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Abstract

We prove the dynamic programming principle for uniformly nondegenerate stochastic differential games
in the framework of time-homogeneous diffusion processes considered up to the first exit time from
a domain. The zeroth-order “coefficient” and the “free” term are only assumed to be measurable. In
contrast with previous results established for constant stopping times we allow arbitrary stopping times
and randomized ones as well. The main assumption, which will be removed in a subsequent article, is that
there exists a sufficiently regular solution of the Isaacs equation.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamic programming principle is one of the basic tools in the theory of controlled
diffusion processes. In the early 70s it allowed one to obtain results about the unique solvability
in classes of differentiable functions of Bellman’s equations, which, for about ten years, were the
only known results for more or less general fully nonlinear second-order elliptic and parabolic
equations.

In this paper we will be only dealing with the dynamic programming principle for stochastic
differential games. Concerning all other aspects of the theory of stochastic differential games we
refer the reader to [1,2,4,13,14] and the references therein.
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It seems to the author that Fleming and Souganidis in [2] were the first authors who proved the
dynamic programming principle with nonrandom stopping times for stochastic differential games
in the whole space on a finite time horizon. They used rather involved constructions to overcome
some measure-theoretic difficulties, a technique somewhat resembling the one in Nisio [13], and
the theory of viscosity solutions.

In [4] Kovats considers time-homogeneous stochastic differential games in a “weak”
formulation in smooth domains and proves the dynamic programming principle again with
nonrandom stopping times. He uses approximations of policies by piece-wise constant ones and
proceeds similarly to [13].

Świȩch in [14] reverses the arguments in [2] and proves the dynamic programming principle
for time-homogeneous stochastic differential games in the whole space with constant stopping
times “directly” from knowing that the viscosity solutions exist. His method is quite similar to
the so-called verification principle in the theory of controlled diffusion processes.

It is also worth mentioning the paper [1] by Buckdahn and Li where the dynamic programming
principle for constant stopping times in the time-in homogeneous setting in the whole space is
derived by using the theory of backward forward stochastic equations.

Basically, we adopt the strategy of Świȩch [14] which is based on using the fact that in many
cases the Isaacs equation has a sufficiently regular solution. In [14] viscosity solutions are used
and we rely on classical ones.

The main emphasis of [2,4,13,14] is on proving that (upper and lower) value functions for
stochastic differential games are viscosity solutions of the corresponding Isaacs equations and
the dynamic programming principle is used just as a tool to do that. In our setting the zeroth-
order coefficient and the running payoff function can be just measurable and in this situation
neither our methods nor the methods based on the notion of viscosity solution seem to be of
much help while proving that the value function is a viscosity solution.

Our main future goal is to develop some tools which would allow us in a subsequent article
to show that the value functions are of class C0,1, provided that the data are there, for possibly
degenerate stochastic differential games without assuming that the zeroth-order coefficient is
large enough negative (see [12]). On the way to achieve this goal one of the main steps, apart from
proving the dynamic programming principle, is to prove certain representation formulas which
will be derived in a subsequent article (see [11]) from our Theorems 4.1 and 4.2, in the first of
which the process is not assumed to be uniformly nondegenerate. Another important ingredient
consists of approximations results allowing us to approximate stochastic differential games with
the ones for which the corresponding Isaacs equations have sufficiently regular solutions. This
issue will be addressed in a subsequent article (see [11]).

One of the main results of the present article, Theorem 2.2, is about the dynamic programming
principle in a very general form including stopping and randomized stopping times. It is proved
under the assumption that the corresponding Isaacs equations have sufficiently regular solutions.

In Theorem 2.3 we prove the Hölder continuity of the value function in our case where the
zeroth-order coefficient and the running payoff function can be discontinuous.

Theorem 2.2 concerns time-homogeneous stochastic differential games unlike the time
in homogeneous in [2] and generalizes the corresponding results of [14,4], where however
degenerate case is not excluded.

The article is organized as follows. In Section 2 we state our main results to which actually,
as we have pointed out implicitly above, belong Theorems 4.1 and 4.2 reminding the verification
principle from the theory of controlled diffusion processes. The main technical tool for proving
these theorems is laid out in a rather long Section 3 for processes which may be degenerate.
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We prove there Theorems 3.1–3.3. In a short Section 4 we give their versions for uniformly
nondegenerate case. These versions look stronger but Theorem 4.2 is proved only for uniformly
nondegenerate case. In Section 5 we prove an auxiliary result which allows us to investigate
the behavior of the value function near the boundary. In the final short Section 6 we combine
previous results and prove Theorem 2.2.

2. Main results

Let Rd
= {x = (x1, . . . , xd)} be a d-dimensional Euclidean space and let d1 ≥ d and k ≥ 1

be integers. Assume that we are given separable metric spaces A, B, and P and let, for each
α ∈ A, β ∈ B, and p ∈ P the following functions on Rd be given:

(i) d × d1 matrix-valued σαβ(p, x) = σ(α, β, p, x) = (σ
αβ
i j (p, x)),

(ii) Rd -valued bαβ(p, x) = b(α, β, p, x) = (bαβi (p, x)), and
(iii) real-valued functions cαβ(p, x) = c(α, β, p, x), f αβ(p, x) = f (α, β, p, x), and g(x).

Introduce

aαβ(p, x) := (1/2)σαβ(p, x)(σαβ(p, x))∗,

fix a p̄ ∈ P , and set

(σ̄ , ā, b̄, c̄, f̄ )αβ(x) = (σ, a, b, c, f )αβ( p̄, x).

Assumption 2.1. (i) All the above functions are continuous with respect to β ∈ B for each
(α, p, x) and continuous with respect to α ∈ A uniformly with respect to β ∈ B for each (p, x).
Furthermore, they are Borel measurable in (p, x) for each (α, β), the function g(x) is bounded
and uniformly continuous on Rd , and cαβ ≥ 0.

(ii) The functions σ̄αβ(x) and b̄αβ(x) are uniformly continuous with respect to x uniformly
with respect to (α, β) ∈ A × B and for any x ∈ Rd and (α, β, p) ∈ A × B × P

∥σαβ(p, x)∥, |bαβ(p, x)| ≤ K0,

where K0 is a fixed constants and for a matrix σ we denote ∥σ∥
2

= tr σσ ∗.

Let (Ω ,F, P) be a complete probability space, let {Ft , t ≥ 0} be an increasing filtration of
σ -fields Ft ⊂ F such that each Ft is complete with respect to F , P , and let wt , t ≥ 0, be a
standard d1-dimensional Wiener process given on Ω such that wt is a Wiener process relative to
the filtration {Ft , t ≥ 0}.

The set of progressively measurable A-valued processes αt = αt (ω) is denoted by A.
Similarly we define B as the set of B-valued progressively measurable functions. By B we denote
the set of B-valued functions β(α·) on A such that, for any T ∈ (0,∞) and any α1

· , α
2
· ∈ A

satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1, (2.1)

we have

P(βt (α
1
· ) = βt (α

2
· ) for almost all t ≤ T ) = 1.

We closely follow the standard setup (but not the notation) from [2,4,14] allowing the control
processes to depend on the past information contained in {Ft }. By the way, in the situation
of controlled diffusion processes (not stochastic differential games) these control processes were
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first introduced in [6] and turned out to be extremely useful in developing the theory of Bellman’s
equations.

Definition 2.1. A function pα·β·

t = pα·β·

t (ω) given on A × B × Ω × [0,∞) is called a control
adapted process if, for any (α·, β·) ∈ A×B, it is progressively measurable in (ω, t) and, for any
T ∈ (0,∞), we have

P(p
α1

· β
1
·

t = p
α2

· β
2
·

t for almost all t ≤ T ) = 1

as long as

P(α1
t = α2

t , β
1
t = β2

t for almost all t ≤ T ) = 1.

The set of control adapted P -valued processes is denoted by P.

We fix a p ∈ P (for the rest of the article) and for α· ∈ A, β· ∈ B, and x ∈ Rd consider the
following Itô equation

xt = x +

 t

0
σαsβs (pα·β·

s , xs) dws +

 t

0
bαsβs (pα·β·

s , xs) ds. (2.2)

Assumption 2.2. Eq. (2.2) satisfies the usual hypothesis, that is for any α· ∈ A, β· ∈ B, and
x ∈ Rd it has a unique solution denoted by xα·β·x

t and xα·β·x
t is a control adapted process for

each x .

