B not depending on n for which

|ESq
n |6Bnq=2: (2.13)

2.3. Rosenthal-type inequalities

The following lemma gives moment inequalities of order q ∈ {2; 4} (its proof is
essentially in Billingsley, 1968).

Lemma 3. If (Xn)n∈N is a sequence of centered r.v.s; then

ES2n62n
n−1∑
r=0

Cr; 2; ES4n64!



(
n

n−1∑
r=0

Cr; 2

)2
+ n

n−1∑
r=0

(r + 1)2Cr;4


 : (2.14)

Let us note that Lemma 3 in Bryc and Smole�nski (1993) gives a Rosenthal-type
inequality of order q ∈ [2; 4] (where q is not necessarily an integer); under a suitable
decay of the so-called maximal correlation coe�cients (recall that this mixing condition
is more restrictive than ours).
The following theorems deal with higher order moments.

Theorem 2. Let q be some �xed integer not less than 2. Suppose that the dependence
coe�cients Cr;p associated to the sequence (Xn) satisfy; for every nonnegative integer
p; p6q; and for some positive constants M; 
; C

Cr;p6Ce
pMp−2�r: (H)

Then; for any integer n¿2

|ESq
n |6

(2q− 2)!
(q− 1)! e

q




(
Cn

n−1∑
r=0

�r

)q=2

∨
(
CMq−2n

n−1∑
r=0

(r + 1)q−2�r

)
 : (2.15)

Theorem 2 is adapted to work with bounded sequences. In order to consider the
unbounded case, we shall consider (�;I;  )-weak dependence where  denotes
 (h; k; u; v) = c(u; v) and I is the class of functions de�ned by (2.6).
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Theorem 3. If (Xn)n∈N is a centered and (�;I;  )-weak dependent sequence; then

|ESq
n |6

(2q− 2)!
(q− 1)!


Cq

n∑
i=1

∫ 1

0
[min(� −1(u); n)]q−1Qq

i (u) du

∨
(
C2

n∑
i=1

∫ 1

0
[min(� −1(u); n)]Q2i (u) du

)q=2

 ;

where Cq = (maxu+v6q c(u; v)) ∨ 2.
In the special case of strongly mixing and stationary sequences, this is Theorem 1

in Rio (1994) (cf. also Rio, 1997). The restriction of working with even integer ex-
ponents �nds its compensation in the explicit form of the constants.

2.4. Exponential inequality

For any positive integers n and q¿2, de�ne

Mq;n :=n
n−1∑
r=0

(r + 1)q−2Cr; q6An
q!
�q ; (H)

where � is some positive constant and An is a sequence independent of q.
We shall prove as a consequence of Theorem 2 and Markov inequality that an

exponential inequality holds.

Corollary 1. Suppose that (H1) and (H2) hold for some sequence An¿1 for any
n¿2. Then for any positive real number x

P(|Sn|¿x
√

An)6A exp(−B
√

�x); (2.16)

for universal positive constants A and B.

Remark. (1) One may choose the explicit values A= e4+1=12
√
8�, and B= e5=2.

(2) Let us note that condition (H2) holds if Cr; q6C�2Mq−2e
qe−br for positive
constants C; �; 
; b, as soon as ||Xn||∞6M and ||Xn||26�, for any integer n¿0. In
such a case An = n�2.
E.g. this holds under (�;L;  )-weak dependence if �r = O(e−br) and  (h; k; u; v)6

e�(u+v)Lip(h)Lip(k) for some �¿0.
(3) The use of combinatorics in those inequalities makes them relatively weak.

E.g. Bernstein inequality, valid for independent sequences allows to replace the term√
x in the previous inequality by x2 under the same assumption n�2¿1; in the mixing

cases analogue inequalities are also obtained by using coupling arguments (not available
here), e.g. the case of absolute regularity is studied in Doukhan (1994).

3. Examples

In this section, we apply the preceding results to particular classes of sequences. In
each case, we shall check condition (H1), providing coe�cients Cr; q. We will also
make explicit the underlying weak dependence properties of the sequence.
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3.1. Associated sequences

De�nition 3 (Esary et al., 1967). The sequence (Xn)n∈N is associated if for all
coordinatewise non-decreasing real-valued functions h and k

Cov(h(Xi; i ∈ A); k(Xi; i ∈ B))¿0;

holds for all �nite subsets A and B of N.

The lemmas below exhibit the weak dependence structure of the associated sequences
under conditions involving only the covariance structure of the process. We note here
a remarkable property of association: independence is equivalent to zero correlation
(cf. Esary et al., 1967).

3.1.1. Weak dependence and association

Lemma 4. If (Xn)n∈N is a sequence of associated and centered r.v.s; then (Xn)n is
(�;L;  )-weak dependent with

�r = sup
i

∑
j:|i−j|¿r

Cov(Xi; Xj) and  (h; k; u; v) = min(u; v)Lip(h)Lip(k);

and it is (�;C1b;  )-weak dependent with

�r = sup
|i−j|¿r

Cov(Xi; Xj) and  (h; k; u; v) =
u∑

i=1

v∑
j=1

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

×
∣∣∣∣
∣∣∣∣ @k@xj

∣∣∣∣
∣∣∣∣
∞
: (3.1)

Remark. If the associated sequence is uniformly bounded, say by M , then inequality
(3.1) yields

Cr; q6
q2

4
Mq−2 sup

|i−j|¿r
Cov(Xi; Xj): (3.2)

For unbounded and associated sequences, we obtain the following.

Lemma 5. If (Xn) is a sequence of associated r.v.s; then it is (
;I;  )-weak dependent
with


r = sup
|i−j|¿r

sup{Cov(5Xi¿x; 5Xj¿y); x; y ∈ R} and  (h; k; u; v) = (u+ v)2:

Hence; setting Q =maxi∈NQi; we obtain

Cr; q6q2
∫ 
r

0
Qq(u) du: (3.3)

Remark. If the associated sequence is bounded by M , then inequality (3.3) yields
Cr; q6q2Mq
r , which follows also from (3.2) since sup|i−j|¿r Cov(Xi; Xj)64M 2
r .
Conversely, 
r may be bounded by means of Cr; 2; indeed if the r.v.s Xi have a

uniformly bounded density (w.r.t. i) then


r6c sup
|i−j|¿r

Cov1=3(Xi; Xj): (3.4)

(see Yu (1993) for the proof of the last inequality).
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3.1.2. Marcinkiewicz–Zygmund inequality under association
Theorem 2 together with Lemma 5, implies the Marcinkiewicz–Zygmund inequality

(i.e. the bound (1.1) for an even integer q), under the condition∫ 
r

0
Qq(u)du= O(r−q=2): (3.5)

Let us compare this result with Theorem 1 in Birkel (1988a). Suppose that

sup
i

P(|Xi|¿t) = O(t−q−�) as t → ∞ and for some �¿ 0; (3.6)

then Q(t) = O(t−1=(q+�)) and (3.5) holds whenever 
r = O(r−q(q+�)=2�). Clearly, the
tail condition (3.6) is weaker than the following one (condition (2.1) in Birkel, 1988a)

sup
i

E|Xi|q+� ¡+∞:

However, note that after simple calculations the preceeding decay on 
r implies the
condition (2.2) in Birkel (1988a). Moreover, the index of dependence, 
r , that we
investigate here is independent of any moment assumption while Birkel (1988a) uses
explicitly the covariance structure of the process (and not the one of indicators); our
inequality is thus also more intrinsic. Now, if the associated sequence is bounded then
our condition in (2.12) is equivalent to the condition (2.4) in Birkel (1988a) that
implies Marcinkiewicz–Zygmund inequality. This condition is shown to be optimal
(cf. Birkel, 1988a).

