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Abstract

We prove the existence of weak solution for a system of quasi-variational inequalities related to a
switching problem with dynamic driven by operator associated with a semi-Dirichlet form and with measure
data. We give a stochastic representation of solutions in terms of solutions of a system of reflected BSDEs
with oblique reflection. As a by-product, we prove the existence of an optimal strategy in the switching
problem and show regularity of the payoff function.
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1. Introduction

Let E be a locally compact separable metric space, m be a Radon measure on E with
full support, and let (L , D(L)) be the generator of a regular semi-Dirichlet form (E, D[E])
on L2(E; m). The class of such operators is quite wide. The model example of local operator
associated with semi-Dirichlet form is the second order uniformly elliptic divergence form
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operator with bounded drift, i.e. operator of the form

L =

d∑
i, j=1

∂

∂x j

(
ai j (·)

∂

∂xi

)
+

d∑
i=1

bi (·)
∂

∂xi
. (1.1)

As the example of nonlocal operator of this class may serve

L = ∆α(·), (1.2)

i.e. fractional Laplacian with possibly varying exponent α : E → (0, 2) satisfying some
regularity assumptions.

In the paper we consider the following problem: for given functions f j
: E ×RN

→ R, h j,i :

E × R → R, i, j = 1, . . . , N , smooth (with respect to the capacity associated with (E, D[E]))
measuresµ1, . . . , µN on E and sets A1, . . . , AN such that A j ⊂ {1, . . . , j−1, j+1, . . . , N } find
a pair (u, ν) consisting of a function u = (u1, . . . , uN ) : E → RN and a vector ν = (ν1, . . . , νN )
of smooth measures on E such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Lu j
= f j (·, u) + µ j

+ ν j ,∫
E

(u j
− max

i∈A j
h j,i (·, ui )) dν j

= 0,

u j
≥ max

i∈A j
h j,i (·, ui ), j = 1, . . ., N .

(1.3)

Intuitively, we are looking for u satisfying the equations −Lu j
= f j (·, u) + µ j on the sets

{u j > maxi∈A j h j,i (·, ui )}. The measure ν j represents the amount of energy we have to add to
the system to keep u j above the obstacle H j (·, u) := maxi∈A j h j,i (·, ui ). The second equation in
(1.3) says that ν j is minimal in the sense that it acts only when u j

= H j (·, u).
Systems of the form (1.3) arise when considering the so-called switching problem. They were

studied by many authors (see, e.g., [5,6,8,9,12,10,11,23,24]) in case L is a diffusion operator
or diffusion operator perturbed by nonlocal operator associated with a Poisson measure, and
the data are L2-integrable (hence, in particular, µi

= 0, i = 1, . . . , N ). Note also that in all
the papers cited above f is Lipschitz continuous with respect to u and viscosity solutions are
considered.

In the present paper we generalize the existing results on (1.3) in the sense that we consider
quite general class of operators and measure data. We also considerably weaken the assumptions
on f , because we only assume that it is quasi-monotone with respect to u.

When h j,i do not depend on u, system (1.3) resembles the usual system of variational
inequalities written in complementary form (see [14] and also [16,18,19] for the case of one
equation). Such a form has proved useful in the study of variational inequalities with measure
data (see [18,20,27]). One of the main reason is that it allows one to use known results on
semilinear elliptic PDEs with measure data. On the other hand, the usual variational approach is
applicable only to systems with L2-data.

Our general approach to (1.3) (system of quasi-variational inequalities in complementary
form) is similar to that in [18,20]. It can be briefly described as follows. Let X = ({X t , t ≥

0}, {Px , x ∈ E}) be a Hunt process with life time ζ associated with (E, D[E]), and for smooth
measure γ let Aγ denote the continuous additive functional of X in the Revuz correspondence
with γ . By a solution of (1.3) we mean a pair (u, ν) satisfying the second and the third condition
in (1.3), and such that for quasi-every x ∈ E (with respect to the capacity associated with E) the
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following generalized nonlinear Feynman–Kac formula is satisfied

u(x) = Ex

(∫ ζ

0
f (Xr , u(Xr )) dr +

∫ ζ

0
d Aνr +

∫ ζ

0
d Aµr

)
. (1.4)

Note that from (1.3) one can often deduce some regularity properties of u. For instance, if µ is
a measure of bounded variation, (u, ν) satisfies (1.4) and we know that f (·, u) ∈ L1(E; m) and
ν has also bounded variation, then Tku ∈ De[E] for every k > 0, where De[E] is the extended
Dirichlet space for E and Tku(x) = ((−k) ∨ u(x)) ∧ k. In fact, (u, ν) is then a renormalized
solution of the first equation in (1.3) in the sense introduced in [21] (for the case where L is of
the form (1.1) see also [2] and [27]).

Roughly speaking, to find a solution (u, ν) of (1.3) in the sense described above we find
a solution of some system of Markov-type BSDEs with oblique reflection associated with
(1.3), and we study various properties of these solutions. Then, using some ideas from the
papers [19,22] devoted to PDEs with measure data, we translate the results on these systems
of reflected BSDEs into results on (1.3).

As a matter of fact, in the first part of the paper we study general, nonMarkov-type BSDEs.
First, in Section 2, we give an existence result for solutions of system of BSDEs of the type

Y j
t = ξ j

+

∫ T

t
f j (r, Yr ) dr +

∫ T

t
dV j

r −

∫ T

t
d M j

r , t ∈ [0, T ],

where V is a finite variation càdlàg process, with quasi-monotone right-hand side f , i.e. off-
diagonal increasing and on-diagonal decreasing. This type of equation was not considered in
the literature in such generality. Then, in Section 3, we prove the existence of a solution of the
system of RBSDEs with oblique reflection of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y j
t = ξ j

+

∫ T

t
f j (r, Yr ) dr +

∫ T

t
dV j

r +

∫ T

t
d K j

r −

∫ T

t
d M j

r , t ∈ [0, T ],

Y j
t ≥ max

i∈A j
h j i (t, Y i

t ), t ∈ [0, T ],∫ T

0
(Y j

t− − max
i∈A j

[h j,i (·, Y i
·
)]t−) d K j

t = 0, j = 1, . . ., N .

(1.5)

This result generalizes the existence results proved for L2-data and Brownian filtration (see,
e.g., [10]) or filtration generated by a Brownian motion and an independent Poisson measure
(see [11,23]) to the case of general filtration and L1-data. Moreover, as compared with [10,11,23],
we impose less restrictive assumptions on the off-diagonal growth of the right-hand side. We also
allow the terminal time T to be unbounded stopping time. In Section 3 we also show that solution
of (1.5) may be approximated by solutions of the system of penalized BSDEs

Y n, j
t = ξ j

+

∫ T

t
f j (r, Y n

r ) dr +

∫ T

t
dV j

r +

∫ T

t
n(Y n, j

r − H j (r, Y n
r ))− dr −

∫ T

t
d Mn, j

r

with H j of the form

H j (t, y) = max
i∈A j

h j,i (t, yi ).

In Section 4 we study the switching problem (we describe it briefly below) and its connection
with reflected BSDEs. Therefore we restrict our attention to h j,i of the form

h j,i (t, y) = c j,i (t) − yi (1.6)
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for some adapted continuous processes c j,i (in applications c j,i (t) is the cost of switching the
process of, say production, from mode j to mode i in time t). Our main result says that if f
in (1.5) does not depend on y then the first component Y of the solution of (1.5) is the value
function of the switching problem.

In Section 5, using the results of the probabilistic part of the paper, we first give an existence
result for (1.3), and we show that u may be approximated by solutions of the following system
of penalized PDEs

− Lu j
n = f j (·, un) + n(u j

n − H j (·, un))− + µ

with

H j (x, y) = max
i∈A j

h j,i (x, yi ).

We also give conditions ensuring that f (·, u) ∈ L1(E; m) and the measures ν j have bounded
variation. In particular, under these conditions, Tk(u j ) ∈ De[E] and u j is a renormalized solution
of the first equation in (1.3) (see comment following (1.4)). We next turn to the switching problem
of Section 4, but in the Markovian setting, i.e. in case f j (t, y) = f j (X t ), c j,i (t) = c j,i (X t ) for
some f j , c j,i : E → R. The problem can be described as follows. Consider a factory in which we
can change a mode of production. Let c j,i (X ) be the cost of the change from mode j to mode i ,
and let ψi (X )+d Aµ

i
be the payoff rate in mode i . Then a management strategy S = ({τn}, {ξn})

consists of a pair of two sequences of random variables. The variable τn is the moment when
we decide to switch the mode of production, and ξn is the mode to which we switch at time τn .
If ξ0 = j then we start the production at mode j . Under strategy S the expected profit on the
interval [0, T ] is given by the formula

J (x,S, j) = Ex

(∫ T

0
ψwr (Xr ) dr +

∫ T

0
d Aµ

wr
r −

∑
n≥1

cwτn−1 ,wτn
(Xτn )1{τn<ζ } + ξwT

)
,

where

wt = ξ01[0,τ1)(t) +

∑
n≥1

ξn1[τn ,τn+1)(t).