Remark 2.1. As is well known, Eq. (2.2) satisfies the usual hypothesis if Assumption 2.1 is
satisfied and for any x, y ∈ Rd and (α, β, p) ∈ A × B × P the monotonicity condition

2⟨x − y, bαβ(p, x)− bαβ(p, y)⟩ + ∥σαβ(p, x)− σαβ(p, y)∥2
≤ K1|x − y|

2 (2.3)

holds, where K1 is a fixed constant. For instance, if σαβ(p, x) and bαβ(p, x) are Lipschitz
continuous in x with constant independent of α, β, p, then (2.3) holds. If d = 1, then (2.3) is
satisfied if, for instance, bαβ(p, x) is a decreasing function and σαβ(p, x) is Lipschitz continuous
in x with constant independent of α, β, p. Even if σ and b are independent of p, this argument
shows how control adapted processes may appear.

We discuss a different way in which control adapted processes appear naturally in Remark 2.4.

Take a ζ ∈ C∞

0 (R
d) with unit integral and for ε > 0 introduce ζε(x) = ε−dζ(x/ε). For locally

summable functions u = u(x) on Rd define

u(ε)(x) = u ∗ ζε(x).

Assumption 2.3. (i) For any x ∈ Rd

sup
(α,β)∈A×B

(|c̄αβ | + | f̄ αβ |)(x) < ∞. (2.4)

(ii) There exist a constant δ1 ∈ (0, 1] and a function rαβ(p, x) defined on A × B × P × Rd

with values in [δ1, δ
−1
1 ] such that rαβ( p̄, x) ≡ 1 and on A × B × P × Rd we have

f αβ(p, x) = rαβ(p, x) f̄ αβ(x).
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(iii) For any bounded domain D ⊂ Rd we have

∥ sup
(α,β)∈A×B

| f̄ αβ |∥Ld (D) + ∥ sup
(α,β)∈A×B

c̄αβ∥Ld (D) < ∞,

∥ sup
(α,β)∈A×B

| f̄ αβ − ( f̄ αβ)(ε)|∥Ld (D) → 0,

∥ sup
(α,β)∈A×B

|c̄αβ − (c̄αβ)(ε)|∥Ld (D) → 0,

as ε ↓ 0.
(iv) There is a constant δ ∈ (0, 1] such that for α ∈ A, β ∈ B, p ∈ P , and x, λ ∈ Rd we have

δ|λ|2 ≤ aαβi j (p, x)λiλ j ≤ δ−1
|λ|2.

The reader understands, of course, that the summation convention is adopted throughout the
article.

Set

φ
α·β·x
t =

 t

0
cαsβs (pα·β·

s , xα·β·x
s ) ds,

fix a bounded domain D ⊂ Rd , define τα·β·x as the first exit time of xα·β·x
t from D, and introduce

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

 τ

0
f (pt , xt )e

−φt dt + g(xτ )e
−φτ


, (2.5)

where the indices α·, β, and x at the expectation sign are written to mean that they should be
placed inside the expectation sign wherever and as appropriate, that is

Eα·β·

x

 τ

0
f (pt , xt )e

−φt dt + g(xτ )e
−φτ



:= E


g(xα·β·x

τα·β·x
)e

−φ
α·β·x

τα·β·x +

 τα·β·x

0
f αtβt (pα·β·

t , xα·β·x
t )e−φ

α·β·x
t dt


.

Observe that v(x) = g(x) in Rd
\ D.

This definition makes perfect sense due to the following.

Lemma 2.1. There is a constant N , depending only on K0, δ, d, and the diameter of D, such
that for any α· ∈ A, β· ∈ B, x ∈ D, n = 1, 2, . . . , t ∈ [0,∞), and h ∈ Ld(D) we have (a.s.)

Iτα·β·x>t Eα·β·

x

 τ

t
|h(xs)| ds

n

| Ft


≤ n!N n

∥h∥
n
Ld (D)

. (2.6)

In particular, for any n = 1, 2, . . .

Eα·β·

x τ n
≤ n!N n .
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Proof. Estimate (2.6) with n = 1 is proved in Theorem 2.2.1 of [7]. If it is true for an n, then we
have

Iτα·β·x>t Eα·β·

x

 τ

t
|h(xs)| ds

n+1

| Ft


= (n + 1)Iτα·β·x>t Eα·β·

x

 τ

t
|h(xr )|

 τ

r
|h(xs)| ds

n

dr | Ft


= (n + 1)Iτα·β·x>t Eα·β·

x

 τ

t
|h(xr )|Iτ>r


Eα·β·

x

 τ

r
|h(xs)| ds

n

| Fr


dr | Ft


≤ N n(n + 1)!∥h∥

n
Ld (D)

Iτα·β·x>t Eα·β·

x

 τ

t
|h(xr )| dr | Ft


≤ N n+1(n + 1)!∥h∥

n+1
Ld (D)

.

The lemma is proved. �

For a sufficiently smooth function u = u(x) introduce

Lαβu(p, x) = aαβi j (p, x)Di j u(x)+ bαβi (p, x)Di u(x)− cαβ(p, x)u(x),

where, naturally, Di = ∂/∂xi , Di j = Di D j . Recall that we fixed a p̄ ∈ P and denote

L̄αβu(x) = Lαβu( p̄, x),

H [u](x) = sup inf
α∈A β∈B

[L̄αβu(x)+ f̄ αβ(x)]. (2.7)

Definition 2.2. For a domain U ⊂ Rd we say that a C2
loc(U ) function u is p-insensitive in U

(relative to (rαβ , Lαβ)) if for any x ∈ U , α· ∈ A, and β· ∈ B

d

u(xα·β·x

t )e−φ
α·β·x
t


= rαtβt (pα·β·

t , xα·β·x
t )L̄αtβt u(xα·β·x

t )e−φ
α·β·x
t dt + dmt

for t less than the first exit time of xα·β·x
t from U , where mt is a local martingale starting at zero.

There are nontrivial cases when all sufficiently smooth functions are p-insensitive (see
Example 2.1). On the other hand, any smooth function u(x1) will be p-insensitive if
(a11, b1)

αβ(p, x) = rαβ(p, x)(ā11, b̄1)
αβ(x) with no restrictions on other entries of a and b.

A generalization of this particular example will play an extremely important role in one of
subsequent articles (see [12]).

Definition 2.3. Let U be a domain in Rd for which the Sobolev embedding W 2
d (U ) ⊂ C(Ū )

is valid. We say that it is regular (for given g) if there exists a function u ∈ W 2
d (U ) such that

H [u] = 0 in U (a.e.) and u = g on ∂U and there exists a sequence un ∈ C2(Ū ) of p-insensitive
in U functions such that un → u in W 2

d (U ) and in C(Ū ).

In a subsequent article (see [11]) we will show that the following assumption can be dropped.

Assumption 2.4. There is a sequence of expanding regular subdomains Dn of D such that
D =


n≥1 Dn .

Finally we impose the following.
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Assumption 2.5. There exists a bounded nonnegative G ∈ C2
loc(D) such that

(i) We have G ∈ C(D̄) and G = 0 on ∂D;
(ii) For all α ∈ A, β ∈ B, p ∈ P , and x ∈ D

LαβG(p, x) ≤ −1. (2.8)

Here is our main result.

Theorem 2.2. Under the above assumptions also suppose that there exists a sequence of
functions gn such that ∥g − gn∥C(D̄) → 0 as n → ∞, for each n ≥ 1, ∥gn∥C2(D̄) < ∞

and gn is p-insensitive in D. Then
(i) The function v(x) is independent of the chosen control adapted process p ∈ P, it is

bounded and continuous in Rd .
(ii) Let γ α·β·x be an {Ft }-stopping time defined for each α· ∈ A, β· ∈ B, and x ∈ Rd and such

that γ α·β·x ≤ τα·β·x . Also let λα·β·x
t ≥ 0 be progressively measurable functions on Ω × [0,∞)

defined for each α· ∈ A, β· ∈ B, and x ∈ Rd and such that they have finite integrals over finite
time intervals (for any ω). Then for any x

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x


v(xγ )e

−φγ−ψγ +

 γ

0
{ f (pt , xt )+ λtv(xt )}e

−φt −ψt dt


, (2.9)

where inside the expectation sign γ = γ α·β(α·)x and

ψ
α·β·x
t =

 t

0
λα·β·x

s ds.