3.1.3. Rosenthal-type inequality under association
Associated r.v.s are shown to be (
;I;  )-weak dependent (cf. Lemma 5). Hence, a

new Rosenthal inequality for associated r.v.s follows from Theorem 3.
It is more important in practice to obtain moment inequalities for non-monotonic

functions of associated r.v.s; indeed, this property fails to be hereditary under such
transformations.

Theorem 4. Let (Xn)n∈N be a sequence of associated r.v.s. Let f be a real-valued
function with bounded �rst derivative. Suppose that Ef(Xi) = 0 and de�ne Sn(f) =∑n

i=1 f(Xi). Then for every integer q; q¿2; there exists some positive constant Cq

depending only on q; for which

|ESn(f)q|6Cq



(
n

n−1∑
r=0

(||f||∞ sup
i∈N

E|f(Xi)| ∧ ||f′||2∞�r)

)q=2

+ ||f||q−2∞ n
n−1∑
r=0

(r + 1)q−2(||f||∞ sup
i∈N

E|f(Xi)| ∧ ||f′||2∞�r)

}
; (3.7)

where �r = sup|i−j|¿r Cov(Xi; Xj).

Remark. Let us note that Shao and Yu (1996) prove a general Rosenthal’s inequality
for non-monotonic functions of associated r.v.s. We compare their result with Theorem 4.
The last term obtained on the right-hand side of (3.7) is slightly better than the cor-
responding one in Shao and Yu (1996) by a multiplicative factor n�; the �rst one is
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worse, however, it provides us with a sharp bound of Var Sn(f). Hence, Theorem 4
is a good competitor with the result of Shao and Yu (1996) for the special case of
even integer exponents.

3.2. Strongly mixing sequences

As a measure of dependence, Rosenblatt (1956) introduced the strong mixing
coe�cients. For any two �-algebra A and B, let

�(A;B) = sup
(A;B)∈A×B

|Cov(5A; 5B)|:

The strong mixing coe�cients of the sequence (Xn)n∈Z are de�ned by

�n = sup
k∈Z

�(Ak ;Bk+n) where Ak = �(Xi; i6k) and Bk = �(Xi; i¿k):

For relevant literature on mixing, the reader is deferred to Doukhan (1994). The fol-
lowing lemma makes explicit the simple weak dependence structure of strongly mixing
sequences.

Lemma 6 (Rosenblatt, 1956). If the sequence (Xn)n∈Z is strongly mixing; then it is
(�; L∞;  )-weakly dependent with  (h; k; u; v)=4||h||∞||k||∞. Moreover; if the strongly
mixing sequence is centered at expectation and bounded by M; then

Cr; q64Mq�r:

For unbounded strongly mixing sequences, we obtain

Lemma 7. Every sequence of strongly mixing r.v.s is (�;I; 4)-weak dependent and
satis�es

Cr; q64
∫ �r

0
Qq(u) du:

For strongly mixing sequences, Theorem 2 together with Lemma 7 yields a
Marcinkiewicz–Zygmund inequality (for even integers q) under the optimal condition of
Rio (1994):∫ �r

0
Qq(u) du= O(r−q=2) as r→∞:

3.3. Functions of Gaussian processes

Lemma 8. If (Xn)n∈N is a Gaussian process; centered at expectation; then it is
(�;C1b ∩ L∞;  )-weak dependent with; either �r = supi

∑
j:|i−j|¿r |Cov(Xi; Xj)| and

 (h; k; u; v) = min(u; v)max
i

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

×max
i

∣∣∣∣
∣∣∣∣ @k@xi

∣∣∣∣
∣∣∣∣
∞

;

or

�r = sup
|i−j|¿r

|Cov(Xi; Xj)| and  (h; k; u; v) =
u∑

i=1

v∑
j=1

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

×
∣∣∣∣
∣∣∣∣ @k@xj

∣∣∣∣
∣∣∣∣
∞

:
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Theorem 4 written for associated sequences holds true for functions of Gaussian
sequences. Let us note the remarkable analogy between associated r.v.s and Gaussian
processes (compare Lemma 4 with Lemma 8).
Other moment inequalities for Gaussian processes better than the one obtained here

are given in Shao (1995). He obtains such Rosenthal inequalities under weak as-
sumptions on the decay of the �-mixing coe�cients (only logarithmic decay rates are
needed). Now a stationary and Gaussian sequence is also �-mixing if the spectral
density of the process is bounded below, and

�n6
1

inf �f(�)

∞∑
k=n

|Cov(X0; Xk)| → 0 as n → ∞

(cf. Doukhan, 1994 for a proof).

Remark. More general sequences satisfying the weak dependence condition de�ned as
in (2.8) with c(u; v) = (u+ v)2, may be obtained by combinations: this is the case for
the sum of processes Xn= Yn+ Zn, where the Gaussian process (Yn) is independent of
the associated sequence (Zn).

3.4. Bernoulli shifts

Now, we consider the weak dependence structure of the following class of Bernoulli
shifts.

De�nition 4. Let (�i)i∈Z be a sequence of independent real-valued r.v.s and F be a
measurable function de�ned on RZ. A Bernoulli shift is a sequence (Ui)i∈Z de�ned by

Ui = F(�i−j; j ∈ Z): (3.8)

A main attraction of such sequences is that they provide examples of processes that
are weakly dependent, but not mixing (see Rosenblatt, 1980). This way of constructing
stationary sequences is very natural. Chaotic expansions of Gaussian functionals or, in
the discrete time case, Volterra expansions are indeed a standard way of modelling
stationary processes.

De�nition 5. For any positive integer k; we set

�k = sup
i∈Z

E|F(�i−j; j ∈ Z)− F(�i−j5|j|¡k; j ∈ Z)|:

Such sequences (�k)k are related to the modulus of uniform continuity of F . The
sequence (�k)k is evaluated under regularity conditions on the function F . In fact, if

|F(ui: i ∈ Z)− F(vi: i ∈ Z)|6
∑
i∈Z

ai|ui − vi|b;

for some positive constants (ai)i∈Z; 0¡b61 and if the sequence (�i)i∈Z has �nite
bth-order moment, then �k6

∑
|i|¿k aiE|�i|b.

