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Abstract

In this paper we provide an asymptotic analysis of the optimal transport cost in some matching problems
with random locations. More precisely, under various assumptions on the distribution of the locations
and the cost function, we prove almost sure convergence, and large and moderate deviation principles.
In general, the rate functions are given in terms of infinite-dimensional variational problems. For a suitable
one-dimensional transportation problem, we provide the expression of the large deviation rate function
in terms of a one-dimensional optimization problem, which allows the numerical estimation of the rate
function. Finally, for certain one-dimensional transportation problems, we prove a central limit theorem.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Let (E1, d1) and (E2, d2) be Polish spaces (i.e. complete and separable metric spaces) and
c : E1 × E2 → [0,∞) a measurable cost function, i.e. the quantity c(x, y) describes the cost of
moving an object located at x ∈ E1 to location y ∈ E2. For a fixed integer n ≥ 1, let Pn be the
set of permutations of {1, . . . , n}. If we want to transport n objects located at x1, . . . , xn ∈ E1 to
locations y1, . . . , yn ∈ E2, the optimal transport cost is

kn = kn(x1, . . . , xn, y1, . . . , yn) := inf
σ∈Pn

n−
i=1

c(xi , yσ(i)), n ≥ 1.
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In mass transportation literature (see e.g. [25,26]), the permutations σ are called transference
plans, and those achieving the infimum, optimal transference plans. Adding the randomness to
this problem, let X1, . . . , Xn be E1-valued random variables (rv’s), Y1, . . . , Yn be E2-valued rv’s
and consider the optimal transport cost Kn := kn(X1, . . . , Xn, Y1, . . . , Yn), n ≥ 1.

In this paper, under various assumptions on the distribution of the rv’s {Xn}n≥1, {Yn}n≥1 and
the cost function c, we provide almost sure convergence (ASC), large deviation principles (LDP),
moderate deviation principles (MDP) and central limit theorems (CLT) for {Kn}n≥1 (properly
normalized).

Most of our results refer to the so-called two-sample transportation problem (TSTP) and grid
transportation problem (GTP). We speak of a TSTP if

{Xn}n≥1 is a sequence of independent and identically distributed (iid) rv’s with law ℓ1 (1)

and

{Yn}n≥1 is a sequence of iid rv’s with law ℓ2. (2)

If moreover

{Xn}n≥1 and {Yn}n≥1 are independent sequences, (3)

then we speak of a TSTP with completely independent locations (CIL). A TSTP is called a
k-dimensional TSTP (kDTSTP) if E2 is a subset of Rk . We speak of a GTP if {Xn}n≥1 satisfies
(1), {gn}n≥1 ⊂ E2 is a countable subset of E2 and Yn = gn , n ≥ 1. In such a case, Kn represents
the optimal transport cost for transporting n objects located at X1, . . . , Xn to the grid locations
g1, . . . , gn . A GTP is called a k-dimensional GTP (kDGTP) if E2 is a subset of Rk . Let m, k ≥ 1
be integers, n = mk , and {C1, . . . ,Cn} a partition of [0, 1]

k formed by cubes Ci ⊂ [0, 1]
k with

Lebesgue measure 1/n. If E2 = [0, 1]
k and the grid locations g1, . . . , gn are regularly spaced,

i.e. gi ∈ Ci , then we speak of a k-dimensional regular grid transportation problem (kDRGTP).
Throughout this paper we say that the TSTP or the GTP is over a compact metric space (E, d)
if (E, d) is a compact metric space, E1 = E2 = E and d1 = d2 = d . The TSTP or the GTP is
said to be over a compact metric space (E, d) with distance cost function (DCF) if it is over a
compact metric space (E, d) and d1 = d2 = c = d.

Before describing our results in more detail, we recall some related literature. Ajtai et al. [2]
studied the TSTP over E1 = E2 = [0, 1]

2 with Euclidean DCF, CIL and ℓ1 = ℓ2 = ℓ,
the Lebesgue measure. In particular, they proved the existence of a constant κ > 0 such that
κ−1


n log n ≤ Kn ≤ κ


n log n, with high probability. Refinements of this result were obtained

by Talagrand [22]. Ganesh and O’Connell [12] proved a LDP for {Kn/n}n≥1 for the case where
Kn is the optimal transport cost of the TSTP over a compact metric space (E, d) with DCF, CIL
and ℓ1 = ℓ2. The rate function is given in variational form and, although they did not solve
explicitly the related optimization problem, they characterized its solution. Moreover, in [12] a
MDP is proved for {Kn/n}n≥1 in the case when Kn is the optimal transport cost of the TSTP
described above with E = [0, 1]

2, d equal to the Euclidean distance and ℓ1 = ℓ2 = ℓ. The
expression for the rate function is provided up to a multiplicative constant. Recently, Barthe and
O’Connell [3] noticed that the MDP stated in [12] may be extended to {Kn/n}n≥1 where Kn is the
optimal transport cost of the TSTP over a compact metric space (E, d) with E ⊂ Rk , Euclidean
DCF, CIL and ℓ1 = ℓ2. As a main result, Barthe and O’Connell [3] proved that if E is the unit
ball of Rk and ℓ1 = ℓ2 is the uniform distribution, then the moderate deviation rate function is
equal to (k + 2)x2/4. A related paper is Gozlan and Léonard [13] where new transportation cost
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inequalities are derived by means of elementary large deviation reasonings. We refer the reader
to [14] for a survey on recent developments in the area of transport inequalities.

This paper is organized as follows. In Section 2 we give some preliminaries on the
Monge–Kantorovich optimal transport problem, and recall a representation formula for the
normalized optimal transport cost in terms of the empirical measures of locations. In Section 3,
under general assumptions on the distribution of the rv’s {Xn}n≥1, {Yn}n≥1 and the cost function
c, we provide ASC and LDP for {Kn/n}n≥1. The large deviation rate functions are given in
terms of infinite-dimensional variational problems. In Section 4 we give more insight into the
expressions for the large deviation rate functions in some specific situations. First, we consider
the TSTP over a compact metric space (E, d) with DCF, CIL, and ℓ1 = ℓ2 and provide lower
bounds for the large deviation rate function of {Kn/n}n≥1. A similar result is derived for the
GTP. Second, we investigate the relation between Maurey’s τ -property and the large deviation
rate function of {Kn/n}n≥1 concerning the TSTP with E1 = E2 = E , d1 = d2 = d, ℓ1 = ℓ2 and
CIL. Third, we consider the 1DRGTP over the compact interval [0, 1] with Euclidean DCF and
ℓ1 = ℓ, and provide the large deviation rate function of {Kn/n}n≥1 in terms of a one-dimensional
optimization problem. This allows the numerical estimation of the rate function. In Section 5 we
prove MDP for {Kn/n}n≥1 when Kn is the optimal transport cost of the GTP over a compact
metric space with DCF. In Section 6 we briefly discuss possible extensions of the previous results
to non-compact spaces. Finally, in Section 7 we consider the 1DTSTP over a compact interval
with Euclidean DCF, CIL, and ℓ1 = ℓ2, and we prove that


Kn/

√
n


n≥1 converges weakly to a
rv whose tail is asymptotically equivalent to the tail of the modulus of a Gaussian rv. We show
also a CLT for a 1DGTP.

2. The Monge–Kantorovich optimal transport problem

Let P(Ei ) (i = 1, 2) be the space of Borel probability measures on Ei , equipped with the
topology of weak convergence. We recall that, since (Ei , di ) is a Polish space, then the topology
of weak convergence is metrizable by Prohorov’s metric, say d(i)P , and (P(Ei ), d(i)P ) is in turn a
Polish space.

For µ ∈ P(E1) and ν ∈ P(E2), denote by Π (µ, ν) the space of Borel probability measures
π on E1 × E2 with fixed marginals µ(·) = π(· × E2) and ν(·) = π(E1 × ·). Formally, the
Monge–Kantorovich optimal transport problem (see [15,16], and more recently [25,26]) is the
minimization problem described by

C(µ, ν) = inf
π∈Π (µ,ν)

∫
E1×E2

c(x, y) π(dx dy), (µ, ν) ∈ P(E1)× P(E2).

Following the standard interpretation, c(x, y) is the work needed to move one unit of mass from
location x to location y, and C(µ, ν) is the value of the optimal transport cost of transport
between µ and ν. For a Polish space (E, d) and p ∈ [1,∞), define the functional

Wp(µ, ν) :=


inf

π∈Π (µ,ν)

∫
E×E

d(x, y)p π(dx dy)

1/p

, (µ, ν) ∈ P(E)× P(E)

and denote by Pp(E) the subset of P(E) formed by the probability measures µ such that, for
some x0 ∈ E ,


E d(x0, x)pµ(dx) < ∞. Note that if d is a bounded distance, i.e. ‖d‖∞ :=

sup(x,y)∈E×E d(x, y) < ∞, then Pp(E) = P(E), for all p ≥ 1. It is well-known that Wp is a
distance on Pp(E) (see e.g. Theorem 7.3 in [25]), called the Wasserstein distance for p ≥ 2 and
the Kantorovich–Rubinshtein distance for p = 1. Thus, if E1 = E2 = E , d1 = d2 = d , and the
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cost function is of the form c = d p, then, for any α1, α2 ∈ Pp(E), C(α1, α2) = 0 if and only if
α1 = α2. By the Kantorovich duality (see e.g. Theorem 1.14 in [25])

W1(µ, ν) = sup
∫

E
ϕ(x) µ(dx)−

∫
E
ϕ(x) ν(dx)


, ∀µ, ν ∈ P1(E),

where the supremum is taken over all the Lipschitz functions ϕ : E → R with Lipschitz constant

‖ϕ‖Lip := sup
x≠y

|ϕ(x)− ϕ(y)|

d(x, y)
(4)

less than or equal to 1. If d is a bounded distance, then the set where the supremum is taken may
be restricted, i.e.

W1(µ, ν) = sup
ϕ∈L(E)

∫
E
ϕ(x) µ(dx)−

∫
E
ϕ(x) ν(dx)


, ∀µ, ν ∈ P(E), (5)

where L(E) := {ϕ : E → R : is Lipschitz, 0 ≤ ϕ ≤ ‖d‖∞, ‖ϕ‖Lip ≤ 1} (see Remark 1.15(i),
p. 34, and 7.5(i), p. 207, in [25] for details). Let µ and ν be probability measures on R, with
distribution functions F1 and F2, respectively. We mention that, if d is the Euclidean distance
then, for any Borel set E ⊂ R, we have

W1(µ, ν) =

∫
E

|F1(x)− F2(x)| dx . (6)

Now, we recall a fundamental expression for kn . For n ≥ 1, x1, . . . , xn ∈ E1 and y1, . . . , yn ∈

E2, define ln := (
∑n

i=1 δxi )/n and mn := (
∑n

i=1 δyi )/n, where δx denotes the Dirac measure at
x .

Lemma 2.1. C(ln,mn) = kn/n, for any n ≥ 1.

For n ≥ 1, define the random empirical measures Ln := (
∑n

i=1 δX i )/n and Mn :=

(
∑n

i=1 δYi )/n; then by Lemma 2.1 we have almost surely (a.s.)

