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Abstract

We establish Lamperti representations for semi-stable Markov processes in locally compact groups. We
also study the particular cases of processes with values in R and C under the hypothesis that they do not
visit 0. These Lamperti representations yield some properties of these semi-stable Markov processes.
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1. Introduction

Semi-stable Markov processes were introduced by Lamperti in [10], as particular processes
taking their values in R+. Let α > 0 be fixed. A Markov process X , with values in R+, is called
an α-semi-stable Markov process, in the sense of Lamperti, if its transition function satisfies

Pat (x, A) = Pt (a
−αx, a−α A) (1)
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for any a > 0, x > 0, A ∈ B(R+). Then (see [10,1]) there exists a Lévy process ξ , such that the
following Lamperti representation holds

eξt = X At , At =

∫ t

0
eα−1ξs ds.

The Lamperti representation obtained in [10] has proved to be very useful in the studies of
the exponential functionals of Brownian motion, hyperbolic Brownian motion, windings of
planar Brownian motion, Brownian motion in random media and in the studies of self-similar
fragmentations.

In order to extend the above definitions to processes with values in R and more generally in
Rd different ways have been proposed. Kiu [8,9] extended some results of [10] to Rd , d ≥ 1, by
defining an α-semi-stable Markov process as a Markov process with a transition function such
that (1) holds, but now x ∈ Rd , and A ∈ B(Rd). Graversen and Vuolle-Apiala in [4] considered
the additional condition of isotropy for semi-stable Markov processes in Rd

\ {0}, d ≥ 2. This
means that

Pt (x, A) = Pt (φ(x), φ(A))

for any x ∈ Rd , A ∈ B(R) and φ ∈ O(d), where O(d) denotes the group of orthogonal
transformations on Rd . Under this condition they obtained a skew product representation for
this type of Markov processes. Yet another extension to Rd

+ was proposed by Jacobsen and Yor
in [7] which also leads to Lamperti representation for semi-stable Markov processes in Rd

+.
In this paper we complete the line of research of [10,9] and [4] by obtaining Lamperti

representations for semi-stable Markov processes in R∗
= R \ {0}, C∗

= C \ {0} and more
generally in a locally compact group with a countable basis for its topology. We give what
seems to be a new definition of α-semi-stable Markov processes in R∗ and I -semi-stable
Markov processes, the latter being processes with a locally compact group G as state space
with I : G → R+ a homomorphism. A particular example of such defined semi-stable Markov
processes in R∗ was studied in [5] and lies at the source of inspiration for this work.

Here are some details about the organisation of the rest of the paper. First of all we study
multiplicative Lévy processes in R∗ and C∗ using and extending the results from [13] and [11].
Then we exhibit an intimate relation between semi-stable Markov processes and multiplicative
Lévy processes which extends an analogous result in [9]. Multiplicative Lévy processes in R∗

and C∗ are in fact semimartingales just as their additive counterparts—the Lévy processes. This
fact permits us to use stochastic calculus techniques to prove our results. Our main result given
by Theorem 16 generalises some known results in the literature and the examples studied in this
paper. It also permits us to study semi-stable Markov processes in Lie groups using properties of
corresponding Lévy processes in Lie groups. We hope to study a number of such examples in a
subsequent paper.

2. Statement of results

Notation 1. Let X be a Markov process with state space E. As in [7] X (x) denotes X starting
from the given state x ∈ E. In general X (x) can be defined on different probability spaces. Only
in special cases (3), (6), (10), (12) and (15) is it possible to define X (x) on the same probability
space simultaneously for all x. Conversely (X (x))x∈E will be called a Markov process if all
X (x) (possibly defined on different probability spaces) enjoy the Markov property with the same
transition function.
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2.1. Multiplicative Lévy processes and semi-stable Markov processes in R∗ and C∗

Definition 2. Let α > 0 be fixed. A Markov process (X (x))x∈R∗ , respectively (X (x))x∈C∗ , with
state space R∗, respectively C∗, is called a real α-semi-stable Markov process, respectively a
complex α-semi-stable Markov process, if for any c ∈ R∗, respectively c ∈ C∗, and any initial
state x ∈ R∗, respectively x ∈ C∗,

(cX
( x

c )

t )t≥0
(d)
= (X (x)

|c|
1
α t

)t≥0. (2)

Note that in the complex case our definition is equivalent to the definition of a semi-stable
Markov process in R2

\ {0} as a rotation-invariant strong Markov process with scaling property
as in [4]. From now on, for simplicity, we fix α =

1
2 . Obviously the results of this paper can be

extended to any α > 0. We now present a slightly modified definition of a multiplicative process
as given in [13] and [11].

Definition 3. A process Z with state space R∗, respectively C∗, càdlàg in R∗ (respectively in
C∗), Z0 = 1, is called a multiplicative Lévy process if for any t > 0, h > 0 Z t+h Z−1

t is
independent from Ft = σ {Zu, u ≤ t} and the law of Z t+h Z−1

t does not depend on t .

