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Abstract

A continuous time random walk (CTRW) is a random walk in which both spatial changes represented by
jumps and waiting times between the jumps are random. The CTRW is coupled if a jump and its preceding
or following waiting time are dependent random variables (r.v.), respectively. The aim of this paper is
to explain the occurrence of different limit processes for CTRWs with forward- or backward-coupling in
Straka and Henry (2011) [37] using marked point processes. We also establish a series representation for
the different limits. The methods used also allow us to solve an open problem concerning residual order
statistics by LePage (1981) [20].
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Two i.i.d. sequences of R+-valued waiting times (Jn)n∈N and of Rd -valued jumps (Xn)n∈N
yield two versions of a CTRW by

SNt :=

Nt
k=1

Xk, SNt+1 :=

Nt+1
k=1

Xk,
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where Nt := max{n ∈ N0 :
n

k=1 Jk ≤ t} is the number of jumps up to time t . The CTRW
is coupled if the sequences (Jn)n∈N and (Xn)n∈N are dependent. Typically we assume, that
the sequence (Jn, Xn)n∈N is i.i.d. with unknown dependence between the waiting time Jn and
the jump Xn for fixed n ∈ N. Using this dependence structure SNt is called backward-coupled
CTRW whereas SNt+1 is called forward-coupled CTRW. Both processes represent the position
of a jumper at time t , but in the backward-coupled case the particle first waits for a time J1 before
jumping to X1, whereas in the forward-coupled case the particle jumps to X1 at time t = 0 and
then waits for a time J1 and so on. CTRW processes were introduced in [29] to study random
walks on a lattice and have been studied intensively over the past few decades. Today there is a
wide field of possible applications for CTRWs. They are used in physics to model phenomena
of anomalous diffusion [35,28]. The jumps can also represent movements of an ensemble of
particles being transported over the earth surface in geophysics [34] or represent log-returns in
finance [32]. A comprehensive study of limit theorems for coupled CTRWs has been initiated
in [3] covering previously known special models [35,17,18] from physics. Coupling methods
different from forward-/backward-coupling can be found in [6,23], where certain correlations
between the waiting times, respectively between the jumps were introduced. A similar approach
in a more general setting appears in [13], where coupling is introduced through a Markov chain
(Yn)n∈N and waiting times, respectively jumps are modeled by (Jn = τ(Yn), Xn = V (Yn)) for
some measurable functions τ, V with values in (0,∞), respectively R. Note that these couplings
in general do not fulfill our i.i.d. assumption on the sequence (Jn, Xn)n∈N.

The limiting distributions of forward- and backward-coupled CTRWs have been investigated
by Straka and Henry [37] using a continuous mapping approach on the space of their sample
paths. Straka and Henry prove that the limiting processes of coupled CTRWs in general differ
when waiting times precede or follow jumps, respectively. Also the differences between the
properties of these processes are not marginal, cf. [14]. Unfortunately, neither the continuous
mapping approach used in [37] nor the methods used in [14] are adequate to point out why
different scaling limits occur from a mathematical point of view. So a new approach to fill this gap
is made using marked point processes here. Another explanation for the different scaling limits
of forward- and backward-coupled CTRW models can be found when introducing a random
clustering procedure as in [39,15,36]. A subsequent clustering of Mn uncoupled i.i.d. waiting
times and jumps (Ji , Xi ), where (Mn)n∈N is a sequence of positive integer valued i.i.d. random
variables belonging to the domain of attraction of a γ -stable random variable with 0 < γ < 1,
leads to models with forward- and backward-coupling, regarding to the number of cluster jumps
that have been occasionally or fully considered at the observation time. The corresponding
scaling limits are described by over- and undershooting subordination in [39,15,36], where the
over- and undershoot process is again the scaling limit of a tightly coupled CTRW with one-
dimensional jumps X i = Ji equal to the corresponding waiting times. The special models of
tightly coupled CTRW scaling limits have been extensively studied in [18,4,38] in connection
with generalized arc-sine laws. Our approach using marked point processes will illuminate the
occurrence of different scaling limits in more general situations than the case of a tightly coupled
CTRW.

Defining the time of the n-th jump by Tn :=
n

k=1 Jk we first study the limit behavior of the
point processes which arise by marking each jump time with its occurring jump, respectively,
i.e. we analyze

n
k=1

ε(Tk ,Xk ),

n
k=1

ε(Tk−1,Xk ). (1)
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It turns out that only the jumps with large norm contribute to the limit distributions of (1), as it is
already known for real-valued partial sums which converge to an infinitely divisible r.v. without
Gaussian part, cf. [1] and references therein. The methods used also solve an open problem
concerning the convergence of residual order statistics by LePage, cf. [20,21,33]. The scaling
limits of the CTRWs can be determined by summing up the marks of the points in (1) which
have a jump time occurring before time t . Hence in the scaling limit of forward-coupled CTRWs
an additional big jump occurs compared to its backward-coupled version, which illuminates
the difference between the processes. This approach also provides a series representation for
the different scaling limits which might be of interest for simulation purposes. Since the
resulting limit processes are not Lévy processes, no efficient simulation algorithm is known
yet.