C(Ln,Mn) = Kn/n, ∀n ≥ 1. (7)

The proof of Lemma 2.1 is similar to that of Lemma 3 in [20] or Lemma 2.1 in [12], and therefore
omitted.

We conclude this section by introducing some more notation. All the random quantities are
defined on a complete probability space (Ω ,F , P) and we adopt the standard conventions that
the infimum over an empty set is equal to +∞ and 0 log 0 = 0. For a Polish space (E, d), we
denote by Mb(E) the set of signed Borel measures of finite variation on E , equipped with the
topology of weak convergence. Here again, the topology of weak convergence is metrizable by
Prohorov’s metric, say dP , and (Mb(E), dP ) is a Polish space. Finally, for each ν ∈ Mb(E) and
measurable function ϕ, we set ν(ϕ) :=


E ϕ(x) ν(dx).

3. ASC and LDP

We say that a sequence of rv’s {ξn}n≥1, taking values on a metric space (S, dS), converges
almost surely on S to a limit ξ if ξ is an S-valued rv and, with probability 1, ξn → ξ (wrt the
metric dS). Recall that {ξn}n≥1 obeys a LDP on S with speed sn and rate function I if {sn}n≥1 is
a strictly increasing sequence of positive numbers diverging to +∞, I : S → [0,∞] is a lower
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semi-continuous (lsc) function, and the following inequalities hold for every Borel set B:

− inf
z∈

◦

B

I (z) ≤ lim inf
n→∞

1
sn

log P(ξn ∈
◦

B) ≤ lim sup
n→∞

1
sn

log P(ξn ∈ B) ≤ − inf
z∈B

I (z),

where
◦

B denotes the interior of B and B denotes the closure of B. We point out that the lower
semi-continuity of I means that its level sets {z ∈ S : I (z) ≤ a} are closed for all a ≥ 0; when
the level sets are compact, the rate function I is said to be good. For more insight into the large
deviations theory see e.g. [9].

We start with the following ASC on general Polish spaces. In the next part, we denote by
Cb(E1 × E2) the space of bounded and continuous functions from E1 × E2 to R.

Theorem 3.1. Assume

c ∈ Cb(E1 × E2), (8)

{Ln}n≥1 converges almost surely on P(E1) to ℓ1, and {Mn}n≥1 converges almost surely on P(E2)

to ℓ2. Then {Kn/n}n≥1 converges almost surely on R to C(ℓ1, ℓ2).

Proof. The claim follows if we show that the map C : P(E1) × P(E2) → [0,∞) is continuous
wrt the product weak topology. It is known that C is lsc if the cost function c is lsc (see Remark
6.12 p. 97 in [26]). So, we only need to show the upper semi-continuity (usc) of C . This in turn
follows by (8), the compactness of Π (µ, ν) (see the proof of Theorem 4.1, pp. 44–45, in [26])
and Theorem 5.20, p. 77, in [26]. �

The following generalizations of Theorem 3.1 in [12] hold.

Theorem 3.2. (i) Assume (8) and

{(Ln,Mn)}n≥1 obeys a LDP on P(E1)× P(E2)

with speed n and good rate function K . (9)

Then {Kn/n}n≥1 obeys a LDP on R with speed n and good rate function

I (z) = inf
(µ,ν)∈P(E1)×P(E2): C(µ,ν)=z

K (µ, ν).

(ii) Assume (3), (8),

{Ln}n≥1 obeys a LDP on P(E1) with speed n and good rate function K (1) (10)

and

{Mn}n≥1 obeys a LDP on P(E2) with speed n and good rate functionK (2). (11)

Then {Kn/n}n≥1 obeys a LDP on R with speed n and good rate function

I (z) = inf
(µ,ν)∈P(E1)×P(E2): C(µ,ν)=z

K (1)(µ)+ K (2)(ν).

Proof of (i). The claim follows by relation (7), assumption (9), the continuity of C wrt the
product weak topology (see the proof of Theorem 3.1) and the Contraction Principle (see
e.g. Theorem 4.2.1 in [9]). �

Proof of (ii). Since (P(Ei ), d(i)P ) is separable (i = 1, 2), {(Ln,Mn)}n≥1 obeys a LDP on
P(E1) × P(E2) with speed n and good rate function K (µ, ν) = K (1)(µ) + K (2)(ν) (see
e.g. Exercises 4.2.7 and 1.2.19 in [9]). The claim follows by part (i). �
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The next Corollaries 3.3 and 3.4 are simple consequences of Theorems 3.1 and 3.2, and
provide ASC and LDP for the two-sample and the grid transportation problems. Given two
probability measures α1, α2 on a metric space (S, dS), we consider the relative entropy of α1
wrt α2:

H(α1 | α2) =


∫

S×S

dα1

dα2
(x) log

dα1

dα2
(x) dα2 if α1 ≪ α2

+∞ otherwise

where the symbol ≪ denotes absolute continuity between measures. In Corollary 3.3 Kn denotes
the optimal transport cost of the TSTP, while in Corollary 3.4 Kn denotes the optimal transport
cost of the GTP and {γn}n≥1 the sequence of empirical measures defined by γn :=

∑n
i=1 δgi /n,

where the g’s represent the grid locations.

Corollary 3.3. Assume (8). Then:

(i) {Kn/n}n≥1 converges almost surely on R to C(ℓ1, ℓ2).
(ii) If in addition (3) holds, then {Kn/n}n≥1 obeys a LDP on R with speed n and good rate

function

ITSTP(z) = inf
(µ,ν)∈P(E1)×P(E2): C(µ,ν)=z

H(µ | ℓ1)+ H(ν | ℓ2). (12)

Corollary 3.4. Assume (8) and

γn converges weakly to ℓ∗ ∈ P(E2), as n → ∞. (13)

Then:

(i) {Kn/n}n≥1 converges almost surely on R to C(ℓ1, ℓ
∗).

(ii) {Kn/n}n≥1 obeys a LDP on R with speed n and good rate function

IGTP(z) = inf
µ∈P(E1): C(µ,ℓ∗)=z

H(µ | ℓ1). (14)

Before proving these results we give an example.

Example 1. (1) Assumption (13) is satisfied in the case of the kDRGTP with ℓ∗ = ℓ, the
Lebesgue measure on [0, 1]

k . Indeed, for any ϕ ∈ Cb([0, 1]
k),


[0,1]k ϕ(x)γn(dx) =

(
∑n

i=1 ϕ(gi ))/n and the term in the right-hand side can be bounded from above and from
below by Riemann’s sums of ϕ on [0, 1]

k , wrt the partition {C1, . . . ,Cn}. Since the Riemann
sums converge to ℓ(ϕ), we have that γn → ℓ weakly.

(2) Suppose that the grid points are not all distinct, i.e. {g1, g2, . . .} = {x1, . . . , xm} for some
positive integer m, where x1, . . . , xm are distinct points of E2. For n ≥ 1 and j = 1, . . . ,m,
define n j (n) := ♯{i ∈ {1, . . . , n} : gi = x j }. In addition, suppose that there exist
p1, . . . , pm ∈ [0, 1] such that

∑
j p j = 1 and n j (n)/(np j ) → 1, as n → ∞. Then

assumption (13) is satisfied with ℓ∗ :=
∑

j p jδx j . A possible choice of the integers n j (n)
is the following. Let [x] denote the integer part of x ∈ R; since [x] ≤ x ≤ [x] + 1 and∑m

j=1 p j = 1, we have
∑m

j=1([np j ] + 1) ≥ n ≥
∑m

j=1[np j ]. Therefore, there exist
h1, . . . , hm ∈ {0, 1} such that

∑m
j=1([np j ]+h j ) = n, and we may take n j (n) = [np j ]+h j .
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Proof of Corollary 3.3(i). By (1), (2) and the ASC for empirical laws we have that {Ln}n≥1
converges almost surely on P(E1) to ℓ1 and {Mn}n≥1 converges almost surely on P(E2) to ℓ2.
The claim follows by Theorem 3.1. �

Proof of Corollary 3.3(ii). It is a simple consequence of Theorem 3.2(ii) and Sanov’s theorem
(see e.g. Theorem 6.2.10 in [9]). �

Proof of Corollary 3.4(i). As noticed in the proof of Corollary 3.3(i), {Ln}n≥1 converges almost
surely on P(E1) to ℓ1. The claim follows by (13) and Theorem 3.1. �

Proof of Corollary 3.4(ii). By Sanov’s theorem, {Ln}n≥1 obeys a LDP on P(E1) with speed n
and good rate function K (1)(·) = H(· | ℓ1). By (13) we deduce that {γn}n≥1 obeys a LDP on
P(E2) with speed n and good rate function K (2)(ν) = 0 if ν = ℓ∗ and K (2)(ν) = +∞ if ν ≠ ℓ∗.
The conclusion follows by Theorem 3.2(ii). �

Note that if the TSTP is specified by E1 = E2 = E , d1 = d2 = d , where d is a bounded
distance, and c = d p, p ≥ 1, then C = W p

p , i.e. C is the power of a particular distance. So, by
Corollary 3.3 we deduce that the scaling 1/n is optimal for Kn , i.e. {Kn/n}n≥1 converges almost
surely on R to a strictly positive limit if and only if ℓ1 ≠ ℓ2. In particular, for the 1DTSTP over a
compact interval E with Euclidean DCF, CIL and ℓ1 = ℓ2, the scaling 1/n is not optimal for Kn .
We shall prove that (in the sense of convergence in law) the optimal scaling is given by 1/

√
n

(see Theorem 7.1). Similarly, consider the GTP specified by E1 = E2 = E , d1 = d2 = d, where
d is a bounded distance, and c = d p, p ≥ 1. If (13) holds, then by Corollary 3.4 we have that
the scaling 1/n is optimal for Kn if and only if ℓ1 ≠ ℓ∗. In particular, if (13) holds with ℓ∗ = ℓ1
and {γn}n≥1 satisfies a suitable assumption then, for the 1DGTP specified by E1 = E2 = E ⊂ R
and d1 = d2 = c = d , where E is a bounded Borel set and d is the Euclidean distance, we shall
prove that the optimal scaling is given by 1/

√
n (see Theorem 7.4).

4. On the expression of the large deviation rate functions

In this section we provide some sharp lower bounds for the large deviation rate function.
Moreover, for a specific 1DRGTP over the compact interval [0, 1] we express the large deviation
rate function of {Kn/n}n≥1 in terms of a one-dimensional optimization problem.

4.1. Some lower bounds for the large deviation rate functions

Let (E, d) be a compact metric space, and assume E1 = E2 = E , d1 = d2 = c = d.
For ℓ1 = ℓ2, a characterization of the large deviation rate function ITSTP in (12) was given

in [12] where it is proved (see Theorem 3.3 therein)

ITSTP(z) =


inf

ϕ∈L0(E)
L∗
ϕ(z) if z ≥ 0

+∞ if z < 0,
(15)

where L0(E) := {ϕ : E → R : ϕ is Lipschitz, ‖ϕ‖Lip = 1, ℓ1(ϕ) = 0} and, for θ, z ∈ R,

L∗
ϕ(z) := sup

θ∈R
(θ z − Lϕ(θ)), Lϕ(θ) := Λϕ(θ)+ Λϕ(−θ),

Λϕ(θ) := log
∫

E
eθϕ(x) ℓ1(dx).
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For ℓ∗ = ℓ1, a characterization of the large deviation rate function IGTP in (14) may be proved
similarly. In particular, one has

IGTP(z) =


inf

ϕ∈L0(E)
Λ∗
ϕ(z) if z ≥ 0

+∞ if z < 0,
(16)

where Λ∗
ϕ(z) := supθ∈R(θ z − Λϕ(θ)).