Note that X t is càdlàg in R∗ (respectively in C∗) implies that X t− ∈ R∗ (X t− ∈ C∗) for any
t > 0. Let Z be a multiplicative Lévy process in R∗ (respectively in C∗). Define

Z (x)
t := x Z t , (3)

then from the results in ([11], Section 1.1) (Z (x))x∈R∗ (respectively (Z (x))x∈C∗ ) is a Feller
process.

For multiplicative Lévy processes in R∗ we obtain a representation given in the following
theorem.

Theorem 4. Let Z be a multiplicative Lévy process with state space R∗. Then there exists a Lévy
process ξ , ξ0 = 0, and a compound Poisson process NU

t :=
∑

k≤Nt
Uk , obtained from a Poisson

process N and an i.i.d. sequence (Uk)k≥1, such that

Z t = exp(ξt + NU
t + iπ Nt ) (4)

and (ξt )t≥0, (Nt )t≥0, (Uk)k≥1 are independent.
The converse is true, i.e. let ξ , ξ0 = 0 be a Lévy process, NU

t be a compound Poisson process
independent from ξ , then Z defined by (4) is a multiplicative Lévy process in R∗.

In order to prove Theorem 4, we need the following lemma.

Lemma 5. Let Z be a multiplicative Lévy process with state space R∗. Then Z is a
semimartingale and there is at most a finite number of sign switching jumps (i.e. Zs Zs− < 0) in
any finite interval [0, T ], T < ∞.

The correspondence between multiplicative Lévy processes and semi-stable Markov
processes is given by

Theorem 6. (a) Let Z with state space R∗ be a multiplicative Lévy process and∫
∞

0
(Zs)

2ds = +∞ a.s. (5)



860 O. Chybiryakov / Stochastic Processes and their Applications 116 (2006) 857–872

Define X (x)
t by

X (x)∫ u
0 (Z (x)

v )2dv
= Z (x)

u , (6)

where Z (x)
t is defined by (3), then (X (x))x∈R∗ is a 1

2 -semi-stable strong Markov process with
state space R∗, càdlàg in R∗. Furthermore for any x ∈ R∗∫

∞

0

ds

(X (x)
s )2

= ∞ a.s.

(b) Conversely let (X (x))x∈R∗ be a 1
2 -semi-stable strong Markov process with state space R∗

which is càdlàg in R∗ and∫
+∞

0
ds

1

(X (x)
s )2

= +∞ (7)

for all x ∈ R∗. Define Z t by

Z∫ t
0 ds 1

(X(x)
s )2

=
1
x

X (x)
t ,

then Z is a multiplicative Lévy process with a distribution that does not depend on x.

Corollary 7. Let Z be a multiplicative Lévy process in R∗ verifying (5). Then the corresponding
1
2 -semi-stable Markov process (X (x))x∈R∗ defined by (6) is a Feller process with state space R∗.

Similarly to the real case, we obtain the two following theorems and corollary.

Theorem 8. Let Z be a multiplicative Lévy process with state space C∗. Then there exists a
two-dimensional Lévy process (ξ, η), ξ0 = 0, η0 = 0, such that

Z t = exp(ξt + iηt ). (8)

The converse is true, i.e. let (ξ, η) be a two-dimensional Lévy process, ξ0 = 0, η0 = 0, then
Z defined by (8) is a multiplicative Lévy process in C∗.

Theorem 9. (a) Let Z with state space C∗ be a multiplicative Lévy process and∫
∞

0
|Zs |

2ds = +∞ a.s. (9)

Define X (x)
t by

X (x)∫ u
0 |Z (x)

v |2dv
= Z (x)

u , (10)

where Z (x)
t is defined by (3), then (X (x))x∈C∗ is a 1

2 -semi-stable strong Markov process with
state space C∗, càdlàg in C∗. Furthermore for any x ∈ C∗∫

∞

0

ds

(X (x)
s )2

= ∞ a.s.

(b) Conversely let (X (x))x∈C∗ be a 1
2 -semi-stable strong Markov process with state space C∗

which is càdlàg in C∗ and∫
+∞

0
ds

1

|X (x)
s |2

= +∞ (11)
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for all x ∈ C∗. Define Z t by

Z∫ t
0 ds 1

|X(x)
s |2

=
1
x

X (x)
t ,

then Z is a multiplicative Lévy process with a distribution that does not depend on x.

Corollary 10. Let Z be a multiplicative Lévy process in C∗ verifying (9). Then the corresponding
1
2 -semi-stable Markov process (X (x))x∈C∗ defined by (10) is a Feller process with state space C∗.

The condition: (X t and X t− 6= 0) can be weakened by considering a killed version of X : start
with a Markov process defined on R which has the semi-stability property (2). Denote

ζ = inf{t > 0 | X t = 0 or X t− = 0}.