The following lemma is aimed to prove a weak dependence property of such
sequences.
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Lemma 9. The sequence (Un − EUn)n∈Z is (�;L;  )-weak dependent; with

 (h; k; u; v) = 4(u||k||∞Lip(h) + v||h||∞Lip(k)) and �r = �r=2:

Remark. More general processes have such weak dependence properties. E.g. in-
stead of independence, assume that the sequence (�n)n∈Z satis�es a (��;L1;  �)-weak
dependence condition; then the process (Un)n∈Z is (�;L1;  )-weak dependent with
�r = �r;� + �r=2 and  (h; k; u; v) =  �(h; k; u; v) + 4(uLip(h) + vLip(k)): Such hereditry
property of weak dependence is unknown under mixing.

Lemma 9, together with some elementary calculations, yields a bound for the coef-
�cients Cr; q associated to some bounded functions of the sequence (Ui)i∈Z.

Corollary 2. Let (�i)i∈Z be a sequence of independent r.v.s. Let (Ui)i∈Z be the
sequence de�ned as in (3:8). Let Xi = fi(Ui) − Efi(Ui); where the functions (fi)i∈Z
satisfy ||fi||∞61=2 and Lip(fi)6K . Then the coe�cients Cr; q associated to the
sequence (Xi)i∈N satisfy

Cr; q68qK�r=2:

Remark. Note that condition (H1) of Theorem 2 is satis�ed, yielding new Rosenthal
inequalities for such sequences.

Remark. Let (�i)i∈Z be a sequence of independent Bernoulli variables with parameter
s. The AR(1) process (Ui) with innovation r.v.s (�i) and AR parameter a ∈ ]0; 12 ] are
de�ned by

Ui = aUi−1 + �i =
∑
j¿0

aj�i−j:

This sequence satis�es the requirement of Lemma 9, with F(ui; i ∈ Z) =∑i¿0 a
iui;

and �k = s
∑

i¿k a
i; but it is shown to be non-mixing (e.g. in Rosenblatt, 1980). Note

that the process ((−1)nUn) is neither mixing nor associated, but concentration holds
(e.g. Un is uniform if s= 1

2 ; and it has a Cantor marginal distribution if s=
1
3).

3.5. Models with a Markovian representation

Let (�i)i∈N be a sequence of independent r.v.s and F be a measurable function. Let
(Xi)i∈N be the Markov chain de�ned by

Xn+1 = F(Xn; �n+1): (3.9)

The initial distribution X0 is supposed to be independent of the sequence (�i)i∈N. We
suppose that F satis�es

E|F(0; �1)|a ¡∞ and E|F(x; �1)− F(y; �1)|a6�a|x − y|a; (C1)

for some a¿1 and 06�¡ 1. Du
o (1996) shows that under the condition (C1), the
Markov chain (Xi)i∈N has a stationary law � with �nite moment of order a.
In the sequel, we suppose that X0 has � as distribution (i.e. the Markov chain is

stationary).
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Lemma 10. If the Markov chain de�ned as in (3:9) satis�es (C1), then it is (�;L;  )-
weak dependent with

 (h; k; u; v) = 2min(u||k||∞Lip(h); v||h||∞Lip(k)) and �r = �rE|X0|:

Corollary 3. Let (Xi)i∈N be the Markov chain de�ned as in (3:9). Suppose that
(Xi)i∈N satis�es the condition (C1). Let for i ∈ N; Yi = gi(Xi) − Egi(Xi) where the
functions gi:R → R satisfy ||gi||∞61 and Lip(gi)6K . Then the coe�cients Cr; q

associated to the sequence (Yi)i∈N satisfy

Cr; q62qK�rE|X0|:

Remark. Let us note that condition (H1) of Theorem 2 is satis�ed by this Markov
chain (Xi)i∈N. Hence, we obtain Rosenthal inequalities which seem to be new.

4. Applications

Let (Xn)n∈N be a stationary sequence. In this section, we investigate some proper-
ties of the Donsker line and of the empirical process constructed from the stationary
sequence (Xn)n∈N. For associated sequences, such a result can be found in the papers
of Newman (1984), Newman and Wright (1983) or in Bulinski and Keane (1996) for
random �elds.

4.1. Functional central limit theorem

Here we obtain a functional extension of the CLT in Proposition 1 under (�;L1;  )-
weak dependence. De�ne

Sn(t) =
1√
n

[nt]∑
k=1

Xk;

where 06t61 and [x] denotes the integer part of the real number x. We suppose that
the (�;L1;  )-weak dependence holds with

 (h; k; u; v) = (u+ v)d(Lip(h) + Lip(k))c;

for some functions h; k de�ned respectively on Ru;Rv and for some constants d¿0,
and 06c62.

Theorem 5. Assume that the centered and stationary sequence (Xn)n∈N ful�ls the
(�;L1;  )-weak dependence conditions where  is de�ned as before and E|X0|4+� ¡∞
for some �¿ 0. Assume that �r = O(r−D) with D¿d and D¿2 + 4(2− c)=�. Then
limn→∞ ES2n=∞ implies that �2=limn→∞ ES2n =n¿ 0 and that (Sn(t))t∈[0;1] converges
to �W for some standard Brownian motion W in the Skohorod space D([0; 1]).

Remark. Having in view the examples of Section 3 we can restrict ourselves to c; d=1
which correspond to Bernoulli shifts; the assumption of the theorem becomes D¿2+ 4

�
(for bounded r.v.s. this is only D¿ 2).
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For c = d = 2, which is the case of both associated and Gaussian sequences, this
is D¿ 2.

Proof of Theorem 5. Using Lemma 3 and the maximal inequality in Moricz et al.
(1982), it is easy to see that assumption (3) of Corollary A holds (together with the
tightness of the sequence of processes (Sn(t)t∈[0;1]) if for any integers i; j; k such that
06 i6j¡k6l

∞∑
m=0

m|EX0Xm|¡∞ and Cov(XiXj; XkXl) = O((k − j)−2): (4.1)

Condition (1) of Corollary A classically holds with �2 6= 0 from (4.1) and from
limn→∞ ES2n=∞. Now �di convergence follows from Proposition 1. Hence it is enough
to prove the relations (4.1).
We �rst control the covariance |EX0Xr|.
For this write as in Lemma 2, Xk = Yk + (iM (Xk) − EiM (Xk)). Markov inequality

yields for 0¡p¡ 4 + �; E|Yk |p62pEX 4+�
0 Mp−4−�. Now the covariance inequality

implies Cov(iM (X0); iM (Xr))6M 22d(2=M)c�r . An optimization w.r.t. M yields |EX0Xr|=
O(�(2+�)=(4+�−c)

r ):
We now prove the bound |Cov(XiXj; XkXl)|= O(��=(4+�−c)

k−j ).
Indeed, the previous covariance is written as the sum of 24 covariance terms with

the form Cov(U1U2; U3U4) for Uj’s which are either in {Yi; Yj; Yk ; Yl} or are bounded
by 2M . Apply the weak dependence property in the case where each U is bounded.
Thus, the Markov inequality implies that this covariance is O(M−� + M 4−2c�r). An
optimization on M , yields the result.