The next result provides an explicit lower bound for the large deviation rate functions ITSTP
and IGTP.

Theorem 4.1. Under the foregoing assumptions we have

ITSTP(z) ≥ λz2/4 and IGTP(z) ≥ λz2/2, ∀z ≥ 0, (17)

where

λ :=
1

2


inf
x0∈E,α>0


(2α)−1


1 + log


E eαd(x0,x)2 ℓ1(dx)

1/2
2 . (18)

Proof. We only show the first inequality in (17). The second one can be proved similarly. By the
results in [6] (see Corollary 4 therein) we have that ℓ1 satisfies Talagrand’s T1(λ) inequality

W1(ν, ℓ1) ≤


2
λ

H(ν | ℓ1), ∀ν ∈ P(E). (19)

By Bobkov and Götze’s [4] characterization of the T1(λ) inequality we have, for all θ ≥ 0 and all
ϕ Lipschitz with ‖ϕ‖Lip ≤ 1, log


E eθ(ϕ(x)−ℓ1(ϕ)) ℓ1(dx) ≤ θ2/(2λ). In particular, for all θ ≥ 0

and ϕ ∈ L0(E), Λϕ(±θ) ≤ θ2/(2λ). So, for all z ≥ 0,

ITSTP(z) = inf
ϕ∈L0(E)

L∗
ϕ(z) ≥ sup

θ∈R
inf

ϕ∈L0(E)
(θ z − Λϕ(θ)− Λϕ(−θ))

≥ sup
θ≥0


θ z −

θ2

λ


= λz2/4. �

Let (E, d) be a Polish space. Finally, we investigate the relation between Maurey’s τ -
property [19] and the large deviation rate function of the TSTP with E1 = E2 = E , d1 = d2 = d ,
ℓ1 = ℓ2 and CIL. Let c ∈ Cb(E2). For all bounded Borel functions ϕ : E → R, define
Qcϕ(x) := infy∈E (ϕ(y)+c(x, y)), x ∈ E . We say that the couple (ℓ1, c) satisfies the τ -property
if ℓ1(Qcϕ)ℓ1(−ϕ) ≤ 1, for any ϕ.

Theorem 4.2. For the TSTP specified above we have

ITSTP(z) ≥ z, ∀z ≥ 0 if and only if the couple (ℓ1, c) has the τ -property.

Before proving this result we give an example.

Example 2. Take E = R, d(x, y) = |x − y|/(1 + |x − y|) for any x, y ∈ R, and ℓ1 equal to the
standard Gaussian measure on R. By Talagrand’s T2 inequality we deduce

inf
π∈Π (µ,ℓ1)

∫
R×R

|x − y|
2 π(dx dy) ≤ 2H(µ | ℓ1), ∀µ ∈ P(R).
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Therefore, defining the cost function c(x, y) := d(x, y)2/2, we have the transport–entropy
inequality: C(µ, ℓ1) ≤ H(µ | ℓ1), for any µ ∈ P(R). So by e.g. Proposition 8.3 in [14] we
have that the couple (ℓ1,c), wherec(x, y) := d(x, y)2/4, satisfies the τ -property. Now consider
the TSTP with E1 = E2 = R, d1 = d2 = d, cost function c and completely independent
locations distributed according to the standard Gaussian measure. By Theorem 4.2 we deduce
ITSTP(z) ≥ z, for any z ∈ R.

Proof of Theorem 4.2. Assume that the τ -property holds. By Proposition 8.2 in [14] we have
H(µ | ℓ1)+ H(ν | ℓ1) ≥ C(µ, ν), for any µ, ν ∈ P(E). Therefore, for any z ≥ 0,

ITSTP(z) = inf
(µ,ν)∈P(E)×P(E): C(µ,ν)=z

H(µ | ℓ1)+ H(ν | ℓ1) ≥ z.

Now, assume ITSTP(z) ≥ z, for all z ≥ 0. Let 8c be the set of all bounded continuous functions
such that φ1(x) + φ2(y) ≤ c(x, y), for any x, y ∈ E . By the Kantorovich duality, C(µ, ν) =

sup(φ1,φ2)∈8c
(µ(φ1)+ν(φ2)). So, setting T φn := Ln(φ1)+ Mn(φ2), φ = (φ1, φ2) ∈ 8c, we have,

for any t ≥ 0,

lim sup
n→∞

1
n

log P(T φn ≥ t) ≤ lim sup
n→∞

1
n

log P(Kn/n ≥ t) ≤ − inf
z≥t

ITSTP(z) ≤ −t.

The claim follows using the techniques in the proof of Theorem 3.7 in [13] (see the equivalence
(a) ⇔ (c) therein).

4.2. On the large deviation rate function of a particular 1DRGTP

Let Kn denote the optimal transport cost of the 1DRGTP over the compact interval [0, 1] with
Euclidean DCF and ℓ1 = ℓ, the Lebesgue measure. The following theorem holds.

Theorem 4.3. {Kn/n}n≥1 obeys a LDP on R with speed n and good rate function

IGTP(z) =



0 if z = 0

inf
a∈(0,1)

γ (a, z) if z ∈ (0, 1/4]

inf
a∈(0,

√
1/2−z)∪(2−

√
1/2−z,1)

γ (a, z) if z ∈ (1/4, 1/2)

+∞ otherwise

where γ (a, z) := −γ (1)(a, z)− γ (2)(a, z)(z + a2
+ 1/2),

γ (1)(a, z) := log


−
1

γ (2)(a, z)


e−2aγ (2)(a,z)

− 2e−aγ (2)(a,z)
+ e−γ (2)(a,z)


and γ (2)(a, z) is solution on (−∞, 0) of the following equation in θ :

−e−θ


1
θ

+
1
θ2


+ e−aθ


2a
θ

+
2
θ2


− e−2aθ


2a
θ

+
1
θ2


z + a2 + 1/2

+
1
θ


e−2aθ

− 2e−aθ
+ e−θ


= 0.

Using standard notation, for positive functions f and g such that f (z), g(z) → 0, as
z → 0, we write f (z) = O(g(z)) if there exist positive constants m,M > 0 such that
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Fig. 1. Approximate graph of the rate function IGTP(z), 0 ≤ z < 1/2 (solid line), and approximate graph of the
corresponding theoretical lower bound λz2/2, 0 ≤ z ≤ 1/2, λ ≃ 5.20 (dotted line).

m ≤ f (z)/g(z) ≤ M , as z → 0. As a consequence of Theorems 4.1 and 4.3, we have the
following corollary whose proof will be given at the end of this section.

Corollary 4.4. Let IGTP be the rate function in Theorem 4.3. It holds that IGTP(z) = O(z2) as
z → 0.

Using the expression of the rate function given in Theorem 4.3, we may numerically estimate
IGTP. In Fig. 1 we report the approximate graph of the rate function IGTP(z), 0 ≤ z < 1/2
(solid line), and the approximate graph of the corresponding theoretical lower bound λz2/2,
0 ≤ z ≤ 1/2 (dotted line), provided by Theorem 4.1. In particular, for the graph of the lower
bound, we evaluated numerically λ, resulting λ ≃ 5.20.

The proof of Theorem 4.3 is based on the following Lemma 4.5. Let F([0, 1]) be the set of
probability densities on [0, 1], and define

Ba,z :=


f ∈ F([0, 1]) :

∫ 1

0
σa(x)( f (x)− 1) dx = z


, a ∈ (0, 1), z ≥ 0,

where σa(x) := max{2a − x, x}.

Lemma 4.5. For a ∈ (0, 1) and z ∈ [0,max{1, 2a} − a2
− 1/2), the variational problem

inf
f ∈Ba,z

∫ 1

0
f (x) log f (x) dx (20)

has a unique solution f ∗
a,z ∈ Ba,z given by f ∗

a,z(x) := e−γ (1)(a,z)−σa(x)γ (2)(a,z)1{x ∈ [0, 1]},
where γ (1)(a, z) and γ (2)(a, z) are defined in the statement of Theorem 4.3.

Proof of Theorem 4.3. A simple computation shows that the claim is equivalent to IGTP(z) =

infa∈Az γ (a, z), z ∈ R, where Az := {x ∈ (0, 1) : z ∈ [0,max{1, 2x} − x2
− 1/2)}.

Clearly, IGTP(z) = +∞ for z < 0 and by the ASC, IGTP(0) = 0. So, in the rest of the
proof, we consider z > 0. By (6) we have W1(µ, ν) =

 1
0 |µ([0, x]) − ν([0, x])| dx ; therefore

IGTP(z) = inf f ∈Az

 1
0 f (x) log f (x) dx , where Az :=


f ∈ F([0, 1]) :

 1
0 |F(x)− x | dx = z


and F(x) :=

 x
0 f (y) dy. We divide the proof in four steps.
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Step 1: a preliminary inequality. For a ∈ (0, 1) and z ≥ 0, denote by Aa,z the set of probability
densities f ∈ F([0, 1]) such that

F(x)− x ≥ 0, for ℓ-almost all x ∈ (0, a);

F(x)− x < 0, for ℓ-almost all x ∈ (a, 1)
(21)

and
 1

0 |F(x)− x | dx = z. If f satisfies (21), then integration by parts yields∫ 1

0
|F(x)− x | dx =

∫ a

0
F(x) dx −

∫ 1

a
F(x) dx − a2

+
1
2

= 2aF(a)−

∫ a

0
x f (x) dx +

∫ 1

a
x f (x) dx − a2

−
1
2

=

∫ 1

0
σa(x)( f (x)− 1) dx .

So Aa,z ⊆ Ba,z , and therefore

inf
f ∈Ba,z

∫ 1

0
f (x) log f (x) dx ≤ inf

f ∈Aa,z

∫ 1

0
f (x) log f (x) dx . (22)

Step 2: a related variational problem. Since Ba,z = ∅ for z ≥ max{1, 2a} − a2
− 1/2, by (22)

we have

inf
f ∈Aa,z

∫ 1

0
f (x) log f (x) dx = +∞, ∀a ∈ (0, 1) and z ≥ max{1, 2a} − a2

− 1/2.