A strategy S∗ is called optimal (for fixed j) if J (x,S∗, j) = supS J (x,S, j). In Section 5, we
show that under some assumption on the data there exists an optimal strategy, and moreover, if
T = ζ , then u defined by the formula

u j (x) = J (x,S∗, j)

is a unique solution of (1.3) with h j,i defined by (1.6).

2. Systems of BSDEs with quasi-monotone generator

Let (Ω ,F , P) be a probability space, F = {Ft , t ≥ 0} be a filtration satisfying the usual
conditions, and let T be a stopping time. We denote by T the set of all F-stopping times such
that τ ≤ T .

In what follows N ∈ N, ξ = (ξ 1, . . . , ξ N ) is an FT -measurable random vector, V =

(V 1, . . . , V N ) is an F-adapted process such that V0 = 0 and each component V j is a process of
finite variation, f : Ω × [0, T ]×RN

→ RN is a measurable function such that for every y ∈ RN

the process f (·, y) is F-progressively measurable. As usual, in the sequel, in our notation we will
omit the dependence of f on ω ∈ Ω .
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We set |V |t =
∑N

j=1|V
j
|t , where |V j

|t stands for the variation of V j on [0, t], and we adopt
the following notation:

f j (t, y; a) = f j (t, y1, . . . , y j−1, a, y j+1, . . . , yN ), y ∈ RN , a ∈ R

and

f j
inf(t, a) = inf

y∈RN
f j (t, y; a), f j

sup(t, a) = sup
y∈RN

f j (t, y; a), a ∈ R.

For x = (x1, . . . , x N ) we set |x | =
∑N

j=1|x
j
|, and for x, y ∈ RN we write x ≤ y if x j

≤ y j ,
j = 1, . . . , N . For processes X, Y we write X ≤ Y if X t ≤ Yt , t ∈ [0, T ∧ a] for all a ≥ 0,
and X = Y if X ≤ Y and X ≥ Y . The abbreviation ucp means “uniformly on compacts in
probability”.

The following assumptions will be needed throughout the paper.

(A1) E(|ξ | +
∫ T

0 d|V |r ) < ∞,
(A2) for every t ∈ [0, T ] the function f (t, ·) is on-diagonal decreasing, i.e. for j = 1, . . . , N

we have f j (t, y; a) ≥ f j (t, y; a′) for all a ≤ a′, a, a′
∈ R, y ∈ RN ,

(A3) for every t ∈ [0, T ] the function f (t, ·) is off-diagonal increasing, i.e. for j = 1, . . . , N
we have f j (t, y; a) ≤ f j (t, y′

; a) for all a ∈ R and y, y′
∈ RN such that y ≤ y′

(i.e. y j
≤ y′ j , j = 1, . . . , N ),

(A4) y ↦→ f (t, y) is continuous for every t ∈ [0, T ],
(A5)

∫ T
0 | f (r, y)| dr < ∞ for all y ∈ RN .

Note that functions satisfying (A2) and (A3) are called quasi-monotone.
Recall that an adapted càdlàg process η is of class (D) if the collection {ητ : τ is a finite valued

stopping time} is uniformly integrable.

Definition 2.1. We say that a pair (Y,M) of N -dimensional F-adapted processes is a solution
of the system of backward stochastic differential equations on the interval [0, T ] with terminal
condition ξ and right-hand side f + dV (BSDET (ξ, f + dV ) for short) if

(i) Y j is of class (D), M j is a local martingale such that M j
0 = 0, j = 1, . . . , N ,

(ii)
∫ T ∧a

0 | f (r, Yr )| dr < ∞ for every a ≥ 0,
(iii) for j = 1, . . . , N and all a ≥ 0,

Y j
t = Y j

T ∧a +

∫ T ∧a

t
f j (r, Yr ) dr +

∫ T ∧a

t
dV j

r −

∫ T ∧a

t
d M j

r , t ∈ [0, T ∧ a].

(iv) YT ∧a → ξ P-a.s. as a → ∞.

Remark 2.2. Let (Y,M) be a solution of BSDET (ξ, f + dV ). If

E
(
|ξ | +

∫ T

0
| f (r, Yr )| dr +

∫ T

0
d|V |r

)
< ∞, (2.1)

then M is a uniformly integrable martingale and

Y j
t = E(ξ j

+

∫ T

t
f j (r, Yr ) dr +

∫ T

t
dV j

r |Ft ), t ≤ T, j = 1, . . . , N . (2.2)

To see this, we set M̃ = (M̃1, . . . , M̃ N ), where

M̃ j
t = E

(
ξ j

+

∫ T

0
f j (r, Yr ) dr +

∫ T

0
dV j

r |Ft

)
− Y j

0 .
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An elementary computation shows that (Y, M̃) is a solution of BSDET (ξ, f + dV ). Hence
M = M̃ . Therefore we may pass to the limit as a → ∞ in condition (iii) of the above definition.
We then get

Y j
t = ξ j

+

∫ T

t
f j (r, Yr ) dr +

∫ T

t
dV j

r −

∫ T

t
d M j

r , t ≤ T, j = 1, . . . , N .

Since M is a uniformly integrable martingale, this yields (2.2).

2.1. One-dimensional equations

In this subsection we assume that N = 1.

Remark 2.3. Let ηt = E(ξ |Ft ), fη(t, y) = f (t, y + ηt ). If a pair (Ȳ , M̄) is a solution of
BSDET (0, fη + dV ), then the pair (Y,M) defined by

Yt = Ȳt + ηt , Mt = M̄t + ηt − η0

is a solution of BSDET (ξ, f + dV ).

Proposition 2.4. Let (Y i ,M i ), i = 1, 2, be a solution to BSDET (ξ i , f i
+ dV i ) Assume that

ξ 1
≤ ξ 2, f 1 or f 2 satisfies (A2), f 1(t, y) ≤ f 2(t, y) for all y ∈ R and a.e. t ∈ [0, T ], and that

dV 1
≤ dV 2. Then Y 1

t ≤ Y 2
t , t ∈ [0, T ].

Proof. By the Tanaka–Meyer formula, there exists an F-adapted increasing process C with C0 =

0 such that ((Y 1
−Y 2)+,

∫
·

0 1
{Y 1

r−
>Y 2

r−
}
d(M1

r −M2
r )) is a solution to BSDET (0, 1{Y 1>Y 2}( f 1(·, Y 1)−

f 2(·, Y 2)) + 1
{Y 1

r−
>Y 2

r−
}
d(V 1

r − V 2
r ) − dC). By the assumptions, the right-hand side of this BSDE

is less than or equal to zero, so by [19, Proposition 3.1] we have (Y 1
− Y 2)+ = 0. □

Proposition 2.5. Let ηt = E(ξ |Ft ), t ≥ 0. If (A1), (A2), (A4), (A5) are satisfied, and moreover,

E
∫ T

0
| f (r, ηr )| dr < ∞, (2.3)

then there exists a solution of BSDET (ξ, f + dV ).

Proof. Let fη(t, y) = f (t, y + ηt ). Then by [19, Theorem 3.4] there exists a solution (Ȳ , M̄) of
BSDET (0, fη+dV ), and hence, by Remark 2.3, there exists a solution of BSDET (ξ, f +dV ). □

Assumption (2.3) is quite natural in the theory of BSDEs with random terminal time (see,
e.g., [1]). We would like, however, to weaken it and show that in fact assumptions (A1),
(A2), (A4), (A5) together with (2.3) holding true with some semimartingale η of class (D) and
integrable finite variation part are sufficient for the existence of a solution of BSDET (ξ, f +dV ).
That (2.3) can be weaken is quite easy to see in case T is finite. In the general case more work
have to be done.