2. Preliminaries

Let (Jn, Xn)n∈N be an i.i.d. sequence of R+ × Rd -valued r.v. Assume that (J1, X1) belongs
to the generalized domain of attraction (GDOA) of a r.v. (D, A), where D is stable with index
α ∈ (0, 1) and A is full operator stable with index E ∈ GL(Rd) and without Gaussian part.
Note that by Theorem 7.2.1 of [25] the real parts of the eigenvalues of E are greater than 1/2. By
classic results [16, Theorem 14.14] and [26, Theorem 4.1] this implies that there exist regularly
varying sequences (bn)n∈N ∈ RV1/α and (An)n∈N ∈ RV−E such that the convergence

b−1
n

⌊nt⌋
k=1

Jk,

⌊nt⌋
k=1

(AnXk − E(AnXk1∥AnXk∥≤τ ))


t≥0

D
−→ (D(t), A(t))t≥0 (2)

holds in D([0,∞), R+×Rd) for any τ > 0 such that for the Lévy measure η of A and the sphere
Sd−1

τ = {x ∈ Rd
: ∥x∥ = τ } we have η(Sd−1

τ ) = 0, i.e. the sphere Sd−1
τ is a continuity set for

η. Throughout this paper, spaces of càdlàg paths D([0,∞), X ), respectively D([0, T ], X ), are
always equipped with the corresponding Skorokhod J1-topology. Here the process D(·) denotes
an α-stable subordinator and A(·) denotes an operator Lévy motion. Note that the drift term of
the Lévy process A depends on τ . It is well known that we can choose τ = ∞ if the real part
of any eigenvalue of E belongs to (1/2, 1), since then E(X1) exists. Moreover we can choose
τ = 0 if the real part of any eigenvalue of E exceeds 1. Due to the spectral decomposition in [25],
centering by truncated expectations in (2) is only necessary if some eigenvalue of the exponent
E has real part equal to 1.

We already stated, that only points with large norm contribute to the limit of the point
processes in (1). So we use a radial decomposition of the Lévy measure

η(A) =


Sd−1


∞

0
1A(xv)η(dx, v)dσ(v)

where σ is a probability measure on the unit sphere Sd−1 of Rd and (η(·, v))v∈Sd−1 is a weakly
measurable family of Lévy measures on (0,∞), cf. [31]. We also define the right-continuous
inverse ofη(·, v) by

η←(x, v) := sup{u > 0 :η([u,∞), v) ≥ x}. (3)

With this notation we are able to give a series representation for the process A(·) in D([0, T ], Rd)

for fixed T > 0 by
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lim
ε↓0

 
T ·τk≤t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )>ε


− t


ε≤∥x∥≤τ

xdη(x)


, (4)

cf. [20,31], where 0n is the n-th partial sum of i.i.d. standard exponential r.v., (τn)n∈N denotes an
i.i.d. sequence of uniformly U (0, 1)-distributed r.v. and (Vn)n∈N denotes an i.i.d. sequence with
distribution σ , with (0n)n∈N, (τn)n∈N and (Vn)n∈N being independent.

Now it is well known that for a triangular array of infinitesimal row-wise independent R+-
valued r.v. (Yk,n)1≤k≤n, n ∈ N, converging to an infinitely divisible r.v. Y with associated Lévy
measure φ, only the extremes contribute to the limit distribution, cf. [1] and references therein.
This result coincides with the convergence

n
k=1

ε k
n ,Yk,n

 D
−→ PRM( ⊗ φ) (5)

in Mp([0, 1] × (0,∞]), the set of all point measures on [0, 1] × (0,∞], where PRM( ⊗ φ)

denotes a Poisson random measure with mean measure ⊗φ. Furthermore, it is well known that
k∈N ε(τk ,φ

←(0k )) is also a representation of PRM( ⊗ φ) in Mp([0, 1] × (0,∞]), where φ←

denotes the right-sided inverse of φ, cf. [31]. This fact can be understood by sorting the points
on the left-hand side in (5)

n
k=1

ε k
n ,Yk,n

 = n
k=1

ε dk
n ,Yn−k+1:n

, (6)

where (Y1:n, . . . , Yn:n) denotes the order statistics of (Y1,n, . . . , Yn,n) with corresponding
antirank vector (d1, . . . , dn), i.e. the inverse permutation of the rank vector. Using Freedman’s

Lemma, cf. [12], one can easily verify, that the convergence (n−1dk)k∈N
D
−→ (τk)k∈N holds

in [0, 1]N, where dk = 0 for k > n. Moreover, (2.4) in [1] gives us Yn−k+1:n
D
−→ φ←(0k).

So the convergence in (5) can also be established by analyzing the convergence of the points
(n−1dk, Yn−k+1:n)1≤k≤n . This approach can also be applied to the point processes in (1). As the
r.v. (Xn)n∈N are Rd -valued one cannot use traditional order statistics. LePage suggested to use
a normwise sorting, cf. [20]. So for x1, . . . , xn ∈ Rd we introduce the residual order statistics
x1:n, . . . , xn:n by ∥x1:n∥ ≤ · · · ≤ ∥xn:n∥.