It is clear that if X is a 1
2 -semi-stable Markov process in R that may hit 0, then X2

=

((X (x)
t )2)t≥0,x∈R∗ verifies (2) with α = 1. Denote by Pt (x, dy) the semigroup of X . Then

from (2)

Pt (x, A ∪ −A) = Pt (−x, A ∪ −A)

for any A ∈ B(R). Hence X2 is a Markov process and ζ = ζ ′, where

ζ ′
= inf{t > 0 | X2

t = 0 or X2
t− = 0}.

Now one can use some of the results obtained by Lamperti in [10] for positive semi-stable
Markov processes, in particular:

Lemma 11. (i) Either Px (ζ < ∞) = 1 for all x ∈ R∗, or else Px (ζ < ∞) = 0 for all x ∈ R∗.
(ii) Denote At :=

∫ t
0 ds 1

X2
s
. In the case Px (ζ < ∞) = 0 for all x > 0

Px ( lim
t→∞

At = ∞) = 1, x ∈ R∗.

Hence there are only two cases for semi-stable Markov processes in R: either Px (ζ < ∞) = 0
for all x ∈ R∗, or Px (ζ < ∞) = 1 for all x ∈ R∗. Due to (ii) in Lemma 11 in the first case
the condition (7) is true and Theorem 6 can be applied. If Px (ζ < ∞) = 1 in order to apply
our results one should work with the process X killed at time T0 = ζ . The complex case can be
treated similarly.

2.2. Multiplicative Lévy processes and semi-stable Markov processes in general settings

Let (G, ∗) be a locally compact group whose topology admits a countable basis and e denotes
the neutral element of the group G. For convenience, we will write ab as short for a ∗ b.

Definition 12. (a) A process Z with state space G, càdlàg in G, Z0 = e, is called a left Lévy
process if for any t > 0, h > 0 Z−1

t Z t+h is independent from Ft = σ {Zu, u ≤ t} and the
law of Z−1

t Z t+h does not depend on t .
(b) A process Z with state space G, càdlàg in G, Z0 = e, is called a right Lévy process if for

any t > 0, h > 0 Z t+h Z−1
t is independent from Ft = σ {Zu, u ≤ t} and the law of Z t+h Z−1

t
does not depend on t .

The discussion of left and right Lévy processes is given in ([11], Section 1.1). The results in
([11], Section 1.1) imply the following lemma which we will need in the proof of Theorem 16.
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Lemma 13. Let Z be a left Lévy process in G. Define

Z (x)
t := x Z t , (12)

then (Z (x))x∈G is a Feller process with state space G. Furthermore for any finite stopping time
τ the process ((Z (x)

τ )−1 Z (x)
τ+t )t≥0 is independent from Fτ and has the same law as (Z (1)

t )t≥0.

Remark 14. In Definition 12(a) one might require only that Z is continuous in probability in G,
and not necessarily that Z is càdlàg in G. Then Pt , defined by

Pt f (x) = E f (x Z t ),

for x ∈ G and f ∈ C0(G), is a Feller semigroup due to the dominated convergence theorem.
Therefore there is a càdlàg modification of Z and Z−1

0 Z is a left Lévy process. The same is true
for Definition 12(b).

Now let us fix a homomorphism of groups (G, ∗) and (R+, ·)I : (G, ∗) → (R+, ·) i.e.

• I (e) = 1,
• I (ab) = I (a)I (b).

We suppose that I is continuous on G.

Definition 15. (a) A Markov process (X (x))x∈G with state space G is called a left I -semi-stable
Markov process if for any c ∈ G and any initial state x ∈ G

(cX (c−1x)
t )t≥0

(d)
= (X (x)

I (c)t )t≥0. (13)

(b) A Markov process (X (x))x∈G with state space G is called a right I -semi-stable Markov
process if for any c ∈ G and any initial state x ∈ G

(X (xc−1)
t c)t≥0

(d)
= (X (x)

I (c)t )t≥0.

For x ∈ G, A ∈ B(G) (B(G)-Borel σ -algebra in G) let Pt (x, A) be a transition function of a
left I -semi-stable Markov process then (13) is equivalent to

PI (c)t (x, A) = Pt (c
−1x, c−1 A).

Note that if Z is a left Lévy process, then Z−1 is a right Lévy process, and vice versa.
Obviously the same is true for I -semi-stable Markov processes, i.e. if X is a left I -semi-stable
Markov process, then X−1 is a right I -semi-stable Markov process, and vice versa. If G is
Abelian then left and right I -semi-stable Markov processes (Lévy processes) coincide. From
now on we consider only left Lévy processes and left I -semi-stable Markov processes.