Remark. This theorem allows to consider examples of Bernoulli shifts or Lipschitz
Markov models as shown by Lemmas 9 and 10 (since for h; k ∈ L1;  (h; k; u; v)64(u+
v)(Lip(h) ∨ Lip(k)); resp:  (h; k; u; v)62(u + v)(Lip(h) ∧ Lip(k)). Moreover, the case
of strongly mixing sequences corresponds to c=0. We may also consider the L-weak
dependence as in the examples of Gaussian or associated sequences. Using Lemma 2,
the dependence condition yields �r = O(r−D) with D¿d and D¿2 + 2c=�:
We conclude that Donsker theorem holds for each class of examples from

Section 3.

4.2. Empirical processes

Here we prove the tightness of the empirical processes under weak dependence
conditions. We assume without loss of generality that the marginal distribution of this
sequence is the uniform law on [0; 1]. We denote by

Fn(t) =
1
n

n∑
i=1

5Xi6t and Un(t) =
√
n[Fn(t)− t]:

The sequence (Xn) is assumed to satisfy the following weak dependence condition:

sup
f∈F

∣∣∣∣∣Cov
(

2∏
i=1

f(Xti);
4∏

i=3

f(Xti)

)∣∣∣∣∣6�r; (4.2)
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where F = {x 7→ 5s¡x¡t; for s; t ∈ [0; 1]}; 06t16t26t36t4 and r = t3 − t2 (in this
case a weak dependence condition holds for a class of functions Ru → R working only
with the values u= 1 or 2).

Proposition 2. Let (Xn) be a stationary sequence ful�lling (4:2) with

�r = O(r−5=2−�); for some �¿ 0: (4.3)

Then the sequence of processes ({Un(t); t ∈ [0; 1]})n¿0 is tight in the Skohorod space
D([0; 1]).

Comments. Stationary associated sequences (see Section 3.1) satisfy the requirement
of Proposition 2 if 
r = O(r−5=2−�). Thus, the condition in Yu (1993) is obtained
using the inequality (3.4). However, in this case, the recent paper by Louhichi (1998)
ameliorates it in the sense that tightness is shown to hold if Cov(X0; Xr) = O(r−a),
for a¿ 4.
In the same way, stationary mixing sequences satisfy the conditions of Proposition 2

if �r = O(r−5=2−�). This condition is slightly better than Yoshihara’s condition �r =
O(r−3−�) (cf. Yoshihara, 1973).
It is also slightly worse than the corresponding result in Rio (1997). Finally, we

note that Theorem 2:3 in Shao and Yu (1996), concerned with �-mixing may also be
compared with ours in the Gaussian case as in Section 3.3.

Proof of Proposition 2. Let a=5=2+ �. The moment inequality (2.14), together with
conditions (4.2) and (4.3), yields the existence of a positive constant C such that for
any s; t in [0; 1]

||Un(t)− Un(s)||46C



(

n−1∑
r=0

r−a ∧ |t − s|
)1=2

+

(
1
n

n−1∑
r=0

(r + 1)2�r

)1=4


6C




 ∑

r¿|t−s|−1=a

r−a



1=2

+


 ∑

r¡|t−s|−1=a

|t − s|


1=2

+ n(2−a)=4




6C{|t − s|(a−1)=2a + n(2−a)=4}:
Now it follows from Theorem 2:1 in Shao and Yu (1996) that the sequence {Un(t);
t ∈ [0; 1]} is tight.

Next we prove a functional CLT using the previous proposition and the smoothing
technique in Lemma 1. In the following, we assume that the sequence is (�;L1;  )-weak
dependent with

 1(h; k; u; v) = (Lip(h) ∨ Lip(k))(u+ v) or  2(h; k; u; v) = Lip(h)Lip(k)min(u; v):

Theorem 6. Let (Xn) be a stationary sequence; with Xn uniformly distributed on [0; 1].
Suppose that (Xn) is either (�;L1;  1)-weak dependent; with

�r = O(r−5−�); (4.4)
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or (�;L1;  2)-weak dependent; with

�r = O(r−15=2−�): (4.5)

Then the sequence of processes ({Un(t); t ∈ [0; 1]})n¿0 converges in distribution
(in D([0; 1])) to the centered Gaussian process indexed by [0; 1] with covariance
de�ned by

�(s; t) =
+∞∑

k=−∞
Cov(5X06s; 5X|k|6t):

Remark. (1) As a consequence of this theorem note that a (�;L1;  1) weakly depen-
dent Bernoulli shift (i.e. such that �r → 0) with �r=O(r−a) and with uniform marginal
distributions has the following properties: its empirical process is a tight sequence in
D([0; 1]) if a¿ 5 and it is convergent if a¿ 11. This general result seems to be new.
(2) The limiting process is the generalization of Brownian bridge for dependent

sequences, the term corresponding to k = 0 in the covariance is the only one in the
independent case and it corresponds to the Brownian bridge.
(3) The use of the space L1 allows to work with each of the class of models in the

previous section (cf. the last remark at the end of the previous subsection). This yields
really new results for the cases of Bernoulli shifts and also, apparently, for Markov
sequences.

We now prove Theorem 6. We �rst propose as a lemma a version of the CLT under
weak dependence conditions. A method to prove the CLT for the weakly dependent
r.v.s (�(Xi))i∈N is mentioned by Ibragimov et al. (1971) in their Theorems 18:4:1 and
18:4:2. The idea is to split Sn into Bernstein’s blocks

Sn =
k∑

i=1

�i +
k+1∑
i=1

�i:=Zk + Z ′
k+1;

�i =
ip+(i−1)q∑

(i−1)(p+q)+1

�(Xj); �i =
i(p+q)∑

ip+(i−1)q+1
�(Xj) for 16i6k:

and �k+1=
∑n

k(p+q)+1 �(Xj), where p=p(n); q=q(n); k=[n=p+q] are integer-valued
functions satisfying

p → ∞; q → ∞; q= o(p); p= o(n) as n → ∞: (4.6)

Lemma 11. Let Sn=
∑n

k=1 �(Xk) be a sum of centered stationary r.v.s; set �2n=Var Sn.
Let g and h be one of the trigonometric functions x → cos x; x → sin x. Assume that
(4:6) holds for some sequences p(n); q(n). Suppose moreover that

lim
n→∞

1
�2n

EZ ′2
k+1 = 0; (4.7)

lim
n→∞

k∑
j=2

∣∣∣∣∣Cov
(
g

(
t
�n

j−1∑
i=1

�i

)
; h
(

t
�n

�j

))∣∣∣∣∣= 0; for all t ∈ R; (4.8)
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lim
n→∞

1
�2n

k∑
i=1

E|�i|25|�i|¿��n = 0; for all �¿ 0; (4.9)

lim
n→∞

1
�2n

k∑
i=1

E|�i|2 = 1: (4.10)

Then Sn=�n converges in distribution to a standard Gaussian.

Proof of Lemma 11. The proof is similar to the proof of Lemma 3:1 of Withers (1981)
and will be omitted.

Proof of Corollary A. By (1) and (2) of Corollary A, Condition B of Jakubowski
(1993) holds. By (2) and (3), {S2n =Var(Sn)} is uniformly integrable. Following step
by step the proof of Theorem 2 in Jakubowski and Szewczak (1990), we verify condi-
tions (9:5)–(9:7) of Theorem 9:5 of Jakubowski (1993). Hence, Sn=

√
Var(Sn) converges

in distribution to N(0; �2). Finally, the proof is complete using condition 2 of
Corollary A.