In the following we show that, for a ∈ (0, 1) and z ∈ [0,max{1, 2a} − a2
− 1/2), the unique

solution f ∗
a,z of (20) solves even inf f ∈Aa,z

 1
0 f (x) log f (x) dx . Due to (22), this claim follows

if we prove f ∗
a,z ∈ Aa,z . We reason by contradiction and assume the existence of a Borel set

C ⊆ (0, a) with positive Lebesgue measure and such that F∗
a,z(x) :=

 x
0 f ∗

a,z(y) dy < x on C
(the same argument to follow can be easily adapted to the case when F∗

z,a(x) ≥ x on some Borel
set C ⊆ (a, 1) of positive Lebesgue measure). By continuity,

F∗
a,z(x) < x on some interval (u, v) ⊆ (0, a). (23)

Without loss of generality we may assume

F∗
a,z(u) = u, F∗

a,z(v) = v. (24)

Consider the distribution function G∗
a,z(x) := x1{x ∈ (u, v)}+ F∗

a,z(x)1{x ∈ (0, 1) \ (u, v)} and
let g∗

a,z(x) := 1{x ∈ (u, v)} + f ∗
a,z(x)1{x ∈ (0, 1) \ (u, v)} be its density wrt ℓ. We have∫ 1

0
σa(x)(g

∗
a,z(x)− 1) dx >

∫ 1

0
σa(x)( f ∗

a,z(x)− 1) dx = z. (25)

Indeed, the equality follows since f ∗
a,z ∈ Ba,z and the strict inequality is a consequence of the

following argument. First note that since g∗
a,z ≡ f ∗

a,z on (a, 1), it is equivalent to

2aG∗
a,z(a)−

∫ a

0
xg∗

a,z(x) dx > 2aF∗
a,z(a)−

∫ a

0
x f ∗

a,z(x) dx .
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Using g∗
a,z ≡ f ∗

a,z on (0, a) \ (u, v), g∗
a,z ≡ 1 on (u, v), (24) and integration by parts, this

inequality is in turn equivalent to∫ v

u
x(1 − f ∗

a,z(x)) dx =

∫ v

u
(F∗

a,z(x)− x) dx < 0

and so the inequality in (25) is a consequence of (23). Define the functions h(α)a,z(x) := α + (1 −

α)g∗
a,z(x), for α ∈ (0, 1) and x ∈ (0, 1). Clearly,∫ 1

0
σa(x)(h

(1)
a,z(x)− 1) dx = 0 ≤ z and (by (25))

∫ 1

0
σa(x)(h

(0)
a,z(x)− 1) dx > z.

Since h(α)a,z ∈ F([0, 1]) ∀α ∈ (0, 1), by the continuity of the map α →
 1

0 σa(x)(h
(α)
a,z(x)− 1) dx ,

we deduce the existence of α ∈ (0, 1) such that h(α)a,z ∈ Ba,z . We get a contradiction if we show∫ 1

0
h(α)a,z(x) log h(α)a,z(x) dx <

∫ 1

0
f ∗
a,z(x) log f ∗

a,z(x) dx . (26)

By the strict convexity on [0, 1] of x → x log x , we have∫ 1

0
h(α)a,z(x) log h(α)a,z(x) dx < (1 − α)

∫ 1

0
g∗

a,z(x) log g∗
a,z(x) dx,

so (26) is proved if we check∫ v

u
f ∗
a,z(x) log f ∗

a,z(x) dx ≥ 0. (27)

For x ∈ (0, 1), define the function ϕ(x) := f ∗
a,z(u + (v − u)x). By (24) we have ℓ(ϕ) =

(v − u)−1
 v

u f ∗
a,z(x) dx = 1. The inequality (27) follows since∫ v

u
f ∗
a,z(x) log f ∗

a,z(x) dx = (v − u)
∫ 1

0
ϕ(x) logϕ(x) dx ≥ 0.

Step 3: monotonicity of IGTP on [0,∞). Note that, for the grid transportation problem we are

considering, it holds that ℓ∗ = ℓ1 = ℓ. So, by (16) we have that IGTP is non-decreasing on [0,∞)

if, for any fixed ϕ ∈ L0([0, 1]), the Legendre transform Λ∗
ϕ is also such. This is immediate from

the fact that Λ∗
ϕ is non-negative, convex and Λ∗

ϕ(0) = 0.

Step 4: conclusion of the proof. Since Aa,z ⊆ Az , we have, for any a ∈ (0, 1) and z ≥ 0,

IGTP(z) ≤ I (a, z) := inf
f ∈Aa,z

∫ 1

0
f (x) log f (x) dx .

Note that by Lemma 4.5 and Step 2, we deduce I (a, z) = γ (a, z) if z ∈ [0,max{1, 2a} − a2
−

1/2) and equal to +∞ otherwise. Taking the infimum over a ∈ (0, 1), we get

IGTP(z) ≤ inf
a∈Az

I (a, z) = inf
a∈Az

[−γ (1)(a, z)− γ (2)(a, z)(z + a2
+ 1/2)], ∀z ≥ 0. (28)

The reversed inequality follows if we show that, for fixed z ≥ 0 and f ∈ Az ,

∃z∗
≥ z, a ∈ Az∗ , ga ∈ Aa,z∗

such that
∫ 1

0
f (x) log f (x) dx =

∫ 1

0
ga(x) log ga(x) dx . (29)
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Indeed, (29) yields IGTP(z) ≥ infa∈Az∗ I (a, z∗) and, combining this inequality with Step 3 and
(28), we have IGTP(z) = infa∈Az∗ I (a, z∗) ≥ infa∈Az γ (a, z). It remains to prove (29). Take
z ≥ 0, f ∈ Az and, to fix the ideas, suppose F(x)− x ≥ 0 in a right neighborhood of 0. Denote
by J (+)k := (rk, sk) ⊆ (0, 1), k ≥ 1, r1 = 0, the disjoint intervals of maximal length such that

F(x)− x ≥ 0 and by J (−)k := (sk, rk+1) ⊆ (0, 1), k ≥ 1, the disjoint intervals of maximal length

such that F(x)− x < 0. If there are only N intervals J (+)k and N − 1 intervals J (−)k , then we set

sN := 1 and rk = sk := 1 ∀k ≥ N + 1. If there are only N intervals J (+)k and J (−)k , then we set
rk = sk := 1 ∀k ≥ N + 1. Define

z∗
:= z + 2

−
k≥1

(rk+1 − sk)
−

j≥k+1

(s j − r j ) and a :=

−
k≥1

(sk − rk)

(note that, due to the above definitions, if the number of intervals J (+)k is equal to N , then the
sums

∑
k≥1 and

∑
j≥k+1, in the definition of z∗, have to be replaced by

∑N−1
k=1 and

∑N
j=k+1,

respectively, and the sum
∑

k≥1, in the definition of a, by
∑N

k=1), and consider the distribution
function G defined as follows:

for n ≥ 0, G


n−

k=1

(sk − rk)+ x


:= F(rn+1 + x) if x ∈ (0, sn+1 − rn+1)

and

for n ≥ 0, G


a +

n−
k=1

(rk+1 − sk)+ x


:= F(sn+1 + x) if x ∈ (0, rn+2 − sn+1).

Let ga be the density of G wrt ℓ. The claim follows if we check that the triplet (z∗, a, ga) has the
properties summarized in (29). In the rest of the proof we accomplish this task in the case where
there are exactly N ≥ 1 intervals J (+)k and J (−)k . The other case may be checked similarly. We
have

z∗
= z + 2

N−
k=1

(rk+1 − sk)

N−
j=k+1

(s j − r j ) and a =

N−
k=1

(sk − rk)

and G defined by

for n = 0, . . . , N − 1, G


n−

k=1

(sk − rk)+ x


:= F(rn+1 + x)

if x ∈ (0, sn+1 − rn+1)

and

for n = 0, . . . , N − 1, G


a +

n−
k=1

(rk+1 − sk)+ x


:= F(sn+1 + x)

if x ∈ (0, rn+2 − sn+1).

We start by checking that

G(x)− x ≥ 0 on (0, a) and G(x)− x < 0 on (a, 1). (30)
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By construction, for n = 0, . . . , N − 1, on (0, sn+1 − rn+1) we have

G


n−

k=1

(sk − rk)+ x


−


n−

k=1

(sk − rk)+ x


≥ F(rn+1 + x)− (rn+1 + x) ≥ 0

and therefore G(x)− x ≥ 0 on (0, a). Similarly, for n = 0, . . . , N − 1, on (0, rn+2 − sn+1) we
have

G


a +

n−
k=1

(rk+1 − sk)+ x


−


a +

n−
k=1

(rk+1 − sk)+ x


≤ F(sn+1 + x)− (sn+1 + x)

< 0

and therefore G(x) − x < 0 on (a, 1). Thus, (30) is proved, and by the computations at the
beginning of Step 1 we deduce∫ 1

0
|G(x)− x | dx =

∫ 1

0
σa(x)(ga(x)− 1) dx . (31)

A straightforward computation yields∫ 1

0
|F(x)− x | dx =

N−
k=1

∫ sk

rk

(F(x)− x) dx −

N−
k=1

∫ rk+1

sk

(F(x)− x) dx

=

N−
k=1

∫ sk−rk

0


G


k−1−
j=1

(s j − r j )+ x


− (x + rk)


dx

−

N−
k=1

∫ rk+1−sk

0


G


a +

k−1−
j=1

(r j+1 − s j )+ x


− (x + sk)


dx .

Note that∫ sk−rk

0


G


k−1−
j=1

(s j − r j )+ x


− (x + rk)


dx

=

∫ sk−rk

0


G


k−1−
j=1

(s j − r j )+ x


−


k−1−
j=1

(s j − r j )+ x


dx

−


rk −

k−1−
j=1

(s j − r j )


(sk − rk),

∫ rk+1−sk

0


G


a +

k−1−
j=1

(r j+1 − s j )+ x


− (x + sk)


dx

=

∫ rk+1−sk

0


G


a +

k−1−
j=1

(r j+1 − s j )+ x


−


x + a +

k−1−
j=1

(r j+1 − s j )


dx

+ (rk+1 − sk)

N−
j=k+1

(s j − r j )
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and
N−

k=1


rk −

k−1−
j=1

(s j − r j )


(sk − rk) =

N−
k=1

(rk+1 − sk)

N−
j=k+1

(s j − r j ).

Therefore∫ 1

0
|F(x)− x | dx

=

∫ a

0
(G(x)− x) dx −

∫ 1

a
(G(x)− x) dx − 2

N−
k=1

(rk+1 − sk)

N−
j=k+1

(s j − r j ).

By (30), f ∈ Az and the definition of z∗, we have
 1

0 |G(x) − x | dx = z∗. Consequently,

ga ∈ Aa,z∗ . By (31) we deduce z∗
=
 1

0 σa(x)ga(x) dx − a2
− 1/2 < max{2a, 1} − a2

− 1/2,
and so a ∈ Az∗ . Finally∫ 1

0
f (x) log f (x) dx =

N−
k=1

∫ sk−rk

0
ga


k−1−
j=1

(s j − r j )+ x


log ga


k−1−
j=1

(s j − r j )+ x


dx

+

N−
k=1

∫ rk+1−sk

0
ga


a +

k−1−
j=1

(r j+1 − s j )+ x



× log ga


a +

k−1−
j=1

(r j+1 − s j )+ x


dx

=

∫ 1

0
ga(x) log ga(x) dx . �

Proof of Lemma 4.5. For fixed a ∈ (0, 1) and z ∈ [0,max{1, 2a} − a2
− 1/2), the set Ba,z is

convex. So, if it is not empty, due to the strict convexity of the relative entropy, (20) has a unique
solution, say f a,z . We compute f a,z and check retrospectively that Ba,z is not empty. For the
sake of clarity, we divide the proof in four steps.