Theorem 16. (a) Let Z with state space G be a left Lévy process and∫
∞

0
I (Zs)ds = +∞ a.s. (14)

Define X (x)
t by

X (x)∫ u
0 I (Z (x)

v )dv
= Z (x)

u , (15)
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where Z (x)
t := x Z t , then (X (x))x∈G is a left I -semi-stable strong Markov process with state

space G and càdlàg in G. Furthermore for any x ∈ G∫
∞

0

ds

I (X (x)
s )

= ∞ a.s. (16)

(b) Conversely let (X (x))x∈G be a left I -semi-stable strong Markov process with state space G
which is càdlàg in G and∫

+∞

0
ds

1

I (X (x)
s )

= +∞ (17)

for all x ∈ G. Define Z t by

Z∫ t
0 ds 1

I (X(x)
s )

= x−1 X (x)
t ,

then Z is a left Lévy process with a distribution that does not depend on x.

Corollary 17. Let Z be a left Lévy process in G verifying (14). Then the corresponding left
I -semi-stable Markov process (X (x))x∈G defined by (15) is a Feller process with state space G.

Example 18. • Let G = R+ with operation of product and I (x) = x
1
α . We get the classical

definition of α-semi-stable Markov process due to Lamperti.

• Let G = R∗ with the product operation and I (x) = |x |
1
α . We get Definition 2.

• Let G = C∗ with the product operation of complex numbers and I (x) = |x |
2 i.e. for any

c ∈ C∗, x ∈ C∗

(cX (xc−1)
t )t≥0

(d)
= (X (x)

|x |2t
)t≥0.

We get a definition of a semi-stable Markov process as a rotation-invariant strong Markov
process with scaling property as in [4].

• Let G = Rn
+ and define the operation ∗ for x = (x1, . . . , xn), y = (y1, . . . , yn)

x ∗ y = (x1 y1, . . . , xn yn)

and take I (x) = x1x2 . . . xn then we get the definition of a semi-stable Markov process
from [7].

• Let G = Rn
\ {0} and define the operation ∗ for x = (x1, . . . , xn), y = (y1, . . . , yn)

x ∗ y = (x1 y1, . . . , xn yn)

and take I (x) = |x1x2 . . . xn|.
• Let G be the Lie group GL(n, R) (for the study of left Lévy processes in GL(n, R) we refer

to [11], Section 1.5). For x ∈ G let I (x) = | det x |, then we get a left I -semi-stable Markov
process in GL(n, R).

3. Examples

In this section we give two examples of semi-stable Markov processes which were studied in
the literature. The first example is the planar Brownian motion

B = B1
+ iB2,
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where B1, B2 are independent real valued Brownian motions (see [3,2,12]). Since {0} is a polar
set for this process the planar Brownian motion is a 1

2 -semi-stable Markov process in C∗. One
can easily get

Bt = exp
(

C∫ t
0

ds
|Bs |2

)
,

where C is still a planar Brownian motion.
Another example is the Dunkl process X which is a real-valued Feller process with the

infinitesimal generator of the form

Lk f (x) =
1
2

f ′′(x) + k

(
1
x

f ′(x) +
f (−x) − f (x)

2x2

)
,

where f ∈ C2(R) (see [5]). Suppose that ν = k −
1
2 ≥ 0 then the Dunkl process is a 1

2 -semi-
stable Markov process with the Lamperti representation

X (x)
t = xYAt ,

where At =
∫ t

0
ds
X2

s
, Yu = exp(βu + νu + iπ N (λ)

u ), λ =
k
2 , x 6= 0 and (N (λ)

u ) is a Poisson process

with parameter λ, (βu) is a Brownian motion, and N (λ) and β are independent.

4. Proofs

4.1. Proofs of Lemma 5, and Theorem 8

Proof of Lemma 5. Let Z be an R∗-valued multiplicative Lévy process, then for any t > 0
Z t− 6= 0. Define

Ut := ln |Z t |,

then U is a Lévy process on R (in particular, it is càdlàg, finite with all left-limits finite), hence
it is (almost surely) bounded on any finite interval and consequently Z itself is bounded away
from 0 on any finite time interval and |Z | is a semimartingale. Therefore for any T > 0 there is
a random variable CT > 0 such that |Z t | > CT , t ∈ [0, T ]. Let τ ∈ [0, T ] be the time of a sign
switching jump, i.e. Zτ Zτ− < 0, then |1Zτ | > 2CT . Hence there is only a finite number of sign
switching jumps on any finite interval and the following process is correctly defined

Z0
t :=

∏
s≤t,Zs Zs−<0

Zs

Zs−
=

∏
sk≤t

Zsk

Zsk−

,

the sk denoting the times at which there is a sign change for Z with 0 < s1 < s2 < · · ·. Then Z0

is a multiplicative Lévy process with piecewise constant trajectories. Define Uk by

Zsk

Zsk−

= −eUk = eUk+iπ ,

then

Z0
t = exp

∑
sk≤t

(Uk + iπ)
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and
∑

sk≤t (Uk + iπ) is a Lévy process with piecewise constant trajectories so it is a compound
Poisson process. Hence Z0 is a semimartingale. Recalling that Z0 ≡ Z0

0 ≡ 1 one has

Z t = |Z t |Z
0
t exp −

∑
sk≤t

Uk .