Remark 2.2. The function G is called a barrier in the theory of partial differential equations.
Existence of such barriers is known for a very large class of domains, say such that there are
ρ0 > 0 and θ > 0 such that for any point x0 ∈ ∂D and any r ∈ (0, ρ0] we have that the volume
of the intersection of Dc with the ball of radius r centered at x0 is greater than θrd . The so-called
uniform exterior cone condition will suffice.

Without Assumption 2.5 or similar ones one cannot assert that v is continuous in D̄ even if no
control parameters are involved.

Note that the possibility to vary λ in Theorem 2.2 might be useful while considering stochastic
differential games with stopping in the spirit of [5].

Remark 2.3. Definition 2.2 is stated in the form which is easy to use and to check especially
when (as in a subsequent article [12]) the state process consists of several components for each
of which the corresponding equations have very different forms and u depends only on part of
these components.

Still it is worth noting that, as follows immediately from Itô’s formula, u ∈ C2
loc(U ) will be

p-insensitive if on A × B × P × U we have

Lαβu(p, x) = rαβ(p, x)L̄αβu(x). (2.10)

Example 2.1. Let O be the set of d1 × d1 orthogonal matrices and denote by p = (p′, p′′)

a generic point in [−δ1, δ
−1
1 ] × O. Assume that the original σ, b are independent of p. Then

introduce

σαβ(p, x) = (p′)1/2σαβ(x)p′′, (b, c, f )αβ(p, x) = p′(b, c, f )αβ(x).
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In this case

(1/2)σαβ(p, x)(σαβ(p, x))∗ = p′aαβ(x)

and (2.10) holds for any u with rαβ(p, x) = p′.
In this case the assertion that v is independent of the control adapted process pα·β·

t is rather
natural and is due to the fact that its effect on the state process is equivalent to that of a random
time change and a random rotation of the increments of the original Wiener process.

The main advantage of introducing the above parameters, which by far are not the most
general and important for the future, is that while estimating v(x + εξ) − v(x) for small ε,
where ξ ∈ Rd , we can take p ≡ (1, I ), where I is the d1 × d1 identity matrix, in the definition of
v(x) and a different p close to (1, I ) in the definition of v(x + εξ). This may make the solutions
of the corresponding stochastic equations to become closer than in the case where for both v(x)
and v(x + εξ) we take p ≡ (1, I ).

Remark 2.4. One of ways to introduce control adapted processes can be explained in the
situation of Example 2.1 when the original σ and b are Lipschitz continuous. Take a [δ1, δ

−1
1 ]-

valued function r(x) and O-valued function Q(x) defined and Lipschitz continuous on Rd . Fix
an x0 ∈ Rd and for α· ∈ A and β· ∈ B define

pα·β·

t := (r(xt ), Q(xt )),

where xt is a unique solution of

xt = x0 +

 t

0
r1/2(xs)σ

αsβs (xs)Q(xs) dws +

 t

0
r(xs)b

αsβs (xs) ds.

Almost obviously p ∈ P and the above solution is, actually, xα·β·x
t for that p if x = x0. In

a subsequent article (see [12]) we will show a much more sophisticated use of control adapted
processes defined by an auxiliary Itô equation.

As a simple byproduct of our proofs we obtain the following.

Theorem 2.3. The function v is locally Hölder continuous in D with exponent θ ∈ (0, 1)
depending only on d and δ.

The point is that v will be obtained as the limit of un which are solutions of class W 2
d (Dn)

of the equation H [un] = 0 in Dn (a.e.) with boundary data g. It is well known (see, for
instance, Remark 1.3 in [10]) that such un satisfy linear uniformly elliptic equations with
bounded coefficients and it is a classical result that such solutions admit uniform in n local
Hölder estimates of some exponent θ ∈ (0, 1) depending only on d and δ (see, for instance, [3]
or [8]).

3. Proof of Theorem 2.2 in case that the Isaacs equation has a smooth solution

In this section Assumption 2.3(iii), (iv), the regularity Assumption 2.4 as well as
Assumption 2.5 concerning G are not used and the domain D is not supposed to be bounded.
Suppose that for each ε > 0 we are given real-valued functions cαβε (x) and f αβε (x) defined on
A × B × Rd .
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Assumption 3.1. (i) Assumptions 2.1–2.3(i), (ii) are satisfied.
(ii) For a constant χ > 0 we have cαβ(p, x) ≥ χ for all α, β, p, x .
(iii) For each ε > 0 the functions (c, f )αβε (x) are bounded on A × B × D̄ and uniformly

continuous with respect to x ∈ D̄ uniformly with respect to α, β.
(iv) For any x as ε ↓ 0,

dε(x) := sup
(α·,β·)∈A×B

Eα·β·

x

 τ

0
(|c̄ − cε| + | f̄ − fε|)(xt )e

−φt dt → 0.

(v) For any x ∈ D

sup
(α·,β·)∈A×B

Eα·β·

x

 τ

0
| f (pt , xt )|e

−φt dt < ∞.

Observe that Assumption 3.1(v) implies that v is well defined.
In some applications we have in mind the following “degenerate” version of Theorem 2.2

plays an important role. We assume that we are given two p-insensitive in D functions
û, ǔ ∈ C2(D̄) (with finite C2(D̄)-norms) such that their second-order derivatives are uniformly
continuous in D̄ (in case D is unbounded).

Theorem 3.1. (i) If H [û] ≤ 0 (everywhere) in D and û ≥ g on ∂D (in case ∂D ≠ ∅), then
v ≤ û in D̄.
(ii) If H [ǔ] ≥ 0 (everywhere) in D and ǔ ≤ g on ∂D (in case ∂D ≠ ∅), then v ≥ ǔ in D̄.
(iii) If û and ǔ are as in (i) and (ii) and û = ǔ, then all assertions of Theorem 2.2 hold true.

Moreover, v = û.

This theorem is an immediate consequence of the following two results in which we allow λ
α·β·x
t

and γ α·β·x to be as in Theorem 2.2.

Theorem 3.2. Suppose that H [û] ≤ 0 (everywhere) in D. Then for all x ∈ D̄ we have

û(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


û(xγ )e

−φγ−ψγ +

 γ

0
[ f (pt , xt )+ λt û(xt )]e

−φt −ψt dt


. (3.1)

In particular, if û ≥ g on ∂D, then for γ ≡ τ and λ ≡ 0 Eq. (3.1) yields that û ≥ v.

Theorem 3.3. Suppose that H [ǔ] ≥ 0 (everywhere) in D. Then for all x ∈ D̄ we have

ǔ(x) ≤ inf sup
β∈B α·∈A

Eα·β(α·)
x


ǔ(xγ )e

−φγ−ψγ +

 γ

0
[ f (pt , xt )+ λt ǔ(xt )]e

−φt −ψt dt


. (3.2)

In particular, if ǔ ≤ g on ∂D, then for γ ≡ τ and λ ≡ 0 Eq. (3.2) yields that ǔ ≤ v.

Note that, formally, the value xγ in (3.1) and (3.2) may not be defined if γ = ∞. In that case
we set the corresponding terms to equal zero, which is natural because û and ǔ are bounded and
φ
α·β·x
∞ = ∞.

To prove these theorems we need two lemmas. The reader can compare our arguments with
the ones in [14] and see that they are very close.