Step 1: the Lagrange multipliers method. Set Aa,z := {x ∈ [0, 1] : f a,z(x) > 0}, and consider
the Lagrangian

L( f, λ1(Aa,z), λ2(Aa,z))(x)

:= f (x) log f (x)+ λ1(Aa,z)( f (x)− 1)+ λ2(Aa,z)(σa(x)( f (x)− 1)− z)

where λ1(Aa,z) and λ2(Aa,z) are the Lagrange multipliers. By the Euler equation (see e.g. [7]) we
have ∂L

∂ f | f = f a,z
= 0, i.e. f a,z(x) = e−(1+λ1(Aa,z))−σa(x)λ2(Aa,z)1{x ∈ Aa,z}. By the constraints

we deduce that the Lagrange multipliers λ1(Aa,z) and λ2(Aa,z) are solutions of∫
Aa,z

e−σa(x)λ2(Aa,z) dx = e1+λ1(Aa,z) (32)

and ∫
Aa,z

σa(x)e−σa(x)λ2(Aa,z) dx = e1+λ1(Aa,z)(z + a2
+ 1/2). (33)
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Step 2: a suitable set function. For a fixed Borel set U ⊆ [0, 1] with positive Lebesgue measure

and u1, u2 ∈ R define the functions

m(0)
a (U, u1, u2) :=

∫
U

e−(1+u1)−σa(x)u2 dx,

m(1)
a (U, u1, u2) :=

∫
U
σa(x)e−(1+u1)−σa(x)u2 dx

and the set function νa,z(U ) := supu1,u2∈R[−m(0)
a (U, u1, u2) − u1 − (z + a2

+ 1/2)u2]. If
there exist λ1(U ) and λ2(U ), solutions of (32) and (33) with Aa,z = U , then νa,z(U ) =

−(1 + λ1(U ))− (z + a2
+ 1/2)λ2(U ). Indeed,

∂

∂u1
(−m(0)

a (U, u1, u2)− u1 − (z + a2
+ 1/2)u2) = m(0)

a (U, u1, u2)− 1

∂

∂u2
(−m(0)

a (U, u1, u2)− u1 − (z + a2
+ 1/2)u2) = m(1)

a (U, u1, u2)− (z + a2
+ 1/2).

Note that the set function νa,z is non-increasing wrt the set inclusion, so

νa,z([0, 1]) = inf{νa,z(U ) : U ⊆ [0, 1] Borel set such that ℓ(U ) > 0}. (34)

Step 3: end of the proof. In the next step we shall show that λ1(a, z) := γ (1)(a, z) − 1

and λ2(a, z) := γ (2)(a, z), where γ (1) and γ (2) are defined in the statement of the lemma,
are solutions of (32) and (33) with Aa,z = [0, 1]. So νa,z([0, 1]) = γ (a, z) and therefore
inf f ∈Ba,z

 1
0 f (x) log f (x) dx ≤ νa,z([0, 1]). The claim follows if we prove that this latter

inequality is indeed an equality. This is guaranteed by the following computation:

inf
f ∈Ba,z

∫ 1

0
f (x) log f (x) dx = −(1 + λ1(Aa,z))− (z + a2

+ 1/2)λ2(Aa,z) = νa,z(Aa,z)

≥ inf{νa,z(U ) : U ⊆ [0, 1] Borel set such that ℓ(U ) > 0} = νa,z([0, 1])

where the latter equality is given by (34).

Step 4: computation of the Lagrange multipliers. We shall check that λ1 := λ1(a, z) and
λ2 := λ2(a, z) are solutions of (32) and (33) with Aa,z = [0, 1]. Consider the system

∫ 1

0
e−σa(x)λ2 dx = e1+λ1∫ 1

0
σa(x)e−σa(x)λ2 dx = e1+λ1(z + a2

+ 1/2)

and define the function

Ga,z(θ) :=

 1
0 σa(x)e−σa(x)θ dx

z + a2 + 1/2
−

∫ 1

0
e−σa(x)θ dx . (35)

Note that

lim
θ→0

Ga,z(θ) =
a2

+ 1/2

z + a2 + 1/2
− 1 ≤ 0. (36)
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Computing the integrals the system reduces to

−
1
λ2


e−2aλ2 − 2e−aλ2 + e−λ2


= e1+λ1

−e−λ2


1
λ2

+
1

λ2
2


+ e−aλ2


2a

λ2
+

2

λ2
2


− e−2aλ2


2a

λ2
+

1

λ2
2


= e1+λ1


z + a2

+
1
2


,

and

Ga,z(θ) =

−e−θ


1
θ

+
1
θ2


+ e−aθ


2a
θ

+
2
θ2


− e−2aθ


2a
θ

+
1
θ2


z + a2 + 1/2

+
1
θ


e−2aθ

− 2e−aθ
+ e−θ


. (37)

We have

lim
θ→−∞

Ga,z(θ) = +∞. (38)

Indeed, Ga,z(θ) can be rewritten as

e−θ

θ

[
1 + eθ(1−2a)


1 − κ(z, a)


2a +

1
θ


− 2eθ(1−a)


1 − κ(z, a)


a +

1
θ


− κ(z, a)


1 +

1
θ

]
,

where we set κ(z, a) := (z + a2
+ 1/2)−1. If a < 1/2, as θ → −∞, the term inside the square

brackets converges to 1 − κ(z, a), and this quantity is strictly less than zero since z < 1/2 − a2.
So (38) follows for a < 1/2. Similarly, for a = 1/2, as θ → −∞, the term inside the square
brackets converges to 2(1 − κ(z, a)), which is again a strictly negative quantity. Finally, if
a > 1/2, as θ → −∞, the term inside the square brackets is asymptotically equivalent to
(1−2aκ(z, a))eθ(1−2a). Multiplying this quantity by e−θ/θ and passing to the limit as θ → −∞

we get (38) (indeed 1 − 2aκ(z, a) is strictly less than zero since z < 2a − a2
− 1/2). The

conclusion follows by (36), (38) and the Intermediate Values Theorem. �

Proof of Corollary 4.4. By Theorem 4.1 the constant λ/2, where λ is defined by (18) with
E = [0, 1], d the Euclidean distance and ℓ1 the Lebesgue measure, is a lower bound for the ratio
IGTP(z)/z2, for any z > 0 (as already mentioned, a numerical evaluation of λ yields λ ≃ 5.20).
So the claim follows if we show

lim sup
z→0

IGTP(z)

z2 ≤ M, (39)

for some positive constant M > 0. Let Ga,z(θ) be the function defined by (35), with a ∈ [0, 1/2),
z ∈ [0, 1/4) and θ ∈ (−∞, 0]. Let γ (2)(a, z) be a solution of the equation in θGa,z(θ) = 0. By
Dini’s Implicit Function Theorem we have that γ (2)(0, z) is continuously differentiable (and
strictly negative) on (0, 1/4) and

γ (2)′(0, z) :=
d
dz
γ (2)(0, z) = −

d
dz

G0,z(θ)


θ=γ (2)(0,z)


d

dθ
G0,z(θ)


θ=γ (2)(0,z)

.
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Using relation (37) (with a = 0), by an easy computation we deduce, for z ∈ (0, 1/4),

γ (2)′(0, z) =
(z + 1/2)−2 A(z)

A(z)+ (z + 1/2)−1 B(z)
,

where

A(z) := 1 − e−γ (2)(0,z)
− γ (2)(0, z)e−γ (2)(0,z)

and

B(z) :=
−2A(z)+ (γ (2)(0, z))2e−γ (2)(0,z)

γ (2)(0, z)
.

By the continuity of γ (2)(0, z) on [0, 1/4) we have G0,0(0) = 0 = G0,0(γ
(2)(0, 0)). Since

G ′

0,0(θ) < 0 on (−∞, 0], we deduce γ (2)(0, 0) = 0. By applying e.g. l’Hopital’s rule we
have

lim
z→0

A(z)

(γ (2)(0, z))2
= 1/2 and lim

z→0

B(z)

(γ (2)(0, z))2
= −1/3.

Therefore limz→0 γ
(2)′(0, z) = −12. An easy computation yields

γ (2)′′(0, z) = −2(z + 1/2)−3 A(z)2

[A(z)+ (z + 1/2)−1 B(z)]2

− (z + 1/2)−4 A(z)B(z)

[A(z)+ (z + 1/2)−1 B(z)]2

+ (z + 1/2)−3 A′(z)B(z)− A(z)B ′(z)

[A(z)+ (z + 1/2)−1 B(z)]2 . (40)

Now, we investigate the behavior of A′(z)B(z)−A(z)B ′(z), as z → 0. After some manipulations,
we have

A′(z)B(z)− A(z)B ′(z)

(γ (2)(0, z))3
= γ (2)′(0, z)

×
2A(z)2/[γ (2)(0, z)]4

− e−γ (2)(0,z)
+ (A(z)/[γ (2)(0, z)]2)e−γ (2)(0,z)(1 − γ (2)(0, z))

γ (2)(0, z)
,

and so

lim
z→0

A′(z)B(z)− A(z)B ′(z)

(γ (2)(0, z))3

= −12 lim
z→0

2A(z)2/[γ (2)(0, z)]4
− 1 + A(z)/[γ (2)(0, z)]2

γ (2)(0, z)
. (41)

Note that

d
dz

A(z)

γ (2)(0, z)2
=
γ (2)′(0, z)B(z)

[γ (2)(0, z)]2
→ 4, as z → 0.
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So, by l’Hopital’s rule and (41) we have

lim
z→0

A′(z)B(z)− A(z)B ′(z)

(γ (2)(0, z))3
= 12.

Therefore, by (40) it follows that

lim
z→0

zγ (2)′′(0, z) = lim
z→0


z

γ (2)(0, z)


γ (2)(0, z)γ (2)′′(0, z) = −288. (42)

Now, consider the function

γ (1)(0, z) := log


−

e−γ (2)(0,z)
− 1

γ (2)(0, z)


, z ∈ (0, 1/4).

We have

γ (1)′(0, z) = γ (2)′(0, z)
A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)

and

γ (1)′′(0, z) = γ (2)′′(0, z)
A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)

+ γ (2)′(0, z)
d
dz

A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)
.

In particular, limz→0 γ
(1)′(0, z) = 6. A straightforward computation shows

lim
z→0

d
dz

A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)
= −1

and so

lim
z→0

(−γ (1)′′(0, z)− γ (2)′′(0, z)(z + 1/2)− 2γ (2)′(0, z))

= 12 + lim
z→0

[
−γ (2)′′(0, z)


A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)
+ z + 1/2

]
. (43)

Using l’Hopital’s rule it is easily seen that

lim
z→0

z−1


A(z)

γ (2)(0, z)(e−γ (2)(0,z) − 1)
+ z + 1/2


= 0.

Therefore, by (42) and (43) we have

lim
z→0

(−γ (1)′′(0, z)− γ (2)′′(0, z)(z + 1/2)− 2γ (2)′(0, z)) = 12. (44)

By Theorem 4.3 (and the continuity on [0, 1/2) of the function a → γ (2)(a, z), z ∈ [0, 1/4)) we
have, for any z ∈ (0, 1/4),

IGTP(z) ≤ γ (0, z) = −γ (1)(0, z)− γ (2)(0, z)(z + 1/2).
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Applying l’Hopital’s rule twice and using (44) we deduce

lim sup
z→0

IGTP(z)

z2 ≤ lim
z→0

−γ (1)′′(0, z)− γ (2)′′(0, z)(z + 1/2)− 2γ (2)′(0, z)

2
= 6.