Remark 2.6. Condition (2.3) is too strong in many important application. To illustrate, let us
consider the well known penalization scheme for reflected BSDE with terminal condition ξ = 0,
coefficient equal to zero and lower barrier L , that is equation of the form

Y n
t =

∫ T

t
n(Y n

r − Lr )− dr −

∫ T

t
d Mn

r . (2.4)
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Of course, this is BSDET (0, fn) with fn(t, y) = n(y − L t )−. Suppose that L t = t−11[1,∞)(t)
and T = ∞. We then expect that there exists a solution (Y n,Mn) of (2.4) and {Y n

} converges
to the Snell envelope of L , which exists since L is of class (D). Observe that in this example
(2.3) does not hold with ηt = E(ξ |Ft ) = 0. However, (2.3) is satisfied with η replaced by the
semimartingale L . The same phenomenon can happen for finite T . To see this, let us consider a
finite stopping time τ such that τ ≥ 1 and E ln τ = ∞, and set T = τ + 1. Let L t = t−11[1,τ )(t).
Then (2.3) is not satisfied with η = 0, but is satisfied with η replaced by the semimartingale L .

Lemma 2.7. If (A2), (A4), (A5) are satisfied and

E
(
|ξ | +

∫ T

0
d|V |r +

∫ T

0
| f (r, 0)| dr

)2
< ∞, (2.5)

then there exists a solution of BSDET (ξ, f + dV ).

Proof. Let g be a strictly positive function on R+ such that
∫

∞

0 g(r ) dr < ∞. Write

fn,m = ( f ∧ (n · g)) ∨ (−m · g).

By Proposition 2.5, for all n,m ∈ N there is a solution (Y n,m,Mn,m) of BSDET (ξ, fn,m + dV ).
By Proposition 2.4, Y n,m

≤ Y n+1,m . Set Y m
t = supn≥1Y n,m

t . Applying the Tanaka–Meyer formula
and (A2) we get

|Y n,m
t | ≤ E

(
|ξ | +

∫ T

0
| f (r, 0)| dr +

∫ T

0
d|V |r |Ft

)
=: X t , t ≤ T . (2.6)

By (2.5), Esupt≥0|X t |
2 < ∞, whereas by Remark 2.3 and [19, Lemma 2.3, Lemma 2.5],

sup
n,m≥1

E
(∫ T

0
| fn,m(r, Y n,m

r )| dr
)2
< ∞. (2.7)

By Remark 2.2,

Y n,m
t = E

(
ξ +

∫ T

t
fn,m(r, Y n,m

r ) dr +

∫ T

t
dVr |Ft

)
, t ≤ T .

Letting n → ∞ in the above inequality and using (2.6), (A4), (A5), (2.7), we obtain

Y m
t = E

(
ξ +

∫ T

t
f (r, Y m

r ) dr +

∫ T

t
dVr |Ft

)
. (2.8)

Set

Mm
t = E

(
ξ +

∫ T

0
f (r, Y m

r ) dr +

∫ T

0
dVr |Ft

)
− Y m

0 , t ≤ T .

Then the pair (Y m,Mm) is a solution of BSDET (ξ, fm + dV ). Letting m → ∞ in (2.8) and
repeating the above argument, with obvious modification, shows the existence of a solution of
BSDET (ξ, f + dV ). □

Let us denote Tk(y) = (y ∧ k) ∨ (−k) for all k ≥ 0, y ∈ R.

Proposition 2.8. Assume that (A1), (A2), (A4), (A5) are satisfied and

E
∫ T

0
| f (r, 0)| dr < ∞.

Then there exists a solution of BSDET (ξ, f + dV ).
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Proof. Let ξn = Tn(ξ ), V n
t =

∫ t∧n
0 1{|V |r ≤n} dVr , and let

fn(t, y) = f (t, y) − f (t, 0) + Tn( f (t, 0)) · gn(t),

where gn(t) = 1/(1 + t2/n). Observe that the data ξ n, V n, fn satisfy the assumptions of
Lemma 2.7. Therefore, for every n ≥ 1, there exists a solution (Y n,Mn) of BSDET (ξn, fn +

dV n). By the Tanaka–Meyer formula and (A2), for n < m we have

|Y n
t − Y m

t | ≤ E
(
|ξn − ξm | +

∫ T

n
d|V |r +

∫ T

0
1{n<|V |r ≤m} d|V |r

+

∫ T

0
|Tn( f (r, 0))gn(r ) − Tm( f (r, 0))gm(r )| dr |Ft

)
.

By [1, Lemma 6.1],

E sup
t≥0

|Y n
t − Y m

t |
q

→ 0. (2.9)

for every q ∈ (0, 1). It follows in particular that there is an adapted càdlàg process Y such that
Y n

→ Y in ucp. By the Tanaka–Meyer formula,

|Y n
t | ≤ E

(
|ξ | +

∫ T

0
| f (r, 0)| dr +

∫ T

0
d|V |r |Ft

)
=: X t . (2.10)

Furthermore, by Remark 2.3, [19, Lemma 2.3] and Fatou’s lemma,

E
∫ T

0
| f (r, Yr )| dr ≤ E

(
|ξ | +

∫ T

0
| f (r, 0)| dr +

∫ T

0
d|V |r |Ft

)
. (2.11)

Set

τk = inf{t ≥ 0 :

∫ t

0
| f (r, Xr )| dr ≥ k}.

For every a ≥ 0 we have

Y n
t = E

(
Y n
τk∧a +

∫ τk∧a

t
fn(r, Y n

r ) dr +

∫ τk∧a

t
dV n

r |Ft

)
, t ≤ τk ∧ a.

Letting n → ∞ in the above equality and using (A4), (A5) and (2.9), (2.10) we get

Yt = E
(

Yτk∧a +

∫ τk∧a

t
f (r, Yr ) dr +

∫ τk∧a

t
dVr |Ft

)
, t ≤ τk ∧ a.

Letting now k, a → ∞ in the above equality and using (2.9), (2.11) we obtain

Yt = E
(
ξ +

∫ T

t
f (r, Yr ) dr +

∫ T

t
dVr |Ft

)
, t ≤ T .

Set

Mt = E
(
ξ +

∫ T

0
f (r, Yr ) dr +

∫ T

0
dVr |Ft

)
− Y0, t ≤ T .

It is easily seen that the pair (Y,M) is a solution of BSDET (ξ, f + dV ). □

Theorem 2.9. Let (A1), (A2), (A4), (A5) be satisfied. Assume also that there exists a semimartin-
gale S such that S is a difference of supermartingales of class (D) and

E
∫ T

0
| f (r, Sr )| dr < ∞.
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Then there exists a solution (Y,M) of BSDET (ξ, f + dV ). Moreover,

E
∫ T

0
| f (r, Yr )| dr ≤ E

(
|ξ | + |ST | +

∫ T

0
| f (r, Sr )| dr + E

∫ T

0
d|V |r +

∫ T

0
d|C |r

)
,

where St = S0 + Ct + Nt is the Doob–Meyer decomposition of S.

Proof. Set

fS(t, y) = f (t, St + y), ξ̃ = ξ − ST , Ṽt = Vt − Ct .

By Proposition 2.8 there exists a unique solution (Ỹ , M̃) of BSDET (ξ̃ , fS + dṼ ). Set (Y,M) =

(Ỹ + S, M̃ + N ). Then (Y,M) is a solution of BSDET (ξ, f + dV ). By Remark 2.3,
[19, Lemma 2.3],

E
∫ T

0
| fS(r, Ỹr )| dr ≤ E(|ξ̃ | +

∫ T

0
| fS(r, 0)| dr +

∫ T

0
d|Ṽ |r ),

which implies the desired inequality. □

2.2. Systems of equations

In the rest of this section we assume that N ≥ 1.

Definition 2.10. We say that a pair (Y,M) is a subsolution (resp. supersolution) of BSDET (ξ, f +

dV ) if there exist ξ, V , f (resp. ξ, V , f ) satisfying (A1), (A2) such that ξ ≤ ξ, dV ≤ dV ,
f (t, y) ≤ f (t, y) for y ∈ RN , t ∈ [0, T ], E

∫ T
0 | f (r, Yr )| dr < ∞ (resp. ξ ≥ ξ, dV ≥

dV , f (t, y) ≥ f (t, y) for y ∈ RN , t ∈ [0, T ], E
∫ T

0 | f (r, Yr ) dr | < ∞), and (Y,M) is a
solution of BSDET (ξ, f + dV ) (resp. BSDET (ξ, f + dV )).

We will make the following assumption:

(A6) there exist a subsolution (Y ,M) and a supersolution (Y ,M) of BSDET (ξ, f + dV ) such
that

Y ≤ Y ,
N∑

j=1

E
(∫ T

0
| f j (r, Y r ; S j

r )| dr +

∫ T

0
| f j (r, Y r ; S j

r )| dr
)
< ∞

for some semimartingale S which is a difference of supermartingales of class (D).