Proof of Proposition 1. We must �nd some positive integers p and q that ful�l all
the requirement of Lemma 11 (with �(x) = x); more precisely we may have

lim
n→∞p−2qn= 0; (4.11)

and

lim
n→∞

k∑
j=2

 (ft=�n ; gt=�n ; p; p(j − 1))�q = 0; for any t ∈ R; (4.12)

where k denotes the integer part of n=(p + q); �2n = Var Sn and ft; gt are arbitrary
functions in E de�ned by (1.5).
We deduce �rst, from the weak dependence considered, that condition (4.12) holds

as soon as

lim
n→∞ kd+1pd�q=nc=2 = 0: (4.13)

Now let p= [n�]; q= [n�] with

(2(1 + d)− c + 2D)=2(2D + 1) ∨ 0¡�¡�¡ 1:

This choice of p and q is possible since d− c=2¡D. Now, p and q so chosen ful�l
(4.13), (4:6) and (4.11).

Proof of Theorem 6. Let (ti)16i6m be some �xed real numbers. The convergence in
distribution of (Un(t1); : : : ; Un(tm)) follows if the sequence (�(Xi))i∈N, with � de�ned
by �(x) =

∑m
j=1 �j(5x6tj − tj), satis�es the conditions of Lemma 11. Here, (�i)16i6m

are �xed real numbers such that
∑m

i=1 �i 6= 0.
First we note that Var Sn=n converges under (�;L1;  2) (resp. (�;L1;  1))-weak de-

pendence if
∑+∞

r=1 �1=3r ¡∞ (resp:
∑+∞

r=1 �1=2r ¡∞) (the proof of this remark is along
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the same lines as the proof of Lemma 1 with �= 1). We suppose now w.l.g that

Var �(X1) + 2
+∞∑
r=2

Cov(�(X1); �(Xr))¿ 0:

1. Condition (4.7) holds as soon as limn→∞ nqp−2 = 0 (recall that Var Sn=n
converges).
2. Condition (4.9) holds if E�41 = O(p2), which holds as soon as �1=2r = O(r−2)

(resp: �1=3r = O(r−2)) under the (�;L1;  1) (resp: (�;L1;  2))-weak dependence
condition (use for this Theorem 1 with q= 4 and Lemma 1).
3. Let us now check condition (4.8). For this de�ne

�j(x) = 5x6tj +
(−1

�
x + 1 +

tj
�

)
5tj¡x6tj+� and ��(x) =

m∑
j=1

�j(�j(x)− tj):

We also de�ne for 16i6k: ��i =
∑ip+(i−1)q

(i−1)(p+q)+1
��(Xj).

The sequence (Xn)n is (�;L1;  )-weak dependent (where  is either  1 or  2),
so that∣∣∣∣∣Cov

(
g

(
t
�n

j−1∑
i=1

��i

)
; h
(

t
�n
��j

))∣∣∣∣∣6 �q�


 t

��n

m∑
j=1

�j;
t

��n

m∑
j=1

�j




× max
26j6k

c(p;p(j − 1)):

In the sequel, we denote by An;� the right-hand side of the last inequality. Hence

k∑
j=2

∣∣∣∣∣Cov
(
g

(
t
�n

j−1∑
i=1

��i

)
; h
(

t
�n
��j

))∣∣∣∣∣6kAn;�: (4.14)

Using inequality (5.1) below, we obtain

k max
j6k

∣∣∣∣∣Cov
(
g

(
t
�n

j−1∑
i=1

��i

)
; h
(

t
�n
��j

))
− Cov

(
g

(
t
�n

j−1∑
i=1

�i

)
; h
(

t
�n

�j

))∣∣∣∣∣
64

tpk2�
�n

m∑
j=1

�j:

The last inequality, together with (4.14), yields

k∑
j=2

∣∣∣∣∣Cov
(
g

(
t
�n

j−1∑
i=1

�i

)
; h
(

t
�n

�j

))∣∣∣∣∣64 tpk2�
�n

m∑
j=1

�j + kAn;�:

If the sequence is (�;L1;  2) (resp: (�;L1;  1))-weak dependent, then

k∑
j=2

∣∣∣∣∣Cov
(
g

(
t
�n

j−1∑
i=1

�i

)
; h
(

t
�n

�j

))∣∣∣∣∣6 4
tpk2�
�n

m∑
j=1

�j +
t2k�qp
�2�2n


 m∑

j=1

�j



2

∼ const: n
(

�q

p2

)1=3
: (4.15)

(The last inequality is obtained if �= (�q=k�n)1=3).
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Respectively, the left-hand side of inequality (4.15) is bounded, under (�;L1;  1))-
weak dependence, by const. (n3�q=p2)1=2.
Now one can �nd some sequences p and q ful�lling (4.6), limn→+∞ nqp−2 = 0,

and limn→∞ n(p−2�q)1=3 = 0, (resp. limn→∞ n3p−2�q=0) as soon as �r =O(r−15=2−�)
(resp. �r = O(r−5−�)).
Hence the convergence of the �-di distributions holds.
The tightness of {Un(t); t ∈ [0; 1]} holds also since the requirements of Proposition 2

are ful�lled.
The theorem is thus proved.

5. Proofs of the main results

The purpose of this section is to prove the main results of Section 2. The inequality

|x1 : : : xm − y1 : : : ym|6
m∑
i=1

|xi − yi|; (5.1)

valid for any real numbers 06xi; yi61 is extensively used below.

5.1. A basic tool

Lemma 12. Let (Uq)q¿0 and (Vq)q¿0 be two sequences of real numbers satisfying for
some 
¿0; and for all q ∈ N∗

Uq6
q−1∑
m=1

UmUq−m + eq
Vq; (5.2)

with U1 = 06V1. Suppose that for every integers m; q ful�lling 26m6q − 1; there
holds

(Vm=2
2 ∨ Vm)(V

(q−m)=2
2 ∨ Vq−m)6(V

q=2
2 ∨ Vq): (5.3)

Then; for any integer q¿2

Uq6
eq


q

(
2q− 2
q− 1

)
(Vq=2
2 ∨ Vq): (5.4)

Proof of Lemma 12. We �rst prove the following lemma.

Lemma 13. Let (Uq)q¿0 be a sequence ful�lling for every positive integer q

Uq6
q−1∑
m=1

UmUq−m + 1; (5.5)

with U1 = 0. Then; for every integer q¿2;

Uq6
1
q

(
2q− 2
q− 1

)
: (5.6)
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Proof of Lemma 13. The proof is done by induction on q. Clearly (5.6) is true for
q = 2. Suppose now that (5.6) is true for every integer m less than q − 1. De�ne the
qth number of Catalan, dq = (1=q)

(
2q−2
q−1

)
; d1 = 1. The inductive hypothesis (recall

that U1 = 0) yields

Uq6
q−2∑
m=2

dmdq−m + 1: (5.7)

The last inequality, together with the identity dq =
∑q−1

m=1 dmdq−m (cf. Comtet, 1970,
p. 64), implies Uq6dq.
Now to prove Lemma 12 it su�ces to apply Lemma 13 to the sequence Ũ q =

Uq=eq
(V
q=2
2 ∨ Vq).