So the upper bound (39) holds with M = 6, and the proof is completed. �

5. MDP for the GTP

MDP for the TSTP were given in [3,12]. In this section we provide MDP for {Kn/n}n≥1,
where Kn is the optimal transport cost of the GTP over a compact metric space (E, d) with DCF.

In this paper {sn}n≥1 denotes a strictly increasing sequence of positive numbers diverging to
+∞. If in addition sn/

√
n → 0, we say that a sequence of rv’s {ξn}n≥1, taking values on a metric

space (S, dS), obeys a MDP on S with speed s2
n and rate function J if


ξn

√
n/sn


n≥1 obeys a

LDP on S with speed s2
n and rate function J .

Let L(E)∗ be the space of bounded real functionals F : L(E) → R equipped with the norm
‖F‖∗ := supϕ∈L(E) |F(ϕ)|. For each ν ∈ Mb(E), we define ν∗

∈ L(E)∗ by ν∗(ϕ) := ν(ϕ). We
denote by N (E, r) the metric entropy of (E, d), i.e. the minimal number of closed balls with
radius r needed to cover E . The following theorems hold.

Theorem 5.1. Assume that

lim
n→∞

sn
√

n
= 0, lim

n→∞

nα/2

sα+2
n

log

√
n

sn
= 0, for some α > 0, (45)

and

lim
n→∞

√
nW1(γn, ℓ1)/sn = 0. (46)

If moreover

there exists κ > 0 such that N (E, δ) ≤ κδ−α, ∀δ > 0, (47)

then {Kn/n}n≥1 obeys a MDP on R with speed s2
n and good rate function

JGTP(z) =

z2/


2 sup
ϕ∈L0(E)

ℓ1(ϕ
2)


if z ≥ 0

+∞ if z < 0.

In the particular case when E is a compact subset of Rk and d is the Euclidean distance, in
dimensions 1 and 2 it is possible to have a wider choice for {sn}n≥1:

Theorem 5.2. If E is a compact subset of the line, d is the Euclidean distance and {sn}n≥1
satisfies the first relation in (45) and (46), then {Kn/n}n≥1 obeys a MDP on R with speed s2

n and
good rate function JGTP.

Theorem 5.3. Suppose that d is the Euclidean distance on the plane and {sn}n≥1 satisfies the
first relation in (45) and (46). Moreover, assume one of the following additional conditions:

(i) E = [0, 1]
2, ℓ1 is the uniform distribution, and limn→∞ sn/


log n = +∞.

(ii) E is a compact subset of the plane and limn→∞ sn/ log n = +∞.

Then {Kn/n}n≥1 obeys a MDP on R with speed s2
n and good rate function JGTP.
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Finally, we state the following corollary of Theorem 5.1.

Corollary 5.4. Assume that E is a compact subset of Rk , k ≥ 3, d is the Euclidean distance and
{sn}n≥1 satisfies the first relation in (45), (46) and is such that, for all n large enough,

sn ≥ κn
1
2 −β , for some κ > 0 and β ∈ (0, 1/(k + 2)). (48)

Then {Kn/n}n≥1 obeys a MDP on R with speed s2
n and good rate function JGTP.

It was proved in [3] that if E is the Euclidean unit ball of Rk , d is the Euclidean distance and ℓ1
is the uniform distribution, then supϕ∈L0(E) ℓ1(ϕ

2) = 1/(k + 2). We also note that if E = [0, 1],
d is the Euclidean distance and ℓ1 = ℓ is the Lebesgue measure, then supϕ∈L0(E) ℓ1(ϕ

2) = 1/12.
Indeed,

sup
ϕ∈L0(E)

ℓ1(ϕ
2) =

1
2

sup
ϕ∈L0(E)

∫
E×E

|ϕ(x)− ϕ(y)|2 dxdy ≤
1
2

∫
E×E

|x − y|
2 dxdy,

so the supremum is attained at ϕ∗(x) = x −
1
2 , and the claim follows.

To clarify the choice of {sn}n≥1, before proving the above results, we provide an example.

Example 3. (1) Consider the kDRGTP with C = W1 and ℓ1 = ℓ, the Lebesgue measure on
E = [0, 1]

k . Assume that {sn}n≥1 satisfies the first relation in (45). In addition, suppose that
{sn}n≥1 goes to +∞ faster than log n if k = 2, or satisfies (48) if k ≥ 3. Then Theorem 5.2
or 5.3 or Corollary 5.4 may be applied. Indeed, let {g1, . . . , gn} ⊂ [0, 1]

k be the grid formed
by n regularly spaced points gi , i.e. each gi is a point of the cube Ci , i = 1, . . . , n. We have

W1(γn, ℓ1) = sup
ϕ∈L(E)

∫
E
ϕ(x)γn(dx)−

∫
E
ϕ(x) dx


≤ sup

ϕ∈L(E)

n−
i=1

∫
Ci

|ϕ(gi )− ϕ(x)| dx

≤
1
n

n−
i=1

sup
x∈Ci

|gi − x | ≤
√

kn−1/k .

So condition (46) is satisfied.
(2) Consider the kDGTP with C = W1 and ℓ1 specified below. As in Example 1 part (2),

suppose that the grid points are not all distinct, i.e. {g1, g2, . . .} = {x1, . . . , xm} for some
positive integer m, where x1, . . . , xm are distinct points of E . Using the same notation
as in Example 1, define pmin := min{p1, . . . , pm} > 0, n j (n) := [np j ] + h j and
ℓ1 :=

∑m
j=1 p jδx j . Assume that {sn}n≥1 satisfies the first relation in (45). In addition,

suppose that {sn}n≥1 goes to +∞ faster than log n if k = 2, or satisfies (48) if k ≥ 3.
Then Theorem 5.2 or 5.3 or Corollary 5.4 may be applied. Indeed, (46) may be checked as
follows. By 7.3.3 in Talagrand [23] we have

W1(γn, ℓ1) = W1


1
n

m−
j=1

n j (n)δx j ,

m−
j=1

p jδx j


≤ ‖d‖∞

m−
j=1

n j (n)

n
− p j

 .
So (46) is a consequence of

∑m
j=1 |([np j ] + h j )/(np j ) − 1| ≤ 2m/(npmin). Alternatively,

(46) may be checked using a classical transportation (or T1) inequality (see Theorem 22.10,
p. 575, in [26]).
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Let d2 be the L2-metric on L2(E, ℓ1), the space of square-integrable functions on E , wrt ℓ1.
The following lemmas are used to prove Theorem 5.1. The proof of Lemma 5.5 is omitted. It
may be reproduced following Step 2 of the proof of Theorem 2.1 in [5]. The proof of Lemma 5.6
is postponed to the end of this section.

Lemma 5.5. For all n ≥ 1, x ≥ 0 and δ ∈ (0, 2‖d‖∞),

P (W1(Ln, ℓ1) ≥ x) ≤


16e‖d‖∞

δ

N (E,δ/4)

exp

−n

λ

2
max{x − δ, 0}

2

,

where λ is defined in (18).

Lemma 5.6. The metric space (L(E), d2) is totally bounded.

Proof of Theorem 5.1. We divide the proof in two steps.
Step 1: MDP for the Kantorovich–Rubinshtein distance. In this step we shall prove that
{W1 (Ln, ℓ1)}n≥1 obeys a MDP on R with speed s2

n and good rate function JGTP. For each
n ≥ 1, the process {(Ln − ℓ1)(ϕ)}ϕ∈L(E) is continuous in probability. So, due to the separability
of (L(E), d2), there exist separable versions of the processes {(Ln − ℓ1)(ϕ)}ϕ∈L(E), n ≥ 1.
Throughout this proof we always refer to these separable versions so that supϕ∈L(E)(Ln −

ℓ1)(ϕ) = supϕ∈Lc(E)(Ln − ℓ1)(ϕ) a.s., for some countable subset Lc(E) of L(E) (see e.g. [18],
p. 44, for the notion of separable process). We start by proving that {(Ln − ℓ1)

∗}n≥1 obeys a
MDP on L(E)∗ with speed s2

n and good rate function

JL(E)∗(F) = inf


1
2
ℓ1


dν
dℓ1

2


: ν ≪ ℓ1, ν(E) = 0, ν∗
= F


.

By Lemma 5.6, Theorem 2 in [27] (the implication (iii) ⇒ (i)) and (5), we only need to verify

lim
n→∞

P

W1(Ln, ℓ1) > εsn/

√
n


= 0, ∀ε > 0. (49)

By Lemma 5.5 and (47) we deduce, for all n ≥ 1, x, δ ∈ (0, 2‖d‖∞),

P(W1(Ln, ℓ1) > x) ≤


16e‖d‖∞

δ

(4ακ)δ−α
exp


−n

λmax{x − δ, 0}
2

2


.

Choosing, for n large enough and ε > ε′ > 0, x = εsn/
√

n and δ = ε′sn/
√

n, we get

P

W1(Ln, ℓ1) > εsn/

√
n


≤


κ1

√
n

sn

κ2(sn/
√

n)−α

exp

−κ3s2

n


, (50)

where κ1 := 16e‖d‖∞/ε
′, κ2 := (4/ε′)ακ , κ3 := λ(ε − ε′)2/2. By (45) it follows that the right-

hand side of (50) goes to zero, as n → ∞, and so {(Ln − ℓ1)
∗}n≥1 obeys a MDP on L(E)∗ with

speed s2
n and good rate function JL(E)∗ . By (5) we deduce

√
n

sn
W1 (Ln, ℓ1) =

[√
n

sn
(Ln − ℓ1)

]∗
∗

.

So, by the Contraction Principle, {W1(Ln, ℓ1)}n≥1 obeys a MDP on R with speed s2
n and good

rate function

JGTP(z) = inf


1
2
ℓ1


dν
dℓ1

2


: ν ≪ ℓ1, ν(E) = 0, sup
ϕ∈L(E)

ν(ϕ) = z


.
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Arguing similarly to in the proof of Lemma 3.4 in [12] one can deduce that JGTP has the desired
expression.

Step 2: exponential equivalence. By the triangular inequality and the symmetry, we deduce

|W1(µ, ν1)− W1(µ, ν2)| ≤ W1(ν1, ν2), for all µ, ν1, ν2 ∈ P(E). (51)

Combining this with (46) we have that for any δ > 0 there exists nδ such that, for all n ≥ nδ ,

P

√
n

sn
|Kn/n − W1(Ln, ℓ1)| > δ


≤ P


W1(γn, ℓ1) >

sn
√

n
δ


= 0.

Therefore, for a fixed δ > 0, we have

lim
n→∞

1

s2
n

log P

√
n

sn
|Kn/n − W1(Ln, ℓ1)| > δ


= −∞.