Example 2.11. Let the assumptions (A1)–(A5) hold. If fsup, finf satisfy (A4), (A5) and
N∑

j=1

E
(∫ T

0
| f j

sup(r, S j
r )| dr +

∫ T

0
| f j

inf(r, S j
r )| dr

)
< ∞, (2.12)

for some semimartingale S which is a difference of supermartingales of class (D), then
(A6) is satisfied with (Y j ,M j ), (Y

j
,M

j
) being solutions of BSDET (ξ j , f j

inf + dV j ) and
BSDET (ξ j , f j

sup + dV j ), respectively.

Example 2.12. Assume that (A1), (A4), (A5) are satisfied, T is bounded and f is Lipschitz
continuous in y uniformly in t , i.e. there exists L > 0 such that

| f (t, y) − f (t, y′)| ≤ L|y − y′
|, y, y′

∈ RN . (2.13)
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Then (A6) is satisfied by the pairs (Y ,M), (Y ,M) defined by

Y
1

= Y
2

= · · · = Y
N
, M

1
= M

2
= · · · = M

N
,

Y 1
= Y 2

= · · · = Y N , M1
= M2

= · · · = M N ,

where (Y
1
,M

1
), (Y 1,M1) are solutions of BSDET (ξ 1

∨· · ·∨ξ N , f 1
∨· · ·∨ f N

+dV 1
∨· · ·∨dV N )

and BSDET (ξ 1
∧ · · · ∧ ξ N , f 1

∧ · · · ∧ f N
+ dV 1

∧ · · · ∧ dV N ), respectively.

Theorem 2.13. Let the assumptions (A1)–(A5) hold, and let (A6) be satisfied with some
processes Y , Y . Then there exists a minimal solution (Y,M) of BSDET (ξ, f + dV ) such that
Y ≤ Y ≤ Y . Moreover,

E
∫ T

0
| f (r, Yr )| dr < ∞ (2.14)

and M is a uniformly integrable martingale.

Proof. Let (Y ,M), (Y ,M) be as in (A6). Let Y 0
:= Y and (Y n, j ,Mn, j ), j = 1, . . . , N , be a

solution of BSDET (ξ j , f j (·, Y n−1
; ·) + dV j ). Then

Y n, j
t = Y n, j

T ∧a +

∫ T ∧a

t
f j (r, Y n−1

r ; Y n, j
r ) dr

+

∫ T ∧a

t
dV j

r −

∫ T ∧a

t
d Mn, j

r , t ∈ [0, T ∧ a]. (2.15)

By Proposition 2.4,

Y n
≤ Y n+1, Y n

≤ Y . (2.16)

Therefore, letting n → ∞ in (2.15), we get

Y j
t = Y j

T ∧a +

∫ T ∧a

t
f j (r, Yr ) dr +

∫ T ∧a

t
dV j

r −

∫ T ∧a

t
d M j

r , t ∈ [0, T ∧ a],

where Yt = limn→∞Y n
t and Mt = limn→∞Mn

t , t ∈ [0, T ∧ a]. The process M is a local
martingale, because by (2.16) the sequence {Mn

} is locally uniformly integrable as all the
other terms in (2.15) are locally uniformly integrable with respect to n. To show that the pair
(Y,M) is a solution of BSDET (ξ, f + dV ) it remains to prove that YT ∧a → ξ as a → ∞.
If T is finite, this follows immediately from the fact that Y n

t ↗ Yt , t ≤ T . In general
case an additional argument is required. By Theorem 2.9 there exist a solution (X

j
, N

j
) of

BSDET (ξ, f j (Y ; ·)+dV j ) and a solution (X j , N j ) of BSDET (ξ, f j (Y ; ·)+dV j ). Moreover, by
Proposition 2.4, X t ≤ Y n

t ≤ X t , t ∈ [0, T ∧ a], a ≥ 0, which implies the desired convergence.
By (2.16), (A6) and Theorem 2.9,

E
∫ T

0
| f j (r, Yr )| dr ≤ E

(
|ξ j

| + |S j
T | +

∫ T

0
| f j (r, Yr ; S j

r )| dr

+

∫ T

0
d|V j

|r +

∫ T

0
d|C j

|r

)
≤ E

(
|ξ j

| + |S j
T | +

∫ T

0
d|V j

|r +

∫ T

0
d|C j

|r

)
+ E

(∫ T

0
| f j (r, Y r ; S j

r )| dr +

∫ T

0
| f j (r, Y r ; S j

r )| dr
)
< ∞.
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From this and the fact that Y is of class (D) we conclude that

Mt = E
(
ξ +

∫ T

0
f (r, Yr ) dr +

∫ T

0
dVr |Ft

)
− Y0, t ∈ [0, T ].

It follows that M is a uniformly integrable martingale. Let (Y ∗,M∗) be a solution of
BSDET (ξ, f + dV ) such that Y ≤ Y ∗

≤ Y . Then by Proposition 2.4, Y n
≤ Y ∗, n ≥ 0,

which implies that Y ≤ Y ∗. □

Corollary 2.14. Assume that the data (ξ, f, V ), (ξ ′, f ′, V ′) satisfy (A1)–(A5), and that (A6) is
satisfied with the same processes Y , Y . Moreover, assume that

ξ ≤ ξ ′, f ≤ f ′, dV ≤ dV ′,

and that (Y,M) (resp. (Y ′,M ′)) is the minimal solution of BSDET (ξ, f + dV ) (resp. BSDET (ξ ′,

f ′
+ dV ′)) such that Y ≤ Y ≤ Y (resp. Y ≤ Y ′

≤ Y ). Then

Yt ≤ Y ′

t t ∈ [0, T ].

Proof. Follows from the construction of processes Y, Y ′ (see Theorem 2.13) and Proposi-
tion 2.4. □

3. Systems of BSDEs with oblique reflection

Consider a family {h j,i ; i, j = 1, . . . , N } of measurable functions h j,i : Ω × R+
× R → R

such that h j,i (·, yi ) is progressively measurable for every yi
∈ R. For given sets A j ⊂

{1, . . . , j − 1, j + 1, . . . , N }, j = 1, . . . , N , set

H j (t, y) = max
i∈A j

h j,i (t, yi ), H (t, y) = (H 1(t, y), . . ., H N (t, y)), t ∈ R+, y ∈ RN .

We adopt the convention that the maximum over the empty set equals −∞. Consequently, if
A j = ∅ for some j , then H j (t, y) = −∞.

Apart from (A1)–(A5) we will also need the following assumptions:

(A7) There exist a subsolution (Y ,M) and a supersolution (Y ,M) of BSDET (ξ, f + dV ) such
that

H (·, Y ) ≤ Y , Y ≤ Y ,
N∑

j=1

E
(∫ T

0
| f j (r, Y r ; Y

j
r )| dr +

∫ T

0
| f j (r, Y r )| dr

)
< ∞,

(A8) (t, y) ↦→ H j (t, y) is continuous, y ↦→ H j (t, y) is nondecreasing and

lim sup
(t,y)→(∞,ξ )

H j (t, y) ≤ ξ j .

Example 3.1. Let the assumptions (A1)–(A5) hold. Moreover, assume that fsup, finf satisfy (A4),
(A5), (2.12) (with S1

= · · · = SN ), and h j,i (t, a) ≤ a for every a ∈ R. Let

Y
1

= Y
2

= · · · = Y
N
, M

1
= M

2
= · · · = M

N
,

where (Y
1
,M

1
) is a solution of BSDET (

∑N
j=1ξ

j,+,
∑N

j=1( f j,+
sup + dV j,+)). By (Y j ,M j ) denote

a solution of BSDET (ξ j , f j
inf + dV j ). The solutions (Y

1
,M

1
), (Y j ,M j ) exist by Theorem 2.9.

By Proposition 2.4, Y ≤ Y . It follows that the pair (Y , Y ) satisfies (A7).
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Example 3.2. Let the assumptions of Example 2.12 hold, and let h j,i (t, a) ≤ a for every a ∈ R.
Then the processes (Y ,M), (Y ,M) defined in Example 2.12 satisfy (A7).

Definition 3.3. We say that a triple (Y,M, K ) of adapted càdlàg processes is a solution of BSDE
with oblique reflection (1.5) if Y is of class (D), M is a local martingale with M0 = 0, K is an
increasing process with K0 = 0 and (1.5) is satisfied.

If A j = ∅, then by convention, H j
= −∞, and hence Y j has no lower barrier. We then take

K j
= 0 in the above definition.

3.1. One-dimensional reflected BSDEs

In the whole subsection we will assume that N = 1. Recall the following definition from [17].