5.2. Application to moment inequalities

For any integer q¿2, set

Aq(n) =
∑

16t16···6tq6n

|EXt1 : : : Xtq |: (5.8)

Hence, in order to bound |ESq
n |, it remains to bound Aq(n) because

|ESq
n |6q!Aq(n): (5.9)

5.2.1. A basic lemma

Lemma 14. Let (Xn)n∈N be a centered sequence of r.v.s. Then;

Aq(n)6
q−1∑
m=1

Am(n)Aq−m(n) + Vq(n) (5.10)

with

Vq(n) =
∑

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|; (5.11)

the sum is considered over {t1; : : : ; tq} ful�lling 16t16 · · ·6tq6n with r = tm+1 −
tm =max16i¡q (ti+1 − ti).
If condition (5:3) holds for a sequence (Ṽ i(n))i such that (Ṽ i(n)¿Vi(n); then for

any integer n¿2;∣∣∣∣E Sq
n

q!

∣∣∣∣61q
(
2q− 2
q− 1

)
(Ṽq(n) ∨ Ṽ

q=2
2 (n)):

Proof of Lemma 14. The proof of this lemma is essentially in Doukhan and Portal
(1983). Clearly

Aq(n)6
∑

16t16···6tq6n

|EXt1 : : : XtmEXtm+1 : : : Xtq |

+
∑

16t16···6tq6n

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|:
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The �rst term on the right-hand side of the last inequality is bounded by

∑
16t16···6tq6n

|EXt1 : : : XtmEXtm+1 : : : Xtq |6
q−1∑
m=1

Am(n)Aq−m(n):

Hence relation (5.10) holds. Thus, we deduce that the sequence (Aq(n))q satis�es
(5.2) with �=0. If moreover, the sequence (Ṽ i)i satis�es (5.3) then the conclusion of
Lemma 12 holds. The proof of Lemma 14 follows then using (5.9).

5.2.2. Comments
In this subsection, we bound the expression Vq(n) de�ned by (5.11).

Lemma 15. Let t1 be a �xed positve integer. Let {t1; : : : ; tq} be a collection of integers
ful�lling 16t16 · · ·6tq6n. Let r = tm+1 − tm =max26i6q−1 (ti+1 − ti). If

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6Cr; q(t1); (5.12)

then

Vq(n)6
n∑

t1=1

n−1∑
r=0

(r + 1)q−2Cr; q(t1): (5.13)

Proof of Lemma 15. Clearly Vq(n)6
∑n

t1=1

∑∗ |Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)| where
∑∗

denotes a sum over such a collection 16t16 · · ·6tq6n with �xed t1, and r= tm+1−
tm =max16i6q−1 (ti+1 − ti) ∈ [0; n− 1]. Again

∗∑
|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6

n−1∑
r=0

∗∗∑
|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|:

∑∗∗ denotes the (q − 2)-dimensional sums each over {ti: ti−16ti6ti−1 + r; i 6=
1; : : : ; m+ 1}, Hence ∑∗∗ 1 = (r + 1)q−2. Lemma 15 is so proved.

Now we bound Vq(n) for (�;I;  )-weak dependent sequences. We suppose in this
case that  (h; k; u; v) = c(u; v).

Lemma 16. If the sequence (Xn)n∈N is (�;I; c)-weak dependent; then

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6max(cq; 2)
∫ min(�r ;1)

0
Qt1 (u) : : : Qtq(u) du;

where cq = maxu+v6q c(u; v); and Qti denotes the inverse of the tail function t →
P(|Xti |¿t). Hence

Vq(n)6max(cq; 2)
n∑

i=1

∫ 1

0
(min(� −1(u); n))q−1Qq

i (u) du;

where �(u) = �[u].

Proof of Lemma 16. We shall bound |Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)| in terms of r =
tm+1 − tm. Let X+ = max(0; X ) and X− =max(0;−X ),

X+ =
∫ +∞

0
5x6X+ dx =

∫ +∞

0
5x6X dx
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and

X− =
∫ +∞

0
5x6X− dx =

∫ +∞

0
5x6−X dx:

A classical calculation shows that

X1 : : : Xn =
n∏

i=1

(X+
i − X−

i ) =
∑

(−1)n−rX+
i1 : : : X+

ir X
−
ir+1 : : : X

−
in ;

denoting by
∑
a summation over all the permutations {i1; : : : ; in} of {1; : : : ; n}. Using

Fubini’s theorem, the preceding integral representation yields

X1 : : : Xn =
∑

(−1)n−r
∫
Rd
+

5x16Xi1
: : : 5xr6Xir

5xr+16−Xr+1 : : : 5xn6−Xin
dx1 : : : dxn

=
∫
Rd
+

n∏
i=1

(5xi6Xi − 5xi6−Xi) dx1 : : : dxn:

Again Fubini’s theorem yields

EX1 : : : Xn =
∫
Rd
+

E
n∏

i=1

(5xi6Xi − 5xi6−Xi) dx1 : : : dxn: (5.14)

Now, Eq. (5.14) together with Fubini’s theorem implies

Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq) =
∫
Rd
+

Cov

(
m∏
i=1

fi(Xti);
q∏

i=m+1

fi(Xti)

)
dx1 : : : dxq;

where fi(y) = 5xi6y − 5xi6−y. De�ne

B=

∣∣∣∣∣Cov
(

m∏
i=1

fi(Xti);
q∏

i=m+1

fi(Xti)

)∣∣∣∣∣ : (5.15)

In the sequel, we give two bounds of the quantity B.

• The �rst bound does not use the dependence structure, only that |fi(y)| = 5xi6|y|.
Thus

B62 inf (�Xt1
(x1); : : : ; �Xtq

(xq)); (5.16)

with �X (x) = P(x6|X |).
• From (�;I;  )-weak dependence, we obtain (recall that r = tm+1 − tm)

B6cq�r: (5.17)

The bound (5.17) together with (5.16) yields

B6max(cq; 2)inf (�r; �Xt1
(x1); : : : ; �Xtq

(xq)):

Hence,

|Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|

6max(cq; 2)
∫ +∞

0
· · ·
∫ +∞

0
inf (�r; �Xt1

(x1); : : : ; �Xtq
(xq)) dx1 : : : dxq:
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The proof of Theorem 1-1 in Rio (1993) can be completely implemented here. We
give it for completeness. Let U be an uniform-[0; 1] r.v; then

inf (�r; �Xt1
(x1); : : : ; �Xtq

(xq)) = P(U6�r; U6�Xt1
(x1); : : : ; U6�Xtq

(xq))

= P(U6�r; x16QXt1
(U ); : : : ; xq6QXtq

(U )):

So, |Cov(Xt1 : : : Xtm ; Xtm+1 : : : Xtq)|6max(cq; 2)EQXt1
(U ) : : : QXtq

(U )5U6�r . Hence, the �rst
part of Lemma 16 follows. Now we shall prove the second part.
Arguing exactly as in Rio (1997), we obtain