3. Convergence of residual order statistics

The convergence of the normalized residual order statistics AnXn−k+1:n is still an open
problem. LePage [20] conjectures, that a generalization of the one-dimensional case

(AnXn−k+1:n)k∈N
D
−→ (η←(0k, Vk)Vk)k∈N (7)

holds. As usual one sets Xk:n = 0, whenever k ≤ 0 or k > n. This result has been proven in [21]
for the case that the limit process A(·) is multivariate α-stable. In this case the right-sided inverseη←(x, v) defined in (3) is independent of v ∈ Sd−1 as the projection of the Lévy measure η is
the same for every direction, cf. Theorem 7.3.3 in [25]. Some years later a similar problem has
been studied in [11] using a different norm ∥ · ∥H which respects the special structure of the
operator E . In [33] the operator semistable case has been studied, but the result (7) also could
only be established in the special case, thatη←(x, v) is independent of v, which coincides with
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the multivariate α-stable case. The author also supposed that the convergence (7) holds only in
this case. We will show that the limit on the right-hand side in (7) has to be modified. The proof
is based on the following lemma.

Lemma 1. Let Nn =
n

k=1 εX(n)
k

, n ∈ N0, be a sequence of point processes in Mp([−∞,∞]d \

Kd
ε ), the set of all point measures on the space [−∞,∞]d\Kd

ε , where Kd
ε := {x ∈ Rd

: ∥x∥ ≤ ε}

denotes the compact ε-ball in Rd . Suppose Nn
D
−→ N0. If ε < ∥X(0)

i ∥ < ∞ holds for every

i ∈ N almost surely (a.s.) and ∥X(0)
i (ω)∥ > ∥X(0)

j (ω)∥ for all 1 ≤ i < j a.s. then the convergence

(Xn−k+1:n)k∈N
D
−→


X(0)

k


k∈N

holds in

Rd
\Kd

ε

N
.

Proof. The proof is based on a continuous mapping approach and Lemma 7.1 in [30]. Define
M ⊂ Mp([−∞,∞]d \Kd

ε ) by

M :=


m : m =

P
k=1

εxk ,∞ > ∥x1∥ > · · · > ∥xP∥ > ε


.

Now we show that the mapping

πk : Mp([−∞,∞]d \Kd
ε )→ [−∞,∞]d \Kd

ε

πk


P

i=1

εxi


→ xP−k+1:P , xP−k+1:P = 0 for k ≤ 0 and k > P

is continuous in m ∈ M for every k ∈ N. Let (mn)n∈N ⊂ Mp([−∞,∞]d \Kd
ε ) be a sequence of

point measures converging vaguely to a point measure m0 =
P

k=1 ε
x (0)

k
∈ Mp([−∞,∞]d \Kd

ε ).

Now choose n sufficiently large so that all points of mn lie inside of [−∞,∞]d \Kd
ε . By sorting

the points of mn in descending order of their norm

mn =

P
i=1

ε
x (n)

i
, ε < ∥x (n)

P ∥ ≤ · · · ≤ ∥x
(n)
1 ∥ <∞

an application of Lemma 7.1 in [30] yields the convergence of the points
x (n)

1 , . . . , x (n)
P


−→


x (0)

1 , . . . , x (0)
P


(8)

in (Rd
\Kd

ε )P . Now by the definition of the mapping πk

πk(mn) = x (n)
k , πk(m0) = x (0)

k for 1 ≤ k ≤ P

πk(mn) = πk(m0) = 0 for k > P

holds and πk is continuous by (8) for every k ∈ N. An easy application of the continuous mapping
theorem yields the desired result. �

Lemma 1 allows to identify the distribution of the limit of properly normalized residual order
statistics.
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Theorem 2. For k ∈ N, T > 0 and ω ∈ Ω define

dk(ω) = arg

 max
i∈N

i≠d1(ω),...,dk−1(ω)

η←(T−10i (ω), Vi (ω))

 (9)

as the argument of the k-th largest element of the set {η←(T−10i (ω), Vi (ω)), i ∈ N}. Then
convergence of the residual order statistics

AnX⌊nT ⌋−k+1:⌊nT ⌋


k∈N
D
−→

η←(T−10dk
, Vdk

)Vdk


(10)

holds in (Rd)N.

Remark 3. Note that dk is well-defined for all k ∈ N, since the number of elements in the
set {i ∈ N : η←(T−10i , Vi ) > ε} is finite a.s. for all ε > 0. Moreover Theorem 2 does not
contradict any of the results proven in [11,21,33]. If A(·) is a multivariate α-stable Lévy process,
the monotonicity of the mapping x →η←(x, v) yields dk(ω) = k a.s. for all k ∈ N.

Proof of Theorem 2. First we have to determine the limit of the truncated point process

⌊nT ⌋
k=1

ε(AnXk 1∥An Xk∥≥ε),

where ε > 0 has to be chosen such that η(Sd−1
ε ) = 0 holds. By Theorem 3.2.2 in [25] assumption

(2) yields the vague convergence

⌊nT ⌋P (AnXk ∈ ·)
v
−→ T · η(·) (11)

in Rd
\ {0}. Hence the convergence of the point processes

⌊nT ⌋
k=1

εAnXk

D
−→ PRM(T · η)

holds in Mp([−∞,∞]d \ {0}). Now by [31]


k∈N εη←(T−10k ,Vk )Vk
= PRM(T · η). Applying

the a.s. continuous restriction functional

π ′ : Mp([−∞,∞]d \ {0})→ Mp([−∞,∞]d \Kd
ε ), m → m

|(Kd
ε ){

, (12)

the continuous mapping theorem yields

⌊nT ⌋
k=1

εAnXk 1∥An Xk∥≥ε

D
−→


k∈N

εη←(T−10k ,Vk )Vk 1η←(T−10k ,Vk )≥ε
. (13)

The continuity of π ′ is proven in [7] for instance. Now the points of the point process on the
right-hand side of (13) have to be ordered in descending order of their norm

k∈N
εη←(T−10k ,Vk )Vk 1η←(T−10k ,Vk )≥ε

=


k∈N

εη←(T−10dk
,Vdk

)Vdk
1η←

T−10dk
,Vdk


≥ε

.