Definition 3.4. Let L be a càdlàg process. We say that a triple (Y,M, K ) of adapted càdlàg
processes is a solution of reflected BSDE on the interval [0, T ] with terminal condition ξ , right-
hand side f + dV and lower barrier L (RBSDET (ξ, f + dV, L) for short) if

(i) Y is of class (D), M is a local martingale with M0 = 0, K is an increasing process with
K0 = 0,

(ii) Yt ≥ L t , t ∈ [0, T ∧ a],
∫ T ∧a

0 (Yt− − L t−) d Kt = 0 for every a ≥ 0,
(iii)

∫ T ∧a
0 | f (t, Yt )| dt < ∞, a ≥ 0,

(iv) for every a ≥ 0,

Yt = YT ∧a +

∫ T ∧a

t
f (r, Yr ) dr +

∫ T ∧a

t
dVr +

∫ T ∧a

t
d Kr −

∫ T ∧a

t
d Mr ,

t ∈ [0, T ∧ a],

(v) YT ∧a → ξ P-a.s. as a → ∞.

Observe that a triple (Y,M, K ) is a solution of (1.5) if and only if (Y j ,M j , K j ) is a solution
of RBSDET (ξ j , f j (·, Y ; ·) + dV j , H j (·, Y )) for every j = 1, . . . , N .

Remark 3.5. If (2.1) is satisfied then E KT < ∞, M is a uniformly integrable martingale and

Yt = ξ +

∫ T

t
f (r, Yr ) dr +

∫ T

t
dVr +

∫ T

t
d Kr −

∫ T

t
d Mr , t ∈ [0, T ].

Indeed, localizing the local martingale M we easily deduce that E KT < ∞. The remaining two
assertions then follow from Remark 2.2.

Remark 3.6. Let (Y,M, K ) be a solution of RBSDET (ξ, f + dV, L). Under the assumptions of
Remark 3.5,

Yt = ess sup
τ≥t

E
(∫ T ∧τ

t
f (r, Yr ) dr +

∫ T ∧τ

t
dVr + Lτ1{τ<T } + ξ1{T ∧τ=T }|Ft

)
. (3.1)

To see this, we first observe that by Remark 3.5, for every stopping time τ ≥ t ,

Yt = E
(

YT ∧τ +

∫ T ∧τ

t
f (r, Yr ) dr +

∫ T ∧τ

t
d Kr +

∫ T ∧τ

t
dVr |Ft

)
≥ E

(∫ T ∧τ

t
f (r, Yr ) dr +

∫ T ∧τ

t
dVr + Lτ1{τ<T } + ξ1{T ∧τ=T }|Ft

)
.
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This shows that Yt is greater than or equal to the right-hand side of (3.1). To get the opposite
inequality, we consider the stopping time

Dε
t = inf{s ≥ t, Ls + ε ≥ Ys} ∧ T .

By the minimality property of K ,

Yt = E(YDεt +

∫ Dεt

t
f (r, Yr ) dr +

∫ Dεt

t
dVr |Ft )

≤ E(L Dεt 1{Dεt <T } + ξ1{Dεt =T } +

∫ Dεt

t
f (r, Yr ) dr +

∫ Dεt

t
dVr |Ft ) + ε,

from which it follows the result.

In [17] an existence and comparison result (see [17, Proposition 2.1, Theorem 2.13]) for
RBSDET (ξ, f + dV, L) are proved under the assumption that T is bounded. Proposition
2.1 in [17] holds also for arbitrary stopping time and its proof goes as the proof of [17,
Proposition 2.1] with obvious changes. For the convenience of the reader we will formulate [17,
Proposition 2.1] for arbitrary stopping time T . The proof of an existence result in the case
of arbitrary T requires major modification of the proof given in [17]. For this we will prove
Lemma 3.8 and next give an existence result in Theorem 3.9.

Proposition 3.7. Let (Y i ,M i , K i ) be a solution of RBSDET (ξ i , f i
+dV i , L i ), i = 1, 2. Assume

that ξ 1
≤ ξ 2, L1

≤ L2, dV 1
≤ dV 2, and either f 1 satisfies (A2) and f 1(t, Y 2

t ) ≤ f 2(t, Y 2
t )

for a.e. t ∈ [0, T ] or f 2 satisfies (A2) and f 1(t, Y 1
t ) ≤ f 2(t, Y 1

t ) for a.e. t ∈ [0, T ]. Then
Y 1

t ≤ Y 2
t , t ∈ [0, T ].

Lemma 3.8. Assume that L+ is of class (D), E |ξ | < ∞ and lim supa→∞LT ∧a ≤ ξ . Then

lim sup
a→∞

YT ∧a ≤ ξ, (3.2)

where

Yt = ess sup
τ≥t

E(Lτ1{τ<T } + ξ1{T ∧τ=T }|Ft ). (3.3)

Proof. From the definition of Y it follows that Yt = YT ∧t . Therefore the assertion of the lemma
is clear if T < ∞. Let ε > 0. By the assumptions of the lemma, for a.e. ω ∈ Ω there exists tω
such that

L t (ω) ≤ ξ (ω) + ε, t ≥ tω.

Let

Λn = {ω ∈ Ω; tω ≥ n}.

It is clear that Λn+1 ⊂ Λn and P(
⋂

n≥1Λn) = 0. Since L+ is of class (D), there is δ > 0 such that
if A ∈ F and P(A) < δ then supτ

∫
A(L+

τ 1{T ∧τ<T } +|ξ |) ≤ ε. Choose N ∈ N so that P(ΛN ) ≤ δ.
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Then for t ≥ N ,

Yt = ess sup
τ≥t

E((Lτ1{τ<T } + ξ1{T ∧τ=T })1Λc
N
|Ft )

+ ess sup
τ≥t

E((Lτ1{τ<T } + ξ1{T ∧τ=T })1ΛN |Ft )

≤ ε + E(ξ1Λc
N
|Ft ) + ess sup

τ≥t
E((L+

τ 1{τ<T } + |ξ |1{T ∧τ=T })1ΛN |Ft )

≤ 2ε + E(ξ1Λc
N
|Ft ).

Letting t → ∞ and then N → ∞ yields lim supt→∞Yt ≤ 2ε + ξ , which implies (3.2). □

Theorem 3.9. Assume that (A1), (A2), (A4), (A5) are satisfied and L is a càdlàg adapted process
such that lim supa→∞LT ∧a ≤ ξ and L ≤ X for some semimartingale X such that X is a
difference of supermartingales of class (D) and

E
∫ T

0
| f (r, Xr )| dr < ∞.

Then there exists a solution (Y,M, K ) of RBSDET (ξ, f + dV, L). Moreover,

E
∫ T

0
| f (r, Yr )| dr + E KT < ∞

and M is a uniformly integrable martingale.

Proof. The proof runs as the proof of [17, Theorem 2.13], with small modifications. By
Theorem 2.9 there exists a solution (Y n,Mn) of BSDET (ξ, fn + dV ) with

fn(t, y) = f (t, y) + n(y − L t )−.

By Proposition 2.4, Y n
≤ Y n+1. As in [17] we construct a supersolution (X , N ) of BSDET (ξ, f +

dV ) such that X ≥ L and

Y 1
≤ Y n

≤ X , n ≥ 1. (3.4)

By Theorem 2.9,

E
∫ T

0
| f (r, Y 1

r )| dr + E
∫ T

0
| f (r, X r )| dr < ∞. (3.5)

Therefore by (A2), (3.4) and the Lebesgue dominated convergence theorem,

E
∫ T

0
| f (r, Y n

r ) − f (r, Yr )| dr → ∞, (3.6)

where Yt = supn≥1Y n
t , t ≥ 0. Repeating now, on each interval [0, T ∧a], the reasoning following

(2.22) in the proof of [17, Theorem 2.13] we show that Y is càdlàg and there exists a predictable
càdlàg increasing process K with K0 = 0 and a local martingale M with M0 = 0 such that for
every a ≥ 0,

Yt = YT ∧a +

∫ T ∧a

t
f (r, Yr ) dr +

∫ T ∧a

t
dVr +

∫ T ∧a

t
d Kr −

∫ T ∧a

t
d Mr ,

t ∈ [0, T ∧ a]
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and

Y ≥ L ,
∫ T ∧a

0
(Yr− − Lr−) d Kr = 0.