So,


Kn/(sn
√

n)


n≥1 and
√

nW1(Ln, ℓ1)/sn


n≥1 are exponentially equivalent (see e.g. Defini-
tion 4.2.10 in [9]). The conclusion follows by Step 1 and Theorem 4.2.13 in [9]. �

Proof of Theorem 5.2. To avoid trivialities we assume that E is a compact interval (otherwise
L(E) = ∅). Arguing as in the proof of Theorem 5.1 we only need to check (49). In Section 7,
we shall show that if E ⊂ R is a compact interval, then L(E) is an ℓ1-Donsker class (see
Lemma 7.3). Combining this with Theorem 3.2 (the implication (ii) ⇒ (iii)) and Remark (ii)
p.19 in [27], we deduce (49). �

Proof of Theorem 5.3. Here again, arguing as in the proof of Theorem 5.1, we only need to
check (49). By Markov’s inequality

P

W1(Ln, ℓ1) > εsn/

√
n


≤
√

nE[W1(Ln, ℓ1)]/(εsn). (52)

First, suppose that the additional conditions (i) hold. By Theorem 4.1 in [22] we have
E[W1(Ln, ℓ1)] ≤ κ


log n/n, for all n ≥ 1 and some constant κ > 0 not depending on

n. Combining this with (52) we deduce (49). Now, assume (ii). Equip L(E) with the norm
‖ϕ‖BL := ‖ϕ‖∞ +‖ϕ‖Lip. Here, ‖ · ‖∞ denotes the usual sup-norm and ‖ · ‖Lip is defined by (4)
with d being the Euclidean distance. For α ∈ Mb(E), set ‖α‖BL := supϕ: ‖ϕ‖BL≤1 |α(ϕ)|. The
BL-metric on P(E) is defined by β(µ, ν) := ‖µ− ν‖BL . A straightforward computation shows
that, for any M ≥ 1, µ, ν ∈ P(E), sup{|(µ − ν)(ϕ)| : ϕ ∈ L(E), ‖ϕ‖BL ≤ M} = Mβ(µ, ν).
So W1(µ, ν) ≤ (‖d‖∞ + 1)β(µ, ν), for all ν, µ ∈ P(E). Therefore, (49) follows if we show that
√

nE[β(Ln, ℓ1)]/sn → 0. As noticed in [10], p. 44, E[β(Ln, ℓ1)] ≤ κn−1/2(1 + log n), for all
n ≥ 1 and some constant κ > 0 not depending on n. The claim is a consequence of the choice of
{sn}n≥1. �

Proof of Corollary 5.4. Note that (47) is satisfied with α = k and (48) implies the second
relation in (45) with α = k. The claim follows by Theorem 5.1. �

Proof of Lemma 5.6. We need to prove that, for any ε > 0, there exist a finite number of sets
in (L(E), d2), with radius less than or equal to ε, whose union covers L(E). Equip Cb(E) with
the usual sup-norm ‖ · ‖∞. Clearly, L(E) ⊂ Cb(E), and so by the Ascoli–Arzelà’ Theorem (see
e.g. [9, Theorem C.8, p. 352]) L(E) is totally bounded (i.e. precompact) in (Cb(E), ‖ · ‖∞).
Indeed (L(E), ‖ · ‖∞) is bounded and L(E) is equicontinuous, i.e. for any ε > 0 and x ∈ E ,
there exists a neighborhood of x , say Nε(x), such that supϕ∈L(E) supy∈Nε(x) |ϕ(x)− ϕ(y)| < ε.
By one of the equivalent definitions of totally bounded metric space, it follows that, for a fixed
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ε > 0, there exist a finite number of functions in Cb(E), say ϕ1, . . . , ϕn ∈ Cb(E), such that

L(E) ⊂
n

i=1

◦

Bε(ϕi ; ‖ · ‖∞), where
◦

Bε(ϕi ; ‖ · ‖∞) := {ψ ∈ Cb(E) : ‖ϕi − ψ‖∞ < ε}. The

total boundedness of (L(E), d2) follows on noticing that Bε(ϕi ; d2) ⊃
◦

Bε(ϕi ; ‖ · ‖∞), for any
i = 1, . . . , n, where Bε(ϕi ; d2) := {ψ ∈ Cb(E) : d2(ϕi , ψ) ≤ ε}. �

6. Extensions to non-compact spaces: a brief discussion

The ASC and LDP in Section 3 and Theorem 4.2 hold on general Polish spaces. The proofs of
(15), (16) and Lemma 5.6 rely on the compactness of (E, d), and we do not know how to prove
Theorems 4.1 and 5.1 relaxing such a topological assumption. However, the exact deviation
bounds in [5] may be used to get explicit large deviation upper bounds for certain TSTP and
GTP on non-compact spaces.

Let d be the Euclidean distance on E ⊆ Rk . We denote by K (T )
n the optimal transport cost of

the kDTSTP with E1 = E2 = E , ℓ1 = ℓ2, d1 = d2 = d , and by K (G)
n the optimal transport cost

of the kDGTP with E1 = E2 = E and d1 = d2 = d . The following theorem holds.

Theorem 6.1. Assume c(x, y) ≤ d(x, y) for all x, y ∈ E and


E eαd(x0,x)2ℓ1(dx) < ∞ for some
x0 ∈ E and α > 0. Let λ be defined by (18). Then

lim sup
n→∞

1
n

log P


K (T )
n /n ∈ F


≤ −λ inf

x∈F
x2/8, ∀ closed F ⊆ [0,∞). (53)

If in addition (13) holds with ℓ∗ ∈ P1(E), then

lim sup
n→∞

1
n

log P


K (G)
n /n ∈ F


≤ −λ inf

x∈F
max{x − W1(ℓ1, ℓ

∗), 0}
2/2,

∀ closed F ⊆ [0,∞). (54)

Proof. We only prove (53); the bound (54) may be shown similarly. For ease of notation we set
K (T )

n = Kn . By Corollary 4 in [6], ℓ1 satisfies the T1(λ) inequality (19). So by Theorem 2.1
in [5] we have, for any x > 0 and all n large enough, P(W1(Ln, ℓ1) > x) ≤ e−nλx2/2. For any
n ≥ 1 and some σ ∈ Pn we have Kn/n ≤ n−1∑n

i=1 c(X i , Yσ(i)) ≤ n−1∑n
i=1 d(X i , Yσ(i)) =

W1(Ln,Mn) a.s. By the square-exponential moment condition it follows that E[d(x0, X1)] < ∞,
and so Ln,Mn, ℓ1 ∈ P1(E). Combining the above inequalities and recalling that W1 is a distance
on P1(E), for all n large enough and x ≥ 0, we have

P(Kn/n ≥ x) ≤ P(W1(Ln,Mn) ≥ x) ≤ 2P(W1(Ln, ℓ1) > x/2) ≤ 2e−nλx2/8.

Therefore

lim sup
n→∞

1
n

log P (Kn/n ≥ x) ≤ −λx2/8, ∀x ≥ 0. (55)

This upper bound can be extended from closed half-intervals [x,∞) to arbitrary closed subsets
F ⊆ [0,∞) as follows. Letting x denote the infimum of F , we have x2/8 = infy∈F y2/8. The
claim is a consequence of (55), on noticing that F is contained in [x,∞). �

Although Theorem 6.1 extends to some non-compact spaces the large deviation upper bounds
provided by Theorem 4.1, (53) and (54) are weaker than the corresponding upper bounds
provided by (17). We also remark that if the tail of ℓ1 decays so slowly that it does not admit
a finite square-exponential moment, but only polynomial or exponential moments, then explicit
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large deviation upper bounds for the optimal transport cost with locations on non-compact spaces
may be deduced by Theorems 2.7 and 2.8 in [5].

7. CLT

We say that a sequence of rv’s {ξn}n≥1, taking values on a separable metric space (S, dS),
obeys a CLT on S with limit ξ if ξ is an S-valued rv and ξn/

√
n → ξ weakly. In this section

we provide CLT for {Kn}n≥1, concerning certain 1DTSTP and 1DGTP with Euclidean DCF (see
Theorems 7.1, 7.2 and 7.4).

7.1. CLT for the 1DTSTP

Throughout this subsection, E denotes a non-empty compact interval of R and d the
Euclidean distance. Let ℓ1 be the common law of iid rv’s {Xn}n≥1 with values on E and G(ℓ1) ≡

{G(ℓ1)
ϕ }ϕ∈L(E) a centered Gaussian process with covariance E[G(ℓ1)

ϕ1 G(ℓ1)
ϕ2 ] := ℓ1(ϕ1ϕ2) −

ℓ1(ϕ1)ℓ1(ϕ2) (it exists since the given covariance is non-negative definite; see [11, p. 92]). We
endow L(E) with the semi-metric ρℓ1(ϕ1, ϕ2) := E1/2

[(G(ℓ1)
ϕ1 −G(ℓ1)

ϕ2 )
2
] = d2(ϕ1 −ℓ1(ϕ1), ϕ2 −

ℓ1(ϕ2)). For each n ≥ 1, consider the random signed measure
√

n(Ln −ℓ1). Due to the continuity
of W1 and the measurability of Ln , the function ω → supϕ∈L(E) |

√
n(Ln(ω)−ℓ1)(ϕ)| is a rv, and

each process
√

n(Ln − ℓ1)(ϕ)

ϕ∈L(E) may be viewed as a random element on L(E)∗ through

the measurable map ω →
√

n(Ln(ω)− ℓ1)
∗. In Lemma 7.3 we shall check that L(E) is an

ℓ1-Donsker class (see e.g. [18, p. 404]), i.e.:

(i) L(E) is pre-Gaussian, i.e. the process G(ℓ1) admits a version such that, for each ω, the
function from L(E) to R defined by G(ℓ1)

ω (ϕ) := G(ℓ1)
ϕ (ω) is bounded and uniformly

continuous wrt ρℓ1 .
(ii)

√
n(Ln − ℓ1)

∗ converges weakly to G(ℓ1) on L(E)∗.

Thanks to the pre-Gaussianity, there exists a separable version of G(ℓ1) (see e.g. [18]). In the
following (and in part (ii) of the above definition), we are considering a separable version, in
such a way that the pointwise supremum is a rv, and the Gaussian process G(ℓ1) may be viewed
as a random element on L(E)∗ through the (measurable) map ω → G(ℓ1)

ω .
Finally, we recall that, to take into account the measurability questions (we are dealing

with random elements on the non-separable space (L(E)∗, ‖ · ‖∗)), the weak convergence
of probability measures on L(E)∗ is defined via the upper integral (see [18, p. 404] and
[11, pp. 93–94]).

Let Kn denote the optimal transport cost of the 1DTSTP over E with Euclidean DCF, CIL
and ℓ1 = ℓ2. The following theorems hold.

Theorem 7.1. {Kn}n≥1 obeys a CLT on R with limit
√

2‖G(ℓ1)‖∗.

Set

σ 2
:=

∫
E

x2 ℓ1(dx)−

∫
E

x ℓ1(dx)

2

and Ψ(x) := (2π)−1/2
∫

∞

x
e−y2/2 dy.

Theorem 7.2. Under the foregoing assumptions:
(i) ‖G(ℓ1)‖∗ has the same law of


R |B(F(t))| dt , where {B(t)}0≤t≤1 is a Brownian bridge and

F is the distribution function of ℓ1.
(ii) If moreover σ > 0, then limx→∞ P(‖G(ℓ1)‖∗ > x)/[2Ψ(x/σ)] = 1.
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The proofs of Theorems 7.1 and 7.2 are based on the following lemma, which we shall show
later on.