An application of Lemma 1 yields the convergence of the points
AnX⌊nT ⌋−k+1:⌊nT ⌋1∥AnX⌊nT ⌋−k+1:⌊nT ⌋∥≥ε


k∈N

D
−→

η←(T−10dk
, Vdk

)Vdk
1η←(T−10dk

,Vdk
)≥ε


k∈N
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in (Rd
\Kd

ε )N. The desired result follows by taking the limit as ε ↓ 0 and an easy application of
Theorem 4.2 in [5]. �

4. Convergence of associated point processes

Now that the limit distribution of normalized residual order statistics is identified we can study
the associated marked point processes

⌊nT ⌋
k=1

ε
(b−1

n Tk ,AnXk )
,

⌊nT ⌋
k=1

ε
(b−1

n Tk−1,AnXk )
.

In the uncoupled case convergence results for this processes can be established with a continuous
mapping approach using the time deformation defined in [30, (8.29)]. Since the continuity of this
time deformation demands the processes A(·) and D(·) to have a.s. no common jumps, which
is not necessarily fulfilled in the coupled case, these standard methods cannot be applied in our
case. So we use a sorting argument like in (6).

Lemma 4. Let (τn)n∈N, (0n)n∈N and (Vn)n∈N be as in (4). Then the convergence of the
associated point processes

⌊nT ⌋
k=1

ε
(b−1

n Tk ,AnXk )

D
−→


k∈N

ε(D(T ·τk ),η←(T−10k ,Vk )Vk) (14)

⌊nT ⌋
k=1

ε
(b−1

n Tk−1,AnXk )

D
−→


k∈N

ε(D(T ·τk−),η←(T−10k ,Vk )Vk) (15)

holds in Mp([0,∞) × [−∞,∞]d \ {0}) for every T > 0, where D(x−) denotes the left-hand
limit of the process D(·) in x.

Proof. Choose T > 0 arbitrary. We start by sorting the points of the associated point process
⌊nT ⌋
k=1

ε
b−1

n Tk ,AnXk

 = ⌊nT ⌋
k=1

ε
b−1

n Td⌊nT ⌋−k+1 ,AnX⌊nT ⌋−k+1:⌊nT ⌋

 .

Again (d1, . . . , d⌊nT ⌋) denotes the antirank vector of the r.v. (X1, . . . , X⌊nT ⌋). The normalized
residual order statistics AnXn−k+1:⌊nT ⌋ have already been studied in Theorem 2. It remains to
determine the limit distribution of

b−1
n Td⌊nT ⌋−k+1 = b−1

n

d⌊nT ⌋−k+1
l=1

Jl = b−1
n


⌊nT ⌋·

d⌊nT ⌋−k+1
⌊nT ⌋


l=1

Jl .

Since X1, . . . , X⌊nT ⌋ are i.i.d., (n−1dk)k∈N
D
−→ (T · τk)k∈N suggests that the convergence

(b−1
n Td⌊nT ⌋−k+1)k∈N

D
−→ (D(T · τk))k∈N (16)

holds in [0,∞)N. But this result cannot be established with a traditional continuous mapping
approach. The mapping πt : D([0,∞), Rd) × R+ → R, (x, t) → x(t) is only a.s. continuous
if x is a.s. continuous in t . Also classical transfer theorems, cf. [9,10], are not helpful because
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they require independence of the summands and their quantity or a stochastic convergence of the
normalized antirank vector, cf. [2]. Since none of these conditions is fulfilled another approach
is used.

Let (d1, . . . ,d⌊nT ⌋) denote the associated antirank vector of the waiting times (J1, . . . , J⌊nT ⌋).
Since the joint convergence of the well-centered and normalized sequential partial sums to the
process (D(·), A(·)) holds, one can easily prove convergence of the normalized antirank vector

(n−1(d⌊nT ⌋−k+1)k∈N, n−1(d⌊nT ⌋−k+1)k∈N)
D
−→ ((T · τi )i∈N, (T ·τi )i∈N)

where (τn)n∈N, (τn)n∈N denote two i.i.d. sequence of U (0, 1)-distributed r.v. Note that the
sequences (τn)n∈N and (τn)n∈N are not independent in the coupled case. As a consequence of
the convergence of the antirank vector, the convergence of indicator functions

1n−1d⌊nT ⌋− j+1≤n−1d⌊nT ⌋−i+1


j∈N

D
−→


1τ j≤τi


j∈N

holds. An application of Basu’s lemma, cf. [19, Theorem 5.1.2], yields the independence
d1, . . . , d⌊nT ⌋