∑
sk≤t Uk is also a compound Poisson process and we have seen that |Z | is a semimartingale.

Therefore Z is a semimartingale. �

Proof of Theorem 8. In order to prove Theorem 8 we extend the proof given in ([13], p. 242).
Obviously if (ξ, η) is a two-dimensional Lévy process, ξ0 = 0, η0 = 0, then Z , as defined by (8),
is a multiplicative Lévy process, so it remains to show that if Z is a multiplicative Lévy process
in C∗, then the representation (8) holds.

Now let T be the group of real numbers of [0, 1[ with operation + (mod 1), S1
:= {z ∈

C∗
‖z| = 1}. The distance on T is defined by r(x, y) := min(|x − y|, 1 − |x − y|). Then T is the

quotient space [0, 1]/ ∼, where ∼ is defined by

x ∼ y ⇐⇒ x − y = 0 (mod 1).

Define f : T → S1 by f (x) := ei2πx , with inverse

g(z) =
1

2π
arg z. (18)

Then f and g establish a homeomorphism T ∼= S1. Let us construct the following path
transformation S from the set of càdlàg trajectories on T to the set of càdlàg trajectories on
R. Let xt be a càdlàg trajectory on T such that x0 = 0. Define the following times

τ0 = 0,

τk+1 = inf
{

t > τk | r(xτk , xt ) ≥
1
4

}
,

then τk → ∞ as k → ∞. Define a function from T to R by

~(x) :=

{
x, if x < 1/2,

x − 1, if x ≥ 1/2.

One can check that if r(x, 0) < 1
4 , r(y, 0) ≤

1
4 then

~(x + y) = ~(x) + ~(y). (19)

If τk ≤ t < τk+1 define

Sxt :=

∑
1≤i≤k

[~(xτi − − xτi−1) + ~(xτi − xτi −)] + ~(xt − xτk ). (20)

Since ~(x) = x (mod 1) Sxt = xt (mod 1). Sxt is a càdlàg trajectory on R because ~ is a
continuous map from T (with distance r ) to R.

Let πn
t be a partition of [0, t], i.e. πn

t = {t0, t1, . . . , tn} and 0 = t0 < t1 < · · · < tn = t .
Denote |πn

t | := sup0<i≤n |ti − ti−1|. Let us prove the following formula

Sxt = lim
|πn

t |→0

n∑
i=1

~(xti − xti−1). (21)
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Suppose that |πn
t | is small enough so that there are at least two points t j in any ]τi , τi+1[ and

]τk, t[. For any τi let mi , li be such that tmi < τi−1 ≤ tmi +1 < · · · < tli < τi ≤ tli +1. Using (19)
and the fact that xt is càdlàg one obtains

li∑
j=mi +2

~(xt j − xt j−1) = ~(xtli
− xtmi +1) → ~(xτi − − xτi−1), as |πn

t | → 0.

Moreover, it holds:

~(xtli +1 − xtli
) → ~(xτi − xτi −), as |πn

t | → 0.

Let mk be such that tmk < τk ≤ tmk+1 < · · · < tn = t ; then

n∑
j=mk+2

~(xt j − xt j−1) = ~(xt − xtmk+1) → ~(xt − xτk ), as |πn
t | → 0.

Finally one gets (21). By taking partitions π̄n
t = πn

t ∪ {s}, from (21) we get for s < t that

Sxt − Sxs = lim
|π̄n

t |→0

n∑
i=1,ti >s

~(xti − xti−1). (22)

Let Z t be a multiplicative Lévy process in C∗. Define

ξt := ln |Z t |, ξ0 = 0

and

ζt := g

(
Z t

|Z t |

)
, ζ0 = 0,

where g is given by (18), then for any s < t ξt − ξs = ln |
Zt
Zs

| and ζt − ζs =
1

2π
arg Zt

Zs
(mod 1)

are measurable with respect to Ft := σ(Zu, u ≤ t) and independent from Fs . Furthermore the
joint distribution of ξt − ξs and ζt − ζs depends on t and s only through t − s. This implies by
(21) that Sζt − Sζs is measurable with respect to Ft := σ(Zu, u ≤ t) and independent from Fs .
Let j ∈ π̄n

t be such that t j−1 = s, then for any λ, µ ∈ C

Eeµ(ξt −ξs )+λ(~(ζt j −ζt j−1 )+···+~(ζtn −ζtn−1 ))
= Eeµ(ξt j −ξt j−1 )+λ~(ζt j −ζt j−1 )

× · · · × Eeµ(ξtn −ξtn−1 )+λ(ζtn −ζtn−1 )

which is equal to

Eeµ(ξt j −s−ξt j−1−s )+λ~(ζt j −s−ζt j−1−s )
× · · · × Eeµ(ξtn−s−ξtn−1−s )+λ~(ζtn−s−ζtn−1−s )

and finally

Eeµ(ξt −ξs )+λ(~(ζt j −ζt j−1 )+···+~(ζtn −ζtn−1 ))
= Eeµξt−s+λ(~(ζt j −s−ζt j−1−s )+···+~(ζtn−s−ζtn−1−s )).