For a stopping time γ we say that a process ξt is a submartingale on [0, γ ] if ξt∧γ is a
submartingale. Similar definition applies to supermartingales.
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Lemma 3.4. Let H [û] ≤ 0 (everywhere) in D. Then for any x ∈ Rd , α· ∈ A, and ε > 0,
there exist a sequence βn

· (α·) = βn
· (α·, x, ε) ∈ B, n = 1, 2, . . . , and a sequence of increasing

continuous {Ft }-adapted processes ηnε
t (α·) = ηnε

t (α·, x) with ηnε
0 (α·) = 0 such that

sup
n

Eηnε
∞(α·) < ∞, (3.3)

the processes

κnε
t (α·) := û(xn

t )e
−φn

t − ηnε
t (α·)+

 t

0
f n
s (p

n
s , xn

s )e
−φn

s ds,

where

(xn
t , φ

n
t ) = (xt , φt )

α·β
n
· (α·)x , f n

t (p, x) = f αtβ
n
t (α·)(p, x), pn

t = p
α·β

n
· (α·)

t (3.4)

are supermartingales on [0, τα·β
n
· (α·)x ], and

lim
n→∞

sup
α·∈A

Eηnε
τ (α·) ≤ ε/(δ1χ)+ Ndε(x), (3.5)

where δ1 is taken from Assumption 2.3(ii) and N is independent of x and ε. Furthermore, if
for any n we are given a nonnegative, progressively measurable process λn

t ≥ 0 having finite
integrals over finite time intervals (for any ω), then the processes

ρnε
t (α·) := û(xn

t )e
−φn

t −ψn
t − ηnε

t (α·)e
−ψn

t

+

 t

0


f n
s (p

n
s , xn

s )+ λn
s û(xn

s )− λn
s η

nε
s (α·)e

φn
s

e−φn

s −ψn
t ds

are supermartingales on [0, τα·β
n
· (α·)x ], where (we use notation (3.4) and)

ψn
t =

 t

0
λn

s ds. (3.6)

Finally,

sup
α·∈A

sup
n

E sup
t≥0

|κnε
t∧τ (α·)| < ∞, sup

α·∈A

sup
n

E sup
t≥0

|ρnε
t∧τ (α·)| < ∞. (3.7)

Proof. Since B is separable and aαβ , bαβ , cαβ , and f αβ are continuous with respect to β one can
replace B in (2.7) with an appropriate countable subset B0 = {β1, β2, . . .}. Then for each α ∈ A
and x ∈ D define β(α, x) as βi ∈ B0 with the least i such that

0 ≥ L̄αβi û(x)+ f̄ αβi (x)− ε. (3.8)

For each i the right-hand side of (3.8) is Borel in x and continuous in α. Therefore, it is a
Borel function of (α, x), implying that β(α, x) also is a Borel function of (α, x). For x ∉ D set
β(α, x) = β∗, where β∗ is a fixed element of B. Then we have that in D

0 ≥ L̄αβ(α,x)û(x)+ f̄ αβ(α,x)(x)− ε. (3.9)

After that fix x , define βn0
t (α·) = β(αt , x), t ≥ 0, and for k ≥ 1 introduce βnk

t (α·) recursively
so that

βnk
t (α·) = β

n(k−1)
t (α·) for t < k/n, (3.10)

βnk
t (α·) = β(αt , xnk

k/n) for t ≥ k/n,
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where xnk
t is a unique solution of

xt = x +

 t

0
σ(αs, β

n(k−1)
s (α·), pα·β

n(k−1)
· (α·)

s , xs) dws

+

 t

0
b(αs, β

n(k−1)
s (α·), pα·β

n(k−1)
· (α·)

s , xs) ds. (3.11)

To show that the above definitions make sense, observe that, by Assumption 2.2, xn0
t is well

defined for all t . Therefore, βn1
t (α·) is also well defined, and by induction we conclude that xnk

t
and βnk

t (α·) are well defined for all k.
Furthermore, owing to (3.10) it makes sense to define

βn
t (α·) = βnk

t (α·) for t < k/n.

Notice that by definition xn
t = x

α·β
n
· (α·)x

t satisfies the equation

xt = x +

 t

0
σ(αs, β

n
s (α·), p

α·β
n
· (α·)

s , xs) dws

+

 t

0
b(αs, β

n
s (α·), p

α·β
n
· (α·)

s , xs) ds. (3.12)

For t < k/n we have βn
t (α·) = β

n(k−1)
t (α·), so that for t ≤ k/n Eq. (3.12) coincides with (3.11)

owing to the fact that pα·β·

t is control adapted. It follows that (a.s.)

xn
t = xnk

t for all t ≤ k/n,

so that (a.s.)

βnk
t (α·) = β(αt , xn

k/n)

for all t ≥ k/n. Therefore, if (k − 1)/n ≤ t < k/n, then

βn
t (α·) = β

n(k−1)
t (α·) = β(αt , xn

(k−1)/n)

βn
s := βn

s (α·) = β(αs, xn
κn(s)), (3.13)

where κn(t) = [nt]/n, and xn
t satisfies

xn
t = x +

 t

0
σ(αs, β(αs, xn

κn(s)), pn
s , xn

s ) dws

+

 t

0
b(αs, β(αs, xn

κn(s)), pn
s , xn

s ) ds, (3.14)

with pn
s = p

α·β
n
·

s .
Introduce τ n as the first exit time of xn

t from D and set

φn
t = φ

α·β
n
· x

t , rn
s = rαsβ

n
s (pn

s , xn
s ).

Observe that by Itô’s formula

û(xn
t∧τ n )e−φn

t∧τn = û(x)+

 t∧τ n

0
e−φn

s Lαsβ
n
s û(pn

s , xn
s ) ds + mn

t ,

where mn
s is a martingale.
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By Definition 2.2

û(xn
t∧τ n )e−φn

t∧τn +

 t∧τ n

0
f αsβ

n
s (pn

s , xn
s )e

−φn
s ds

= û(x)+

 t∧τ n

0
e−φn

s rn
s


L̄αsβ

n
s û(xn

s )+ f̄ αsβ
n
s (xn

s )


ds + mn
t , (3.15)

where, for s < τ n , (notice the change of c̄ to cε)

L̄αsβ
n
s û(xn

s ) = āi j (αs, β(αs, xn
κn(s)), xn

s )Di j û(x
n
s )

+ b̄i (αs, β(αs, xn
κn(s)), xn

s )Di û(x
n
s )− c̄(αs, β(αs, xn

κn(s)), xn
s )û(x

n
s )

= āi j (αs, β(αs, xn
κn(s)), xn

s )Di j û(x
n
s )+ b̄i (αs, β(αs, xn

κn(s)), xn
s )Di û(x

n
s )

− cε(αs, β(αs, xn
κn(s)), xn

s )û(x
n
s )+ ξnε

t ,

where ξnε
t (defined by the above equality) is a progressively measurable process such that by

Assumption 3.1(iv)

sup
n

E
 τ n

0
|ξnε

t |e−φn
t dt ≤ Ndε(x) (3.16)

with N independent of α, ε, and x (equal to one). All such processes are denoted by ξnε
t below

even if they may change from one occurrence to another.
According to our assumptions on the uniform continuity in x of the data and Di j u(x) we have

that for s < τ n

L̄αsβ
n
s û(xn

s ) ≤ āi j (αs, β(αs, xn
κn(s)), xn

κn(s))Di j û(x
n
κn(s))

+ b̄i (αs, β(αs, xn
κn(s)), xn

κn(s))Di û(x
n
κn(s))

− c̄(αs, β(αs, xn
κn(s)), xn

κn(s))û(x
n
κn(s))+ χε(x

n
s − xn

κn(s))+ |ξnε
t |

where, for each ε > 0, χε(y) is a (nonrandom) bounded function on Rd such that χε(y) → 0 as
y → 0. All such functions will be denoted by χε even if they may change from one occurrence
to another. Then (3.9) shows that, for s < τ n ,

L̄αsβ
n
s û(xn

s ) ≤ ε + χε(x
n
s − xn

κn(s))+ |ξnε
t | − f̄ (αs, β(αs, xn

κn(s)), xn
κn(s))

≤ ε + χε(x
n
s − xn

κn(s))+ |ξnε
t | − f̄ αsβ

n
s (xn

s ),

which along with (3.15) implies that

κnε
t∧τ n := û(xn

t∧τ n )e−φn
t∧τn +

 t∧τ n

0
f αsβ

n
s (pn

s , xn
s )e

−φn
s ds − ηnε

t = ζ nε
t + mn

t , (3.17)

where ζ nε
t is a decreasing process and

ηnε
t = ηnε

t (α·) = εδ−1
1

 t∧τ n

0
e−φn

s ds +

 t∧τ n

0
e−φn

s [|ξnε
s | + χε(x

n
s − xn

κn(s))] ds.

Hence κnε
t∧τ n is at least a local supermartingale. Assumption 3.1 and (3.16) show that (3.3) and

the first inequality in (3.7) hold. It follows that the local supermartingale κnε
t∧τ n is, actually, a

supermartingale.
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Furthermore, obviously
∞

0
e−φn

s ds ≤ 1/χ,

so that to prove the first assertion of the lemma, it only remains to show that

sup
α·∈A

E


∞

0
e−φn

s χε(x
n
s − xn

κn(s)) ds → 0 (3.18)

as n → ∞. In light of the fact that cαβ ≥ χ , this is done in exactly the same way as a similar
fact is proved in [9].