,
d1, . . . ,d⌊nT ⌋


⊥

J1:⌊nT ⌋, . . . , J⌊nT ⌋:⌊nT ⌋


(17)

for every fixed n ∈ N, which proves that the joint convergence
b−1

n J⌊nT ⌋− j+1:⌊nT ⌋1d⌊nT ⌋− j+1≤d⌊nT ⌋−i+1


j∈N

D
−→


(ηα)−1(T−10 j )1τ j≤τi


j∈N

holds, where (ηα)−1 is the right-sided inverse of the Lévy measure associated with D(1) and
(0n)n∈N denotes a distributional copy of the sequence (0n)n∈N. Note that the sequences (0n)n∈N
and (0n)n∈N are also not independent in the coupled case. Now summation verifies

l∈N
b−1

n J⌊nT ⌋−l+1:⌊nT ⌋1n−1d⌊nT ⌋−l+1≤n−1d⌊nT ⌋−i+1
(18)

=

⌊nT ⌋
l=1

b−1
n J⌊nT ⌋−l+1:⌊nT ⌋1n−1d⌊nT ⌋−l+1≤n−1d⌊nT ⌋−i+1

= b−1
n

⌊nT ⌋
l=1

Jl1l≤d⌊nT ⌋−i+1 = b−1
n

d⌊nT ⌋−i+1
l=1

Jl
D
−→


l∈N

(ηα)−1(T−10l)1T ·τl≤T ·τi . (19)

Using the Ferguson–Klass series representation of the process D(·), cf. [8], one identifies the
right-hand side in (19) as series representation of D(T ·τi ). Since the convergence of antiranks
holds simultaneously, we have provenb−1

n


n·

d⌊nT ⌋−i+1
n


l=1

Jl


i∈N

D
−→ (D(T ·τi ))i∈N (20)

in (R+)N. Again by the joint convergence of the properly normalized and scaled sequential partial
sums to the process (D(·), A(·)), the independence (17) and Theorem 2, convergence of the
points

b−1
n Td⌊nT ⌋−i+1 , AnX⌊nT ⌋−i+1:⌊nT ⌋


i∈N

D
−→


D(T ·τi ),η←(T−10di

, Vdi
)Vdi


i∈N
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holds. Since the mapping x → εx is continuous, the convergence of points yields the convergence
of point processes

ε
b−1

n Td⌊nT ⌋−i+1 ,AnX⌊nT ⌋−i+1:⌊nT ⌋


i∈N

D
−→


ε

D(T ·τi ),η←(T−10di
,Vdi

)Vdi


i∈N

in Mp([0,∞)×[−∞,∞]d \{0}). Now summation and an easy application of Theorem 4.2 in [5]
yields

⌊nT ⌋
k=1

ε
b−1

n Td⌊nT ⌋−k+1 ,AnX⌊nT ⌋−k+1:⌊nT ⌋

 D
−→


k∈N

ε
D(T ·τk ),η←(T−10dk

,Vdk
)Vdk


in Mp([0,∞) × [−∞,∞]d \ {0}). Now we need to reverse the order of the points again. We
introduce

rk(ω) := 1+ #{i ∈ N :η←(T−10i (ω), Vi (ω)) >η←(T−10k(ω), Vk(ω))}

as inverse of dk . Note that rk is well-defined for all k ∈ N by Remark 3. Moreover, since
(τn)n∈N and (rn)n∈N are independent, an easy application of the disintegration formula shows,
that (τrn )n∈N is also i.i.d. and U (0, 1) distributed. Since the convergence in (5) towards (4)
can be proven with the same technique, the sequences (τrn )n∈N, (0n)n∈N and (Vn)n∈N are also
independent. So we define τn :=τrn for all n ∈ N and obtain

⌊nT ⌋
k=1

ε
b−1

n Tk ,AnXk

 = ⌊nT ⌋
k=1

ε
b−1

n Td⌊nT ⌋−k+1:⌊nT ⌋ ,AnX⌊nT ⌋−k+1:⌊nT ⌋


D
−→


k∈N

ε(D(T ·τk ),η←(T−10k ,Vk )Vk).

Hence we have proven (14). In order to prove (15) the limit distribution of

b−1
n Td⌊nT ⌋−i+1−1 = b−1

n

d⌊nT ⌋−i+1−1
k=1

Jk = b−1
n


n·

d⌊nT ⌋−i+1
n −1


k=1

Jk

has to be analyzed. Denoting G([0,∞), Rd) the space of all left-continuous functions with
right-hand limits from [0,∞) to Rd one easily proves that the mapping T : D[0,∞) →

G[0,∞), x(t) → x(t−) is Lipschitz-continuous with Lipschitz-constant one and hence
continuous. Since