By (3.4), Y is of class (D), which combined with (3.5) yields E
∫ T

0 | f (r, Yr )| dr + E KT < ∞.
This inequality implies that M is a uniformly integrable martingale (see Remark 3.5). What is
left is to show that YT ∧a → ξ, a → ∞. By (3.4) ξ ≤ lim infa→∞YT ∧a , so it suffices to show that

lim sup
a→∞

YT ∧a ≤ ξ. (3.7)

Observe that the triple (Y n,Mn, K n), where K n
t =

∫ t
0 (Y n

r − Lr )− dr , is a solution of
RBSDET (ξ, f +dV, Ln) with Ln

t = L t −(Y n
t −L t )−. Therefore by Remark 3.6 and the definition

of Ln ,

Y n
t ≤ ess sup

τ≥t
E

(∫ T ∧τ

t
f (r, Y n

r ) dr +

∫ T ∧τ

t
dVr + Lτ1{T ∧τ<T } + ξ1{T ∧τ=T }|Ft

)
.

Letting n → and using (3.6) we get

Yt ≤ ess sup
τ≥t

E
(∫ T ∧τ

t
f (r, Yr ) dr +

∫ T ∧τ

t
dVr + Lτ1{T ∧τ<T } + ξ1{T ∧τ=T }|Ft

)
.

From this and Lemma 3.8 we conclude that (3.7) is satisfied. □

To prove the existence result for (1.5) we will need the monotone convergence theorem for
BSDEs stated below. In the case of Brownian filtration this result was proved in [15,26]. In the
case of general filtration it follows from [17].

Proposition 3.10. Let (A1) be satisfied. Assume that (Y n,Mn) is a solution of BSDET (ξ, dV n
+

d K n), where K n is an increasing predictable càdlàg process such that K n
0 = 0, and V n is a finite

variation càdlàg process with V n
0 = 0. Moreover, assume that Y n

≤ Y n+1, there exists a càdlàg
process Y of class D such that Y n

≤ Y , and that {|V n
|} is locally bounded in L2 and V n

→ V
in ucp for some finite variation càdlàg process V . Then there exists a local martingale M with
M0 = 0 and a predictable càdlàg increasing process K with K0 = 0 such that for every a ≥ 0,

Yt = YT ∧a +

∫ T ∧a

t
dVr +

∫ T ∧a

t
d Kr −

∫ T ∧a

t
d Mr , t ∈ [0, T ∧ a],

where Yt = supn≥1Y n
t , t ∈ [0, T ∧ a], a ≥ 0. Moreover, if T < ∞ then the pair (Y,M) is a

solution of BSDET (ξ, dV + d K ).

Proof. It is enough to repeat the arguments between (2.22)–(2.28) in the proof of [17,
Theorem 2.13] with X = Y and with (

∫
·

0 f (r, Y n
r ) dr, V n) replaced by (V n, 0). □

3.2. Systems with oblique reflection

Theorem 3.11. Let the assumptions (A1)–(A5), (A8) hold, and let (A7) be satisfied with some
processes Y , Y . Then there exists a minimal solution (Y,M, K ) of (1.5) such that Y ≤ Y ≤ Y .
Moreover,

E
∫ T

0
| f (r, Yr )| dr + E |K |T < ∞ (3.8)

and M is a uniformly integrable martingale.
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Proof. Let (Y 0,M0, K 0) := (Y ,M, 0). We define (Y j,n,M j,n, K j,n) to be a solution of
RBSDET (ξ j , f j (·, Y n−1

; ·) + dV, H j (·, Y n−1)) (see Definition 3.4). It exists by Theorem 3.9.
For every a ≥ 0 we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y n, j
t = Y n, j

T ∧a +

∫ T ∧a

t
f j (r, Y n−1

r ; Y n, j
r ) dr +

∫ T ∧a

t
dV j

r

+

∫ T ∧a

t
d K n, j

r −

∫ T ∧a

t
d Mn, j

r ,

Y n, j
t ≥ H j (t, Y n−1

t ), t ∈ [0, T ∧ a],∫ T ∧a

0
(Y n, j

t− − H j
t−(·, Y n−1)) d K n, j

t = 0.

(3.9)

Moreover by (A2), (A3), (A8) and Proposition 3.7,

Y n
≤ Y n+1

≤ Y , n ≥ 0. (3.10)

By Proposition 3.10 there exists an increasing predictable càdlàg process K with K0 = 0 and a
local martingale M with M0 = 0 such that for every a ≥ 0,

Y j
t = Y j

T ∧a +

∫ T ∧a

t
f j (r, Yr ) dr +

∫ T ∧a

t
dV j

r

+

∫ T ∧a

t
d K j

r −

∫ T ∧a

t
d M j

r , t ∈ [0, T ∧ a], (3.11)

where Yt = supn≥0Y n
t . By (3.9) and (A8) we also have Y j

≥ H j (·, Y ). Let (X
j
, N

j
, K

j
) denote

a solution of RBSDET (ξ j , f j (Y ; ·) + dV j , H j (·, Y )) and (X j , N j , K j ) denote a solution of
RBSDET (ξ j , f j (Y ; ·) + dV j , H j (·, Y )). By (3.10) and Proposition 3.7, X t ≤ Y n

t ≤ X t , t ∈

[0, T ∧a], a ≥ 0. This implies that YT ∧a → ξ as a → ∞. What is left is to show that K satisfies
the minimality condition. Set

τk = inf
{

t ≥ 0 :

N∑
j=1

∫ t

0
| f j (r, Y r ; Y j

r )| + | f j (r, Y r ; Y
j
r )| dr ≥ k

}
∧ T .

Then on the interval [0, τk] we have

Y j
t = ess sup

t≤τ
E

(∫ τk∧τ

t
f j (r, Yr ) dr

+

∫ τk∧τ

t
dVr + H j (τ, Yτ )1{τ<τk } + Y j

τk
1{τk∧τ=τk }|Ft

)
. (3.12)

Indeed, by Remark 3.6,

Y n, j
t = ess sup

t≤τ
E

(∫ τk∧τ

t
f j (r, Y n−1

r ; Y n, j
r ) dr +

∫ τk∧τ

t
dVr

+ H j (τ, Y n−1
τ )1{τ<τk } + Y n, j

τk
1{τk∧τ=τk }|Ft

)
,

so by (A3) and (A8),

Y n, j
t ≤ ess sup

t≤τ
E

(∫ τk∧τ

t
f j (r, Yr ; Y n, j

r ) dr +

∫ τk∧τ

t
dVr

+ H j (τ, Yτ )1{τ<τk } + Y j
τk

1{τk∧τ=τk }|Ft

)
.
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Letting n → ∞ and using (A4) we see that Y j is less than or equal to the right-hand side of
(3.12). The opposite inequality follows from the fact that the process Y j

+
∫

·

0 f (r, Yr ) dr +
∫

·

0 dVr

is a supermartingale which dominates the process L =
∫

·

0 f (r, Yr ) dr+
∫

·

0 dVr +H j (·, Y )1{·<τk }+

Y j
τk 1{·=τk }. Thus (3.12) is proved. By (3.12) and Remark 3.6,∫ τk

0
(Y j

t− − H j
t−(·, Y )) d K j

t = 0.

Letting k → ∞ gives the above inequality on each interval [0, T ∧ a], a ≥ 0. Let (Y ∗,M∗, K ∗)
be a solution of (1.5) such that Y ≤ Y ∗

≤ Y . By Proposition 3.7, Y n
≤ Y ∗, n ≥ 0. Hence

Y ≤ Y ∗. To get (3.8) it is enough to apply Theorem 3.9 with X = Y
j

because by (A3), and (A7),
E

∫ T
0 | f j (Yr ; Y

j
r )| dr < ∞, and by (A7) and (A8), Y

j
≥ H j (·, Y ). □

Remark 3.12. If K n, K , V from the proof of Theorem 3.11 are continuous, then Y n
↗

Y, K n
→ K in ucp. Indeed, in this case

pY n
t = Y n

t−,
pYt = Yt−, (3.13)

where pY n , pY denote predictable projections of Y n and Y , respectively. It is known that Y n
↗ Y

implies that pY n
↗

pY . By this and (3.13), Y n
t− ↗ Yt−, t ∈ [0, T ∧ a], a ≥ 0. Therefore by the

generalized Dini theorem (see [4, p. 185]), Y n
↗ Y in ucp. The convergence of {K n

} now follows
from [13, Theorem 1.8] (for details see the reasoning at the beginning of page 4220 in [17]).

Remark 3.13. In Theorem 3.11 assume additionally that h is strictly increasing with respect to
y ((A8) implies only that it is nondecreasing), and the following condition considered in [10] is
satisfied:

(A9) there are no (y1, . . . , yk) ∈ Rk and j2 ∈ A j1 , . . . , jk ∈ A jk−1 , j1 ∈ A jk such that for some
t ∈ [0, T ] we have

y1 = h j1, j2 (t, y2), y2 = h j2, j3 (t, y3), . . . , yk−1 = h jk−1, jk (t, yk), yk = h jk , j1 (t, y1).