Lemma 7.3. L(E) is an ℓ1-Donsker class.

Proof of Theorem 7.1. By Lemma 7.3 and Theorem 11.1.1, p. 333, in [11] we have that√
n/2(Ln − Mn)

∗
→ G(ℓ1) weakly on L(E)∗. By the Continuous Mapping Theorem (see

e.g. Theorem 3.6.7, p. 116, in [11])
√n/2(Ln − Mn)

∗
∗

→ ‖G(ℓ1)‖∗ weakly. The claim

follows on noticing that Kn/
√

2n =
√n/2(Ln − Mn)

∗
∗
. �

Proof of Theorem 7.2(i). By Theorem 2.1(a) in [8],
√

nW1(Ln, ℓ1) converges in law to
R |B(F(t))| dt . Note that

√
nW1(Ln, ℓ1) = sup

ϕ∈L(E)

∫
E
ϕ(x)

√
n(Ln − ℓ1)


(dx) =

√n(Ln − ℓ1)
∗

∗

,

and by Lemma 7.3
√

n(Ln − ℓ1)
∗

→ G(ℓ1) weakly on L(E)∗. So by the Continuous Mapping
Theorem,

√n(Ln − ℓ1)
∗

∗
→ ‖G(ℓ1)‖∗ in law. The claim follows by the uniqueness of the

limit in distribution. �

Proof of Theorem 7.2(ii). We start by proving the lower bound. By the Lipschitz property of ϕ,
for all ϕ ∈ L(E), we deduce

σ 2
ϕ := E[(G(ℓ1)

ϕ )2] =
1
2

∫
E×E

|ϕ(x)− ϕ(y)|2 ℓ1(dx)ℓ1(dy)

≤
1
2

∫
E×E

|x − y|
2 ℓ1(dx)ℓ1(dy)

= σ 2
= ℓ1(ϕ

2
1)− ℓ2

1(ϕ1) = ℓ1(ϕ
2
2)− ℓ2

1(ϕ2),

where ϕ1(x) := x − inf E and ϕ2(x) := sup E − x . Since ϕ1, ϕ2 ∈ L(E), they are points of
maximal variance. Therefore, for all x > 0, letting Z denote a standard normal rv, we have

P(‖G(ℓ1)‖∗ > x) ≥ sup
ϕ∈L(E)

P(|Gϕ | > x) = sup
ϕ∈L(E)

P(|Z | > x/σϕ) = 2Ψ(x/σ),

and the lower bound follows. We now show the matching upper bound. A straightforward
computation gives E[Gϕ1 Gϕ2 ] = −σ 2. Therefore, Gϕ1 = −Gϕ2 a.s. Consequently,

P(‖G(ℓ1)‖∗ > x) = P


sup

ϕ∈L(E)\{ϕ2}

max{Gϕ,−Gϕ} > x



≤ P


sup

ϕ∈L(E)\{ϕ2}

Gϕ > x


+ P


sup

ϕ∈L(E)\{ϕ2}

−Gϕ > x



= 2P


sup

ϕ∈L(E)\{ϕ2}

Gϕ > x


,
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where the latter equality follows by the symmetry of G(ℓ1). The matching upper bound follows
if we prove

lim
x→∞

P


sup

ϕ∈L(E)\{ϕ2}

G(ℓ1)
ϕ > x


Ψ(x/σ)

= 1. (56)

We apply Theorem 5.5, p. 121, in [1] (see also [21]). Note that ϕ1 and ϕ2 are the unique points
of maximal variance for G(ℓ1). Indeed, reasoning by contradiction, assume that there exists
ϕ ∈ L(E) \ {ϕ1, ϕ2} of maximal variance. Then∫

E×E
|ϕ(x)− ϕ(y)|2 ℓ1(dx)ℓ1(dy) =

∫
E×E

|x − y|
2 ℓ1(dx)ℓ1(dy)

which implies |ϕ(x) − ϕ(y)| = |x − y| for ℓ1 ⊗ ℓ1-almost all (x, y) ∈ E × E . So, ℓ1-almost
everywhere on E , ϕ(x) = x + c1 or ϕ(x) = −x + c2, where c1, c2 ∈ E are two constants. Since
ϕ ∈ L(E), then ϕ(x) = x − inf E or ϕ(x) = sup E − x , for all x ∈ E , which is impossible.
Consequently, ϕ1 is the unique point of maximal variance for {Gϕ}ϕ∈L(E)\{ϕ2}. For h > 0, define

L(h)(E) := {ϕ ∈ L(E) \ {ϕ2} : E[G(ℓ1)
ϕ G(ℓ1)

ϕ1 ] ≥ σ 2
− h2

}. We have

L(h)(E) ⊂ Bh
√

2(ϕ1; ρℓ1) :=


ϕ ∈ L(E) : ρℓ1(ϕ, ϕ1) ≤ h

√
2

. (57)

Indeed, for ϕ ∈ L(h)(E),

2h2
≥ 2[ℓ1(ϕ

2
1)− ℓ2

1(ϕ1)] − 2E[G(ℓ1)
ϕ G(ℓ1)

ϕ1
]

≥ ℓ1(ϕ
2
1)− ℓ2

1(ϕ1)+ ℓ1(ϕ
2)− ℓ2

1(ϕ)− 2[ℓ1(ϕϕ1)− ℓ1(ϕ)ℓ1(ϕ1)] = ρ2
ℓ1
(ϕ, ϕ1).

Next, we prove limh→0 E

supϕ∈L(h)(E)(G

(ℓ1)
ϕ − G(ℓ1)

ϕ1 )

/h = 0. By (57) we have a.s. 0 ≤

supϕ∈L(h)(E)(G
(ℓ1)
ϕ − G(ℓ1)

ϕ1 ) ≤


supϕ∈Bh

√
2(ϕ1;ρℓ1 )

G(ℓ1)
ϕ


− G(ℓ1)

ϕ1 . So, it suffices to check

lim
h→0

E


sup

ϕ∈Bh
√

2(ϕ1;ρℓ1 )

G(ℓ1)
ϕ


h

= 0. (58)

This limit is consequence of a classical entropy bound. For ε > 0, let N (ε,Bh
√

2(ϕ1; ρℓ1), ρℓ1)

denote the minimal number of ρℓ1 -balls of radius ε needed to cover Bh
√

2(ϕ1; ρℓ1) (this number is
finite for each ε by Theorem 3.18, pp. 80–81, in [18]). Clearly, N (ε,Bh

√
2(ϕ1; ρℓ1), ρℓ1) = 1 for

all ε ≥ h
√

2. Therefore, by Corollary 4.15, p. 106, in [1], there exists a constant K > 0 such that

E


sup

ϕ∈Bh
√

2(ϕ1;ρℓ1 )

G(ℓ1)
ϕ


≤ K

∫ h
√

2

0
(log N (ε,Bh

√
2(ϕ1; ρℓ1), ρℓ1))

1/2 dε.

Combining this inequality with N


h
√

2,Bh
√

2(ϕ1; ρℓ1), ρℓ1


= 1 we deduce (58). So, all the

assumptions of Theorem 5.5, p. 121, in [1] are verified, and the proof is complete. �

Proof of Lemma 7.3. For a fixed positive constant M > 0, define C M (E) := {ϕ : E → R :

‖ϕ‖BL ≤ M}, where ‖ϕ‖BL := ‖ϕ‖∞ + ‖ϕ‖Lip and ‖·‖Lip is given by (4) with d being the
Euclidean distance. For a subset C ⊂ Cb(E), we denote by N (ε, C, ‖·‖∞) the minimal number of
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balls of radius ε needed to cover C, wrt the sup-norm. By a result in [17] (see also Proposition 1.1
in [24]) we have, for all ε > 0, log N (ε, C1(E), ‖ · ‖∞) ≤ K ε−1, where K ∈ (0,∞) is a positive
constant, not depending on ε. Consequently, for all δ > 0, log N (δ, C M (E), ‖ · ‖∞) ≤ K M δ−1.
Note that L(E) ⊂ C‖d‖∞+1(E); therefore

log N (δ,L(E), ‖ · ‖∞) ≤ K (‖d‖∞ + 1) δ−1, ∀δ > 0. (59)

Given two functions ϕ1, ϕ2 ∈ L2(E, ℓ1) the bracket [ϕ1, ϕ2] is the set of functions ϕ such that
ϕ1 ≤ ϕ ≤ ϕ2; the size of the bracket is the quantity d2(ϕ1, ϕ2). For a subset L ⊂ L2(E, ℓ1),
we denote by N (2)

[ ]
(ε,L, ℓ1) the bracketing number, i.e. the minimal number of brackets of size

smaller than or equal to ε needed to cover L (see e.g. [11, p. 234]). Let ϕ0 ∈ Cb(E). It is
easily checked that {ϕ ∈ Cb(E) : ‖ϕ − ϕ0‖∞ ≤ δ} ⊂ [ϕ0 − δ, ϕ0 + δ]. This latter bracket
is of size 2δ, and so N (2)

[ ]
(2δ,L(E), ℓ1) ≤ N (δ,L(E), ‖ · ‖∞). Therefore, by (59) we deduce

log N (2)
[ ]
(δ,L(E), ℓ1) ≤ 2K (‖d‖∞ + 1) δ−1, for all δ > 0. Consequently,∫ 1

0
(log N (2)

[ ]
(x,L(E), ℓ1))

1/2 dx ≤ [2K (‖d‖∞ + 1)]1/2
∫ 1

0
x−1/2 dx

= 2[2K (‖d‖∞ + 1)]1/2 < ∞.

The claim follows by Theorem 7.2.1 in [11]. �

7.2. CLT for the 1DGTP

Let Kn denote the optimal transport cost of the 1DGTP specified by E1 = E2 = E ⊆ R and
d1 = d2 = c = d, where d is the Euclidean distance. We have:

Theorem 7.4. Assume

R |x |ℓ1(dx) < ∞ and

lim
n→∞

√
nW1(γn, ℓ1) = 0. (60)

Then {Kn}n≥1 obeys a CLT on R with limit

R |B(F(t))| dt , where {B(t)}0≤t≤1 and F are defined

in the statement of Theorem 7.2.

Proof. By the triangular inequality and the symmetry, we deduce

|W1(µ, ν1)− W1(µ, ν2)| ≤ W1(ν1, ν2), for all µ, ν1, ν2 ∈ P1(E).

Since E[|X1|] < ∞ we have Ln, ℓ1 ∈ P1(E). So, combining the above inequality with (7) and
(60), we have, with probability 1,

|Kn/
√

n −
√

nW1(Ln, ℓ1)| =
√

n|W1(Ln, γn)− W1(Ln, ℓ1)| ≤
√

nW1(γn, ℓ1) → 0.

Note that E[|X1|] < ∞ implies


∞

0

√
P(|X1| > t) dt < ∞ and so the claimed convergence in

law follows by Theorem 2.1(a) in [8]. �

In particular, note that condition (60) is satisfied in the cases considered in Example 3.
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