T

⌊nt⌋
k=1

Jk


=

⌈nt⌉−1
k=1

Jk

holds, the continuity of T suggests, that the convergenceb−1
n


n

d⌊nT ⌋−i+1
n −1


k=1

Jk


i∈N

D
−→ (D(T ·τi−))i∈N (21)

holds. But since (20) could not be proven with the continuous mapping theorem, we use the
above arguments again to obtain (21). We note that
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b−1
n

d⌊nT ⌋−i+1−1
l=1

Jl =

⌊nT ⌋
l=1

b−1
n J⌊nT ⌋−l+1:⌊nt⌋1d⌊nT ⌋−l+1≤d⌊nT ⌋−i+1−1

=

⌊nT ⌋
l=1

b−1
n J⌊nT ⌋−l+1:⌊nt⌋1n−1d⌊nT ⌋−l+1<n−1d⌊nT ⌋−i+1

D
−→


l∈N

η−1(T−10l)1T ·τl<T ·τi (22)

holds. Again we identify the limit on the right-hand side in (22) as a series representation of
D(T ·τi−). As already stated this yields the desired result (15), which completes the proof. �

5. Scaling limits of coupled CTRWs

In this section we are now able to identify the scaling limits of coupled CTRWs using the limit
theorems for their associated point processes stated in Lemma 4. We need to introduce the set

S := {T ∈ R+ : P(D(T · τi ) = T ) = 0 for all i ∈ N}

for technical reasons. Due to self-similarity, one can easily show that the equality

D(xt · τi )
D
= x1/α D(t · τi )

holds for all i ∈ N and x, t ∈ R+. Hence the set S is dense in R+.

Theorem 5. Let E(t) := inf{x > 0 : D(x) > t} denote the hitting-time process associated with
D(·). Then convergence of the backward- and forward-coupled CTRW

Ntbn
k=1

(AnXk − E(AnXk1∥AnXk∥≤τ ))

D
−→ lim

ε↓0

 
D(T ·τk )≤t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε



− E(t)


ε≤∥x∥≤τ

x dη(x)


(23)

and

Ntbn+1
k=1

(AnXk − E(AnXk1∥AnXk∥≤τ ))

D
−→ lim

ε↓0

 
D(T ·τk−)≤t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε



− E(t)


ε≤∥x∥≤τ

x dη(x)


(24)

holds in D([0, T ], Rd) for every T ∈ S and every τ > 0 such that η(Sd−1
τ ) = 0.
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Proof. Choose T ∈ S arbitrary. Similar to (12) we define another a.s. continuous restriction
functional

π ′ : Mp([0,∞)× [−∞,∞]d \ {0})→ Mp([0,∞)× [−∞,∞]d \Kd
ε ),π ′(m) := m|[0,∞)×[−∞,∞]d\Kd

ε

for ε > 0 such that η(Sd−1
ε ) = 0. Moreover we define the summation functional

χ : Mp([0,∞)× [−∞,∞]d \Kd
ε )→ D([0, T ], Rd)

χ


k∈N

ε(tk ,xk )


(t) =


tk≤t

xk


t∈[0,T ]

which is a.s. continuous in the point
k∈N

ε(D(T ·τk ),η←(T−10k ,Vk )Vk 1η←(T−10k ,Vk )>ε
)

for every T ∈ S . A proof of the continuity of χ is given in [30, Section 7.2.3] for the case d = 1
and can easily be modified to hold for d ≥ 1. So we apply the a.s. continuous mapping χ ◦ π to
the associated point processes in Lemma 4. Considering the equality {Tn ≤ t} = {Nt ≥ n} we
receive

χ ◦ π


⌊nT ⌋
k=1

ε
b−1

n Tk ,AnXk

 (t) =

 
b−1

n Tk≤t

AnXk1∥AnXk∥≥ε


t∈[0,T ]

=

Ntbn
k=1

AnXk1∥AnXk∥≥ε


t∈[0,T ]

D
−→ χ ◦ π


k∈N

ε(D(T ·τk ),η←(T−10k ,Vk )Vk )


=


D(T ·τk )≤t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε (25)

in D([0, T ], Rd). To study the centering constants we use the convergence
Ntbn

n


t≥0

D
−→ (E(t))t≥0

in D([0,∞), R+), proved in Corollary 3.4 of [26]. Considering (11) this yieldsNtbn
k=1

E


AnXk1[ε,τ ](∥AnXk∥)


t≥0

=


Ntbn

n


ε≤∥x∥≤τ

x ndPAnX1(x)


t≥0

D
−→


E(t)


ε≤∥x∥≤τ

x dη(x)


t≥0
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in D([0,∞), R+). Since the process E(·) has a.s. continuous sample paths, Theorem 4.1 in [40]
allows us to put this and (25) together. We obtainNtbn

k=1


AnXk1∥AnXk∥≥ε − E


AnXk1ε≤∥AnXk∥≤τ


t∈[0,T ]

D
−→

 
D(T ·τk )≤t

η←(0k, Vk)Vk1η←(T−10k ,Vk )≥ε


− E(t)


ε≤∥x∥≤τ

x dη(x)


t∈[0,T ]

in D([0, T ], Rd). Taking limits as ε ↓ 0 this yields the desired result (23). By Theorem 4.2 of [5]
it remains to show

lim
ε↓0

lim sup
n→∞

P


sup

0≤t≤T


Ntbn
k=1


AnXk1∥AnXk∥≥ε − E


AnXk1ε≤∥AnXk∥≤τ


−

Ntbn
k=1


AnXk − E


AnXk1∥AnXk∥≤τ


·
 ≥ δ


= 0

for all δ > 0. Using a version of the Kolmogorov-inequality for integrable stopping times given
in the Appendix and the norm-inequality ∥ · ∥ ≤ ∥ · ∥1 we obtain