Moreover, assume that the underlying filtration is quasi-left continuous and V is continuous.
Then K is continuous. Indeed, since the filtration is quasi-left continuous and V is continuous,
∆Kτ = −∆Yτ for every predictable stopping time τ . Therefore in the same way as in Step
4 of the proof of [10, Theorem 3.2] one can show that ∆Kτ = 0. Since K is predictable
and τ is an arbitrary predictable stopping time, applying the predictable cross-section theorem
(see [3, Theorem 86, p. 138]) shows that K is continuous.

3.3. Approximation via penalization

Let us consider the following system of BSDEs

Y j,n
t = ξ j

+

∫ T

t
f j (r, Y n

r ) dr +

∫ T

t
dV j

r

+

∫ T

t
n(Y j,n

r − H j (r, Y n
r ))− dr −

∫ T

t
d M j,n

r . (3.14)

Let us put f j
n (t, y) := f j (t, y) + n(y j

− H j (t, y))−. We see that (Y n,Mn) is a solution to
BSDET (ξ, fn + dV ).
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Theorem 3.14. Let (A1)–(A5), (A8) hold, and let (A7) be satisfied with some processes Y , Y .
Then there exists a minimal solution (Y n,Mn) of (3.14) such that Y ≤ Y n

≤ Y . Moreover,
Y n

t ↗ Yt , t ∈ [0, T ∧ a], a ≥ 0, where (Y,M, K ) is the minimal solution of (1.5) such that
Y ≤ Y ≤ Y .

Proof. Observe that by (A7), n(Y
j
t −H j (t, Y t ))− = 0, so (Y ,M) is a supersolution of (3.14). It is

clear that (Y ,M) is a subsolution of (3.14). Now we will show that (A6) is satisfied for Eq. (3.14)
with Y , Y and with S = Y . By (A8) and the fact that Y ≤ Y we have

f j
n (t, Y t ; S j

t ) = f j (t, Y t ; Y
j
t ), f j

n (t, Y t ; S j
t ) = f j (t, Y t ).

By this and (A7),
N∑

i=1

E
∫ T

0
| f j

n (r, Y r ; S j
r )| dr +

N∑
i=1

E
∫ T

0
| f j

n (r, Y r ; S j
r )| dr < ∞.

Since the other assumptions of Theorem 2.13 are also satisfied for equation (3.14), there exists
a minimal solution (Y n,Mn) of (3.14) such that Y ≤ Y n

≤ Y . By Corollary 2.14, Y n
≤ Y n+1.

Therefore repeating step by step the arguments from the proof of Theorem 3.11 (see also the end
of the proof of Theorem 3.9) we show that there exists a local martingale M̃ and an increasing
càdlàg process K̃ such that the triple (Ỹ , M̃, K̃ ), where Ỹt = limn→∞Y n

t , t ∈ [0, T ∧ a], a ≥ 0,
is a solution of (1.5). What is now left is to show that Ỹ = Y , where (Y,M, K ) is the minimal
solution of (1.5) such that Y ≤ Y ≤ Y . Of course, Y ≤ Ỹ . Moreover, since Y j

≥ H j (·, Y ), we
have

Y j
t = ξ j

+

∫ T

t
f j (r, Yr ) dr +

∫ T

t
dV j

r +

∫ T

t
d K j

r

+

∫ T

t
n(Y j

r − H j (r, Yr ))− dr −

∫ T

t
d M j

r .

By this and Corollary 2.14, Y n
≤ Y . Hence Ỹ ≤ Y , which completes the proof. □

Remark 3.15. Set

K n, j
t =

∫ t

0
n(Y n, j

r − H j (r, Y n
r ))− dr.

If the processes K , V from Theorem 3.11 are continuous, then Y n
↗ Y and K n

→ K in ucp.
This follows by the same method as in Remark 3.12.

4. Switching problem

In what follows by a strategy we mean a pair S = ({ξn, n ≥ 1}, {τn, n ≥ 1}), where
{τn, n ≥ 1} is an increasing sequence of stopping times such that

P(τn < T, ∀ n ≥ 1) = 0,

and {ξn, n ≥ 1} is a sequence of random variables taking values in {1, . . . , N } such that ξn is
Fτn -measurable for each n ∈ N.

The set of all strategies we denote by A. For every α ∈ T by Aα we denote the set of all
strategies S ∈ A such that τ1 ≥ α. For S ∈ A we set

w
j
t = j1[0,τ1)(t) +

∑
n≥1

ξn1[τn ,τn+1)(t).
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Remark 4.1. Let L be an adapted càdlàg process of class (D), and let ξ be an integrable random
variable such that lim supa→∞LT ∧a ≤ ξ . Set

Yt = ess sup
τ≥t

E(Lτ1{τ<T } + ξ1{τ=T }|Ft ).

By Remark 3.6 and Theorem 3.9, Y is the first component of a solution (Y,M, K ) of
RBSDET (ξ, 0, L). Observe that if K is continuous then

Yt = E(Lτ∗
t
1{τ∗

t <T } + ξ1{τ∗
t =T }|Ft ), (4.1)

where

τ ∗

t = inf{s ≥ t : Ys = Ls} ∧ T .

Indeed, by the definition of τ ∗
t and the definition of a solution of RBSDET (ξ, 0, L),

Yt = E
(∫ τ∗

t

t
d Kr + Lτ∗

t
1{τ∗

t <T } + ξ1{τ∗
t =T }|Ft

)
(4.2)

and, since K is continuous,∫ T ∧a

0
(Yr − Lr ) d Kr = 0, a ≥ 0.

This implies that
∫ τ∗

t
t d Kr = 0, which when combined with (4.2) yields (4.1).

In the rest of this section we assume that

H j (t, y) = max
i∈A j

(−c j,i (t) + yi ), (4.3)

where c j,i are continuous adapted process such that for some constant c > 0,

c j,i (t) ≥ c, i ∈ A j , t ∈ [0, T ∧ a], a ≥ 0, j = 1, . . . , N .

Remark 4.2. Assume that the underlying filtration F is quasi-left continuous, H is of the form
(4.3) and V is continuous. Then (A9) is satisfied. Indeed, in this case −∆K j

τ = ∆Y j
τ for every

predictable stopping time τ . Therefore repeating step by step the proof of [5, Proposition 2] we
get the desired result.

Theorem 4.3. Assume that f does not depend on y and H j are of the form (4.3). If
E(

∫ T
0 d|V |r +

∫ T
0 | f (r )| dr ) < ∞ then there exists a solution (Y,M, K ) of (1.5). Moreover,

if K is continuous, then for every α ∈ T

Y j
α = ess sup

S∈Aα
E

(∫ T

α

f w
j
r (r ) dr +

∫ T

α

dVw
j
r

r

−

∑
n≥1

c
w

j
τn−1 ,w

j
τn

(τn)1{τn<T } + ξw
j
T |Fα

)
, (4.4)

and the optimal strategy S∗ for Y j is given by

τ
j,∗

0 = α, ξ
j,∗

0 = j, τ
j,∗

k = inf{t ≥ τ
j,∗

k−1 : Y
ξ

j,∗
k−1

t = H
ξ

j,∗
k−1

t } ∧ T, k ≥ 1,

ξ
j,∗

k = max{i ∈ A
ξ

j,∗
k−1

; H
ξ

j,∗
k−1
τk = −c

ξ
j,∗

k−1,i
(τ j,∗

k ) + Y i
τ

j,∗
k

}, k ≥ 1,

where H j
t := H j (t, Yt ).
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Proof. The existence part follows from Theorem 3.11, because assumptions (A1)–(A5), (A8)
are clearly satisfied, and (A7) is satisfied with (Y ,M) and (Y ,M) defined as follows:

Y
1

= · · · = Y
N
, M

1
= · · · = M

N
, Y 1

= · · · = Y N , M1
= · · · = M N ,

and (Y
1
,M

1
) (resp. (Y 1,M1)) is a solution of BSDET (ξ 1

∨· · ·∨ξ N , f 1
∨· · ·∨ f N

+dV 1
∨· · ·∨

dV N ) (resp. BSDET (ξ 1
∧ · · · ∧ ξ N , f 1

∧ · · · ∧ f N
+ dV 1

∧ · · · ∧ dV N )). Thanks to Remark 4.1,
to get (4.4) it suffices now to repeat step by step the proof of [5, Theorem 1]. □

Corollary 4.4. Let (A1), (A2) be satisfied. Assume that f j depends only on y j , H j are of the
form (4.3), F is quasi-left continuous and V is continuous. Then there exists at most one solution
(Y,M, K ) of (1.5) such that E

∫ T
0 | f (r, Yr )| dr < ∞.