That ρnε
t∧τ n (α·) is a local supermartingale follows after computing its stochastic differential.

Then the fact that it is a supermartingale follows from the second estimate in (3.7) which is
proved by using

∞

0
λn

t e−ψn
t dt ≤ 1 (3.19)

and the same argument as above. The lemma is proved. �

Proof of Theorem 3.2. First we fix x ∈ Rd , α· ∈ A, and ε > 0, take βn
· (α·) form Lemma 3.4

and prove that the B-valued functions defined on A by βn(α·) = βn
· (α·) belong to B. To do that

observe that if (2.1) holds and T ≤ 1/n, then (a.s.) βn0
t (α

1
· ) = βn0

t (α
2
· ) for almost all t ≤ T . By

definition also (a.s.)

p
α1

· β
n0
· (α1

· )
s = p

α2
· β

n0
· (α2

· )
s for almost all s ≤ T .

By uniqueness of solutions of (2.2) (see Assumption 2.2), the processes xn1
t found from (3.11)

for α· = α1
· and for α· = α2

· coincide (a.s.) for all t ≤ T .
If (2.1) holds and 1/n < T ≤ 2/n, then by the above solutions of (3.11) for α· = α1

· and for
α· = α2

· coincide (a.s.) for t = 1/n and then (a.s.) βn1
t (α

1
· ) = βn1

t (α
2
· ) not only for all t < 1/n

but also for all t ≥ 1/n, which implies that (a.s.)

p
α1

· β
n1
· (α1

· )
s = p

α2
· β

n1
· (α2

· )
s for almost all s ≤ T

and again the processes xn
t found from (3.11) for α· = α1

· and for α· = α2
· coincide (a.s.) for all

t ≤ T .
By induction we get that if (2.1) holds for a T ∈ (0,∞) and we define k as the integer such

that k/n < T ≤ (k + 1)/n, then (a.s.)

βn
t (α

1
· ) = βnk

t (α
1
· ) = βnk

t (α
2
· ) = βn

t (α
2
· ) for all t < (k + 1)/n, (3.20)

p
α1

· β
nk
· (α1

· )
s = p

α2
· β

nk
· (α2

· )
s for almost all s ≤ T

and the processes xn
t found from (3.11) for α· = α1

· and for α· = α2
· coincide (a.s.) for all t ≤ T .

This means that βn
∈ B indeed.

Furthermore, by the supermartingale property of ρnε
t (α), for any stopping times γ α·β· ≤ τα·β·x

defined for each α· ∈ A and β· ∈ B we have

û(x) ≥ Eα·β
n(α·)

x û(xγ )e
−φγ−ψγ − Eηnε

γ (α·)e
−ψγ

+ Eα·β
n(α·)

x

 γ

0
[ f (pt , xt )+ λt û(xt )− λn

t η
nε
t (α·)e

φt ]e−φt −ψt dt.
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Also observe that

Eα·β
n(α·)

x

 γ

0
λtη

nε
t (α·)e

−ψt dt + ηnε
γ (α·)e

−ψγ


≤ E sup

t≤γ
ηnε

t (α·) ≤ Eηnε
τ (α·).

It follows that

û(x) ≥ Eα·β
n(α·)

x

 γ

0
[ f (pt , xt )+ λt û(xt )]e

−φt −ψt dt + û(xγ )e
−φγ−ψγ


− Eηnε

τ (α·),

which owing to (3.5) yields

û(x) ≥ lim
n→∞

sup
α·∈A

Eα·β
n(α·)

x

 γ

0
[ f (pt , xt )+ λt û(xt )]e

−φt −ψt dt

+ û(xγ )e
−φγ−ψγ


− ε/(δ1χ)− Ndε(x).

In light of the arbitrariness of ε we arrive at (3.1) and the theorem is proved. �

For treating ǔ we use the following result.

Lemma 3.5. Let H [ǔ] ≥ 0 (everywhere) in D. Then for any x ∈ Rd , β ∈ B, and ε > 0, there
exist a sequence αn

· ∈ A, n = 1, 2, . . . , and a sequence of increasing continuous {Ft }-adapted
processes ηnε

t (β) with ηnε
0 (β) = 0 such that the processes

κnε
t := ǔ(xn

t )e
−φn

t + ηnε
t (β)+

 t

0
f n
s (p

n
s , xn

s )e
−φn

s ds,

where

(xn
t , φ

n
t ) = (xt , φt )

αn
· β(α

n
· )x , f n

t (p, x) = f α
n
t βt (α

n
· )(p, x), pn

t = p
αn

· β(α
n
· )

t , (3.21)

are submartingales on [0, τα
n
· β(α

n
· )x ] and

sup
n

Eηnε
∞(β) < ∞, (3.22)

lim
n→∞

Eηnε
τ (β) ≤ ε/(δ1χ)+ Ndε(x), (3.23)

where δ1 is taken from Assumption 2.3(ii).
Furthermore, if for any n we are given a nonnegative, progressively measurable process

λn
t ≥ 0 having finite integrals over finite time intervals (for any ω), then the processes

ρnε
t := ǔ(xn

t )e
−φn

t −ψn
t − ηnε

t (β)e
−ψn

t

+

 t

0


f n
t (p

n
s , xn

s )+ λn
s ǔ(xn

s )− λn
s η

nε
s (β)e

φn
s

e−φn

s −ψn
s ds

are submartingales on [0, τα
n
· β(α

n
· )x ], where we use notation (3.21) and ψn

t is taken from (3.6).
Finally,

sup
n

E sup
t≥0

|κnε
t∧τ | < ∞, sup

n
E sup

t≥0
|ρnε

t∧τ | < ∞.

Proof. Owing to Assumptions 2.1 and 2.3(i) the function

h(α, x) := inf
β∈B


L̄αβ ǔ(x)+ f̄ αβ(x)


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is a finite Borel function of x and is continuous with respect to α. Its sup over A can be replaced
with the sup over an appropriate countable subset of A and since

sup
α∈A

h(α, x) ≥ 0,

similarly to how β(α, x) was defined in the proof of Lemma 3.4, one can find a Borel function
ᾱ(x) in such a way that

inf
β∈B


L̄ ᾱ(x)β ǔ(x)+ f̄ ᾱ(x)β(x)


≥ −ε (3.24)

in D. If x ∉ D we set ᾱ(x) = α∗, where α∗ is a fixed element of A.
After that we need some processes which we introduce recursively. Fix x and set αn0

t ≡ ᾱ(x).
Then define xn0

t as a unique solution of the equation

xt = x +

 t

0
σ(αn0

s , βs(α
n0
· ), p

αn0
· β(α

n0
· )

s , xs) dws

+

 t

0
b(αn0

s , βs(α
n0
· ), p

αn0
· β(α

n0
· )

s , xs) ds.

For k ≥ 1 introduce αnk
t so that

αnk
t = α

n(k−1)
t for t < k/n,

αnk
t = ᾱ(xn(k−1)

k/n ) for t ≥ k/n,

where xn(k−1)
t is a unique solution of

xt = x +

 t

0
σ(αn(k−1)

s , βs(α
n(k−1)
· ), pα

n(k−1)
· β(α

n(k−1)
· )

s , xs) dws

+

 t

0
b(αn(k−1)

s , βs(α
n(k−1)
· ), pα

n(k−1)
· β(α

n(k−1)
· )

s , xs) ds. (3.25)

As in the proof of Lemma 3.4 we show that the above definitions make sense as well as the
definition

αn
t = α

n(k−1)
t for t < k/n. (3.26)

Next, by definition xn
t = x

αn
· β(α

n
· )x

t satisfies

xt = x +

 t

0
σ(αn

s , βs(α
n
· ), p

αn
· β(α

n
· )

s , xs) dws +

 t

0
b(αn

s , βs(α
n
· ), p

αn
· β(α

n
· )

s , xs) ds.