P


sup

0≤t≤T


Ntbn
k=1


AnXk1∥AnXk∥≥ε − E


AnXk1ε≤∥AnXk∥≤τ


−

Ntbn
k=1


AnXk − E


AnXk1∥AnXk∥≤τ

 ≥ δ



≤ P


max

1≤ j≤NT bn


j

k=1

AnXk1∥AnXk∥<ε − E


AnXk1∥AnXk∥<ε


1

≥ δ



≤ P


d

i=1

max
1≤ j≤NT bn


j

k=1

(AnXk)
(i)1∥AnXk∥<ε − E


(AnXk)

(i)1∥AnXk∥<ε

 ≥ δ



≤ P


d

i=1

max
1≤ j≤NT bn


j

k=1

(AnXk)
(i)1∥AnXk∥<ε − E


(AnXk)

(i)1∥AnXk∥<ε

 ≥ δ

d



≤

d
i=1

P


max

1≤ j≤NT bn+1


j

k=1

(AnXk)
(i)1∥AnXk∥<ε − E


(AnXk)

(i)1∥AnXk∥<ε

 ≥ δ

d



≤


δ

d

−2

E

NT bn + 1

 d
i=1

Var

(AnX1)

(i)1∥AnX1∥<ε


≤


δ

d

−2

E

NT bn + 1

 d
i=1

E


(AnX1)
(i)1∥AnX1∥<ε

2


,

where x (n) denotes the n-th coordinate of the vector x . Note that we have to take Ntbn + 1 since
Ntbn does not fulfill the conditions of Lemma 7. Now Theorem 9 in [24] states that E (Nt + 1)
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can asymptotically be expressed by the integrated tail of the distribution function of J1

E (Nt + 1) 0(2− α)0(1+ α) ∼
t t

0 (1− FJ1(x))dx
,

where 0 denotes the gamma-function. By Karamata’s Theorem the limit behavior of the function
t →

 t
0 (1− FJ1(s))ds can be expressed by FJ1 t

0
(1− FJ1(s))ds ∼

t (1− FJ1(t))

1− α
.

Putting this together we obtain

E (Nt + 1) ∼ (1− FJ1(t))
−1
· 0(1− α)−1

· 0(1+ α)−1.

Defining C := (0(1 − α)0(1 + α)ηα((T,∞)))−1 for abbreviation, the inequality |x (n)
| ≤ ∥x∥

yields

lim
ε↓0

lim sup
n→∞


δ

d

−2

lim
ε↓0

lim sup
n→∞

E

NT bn + 1

 d
i=1

E


(AnX1)
(i)1∥AnX1∥<ε

2


≤ lim
ε↓0

lim sup
n→∞


δ

d

−2

C ·
d

i=1

lim
ε↓0

lim sup
n→∞

nE

((AnX1)

(i))21|(AnX1)
(i)|<ε


.

So it remains to show

lim
ε↓0

lim sup
n→∞

nE

((AnX1)

(i))21|(AnX1)
(i)|<ε


= 0

for all 1 ≤ i ≤ d . Defining the tail and truncated second moment of X1 in direction v by

V (r, v) := P(|⟨X1, v⟩| > r), U (r, v) := E(⟨X1, v⟩
21|⟨X1,v⟩|<r )

for every v ∈ Sd−1 and every r > 0 an easy calculation shows that

E

((AnX1)

(i))21|(AnX1)
(i)|<ε


= r2

n U (r−1
n ε, vn)

holds. Here rn > 0 and vn ∈ Sd−1 are taken such that A∗nei = rnvn holds for every n ∈ N, where
A∗ is the adjoint of A and e1, . . . , ed denotes the standard basis of Rd . With this notation we
have to analyze

n · r2
n U


r−1

n ε, vn


= ε2 U (r−1

n ε, vn)

ε2r−2
n V


r−1

n ε, vn

 · V

r−1

n ε, vn


V

ε−1(r−1

n ε), vn

 · n · V (r−1
n , vn). (26)

One easily verifies that the third factor in (26) is bounded by η({x ∈ Rd
: |x (i)

| > 1}). Since the
real parts a1 ≤ · · · ≤ ad of all eigenvalues of the operator E are greater than 1/2 we can findε > 0 such that 2 −ε − a−1

1 > 0 holds. So an application of Theorem 6.3.4 of [25] yields the
existence of a constant C1, such that for n ∈ N large enough the second factor in (26) is bounded

by C1ε
2−ε−a−1

1 . Finally, Corollary 6.3.9 in [25] yields that the first factor in (26) is bounded by a
constant C2. Putting things together this completes the proof.