Vq6
max(cq; 2)

q

q∑
i=1

n−1∑
r=0

n∑
ti=1

∫ �r

0
(r + 1)q−2Qq

ti(u) du

6max(cq; 2)
n−1∑
r=0

n∑
i=1

∫ �r

0
(r + 1)q−2Qq

i (u) du

6max(cq; 2)
n∑

i=1

∫ 1

0
(min(� −1(u); n))q−1Qq

i (u) du:

Condition under which the hypothesis (5.3) is satis�ed. We say that a sequence
(Uq)q∈N satis�es the convexity condition (H0), if for every integers q and p such that
26p6q− 1

Ũp6Ũ
(p−2)=(q−2)
q Ũ

(q−p)=(q−2)
2 : (H)

A Technical Lemma. If the sequence (Ũ q)q¿0 satis�es (H0); then it satis�es also
condition (5.3).
In fact, for any m: 26m6q − 1, condition (H0) together with some elementary

calculations yields

(Ũ
m=2
2 ∨ Ũm)(Ũ

(q−m)=2
2 ∨ Ũ q−m)6max(Ũ

q=2
2 ; Ũ

m=2
2 Ũ q−m; ŨmŨ

(q−m)=2
2 ; Ũ mŨ q−m)

6 (Ũ
q=2
2 ∨ Ũ q):

Remark. If the coe�cients (Cr;p(t1))p de�ned as in Lemma 15 satisfy (H0), then the
sequence

Ṽq(n) =
n∑

t1=1

n−1∑
r=0

(r + 1)q−2Cr; q(t1);

satis�es (5.3). Let us check this remark. Using (H0) and some elementary estimations,
we obtain

Ṽ p(n)6Ṽ
(p−2)=(q−2)
q (n)Ṽ

(q−p)=(q−2)
2 (n):

Thus condition (H0) holds for (Ṽ p(n))p which satis�es also (5.3).

Proof of Theorem 1. By induction on q, and using Lemmas 14, 15 and condition (2.12),
it is easy to check that Aq(n)6Cqnq=2. Hence Theorem 1 follows from (5.9).
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Proof of Lemma 3. The proof of this lemma follows easily from the inequalities
(5.10),(5.13) and (5.9) applied with q= 2 and 4.

Proof of Theorem 2. Condition (H1) together with Lemmas 14 and 15 yields

Aq(n)6
q−1∑
m=1

Am(n)Aq−m(n) + Ceq
Mq−2n
n−1∑
r=0

(r + 1)q−2�r:

So that the sequence (Aq(n))q satis�es (5.2) with

Ṽq(n) = CMq−2n
n−1∑
r=0

(r + 1)q−2�r:

Hence it remains to check condition (5.3). This follows from the technical lemma and
from the remark below (since the sequence (CMq−2�r)q satis�es (H0)).

Proof of Theorem 3. As in the proof of Theorem 2, it su�ces to note that the sequence
Ṽ p(n):=max(cp; 2)

∑n
i=1

∫ 1
0 [min(�

−1(u); n)]p−1Qp
i (u) du satis�es (5.3).

Proof of Lemma 1. Let g; f be some �xed functions in I; then there exist u; v ∈ N∗

and xi; x′j¿0 such that

g(y1; : : : ; yu) = gx1 (y1) : : : gxu(yu) and f(y1; : : : ; yv) = gx′1 (y1) : : : gx′v (yv);

where the functions (gx)x∈R+ are de�ned as in (2.5). For �xed x¿0 and a¿0, let

fx(y) = 5y¿x − 5y6−x +
(y
a
− x

a
+ 1
)
5x−a¡y¡x +

(y
a
+

x
a
− 1
)
5−x¡y¡−x+a:

Clearly, Lip(fx) = a−1 and ||fx||∞ = 1. Hence Lip(h)6a−1; Lip(k)6a−1, where

h(y1; : : : ; yu) = fx1 (y1) : : : fxu(yu); k(y1; : : : ; yv) = fx′1 (y1) : : : fx′v (yv):

Consider now, i16 · · ·6iu6iu + r6j16 · · ·6jv and set

Cov(h; k):=Cov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv)):

On the one hand, the (�L0 ;L0 ∩ L1 ∩ C1b;  c;1) (resp: (�L0 ;L0 ∩ L1 ∩ C1b;  c; 2))-
weak dependence yields

|Cov(h; k)|61
a
c(u; v)�L0; r

(
resp: |Cov(h; k)|6 1

a2
c(u; v)�L0; r

)
:

On the other hand, inequalities (2.9) and (5.1) yield

|Cov(g; f)− Cov(h; k)|68Ca�(u+ v):

Hence the two last inequalities yield

|Cov(g; f)|6 8Ca�(u+ v) +
1
a
c(u; v)�L0; r

(resp: |Cov(g; f)|68Ca�(u+ v) +
1
a2

c(u; v)�L0; r ):

The proof of Lemma 1 follows then by setting, in the above inequality,

a=
(
c(u; v)�L0; r

8C(u+ v)

)1=(1+�)
(
resp: a=

(
c(u; v)�L0; r

8C(u+ v)

)1=(2+�)
)

:
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Proof of Corollary 1. Theorem 2 written with q= 2p yields

ES2pn 6
(2p)!
2p

(
4p− 2
2p− 1

)
e2p
[M2p;n ∨Mp

2; n]: (5.18)

Hence, inequality (5.18) together with condition (H2) implies

ES2pn 6
(4p− 2)!
(2p− 1)!

((
2An

�2

)p
∨ An

(2p)!
�2p

)

6
(4p− 2)!
(2p− 1)!max(An; Ap

n )
(2p)!
�2p

6max(An; Ap
n )
(4p)!
�2p

:

From Stirling formula and the fact that An¿1, we obtain

P(|Sn|¿x)6
ES2pn
x2p

6
Ap
n

x2p�2p
e1=12−4p

√
8�p(4p)4p

6 e1=12
√
8�
(
16
x�
e−7=4p2

√
An

)2p
:

Now setting h(y) = (Cny)4y with C2n = (16=x�)e
−7=4√An, one obtains

P(|Sn|¿x)6e1=12
√
8�h(p):

De�ne the convex function g(y) = log h(y). Clearly inf y∈R+ g(y) = g(1=eCn).
Suppose that eCn61 and let p0 = [1=eCn], then

P(|Sn|¿x)6e1=12
√
8�h(p0)6e4+1=12

√
8� exp

( −4
eCn

)
:

Suppose now that eCn¿1, then 16e4+1=12
√
8� exp(−4=eCn).

The above estimations then prove Corollary 1.

6. Proofs for the examples

6.1. Associated sequences

Before adapting our moment inequalities to associated sequences we recall some
basic lemmas.