Eq. (3.26) and the definitions of B and of control adapted processes show that xn
t satisfies (3.25)

for t ≤ k/n. Hence, (a.s.) xn
t = xn(k−1)

t for all t ≤ k/n and (a.s.) for all t ≥ 0, αn
t = ᾱ(xn

κn(t)
)

and

xn
t = x +

 t

0
σ(ᾱ(xn

κn(s)), βs(α
n
· ), pn

s , xn
s ) dws +

 t

0
b(ᾱ(xn

κn(s)), βs(α
n
· ), pn

s , xn
s ) ds,

where pn
s = p

αn
· β(α

n
· )

s .
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Now, introduce τ n as the first exit time of xn
t from D, set

βn
s = βs(α

n
· ), φn

t = φ
αn

· β
n
· x

t , rn
s = rα

n
· β

n
· (pn

s , xn
s ),

where rαβ(p, x) is taken from Assumption 2.3(ii), and observe that by Itô’s formula

ǔ(xn
t∧τ n )e−φn

t∧τn = ǔ(x)+

 t∧τ

0
e−φn

s rn
s L̄α

n
s β

n
s ǔ(xn

s ) ds + mn
t ,

where mn
s is a martingale and, for s < τ n ,

L̄α
n
s β

n
s ǔ(xn

s ) = āi j (ᾱ(x
n
κn(s)), β

n
s , xn

s )Di j ǔ(x
n
s )

+ b̄i (ᾱ(x
n
κn(s)), β

n
s , xn

s )Di ǔ(x
n
s )− c̄(ᾱ(xn

κn(s)), β
n
s , xn

s )ǔ(x
n
s ).

Similarly to the proof of Lemma 3.4 we derive from (3.24) that, for s < τ n ,

L̄α
n
s β

n
s ǔ(xn

s ) ≥ −ε − χ(xn
s − xn

κn(s))− ξnε
t − f̄ (ᾱ(xn

κn(s)), β
n
s , xn

κn(s))

= −ε − χ(xn
s − xn

κn(s))− ξnε
t − f̄ α

n
s β

n
s (xn

s ),

where ξnε
t are nonnegative progressively measurable processes satisfying (3.16) and χε(y) is a

(nonrandom) bounded function on Rd such that χε(y) → 0 as y → 0. It follows that

ǔ(xn
t∧τ n )e−φn

t∧τn +

 t∧τ n

0
f α

n
s β

n
s (pn

s , xn
s )e

−φn
s ds + ηn

t = ζt + mn
t , (3.27)

where ζt is an increasing process and

ηn
t = ηn

t (β) = εδ−1
1

 t∧τ n

0
e−φn

s ds +

 t∧τ n

0
e−φn

s [ξnε
s + χε(x

n
s − xn

κn(s))] ds.

Hence the left-hand side of (3.27) is a local submartingale and we finish the proof in the same
way as the proof of Lemma 3.4. The lemma is proved. �

Proof of Theorem 3.3. Similarly to the proof of Theorem 3.2, for any β ∈ B,

ǔ(x) ≤ E
αn

· β(α
n
· )

x

 γ

0
[ f (pt , xt )+ λt ǔ(xt )+ λtη

nε
t (β)e

φt ]e−φt −ψt dt

+ ǔ(xγ )e
−φγ−ψγ + ηnε

γ (β)e
ψγ



≤ E
αn

· β(α
n
· )

x

 γ

0
[ f (pt , xt )+ λt ǔ(xt )]e

−φt −ψt dt + ǔ(xγ )e
−φγ−ψγ


+ Eηnε

τ (β).

It follows that

ǔ(x) ≤ sup
α·∈A

Eα·β(α·)
x

 γ

0
[ f (pt , xt )+ λt ǔ(xt )]e

−φt −ψt dt

+ ǔ(xγ )e
−φγ−ψγ


+ lim

n→∞
Eηnε

τ (β),

ǔ(x) ≤ sup
α·∈A

Eα·β(α·)
x

 γ

0
[ f (pt , xt )+ λt ǔ(xt )]e

−φt −ψt dt

+ ǔ(xγ )e
−φγ−ψγ


+ ε/(δ1χ)+ Ndε,
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which in light of the arbitrariness of ε and β ∈ B finally yields (3.2) and the theorem
is proved. �

4. Versions of Theorems 3.1–3.3 for “uniformly nondegenerate” case

In the first result of this section D is not assumed to be bounded.
Let û, ǔ ∈ W 2

1,loc(D) ∩ C(D̄) be given functions for which there exist sequences ûn, ǔn ∈

C2(D̄), n ≥ 1, of p-insensitive in D functions which for each n have uniformly continuous
second-order derivatives (if D is unbounded) and such that ûn, ǔn converge to û and ǔ,
respectively, uniformly in D̄. For a sufficiently regular function u we denote by Du its gradient
and D2u its Hessian. In case of û, ǔ we take and fix any Borel measurable versions of their
gradients and Hessians.

Theorem 4.1. Suppose that Assumptions 2.1–2.3(i), (ii), Assumption 2.5(ii) , and Assump-
tion 3.1(iii), (v) are satisfied. Also suppose that a stronger assumption than Assump-
tion 3.1(iv) is satisfied, namely, for any x

sup
(α·,β·)∈A×B

Eα·β·

x

 τ

0
sup

α∈A,β∈B
(|c̄αβ − cαβε | + | f̄ αβ − f αβε |)(xt )e

−φt dt → 0 (4.1)

as ε ↓ 0. Finally, assume that for any x ∈ D

sup
(α·,β·)∈A×B

Eα·β·

x

 τ

0


|D2û − D2ûn| + |Dû − Dûn|)(xt )e

−φt dt → 0 (4.2)

as n → ∞ and the same is true if we replace û with ǔ.
Then the following holds true:
(i) If H [û] ≤ 0 in D (a.e.) and û ≥ g on ∂D (if D ≠ Rd ), then v ≤ û in D̄ and (3.1) holds

for any λα·β·x
t and γ α·β·x as in Theorem 2.2.

(ii) If H [ǔ] ≥ 0 in D (a.e.) and ǔ ≤ g on ∂D (if D ≠ Rd ), then v ≥ ǔ in D̄ and (3.2) holds
for any λα·β·x

t and γ α·β·x as in Theorem 2.2.
(iii) If û and ǔ are as in (i) and (ii) and û = ǔ, then all assertions of Theorem 2.2 hold true.

Moreover, v = û.

It is worth saying that, as in the case of Theorems 3.2 and 3.3, we set the terms containing xγ in
(3.1) and (3.2) to be zero on the event that γ = ∞.

Before we proceed with the proof we note the following.

Remark 4.1. For x ∈ Rd and u = (u′, u′′), where u′
= (u′

0, u′

1, . . . , u′

d) ∈ Rd+1 and u′′ is in
the set S of d × d symmetric matrices, introduce

H(u, x) = sup inf
α∈A β∈B


āαβi j (x)u

′′

i j +


i≥1

b̄αβi (x)u′

i − c̄αβ(x)u′

0 + f̄ αβ(x)


. (4.3)

Owing to Assumption 2.1(i) one can replace A and B with their countable everywhere dense
subsets. Then we see that H(u, x) is a Borel function of x .
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Also note that

|H(u, x)| ≤ N

 d
i, j=1

|u′′

i j | +

d
i=1

|u′

i |


+ |u′

0| sup
α,β

c̄αβ(x)

+ sup
α,β

| f̄ αβ(x)|, |H(u, x)− H(v, x)|

≤ |u′

0 − v′

0| sup
α,β

c̄αβ(x)+ N

 d
i, j=1

|u′′

i j − v′′

i j | +

d
i=1

|u′

i − v′

i |


, (4.4)

where N is independent of u, v, x . In light of (2.4) the right-hand sides are finite, which, in
particular, implies that H(u, x) is a finite Borel function of (u, x).

If, in addition, c̄αβ(x) and f̄ αβ(x) are bounded and continuous with respect to x uniformly
with respect to (α, β), then the inequality

|H(u, x)− H(u, y)| ≤ N |x − y|

 d
i, j=1

|u′′

i j | +

d
i=1

|u′

i |


+ |u′

0| sup
α,β

|c̄αβ(x)− c̄αβ(y)| + sup
α,β

| f̄ αβ(x)− f̄ αβ(y)|

shows that H(u, x) is a continuous function of x , which along with (4.4) guarantees that H(u, x)
is a continuous function of (u, x).