The proof of the convergence (24) works the same way. �

Theorem 5 provides a series representation for the limit distribution. This representation
might be useful for simulation purposes. Now it is of considerable interest to identify the
scaling limits with the ones stated in [37]. Let A(t−)+ denote the right-continuous version
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of the process A(t−), i.e. A(t−)+ is an element of D([0,∞), Rd). Using a continuous
mapping approach on D([0,∞), Rd), Straka and Henry [37] show that the limit laws in (23)
and (24) coincide with the distribution of A(E(t)−)+, respectively A(E(t)). More precisely,
Straka and Henry follow a more general approach and consider triangular arrays instead of
i.i.d. sequences following [27] and they determine the joint scaling limit of the time process
together with the CTRW. Note that for an uncoupled CTRW, where waiting times and jumps are
independent, the processes (A(t))t≥0 and (E(t))t≥0 are independent and thus the two limiting
processes (A(E(t)−)+)t≥0 and (A(E(t)))t≥0 coincide in distribution. This equality fails for
a coupled CTRW and differences in the two limiting processes are illustrated in [14], where
the limiting distributions, their Fourier–Laplace transforms and the corresponding governing
pseudo differential equations for their densities are given in terms of the joint distribution of
(D(t), A(t))t≥0 and its Lévy exponent.

Our arguments for the identification of the scaling limits are based on the following equalities:

{D(x) < t} = {x < E(t)}, {D(x−) ≤ t} = {x ≤ E(t)}. (27)

The left-hand side of (27) is already proven in (3.2) of [26]. For the proof of the right-hand side
assume D(x−) ≤ t holds. So we have D(y) ≤ t for all y < x . Hence x ≤ E(t). Otherwise if
D(x−) > t holds, there exists an ε > 0 such that D(y) > t holds for all y ≥ x − ε. Hence
E(t) ≤ x − ε < x .

Corollary 6. The convergence

Ntbn
k=1

(AnXk − E(AnXk1∥AnXk∥≤τ ))
D
−→ A(E(t)−)+ (28)

and

Ntbn+1
k=1

(AnXk − E(AnXk1∥AnXk∥≤τ ))
D
−→ A(E(t)) (29)

holds in D([0, T ], Rd) for every T ∈ S and every τ > 0 such that η(Sd−1
τ ) = 0.

Proof. The convergence (29) can easily be verified applying the right-hand side of (27) to the
series representation (4). To prove (28) we apply the left-hand side of (27) to (23) and obtain

Ntbn
k=1

(AnXk − Eτ (AnXk))

D
−→ lim

ε↓0

 
D(T ·τk )≤t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε



− E(t)


ε≤∥x∥≤τ

x dη(x)



= lim
ε↓0

 
T ·τk<E(t)

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε



+


D(T ·τk )=t

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε


− E(t)


ε≤∥x∥≤τ

x dη(x)


(30)
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in D([0, T ], Rd). As we already stated

lim
ε↓0

 
T ·τk<E(t)

η←(T−10k, Vk)Vk1η←(T−10k ,Vk )≥ε


− E(t)


ε≤∥x∥≤τ

x dη(x)


is a series representation of A(E(t)−). The extra summands only have to be considered if a jump
occurs at a time t with D(T · τk) = t . This yields the right-continuity of the limit and we have
proven (28). �

Note that, since S is dense in R+, due to Theorem 2 in [22] together with Theorem 14.5 in [5]
the scaling limits in Theorem 5 exist as elements of D([0,∞), Rd) and coincide in distribution
with the corresponding limits in Corollary 6.
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Appendix. A generalization of Kolmogorov’s inequality

The following generalization of Kolmogorov’s inequality can be shown by standard
techniques. However, we were not able to find a suitable proof in the literature and will only
give a sketch of proof.

Lemma 7. Let (Yn)n∈N be i.i.d. with E(Y1) = 0 and T be an N0-valued integrable stopping time
with respect to the filtration Fn := σ(Y1, . . . , Yn). Then

P


max

1≤k≤T

 k
j=1

Y j

 ≥ δ


≤ δ−2

· E(T ) · Var(Y1)

holds for all δ > 0.

Proof. First we restrict our attention to the truncated stopping time T ∧ n. An easy calculation
shows that

E


T∧n
k=1

(Sk − Sk−1)
2


= E(S2

T∧n)

holds, where Sn :=
n

k=1 Yk denotes the n-th partial sum. Defining

M0 := 0, Mk+1 :=


Sk+1, if max

1≤ j≤k

S j
 < δ

Mk, else

the same calculation shows

E


T∧n
k=1

(Mk − Mk−1)
2


= E(M2

T∧n)− 2 · E


k∈N

(Mk − Mk−1)Sk−11k≤T∧n


.

Using the definition of Mn one can show

E


T∧n
k=1

(Mk − Mk−1)
2


= E(M2

T∧n).
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Now |Mk − Mk−1| ≤ |Sk − Sk−1| holds for all k ∈ N. Hence the Markov-inequality yields

P


max
1≤k≤T∧n

|Sk | ≥ δ


= P (|MT∧n| ≥ δ) ≤ δ−2 E


M2

T∧n


= δ−2 E


T∧n
k=1

(Mk − Mk−1)
2



≤ δ−2 E


T∧n
k=1

(Sk − Sk−1)
2


= δ−2 E


S2

T∧n


.

An application of Wald’s inequality yields the desired result for T ∧n. The generalization for the
stopping time T follows by the martingale convergence theorem. �

Remark 8. Let (Zn)n∈N be a sequence such that (Yn, Zn)n∈N is i.i.d. Then Lemma 7 also holds
replacing Fn by Fn := σ((Y1, Z1), . . . , (Yn, Zn)).
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[31] J. Rosiński, Series representations of Lévy processes from the perspective of point processes, in: O.E. Barndorff-
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