(23)

Note that {t j−1 − s, . . . , tn − s} is a partition of [0, t − s]. Passing to the limit in (23) as |π̄n
t | → 0

one obtains that

Eeµ(ξt −ξs )+λ(Sζt −Sζs ) = Eeµξt−s+λSζt−s .
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Define

ηt = 2π Sζt = 2π S

[
g

(
Z t

|Z t |

)]
.

ξt := ln |Z t | is càdlàg because Z t is càdlàg and Z t− 6= 0. g is continuous and S maps càdlàg
trajectories on T to càdlàg trajectories on R. Therefore ηt is also càdlàg. Finally, one finds that
ξt + iηt is a Lévy process on C and

Z t = exp(ξt + iηt ). �

Remark 19. Let yt be a trajectory on the real line. The map yt → eiyt “wraps” the trajectory
round the circle S1. For a given trajectory xt on S1 the map xt → 2π S[g(xt )] “unwraps” the
trajectory xt .

4.2. Proof of Theorems 4 and 8. A stochastic calculus approach

From Lemma 5 and Theorem 8 we have seen that the involved multiplicative Lévy processes
are semimartingales. In this section, we shall assume a priori this semimartingale property.
We will prove Theorem 4 and show that the proof of Theorem 8 can be simplified, thanks to
stochastic calculus.

Lemma 20. Suppose Z is a multiplicative Lévy process, with values in C∗ (or in R∗). Define

Yt :=

∫ t

0

dZs

Zs−
,

then Y is a Lévy process.

Remark 21. Note that because all Zs and Zs− are 6= 0, Yt is well defined and all 1Yt 6= −1.

Proof. One has

Yt+h − Yt =

∫ t+h

t

dZs/Z t

Zs−/Z t
=

∫ h

0

d(Z t+s/Z t )

Z(t+s)−/Z t
=

∫ h

0

dŶs

Ŷs−
,

where Ŷs :=
Zt+s
Zt

is independent from σ(Zu, u ≤ t) and consequently is independent from

σ(Yu, u ≤ t). Since the law of Ŷs does not depend on t , the process Yt is a Lévy process. �

One can write

Z t = 1 +

∫ t

0
Zs−

dZs

Zs−
= 1 +

∫ t

0
Zs−dYs .

We get the Doléans–Dade exponential in complex form as in [6]

Z t = exp
(

Yt −
1
2
〈Y c, Y c

〉t

) ∏
0<s≤t

(1 + 1Ys) exp(−1Ys).

Proof of Theorem 4. Obviously if ξ , ξ0 = 0 is a Lévy process NU
t is a compound Poisson

process independent from ξ , then Z defined by (4) is a multiplicative Lévy process. Let us prove
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the converse. From Lemma 5, Z is a semimartingale. Furthermore, the following process is
correctly defined

Z0
t :=

∏
0<s≤t

(1 + 1Ys)
I{1Ys<−1} =

∏
s≤t

(
Zs

Zs−

)I
{

Zs
Zs−

<0}

= exp

( ∑
0<s≤t, 1Ys<−1

(ln |1 + 1Ys | + iπ)

)
.

One gets

Z1
t :=

Z t

Z0
t

= exp

(
Yt −

∑
0<s≤t,1Ys<−1

1Ys −
1
2
〈Y c, Y c

〉t

+

∑
0<s≤t,1Ys>−1

(ln(1 + 1Ys) − 1Ys)

)

and 〈Y c, Y c
〉t = σ 2t . Obviously the processes

ξt = Yt −

∑
0<s≤t,1Ys<−1

1Ys −
1
2
〈Y c, Y c

〉t +

∑
0<s≤t,1Ys>−1

(ln(1 + 1Ys) − 1Ys),

ηt =

∑
0<s≤t,1Ys<−1

(ln |1 + 1Ys | + iπ)

are Lévy processes that do not jump at the same times and ηt is a compound Poisson process.
Hence these processes are independent. �

Proof of Theorem 8. Let us denote Yt = Y ′
t + iY ′′

t . One has

Z t = exp
(

Y ′
t + iY ′′

t −
1
2
〈Y ′c, Y ′c

〉t +
1
2
〈Y ′′c, Y ′′c

〉t − i〈Y ′c, Y ′′c
〉t

)
×

∏
0<s≤t

(1 + 1Ys) exp(−1Ys),

then

Z t = exp
(

Y ′
t + iY ′′

t −
1
2
〈Y ′c, Y ′c

〉t +
1
2
〈Y ′′c, Y ′′c

〉t − i〈Y ′c, Y ′′c
〉t

)
× exp

(∑
s≤t

ln |1 + 1Ys | + iArg(1 + 1Ys) − 1Y ′
s − i1Y ′′

s

)
,

where for any z ∈ C∗Arg(z) ∈ [0, 2π [ is the principal argument of z. Finally one gets

Z t = exp

(
Y ′

t −
1
2
〈Y ′c, Y ′c

〉t +
1
2
〈Y ′′c, Y ′′c

〉t +

∑
s≤t

[ln |1 + 1Ys | − 1Y ′
s]

)

× exp i

(
Y ′′

t − 〈Y ′c, Y ′′c
〉t +

∑
s≤t

[Arg(1 + 1Ys) − 1Y ′′
s ]

)
and 〈Y ′c, Y ′c

〉t = σ 2
1 t , 〈Y ′′c, Y ′′c

〉t = σ 2
2 t , 〈Y ′c, Y ′′c

〉t = ρσ1σ2t , where |ρ| ≤ 1. �
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Remark 22. Note how different the situation of semi-stable Markov processes which can reach
0 is. They are not even necessarily semimartingales as the well-known example of |Bt |

α, α < 1,
shows.

4.3. Proofs of Theorems 6, 9 and 16 and Corollaries 7, 10 and 17

We give the proofs only for Theorem 16 and Corollary 17. Theorems 6 and 9, Corollaries 7
and 10 follow as particular cases.

Proof of Theorem 16. We follow the proof of the similar result in [7].
(a) As soon as

∫
∞

0 I (Zs)ds = +∞ one gets∫
∞

0
I (Z (x)

s )ds = I (x)

∫
∞

0
I (Zs)ds = ∞,

hence

H (x)
t := inf

{
u ≥ 0 |

∫ u

0
I (Z (x)

s )ds = t

}
(24)

is a.s. finite and (15) determines X (x) uniquely through time substitution by the strictly increasing
and continuous additive functional

A(x)
u =

∫ u

0
I (Z (x)

s )ds.

Therefore X (x) is càdlàg in G. Obviously one has

X (x)
t = Z (x)

H (x)
t

.

Since from Lemma 13 Z is a Feller process it is also a strong Markov process and the process
(X (x))x∈G is also strong Markov. Note that all the processes X (x) for arbitrary x are defined on the
same probability space. Denote Fs := σ {Zu, u ≤ s}, then for any t H (x)

t are Fs-stopping times.
Denote G(x)

t = F
H (x)

t
, then X (x) is G(x)

t adapted. Since A(x)

H (x)
t

= t one has d
dt H (x)

t = 1/I (Z (x)

H (x)
t

)

and

H (x)
t =

∫ t

0
ds

1

I (X (x)
s )

.

Since A(x) increases from 0 to ∞, so does the inverse H (x)
t and (16) follows. One has

H (x)
t = inf

{
u ≥ 0 |

∫ u

0
I (x)I (Zs)ds = t

}
= inf

{
u ≥ 0 |

∫ u

0
I (Zs)ds =

t

I (x)

}
and X (x)

t = x Z Ht/I (x)
, where Ht := H (e)

t . Replacing x by c−1x and t by t/I (c) one gets

cX (c−1x)
t/I (c) = x Z H(t/I (c))/(I (x)/I (c)) = X (x)

t ,

which leads to (13). Let us show that all X (x)
t ’s share the same transition function, i.e. if

Pt (x, ·) = P(X (x)
t ∈ ·),
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then

P(X (x)
t+s ∈ ·|G(x)

t , X (x)
t = y) = Ps(y, ·).

One gets

H (x)
t+s = H (x)

t + H̃s,

where

H̃s = inf

{
u ≥ 0

∣∣∣∣∣
∫ H (x)

t +u

H (x)
t

I (Z (x)
v )dv > s

}

= inf

u ≥ 0

∣∣∣∣∣∣
∫ u

0
I ((Z (x)

H (x)
t

)−1 Z (x)

H (x)
t +v

)dv >
s

I (Z (x)

H (x)
t

)

 . (25)

Since from Lemma 13 conditionally on G(x)
t the law of

(Z (x)

H (x)
t

)−1 Z (x)

H (x)
t +v

is the same as the law of Zv and using (25) one gets

P(X (x)
t+s ∈ ·|G(x)

t , X (x)
t = y) = P(Z (x)

H (x)
t

(Z (x)

H (x)
t

)−1 Z (x)

H (x)
t +H̃s

∈ ·|G(x)
t , X (x)

t = y)

= P(y(Z (x)

H (x)
t

)−1 Z (x)

H (x)
t +H̃s

∈ ·|G(x)
t , X (x)

t = y)

= P(y Z Hs/I (y)
∈ ·|G(x)

t , X (x)
t = y) = P(X (y)

s ∈ ·).