Proof of Theorem 4.1. (i) Introduce ĥn = H [ûn],

cαβn (p, x) = cαβ(p, x)+ n−1rαβ(p, x),

f αβn (p, x) = f αβ(p, x)− rαβ(p, x)ĥn(x)+ n−1rαβ(p, x)ûn(x)

= rαβ(p, x)[ f̄ αβ(x)− ĥn(x)+ n−1ûn(x)],

Lαβn u(p, x) = Lαβu(p, x)− n−1rαβ(p, x)u(x).

Observe that ûn is p-insensitive in D with respect to Lαβn . Owing to Definition 2.2, this follows
from the fact that (dropping the superscripts α·, β·, x) for any x ∈ D and t < τ , we find that the
coefficient of dt in the stochastic differential of

ûn(xt )e
−φn

t , where φn
t =

 t

0
cαsβs

n (ps, xs) ds,

equals e−φn
t times

Lαtβt ûn(pt , xt )− n−1rαtβt (pt , xt )ûn(xt ) = rαtβt (pt , xt )

L̄αtβt ûn(xt )− n−1ûn(xt )


= rαtβt (pt , xt )L

αtβt
n ûn( p̄t , xt ).

Furthermore,

sup inf
α∈A β∈B


Lαβn ûn( p̄, x)+ f αβn ( p̄, x)


= 0,

which makes us try to apply Theorem 3.2 for each n.
Define ĥnε = Hε[ûn], where Hε is constructed in the same way as H with cε and fε in place

of c and f , respectively, and observe that, for each n and ε > 0, ĥn is a Borel function on D̄
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and ĥnε is bounded and uniformly continuous in D̄ (cf. Remark 4.1). Also in D

|ĥnε − ĥn| = |Hε[ûn] − H [ûn]| ≤ (1 + sup |ûn|) sup
α∈A,β∈B

(|c̄αβ − cαβε | + | f̄ αβ − f αβε |).

Therefore, for any x

lim
ε↓0

sup
(α·,β·)∈A×B

Eα·β·

x

 τ

0
|ĥnε − ĥn|(xt )e

−φt dt = 0.

All other assumptions of Theorem 3.2 are satisfied in light of the assumptions of the present
theorem and the fact that we added n−1 to c̄. By Theorem 3.2 after setting

ζ
α·β·x
t =

 t

0
rαsβs (pα·β·

s , xα·β·x
s ) ds

we obtain

ûn(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


ûn(xγ )e

−φγ−ψγ−ζγ /n

+

 γ

0
{ fn(pt , xt )+ λt ûn(xt )}e

−φt −ψt −ζt/n dt


.

Furthermore,

Eα·β·

t,x


|ûn(xγ )− û(xγ )|e

−φγ−ψγ−ζγ /n
+

 γ

0
λt |ûn(xt )− û(xt )|e

−φt −ψt −ζt/n dt


≤ Eα·β·

t,x sup
t≤γ

|ûn(xt )− û(xt )|e
−φt −ζt/n .

Therefore,

ûn(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


û(xγ )e

−φγ−ψγ−ζγ /n

+

 γ

0
{ f (pt , xt )+ λt û(xt )}e

−φt −ψt −ζt/n dt


− (n−1δ−1

1 sup
D

|ûn| + sup
D

|ûn − û|)− κn,

where

κn(x) = δ−1
1 sup

α·∈A,β·∈B

Eα·β·

x

 τ

0
(ĥn(xt ))

+e−φt dt.

Observe that

(ĥn)
+

= (H [ûn])+ ≤ (H [ûn] − H [û])+ ≤ N (|D2(ûn − û)| + |D(ûn − û)|)

+ |ûn − û| sup
α,β

c̄αβ .

Here for any ε > 0

sup
α,β

c̄αβ ≤ sup
α,β

|c̄αβ − cαβε | + sup
α,β

|cαβε |,



3292 N.V. Krylov / Stochastic Processes and their Applications 123 (2013) 3273–3298

which along with our assumptions imply that κn → 0 and leads to

û(x) ≥ lim
n→∞

inf sup
β∈B α·∈A

Eα·β(α·)
x


û(xγ )e

−φγ−ψγ−ζγ /n

+

 γ

0
{ f (pt , xt )+ λt û(xt )}e

−φt −ψt −ζt/n dt


. (4.5)

Now we note that by considering G + 1 in place of G we may assume that G ≥ 1 on D. We set
G := 1 outside D. Then, as follows easily from Itô’s formula, the process

G(xt∧τ )e
χ(t∧τ)−φt∧τ + (1/2)

 t∧τ

0
eχs−φs ds,

is at least a local supermartingale, where χ = (2 supD G)−1,

(xt , φt , τ ) = (xt , φt , τ )
α·β·x , ψt = ψ

α·β·

t

and x , α·, and β· are arbitrary. Nonnegative local supermartingales are supermartingales. In
particular, (note that the estimates below are consistent with our stipulation that functions of
xγ equal zero if γ = ∞)

Eα·β·

x sup
t≤τ


G(xt )e

χ t−φt + (1/2)
 t

0
eχs−φs ds


≤ G(x),

Eα·β·

x


|û(xγ )|e

−φγ−ψγ (1 − e−ζγ /n)+

 γ

0
λt |û(xt )|e

−φt −ψt (1 − e−ζt/n) dt


≤ Eα·β·

x sup
t≤γ

|û(xt )|e
−φt (1 − e−ζt/n)

≤ sup |û|δ−1
1 n−1 Eα·β·

x sup
t≤γ

[tG(xt )e
−φt ] ≤ N/n,

where N depends only on G, û, and δ1.
As far as the term with f in (4.5) is concerned, we estimate it similarly to c and add that

Eα·β·

x

 τ

0
e−φt (1 − e−ζt/n) dt ≤ δ−1

1 n−1 Eα·β·

x

 τ

0
e−φt t dt.

After that by letting n → ∞ in (4.5) we come to (3.1). Eq. (3.1) with γ = τ and λ ≡ 0 implies
that û ≥ v.

(ii) Here the proof is very similar and yields (3.2), from which we conclude that ǔ ≤ v.
(iii) The combination of assertions in (i) and (ii) leads to û = ǔ = v, then (3.1) and (3.2)

imply that v satisfies (2.9) and, since ǔn → ǔ = v uniformly by assumption, v is continuous in
D̄ and in Rd . Finally, since û and ǔ have nothing to do with the fixed control adapted process
pα·β·

t , the function v is independent of the choice of this process.
The theorem is proved. �

The assumptions of Theorem 4.1 admit an easy verification in the uniformly nondegenerate case.

Theorem 4.2. Suppose that the domain D is bounded, all requirements of Assumptions 2.1–
2.3 are satisfied, and ûn and ǔn not only converge uniformly in D̄ but also converge in W 2

d (D)
to û and ǔ, respectively. Then all assertions of Theorem 4.1 hold true.
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Indeed, the existence of a global barrier is well known for bounded domains and uniformly
nondegenerate operators with bounded coefficients, so that Assumption 2.5(ii) is satisfied.
Furthermore, in (4.1) we can take (cε, fε) = (c(ε), f (ε)) owing to Assumption 2.3(iii) and
Lemma 2.1. The same lemma guarantees that (4.2) holds and therefore Theorem 4.1 is applicable.

Remark 4.2. One may think that Theorem 4.2 is the only “reasonable” application of
Theorem 4.1. However, in a subsequent articles (see [11,12]) we will see an application of
Theorem 4.1 to a situation where ǔ depends only on part of the coordinates of a diffusion
process, which does degenerate at each point, but the above mentioned part of it is uniformly
nondegenerate.

5. An auxiliary result

In this section D is not assumed to be bounded. We assume that we are given a continuous Ft -
adapted process xt in Rd and progressively measurable real-valued processes ct and ft . Suppose
that ct ≥ 0.

Assumption 5.1. There exists a nonnegative bounded and continuous function Φ on D̄ such that
the process

Φ(xt∧τ )e
−φt∧τ +

 t∧τ

0
| fs |e

−φs ds

is a supermartingale, where τ is the first exit time of xt from D and

φt =

 t

0
cs ds.

Let D(n), n ≥ 1, be a sequence of subdomains of D. Introduce τn as the first exit time of xt from
D(n).