Lemma 17 (Newman, 1984). Let (Xn)n∈N be an associated sequence. Let h; k; h1; k1
be some real-valued functions; such that the functions h1 − h; h1 + h; k1 − k; k1 + k
are nondecreasing. Then

||Cov(h(Xi; i ∈ A); k(Xi; i ∈ B))|6Cov(h1(Xi; i ∈ A); k1(Xi; i ∈ B)):
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In particular, there holds

Lemma 18 (Birkel, 1988b). If (Xn)n∈N is a sequence of associated r.v.s; then for all
real-valued functions h; k ∈ C1b ; there holds

|Cov(h(Xi; i ∈ A); k(Xi; i ∈ B))|6
∑
i∈A

∑
j∈B

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

∣∣∣∣
∣∣∣∣ @k@xj

∣∣∣∣
∣∣∣∣
∞
Cov(Xi; Xj):

Proof of Lemma 4. Lemma 4 is an immediate consequence of Lemmas 17 and 18.

Proof of Lemma 5. Let B be the covariance quantity de�ned as in (5.15). Lemma 17
yields B6q2
r . This implies the (
;I;  )-weak dependence with  (h; k; u; v)=(u+v)2.

Proof of Theorem 4. Let Cr; q(f) be the coe�cient associated to the sequence (f(Xi))i.
On the one hand, it is obvious that Cr; q(f)62||f||q−1∞ supi∈N E|f(Xi)|. On the other,
Cr; q(f)6q2||f||q−2∞ ||f′||2∞sup|i−j|¿r Cov(Xi; Xj) (cf. Lemma 18). Thus

Cr; q(f)6q2||f||q−2∞ min

{
||f′||2∞ sup

|i−j|¿r
Cov(Xi; Xj); ||f||∞ sup

i∈N
E|f(Xi)|

}
:

Hence condition (H1) of Theorem 2 holds and now Theorem 4 is proved.

6.2. Gaussian sequences

Lemma 8 is a consequence of the following.

Lemma 19. If (Xn)n∈N is a Gaussian centered process; then for all real-valued
functions h; k in C1b ∩ L∞;

|Cov(h(Xi; i ∈ A); k(Xi; i ∈ B))|6
∑
i∈A

∑
j∈B

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

∣∣∣∣
∣∣∣∣ @k@xj

∣∣∣∣
∣∣∣∣
∞

|Cov(Xi; Xj)|: (6.1)

De�ne the process (Yn)n∈N

Yn = f(Xn)− Ef(Xn); (6.2)

where f is a bounded function with bounded �rst derivative. Lemma 19 yields

Lemma 20. De�ne the sequence (Yn) as in (6:2). Then

|Cov(Yt1 : : : Ytm ; Ytm+1 : : : Ytq)|6||f||q−2∞ ||f′||2∞
m∑
i=1

q∑
j=m+1

|Cov(Xti ; Xtj)|:

Even if we think that inequality (6.1) certainly exists in the literature (but we did
not meet it) we prove Lemma 19, our guideline for its proof is Pitt (1982). Let h and
k be two di�erentiable functions with bounded partial derivative, X = (X1; : : : ; Xn) be
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a Gaussian centered vector with non-singular covariance matrix �= (�i; j). Pitt (1982)
proves that

Cov(h(X ); k(X )) =
∫ 1

0
F ′(�) d�; (6.3)

with

F ′(�) =
1
�

∫
Rn

�(x)

{∑
i; j

�i; j
@h(x)
@xj

@k(�; x)
@xj

}
dx; (6.4)

where � denotes the density of X; k(�; x) =
∫
k(�x − y)��(y) dy, and ��(x) =

(1− �2)−n=2�((1− �2)−1=2x). Now, the partial derivative @k(�; x)=@xj exists and∣∣∣∣
∣∣∣∣@k(�; :)@xj

∣∣∣∣
∣∣∣∣
∞
6�

∣∣∣∣
∣∣∣∣@k(�; :)@xj

∣∣∣∣
∣∣∣∣
∞

∫
��(y) dy6�

∣∣∣∣
∣∣∣∣@k(�; :)@xj

∣∣∣∣
∣∣∣∣
∞

: (6.5)

Inequalities (6.3)–(6.5) yield

|Cov(h(X ); k(X ))|6
∑
i; j

�i; j

∣∣∣∣
∣∣∣∣ @h@xi

∣∣∣∣
∣∣∣∣
∞

∣∣∣∣
∣∣∣∣ @k@xj

∣∣∣∣
∣∣∣∣
∞

: (6.6)

Now, we may omit the restrictive condition that � is non-singular. Let X =(X1; : : : ; Xn)
be a Gaussian vector with covariance matrix � and X (�) be the Gaussian vector with
non-singular covariance matrix �� = � + �I , where I is the identical matrix. X (1=k)

converges in distribution to X as k tends to ∞. So that for bounded functions h and k,

lim
k→+∞

Cov(h(X (1=k)); k(X (1=k))) = Cov(h(X ); k(X )):

Lemma 19 holds then taking the limit in the inequality (6.6) which is satis�ed by
X (1=k).

6.3. Bernoulli shifts

Proof of Lemma 9. De�ne for i16 · · ·6iu ¡ iu+r6j16 · · ·6jv; A={i1; : : : ; iu}; B=
{j1; : : : ; jv} and for h; k ∈ L; hA(X )=h(Xi ; i ∈ A); U (p)

i =F(�i−j5|j|¡p: j ∈ Z). Finally
let X (p)

i = U (p)
i − EU (p)

i , where p is an arbitrary positive interger p. Clearly,

Cov(hA(X ); kB(X )) = Cov(hA(X )− hA(X (p)); kB(X ))

+Cov(hA(X (p)); kB(X )− kB(X (p)))

+Cov(hA(X (p)); kB(X (p))): (6.7)

We now consider those three terms.

• First, note that hA(X (p)) is a measurable function of {�i; i1 − p¡ i¡ iu + p} and
that kB(X (p)) is a measurable function of {�i; j1−p¡ i¡jv+p}. The sequence (�i)
is independent, so that Cov(hA(X (p)); kA(X (p))) = 0, as soon as iu + p6iu + r − p,
i.e. p6r=2.

• since h; k belong to the set L, we deduce that

|Cov(hA(X )− hA(X (p)); kB(X ))|6 2||k||∞E|hA(X )− hA(X (p))|
6 4u||k||∞�pLip(h);
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the last inequality is obtained from (5.1). The last term of Eq. (6.7) is analogously
bounded.
Hence, the proof of Lemma 9 follows by taking p= r=2.

6.4. Models with a Markovian representation

Proof of Lemma 10. Using notations from the previous section we also set EhB(X x)
for the conditional expectation of h(Xi; i ∈ B) given Xiu = x. Markov’s property yields

Cov(hA(X ); kB(X )) =
∫

::
∫

h(xi1 ; : : : ; xiu)(EkB(X
xu)− EkB(X )) dP(xi1 ; : : : ; xiu):

Clearly,

|EkB(X xu)− EkB(X )|6
∫

�(dx)|kB(X xu)− kB(X x)|

6 Lip(k)
∑
i∈B

∫
�(dx)E|X xu

i − X x
i |:

Hence we obtain, by induction and using Property (C1) (we recall that for all i ∈ B;
i − iu¿r)

E|X xu
i − X x

x |6�i−iu |xu − x|6�r|xu − x|:
Hence∫ ∫

�(dxu)� (dx)E|X xu
i − X x

i |6�r
∫ ∫

�(dxu)�(dx)|xu − x|62�rE|X0|:

The lemma is so proved.
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