(b) Let (X (x))x∈G be a left I -semi-stable strong Markov process. Consider X (x) for an arbitrary
initial state x . Let y = I (x). Define the process Y (y)

:= I (X (x)), then by (13)(
1
y

Y (y)
yt

)
t≥0

(d)
= (Y (1)

t )t≥0,

where Y (1)
= I (X (e)). Hence the law of Y (y) depends on x only through y = I (x) and (Y (y))t≥0

is a 1-semi-stable strong Markov process. By the result in [10] there exists a real valued Lévy
process ξ such that

exp ξ (a)
u = Y (y)

A(a)
u

, (26)

where A(a)
u =

∫ u
0 dv exp ξ

(a)
v , a = log y, ξ (a)

= ξ + a. As in the proof of (a), one finds that the

inverse of A(a)
u

H (a)
t := inf{u ≥ 0|A(a)

u = t}

satisfies

H (a)
t =

∫ t

0
ds

1

Y (y)
s

. (27)

Hence from (17) limu→∞ A(a)
u = ∞ a.s.
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Define the process Z (x) with values in G by

Z (x)
u = X (x)

A(a)
u

, (28)

in particular from (26) ξ
(a)
u = log I (Z (x)

u ). Let us define Gs := σ {X (x)
u , u ≤ s}. Note that for each

u A(a)
u is Gt -stopping time and Z (x)

u isFu-adapted, whereFu = G
A(a)

u
. As in the proof of Theorem

1(b) in [7] in order to complete the proof let us show that for any u ≥ 0, h > 0 (Z (x)
u )−1 Z (x)

u+h is
independent of Fu with a law that depends on x, u, h through h only. One has that

A(a)
u+h = A(a)

u + inf
{

t ≥ 0 |

∫ t

0
ds/Y (y)

A(a)
u +s

= h

}
.

Therefore by the strong Markov property for X (x), for any x0 ∈ G the conditional law of

(Z (x)
u )−1 Z (x)

u+h = (X (x)

A(a)
u

)−1 X (x)

A(a)
u+h

(29)

given G
A(a)

u
, X (x)

A(a)
u

= x0 is that of

x−1
0 X (x0)

τ , (30)

where τ is the stopping time for X (x0) given by

τ = inf
{

t ≥ 0

∣∣∣∣∫ t

0
ds/Y (y0)

s = h

}
and Y (y0)

s = I (X (x0)), y0 = I (x0). Note that

τ = τ ′y0, (31)

where

τ ′
= inf

t ≥ 0

∣∣∣∣∣∣
∫ t

0
dv

1
1
y0

Y (y0)
y0v

= h

 .

By (13) for any b ∈ G

(b−1 X (b)
I (b)t )t≥0

(d)
= (X (e)

t )t≥0,

hence inserting (31) in (30) one gets that the conditional law from (29) is the marginal law of
X (e)

τ0 and τ0 is the stopping time for X (e) defined by

τ0 = inf

{
t ≥ 0

∣∣∣∣∣
∫ t

0
dv

1

Y (1)
v

= h

}
.

Since this marginal law neither depends on Fu nor x nor u, the proof is complete. �

Remark 23. Using Theorem 16 we are able to construct the canonical left I -semi-stable Markov
process X via a given left Lévy process Z . We take

X (x)
t = x Z Ht/I (x)

,
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where H is given by

Ht = inf
{

u ≥ 0

∣∣∣∣∫ u

0
I (Zs)ds = t

}
.

Proof of Corollary 17. From Lemma 13 (Z (x))x∈G is a Feller process. Hence Z (x) is quasi-left-
continuous. Let tn ↑ t , as → ∞. X (x)

t = Z (x)
τt , where τt = inf{u ≥ 0|

∫ u
0 I (Z (x)

s )ds > t}. Define

Fs = σ {Z (x)
u , u ≤ s} and Gt = Fτt . One has

τtn ↑ τt ,

τtn , τt are F·-stopping times and τt < +∞ a.s. Since Z (x)
τtn

→ Z (x)
τt a.s. one has X (x)

tn → X (x)
t a.s.

Then since the trajectories of X are càdlàg, the transition function of X : Pt f (x) is continuous in
t for any fixed x ∈ G and f ∈ C0(G). Finally due to (13) one gets for any x, y ∈ G

Pt f (y) =

∫
G

f (z)Pt (y, dz) =

∫
G

f (z)Pt I (xy−1)(x, xy−1dz)

=

∫
G

f (yx−1z)Pt I (xy−1)(x, dz) →
y→x

Pt f (x)

due to the dominated convergence theorem and the fact that the maps (x, y) → xy, (x, y) →

xy−1, x → I (x) are continuous. Consequently, X is a Feller process. �
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