Lemma 5.1. We have

E
 τ

0
| ft |e

−φt dt ≤ EΦ(x0)Ix0∈D, (5.1)

E
 τ

τn

| ft |e
−φt dt ≤ sup

(∂Dn)\∂D
Φ


sup
∅

:= 0

. (5.2)

Proof. By assumption, for any t ∈ [0,∞),

E


Φ(xt∧τ )e

−φt∧τ +

 t∧τ

0
| fs |e

−φs ds


≤ EΦ(x0),

E
 t∧τ

0
| fs |e

−φs ds ≤ E[Φ(x0)− Φ(xt∧τ )e
−φt∧τ ] ≤ EΦ(x0)Iτ>0,

and sending t → ∞ leads to (5.1).
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Again by Assumption 5.1 for any T ∈ [0,∞) we have

E

Φ(xτn∧T )e

−φτn∧T +

 τn∧T

0
| ft |e

−φt dt


≥ E


Φ(xτ∧T )e

−φτ∧T +

 τ∧T

0
| ft |e

−φt dt


,

E
 τ∧T

τn∧T
| ft |e

−φt dt ≤ E

Φ(xτn∧T )e

−φτn∧T − Φ(xτ∧T )e
−φτ∧T


= E


Φ(xτn∧T )e

−φτn∧T − Φ(xτ∧T )e
−φτ∧T


Iτn<τ

≤ EΦ(xτn∧T )Iτn<τ .

By sending T → ∞ and using the monotone and dominated convergence theorems we arrive
at

E
 τ

τn

| ft |e
−φt dt ≤ EΦ(xτn )Iτn<τ

and (5.2) follows. The lemma is proved. �

6. Proof of Theorem 2.2

In this section all assumptions of Section 2 are supposed to be satisfied.
So far we did not use Assumption 2.5(i) concerning the existence of G vanishing on ∂D,

which we need now to deal with the case of general D. Take an expanding sequence of smooth
domains Dn ⊂ D from Assumption 2.4 and introduce

vn(x) = inf sup
β∈B α∈A

Eα·β(α·)
x

 τn

0
f (pt , xt )e

−φt dt + g(xτn )e
−φτn


,

where τα·β·x
n is the first exit time of xα·β·x

t from D(n). By Theorem 4.2 we have that vn are
continuous in Rd and

vn(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x


vn(xγn )e

−φγn −ψγn

+

 γn

0
{ f (pt , xt )+ λtvn(xt )}e

−φt −ψt dt


, (6.1)

where γ α·β(α·)x
n = γ α·β(α·)x ∧ τ

α·β(α·)x
n .

We claim that, as n → ∞,

κn := sup
Rd

|vn − v| = sup
D

|vn − v| → 0, (6.2)

which, in particular, would imply the continuity of v and the fact that v is independent of the
choice of pα·β·

t .
To prove (6.2) introduce vm and vnm by replacing g with gm in the definitions of v and vn ,

respectively, where gm are taken from the statement of the theorem. Observe that, obviously,
supn |vn − vnm | + |v− vm | → 0 as m → ∞ uniformly on Rd . Therefore, while proving (6.2) we
may assume that ∥g∥C2(D) < ∞ and g is p-insensitive.

Then notice that in such a case we have

Eα·β·

x

 τ

0
f (pt , xt )e

−φt dt + g(xτ )e
−φγ∧τ


= g(x)+ Eα·β·

x

 τ

0
f̂ (pt , xt )e

−φt dt,
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where

f̂ αβ(p, x) :=


f αβ(p, x)+ rαβ(p, x)L̄αβg(x)

ID(x)

satisfies Assumption 2.3(i)–(iii). Hence,

u(x) := v(x)− g(x) = inf sup
β∈B α∈A

Eα·β(α·)
x

 τ

0
f̂ (pt , xt )e

−φt dt.

This argument shows that we may also assume in the remaining part of the proof of (6.2) that
g = 0. Then

vn(x) = inf sup
β∈B α∈A

Eα·β(α·)
x

 τn

0
f (pt , xt )e

−φt dt.

Next, by using Itô’s formula, for any α· ∈ A, β· ∈ B, and x ∈ Rd , we find that the process

G(xt∧τ )e
−φt∧τ +

 t∧τ

0
e−φs ds (6.3)

is at least a local supermartingale, where

(xt , φt , τ ) = (xt , φt , τ )
α·β·x .

Since G is nonnegative in D, the process (6.3) is a supermartingale (constant if x ∉ D).

Now, for χ > 0 introduce

Nχ = sup
(α,β,x)∈A×B×D

|( f̄ αβ)(χ)|

and observe that by Lemmas 5.1 and 2.1

|vn(x)− v(x)| ≤ In(x),

where

In(x) := sup
α·∈A,β·∈B

Eα·β·

x

 τ

τn

| f (pt , xt )|e
−φt dt

≤ δ−1
1 sup

α·∈A,β·∈B

Eα·β·

x

 τ

τn

| f̄ (xt )|e
−φt dt

≤ δ−1
1 Nχ sup

α·∈A,β·∈B

Eα·β·

x

 τ

τn

e−φt dt

+ sup
α·∈A,β·∈B

Eα·β·

x

 τ

0
| f̄ − f̄ (χ)|(xt )e

−φt dt

≤ δ−1
1 Nχ sup

(∂Dn)\∂D
G + N

sup
α,β

| f̄ α,β − ( f̄ α,β)(χ)|


Ld (D)

,

where N is independent of χ, n, and x . This and the fact that G = 0 on ∂D certainly imply (6.2).
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After that (6.1) (cf. (3.19)) yields

v(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


v(xγn )e

−φγn −ψγn

+

 γn

0
{ f (pt , xt )+ λtv(xt )}e

−φt −ψt dt


− κn .

We use estimates like

|v(xγn )e
−φγn −ψγn − v(xγ )e

−φγ−ψγ | = Iτn<γ |v(xτn )e
−φτn −ψτn − v(xγ )e

−φγ−ψγ |

≤ 2Iτn<γ sup
t∈[τn ,τ ]

|v(xt )|e
−φt ,

Iτn<γ

 γ

γn

λt |v(xt )|e
−ψt dt ≤ Iτn<γ sup

t∈[τn ,τ ]

|v(xt )|e
−φt ,

where and sometimes in the future we drop the superscripts α·, β·, and x for simplicity.

Then we see that

v(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


v(xγ )e

−φγ−ψγ

+

 γ

0
{ f (pt , xt )+ λtv(xt )}e

−φt −ψt dt


− κn − Jn(x), (6.4)

where

Jn(x) = In(x)+ 3Rn(x),

Rn(x) := sup
(α·,β·)∈A×B

Eα·β·

x Iτn<γ sup
t∈[τn ,τ ]

|v(xt )|e
−φt .

To estimate Rn(x) we observe that, by Lemmas 5.1 and 2.1 for x ∈ D̄

|v(x)| ≤ δ−1
1 NχG(x)+ ε(χ),

where

ε(χ) = N∥ sup
α,β

| f̄ α,β − ( f̄ α,β)(χ)| ∥Ld (D) → 0,

as χ ↓ 0 (uniformly with respect to x). Furthermore, since G(xt∧τ ) exp(−φt∧τ ) is a
supermartingale, we have

Eα·β·

x Iτn<τ sup
t∈[τn ,τ ]

[G(xt )e
−φt ]

1/2
≤ N


Eα·β·

x Iτn<τG(xτn )e
−φτn

1/2
,

where N is an absolute constant, and since v is bounded,

Eα·β·

x Iτn<τ sup
t∈[τn ,τ ]

|v(xt )|e
−φt ≤ N Eα·β·

x Iτn<τ sup
t∈[τn ,τ ]

[|v(xt )|e
−φt ]

1/2

≤ N Nχ

Eα·β·

x Iτn<τG(xτn )
1/2

+ Nε1/2(χ),
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where the constants N are independent of χ , n, and x . By assumption G = 0 on ∂D and therefore
we have that

sup
(α·,β·)∈A×B

Eα·β·

x Iτn<τG(xτn ) → 0

as n → ∞ (uniformly with respect to x). It follows that

lim
n→∞

Rn(x) ≤ Nε1/2(χ).

Above we have also proved that

lim
n→∞

In(x) ≤ Nε1/2(χ).

It follows now from (6.4) that

v(x) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x


v(xγ )e

−φγ−ψγ

+

 γ

0
{ f (pt , xt )+ λtv(xt )}e

−φt −ψt dt


− Nε1/2(χ),

which after sending χ ↓ 0 finally shows that v(x) is greater than the right-hand side of (2.9).
The reader understands that the opposite inequality is proved similarly and this brings the proof
of the theorem to an end.
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