Proof. Suppose that (Y,M, K ), (Ỹ , M̃, K̃ ) are two solutions of (1.5). Let τ j
k = inf{t ≥ 0 :

Y j
t − Ỹ j

t < −
1
k } ∧ T and σ j

k = inf{t ≥ τ
j

k : Y j
t = Ỹ j

t } ∧ T . Of course, (Y,M, K ) (resp.
(Ỹ , M̃, K̃ )) is also a solution of (1.5) on the interval [0, σ j

k ] with terminal condition ξ j
= Y j

σ
j

k

(resp. ξ j
= Ỹ j

σ
j

k
). Hence, by Theorem 4.3 (see also Remarks 3.13 and 4.2), for every α ≤ σ

j
k we

have

Y j
α = ess sup

S∈Aα
E

(∫ σ
j

k

α

f w
j
r (r, Y j

r ) dr +

∫ σ
j

k

α

dVw
j
r

r

−

∑
n≥1

c
w

j
τn−1 ,w

j
τn

(τn)1
{τn<σ

j
k }

+ Y
w

j

σ
j

k

σ
j

k
|Fα

)
, (4.5)

and

Ỹ j
α = ess sup

S∈Aα
E

(∫ σ
j

k

α

f w
j
r (r, Ỹ j

r ) dr +

∫ σ
j

k

α

dVw
j
r

r

−

∑
n≥1

c
w

j
τn−1 ,w

j
τn

(τn)1
{τn<σ

j
k }

+ Ỹ
w

j

σ
j

k

σ
j

k
|Fα

)
. (4.6)

Let S, S̃ ∈ Aα be an optimal strategy for (Y,M, K ), (Ỹ , M̃, K̃ ), respectively, with α = τ
j

k . Then
by (4.5), (4.6) and (A2),

Y j

τ
j

k
− Ỹ j

τ
j

k
≥ E(

∫ σ
j

k

τ
j

k

f w̃
j
r (r, Y j

r ) dr −

∫ σ
j

k

τ
j

k

f w̃
j
r (r, Ỹ j

r ) dr |F
τ

j
k

) ≥ 0.

From this we conclude that P(τ j
k < T ) = 0. Since k ∈ N was arbitrary, we see that Y j

≥ Ỹ j . A
similar argument applied to Ỹ j

− Y j shows that Y j
≤ Ỹ j . □

Corollary 4.5. Let (A1) be satisfied. Assume that f j satisfies (2.13), T is bounded, H j are of the
form (4.3), F is quasi-left continuous and V is continuous. Then there exists at most one solution
(Y,M, K ) of (1.5) such that E

∫ T
0 | f (r, Yr )| dr < ∞.
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Proof. Let (Y,M, K ), (Ỹ , M̃, K̃ ) be solutions to (1.5). By the representation (4.4) and (2.13) we
easily get

E |Yt − Ỹt | ≤ N L E
∫ T

t
|Yr − Ỹr | dr.

Since T is bounded, applying Gronwall’s lemma shows that Y = Ỹ . □

5. Systems of elliptic quasi-variational inequalities

In this section E is a locally compact separable metric space, m is a Radon measure on E
such that supp[m] = E , and (E, D[E]) is a regular transient semi-Dirichlet form on L2(E; m).
By (L , D(L)) we denote the generator associated with (E, D[E]) (see [25, Chapter 1]).

Let us recall that (E, D[E]) is called semi-Dirichlet if D[E] is dense in L2(E; m) and E is a
bilinear form on D[E] × D[E] satisfying the conditions (E1)–(E4) below:

(E1) E is lower bounded, i.e. there exists α0 ≥ 0 such that

Eα0 (u, u) ≥ 0, u ∈ D[E],

where Eα0 (u, v) = E(u, v) + α0(u, v),
(E2) E satisfies the sector condition, i.e. there exists K > 0 such that

|E(u, v)| ≤ KEα0 (u, u)1/2Eα0 (v, v)1/2, u, v ∈ D[E],

(E3) E is closed, i.e. for every α > α0 the space D[E] equipped with the inner product
E (s)
α (u, v) :=

1
2 (Eα(u, v) + Eα(v, u)) is a Hilbert space,

(E4) E has the Markov property, i.e. for every a ≥ 0,

E(u ∧ a, u ∧ a) ≤ E(u ∧ a, u), u ∈ D[E].

Note that (E4) is equivalent to the fact that the semigroup {Tt , t ≥ 0} associated with (E, D[E])
is sub-Markov (see [25, Theorem 1.1.5]). Recall also that E is said to have the dual Markov
property if

(E5) for every a ≥ 0,

E(u ∧ a, u ∧ a) ≤ E(u, u ∧ a), u ∈ D[E].

Condition (E5) is equivalent to the fact that associated dual semigroup {T̂t , t ≥ 0} associated with
(E, D[E]) is sub-Markov (see [25, Theorem 1.1.5]). For the notions of transiency and regularity
see [25, Section 1.2, Section 1.3].

Let Cap denote the capacity associated with (E, D[E]) (see [25, Chapter 2]), and let X =

({X t , t ≥ 0}, {Px , x ∈ E}) be a Hunt process with life time ζ associated with (E, D[E])
(see [25, Chapter 3]). We say that some property holds quasi-everywhere (q.e. for short) if there
is a set B ⊂ E such that Cap(B) = 0 and it holds on the set E \ B. A set B ⊂ E such that
Cap(B) = 0 is called exceptional.

Let µ be a signed measure E . By µ+ (resp. µ−) we denote its positive (resp. negative) part,
and we set |µ| = µ+

+ µ−. A Borel signed measure µ on E is called smooth if µ charges no
exceptional sets and there exists an increasing sequence {Fn} of closed subsets of E such that
|µ|(Fn) < ∞ for n ≥ 1, and for every compact K ⊂ E .

Cap(K \ Fn) → 0.
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In the sequel the set of all signed smooth measures on E such that ∥µ∥T V := |µ|(E) < ∞ will
be denoted by M0,b.

It is known (see [25, Section 4.1]) that there is one-to-one correspondence (the Revuz duality)
between positive continuous additive functionals (PCAFs for short) of X and positive smooth
measures. By Aµ we denote the unique PCAF of X associated with positive smooth measure µ.
For a signed smooth measure µ we set Aµ = Aµ

+

− Aµ
−

. By M we denote the set of all smooth
measures µ on E such that

Ex

∫ ζ

0
d A|µ|

r < ∞

for q.e. x ∈ E , where Ex denotes the expectation with respect to Px . For a fixed positive
measurable function f and a positive Borel measure µ we denote by f · µ the measure defined
as

( f · µ)(η) =

∫
E
η f dµ, η ∈ B+(E).

We write f ∈ M if f · m ∈ M. By [25, Corollary 1.3.6], if (E, D[E]) has the dual Markov
property then

M0,b ⊂ M. (5.1)

By q L1(E; m) we denote the set of all measurable real functions f on E such that A f ·m
ζ < ∞

for every t ≥ 0. By (5.1),

L1(E; m) ⊂ q L1(E; m).

Note that in general the form associated with the operator defined by (1.2) does not have the dual
Markov property. Nevertheless, for this form (5.1) holds true.

Recall that a set U ⊂ E is called quasi-open if for every ε > 0 there exists an open set
U ⊂ Uε ⊂ E such that Cap(Uε \ U ) < ε. The family of quasi-open sets induces the quasi-
topology on E . We say that a function u on E is quasi-continuous if it is continuous with respect
to the quasi-topology.

5.1. Existence and approximation of solutions

For i, j = 1, . . . , N let h j,i , f j
: E × RN

→ R be measurable functions, µ j be smooth
measures on E , and let A j ⊂ {1, . . . , j −1, j +1, . . . , N }. We maintain the notation f j (x, y; a)
introduced at the beginning of Section 2, and we set

H j (x, y) = max
i∈A j

h j,i (x, yi ), H = (H 1, . . ., H N ),

f = ( f 1, . . . , f N ), µ = (µ1, . . . , µN ).

We will make the following hypotheses:

(H1) µ j
∈ M, j = 1, . . . , N ,

(H2) for j = 1, . . . , N the function a ↦→ f j (x, y; a) is nonincreasing for all x ∈ E , y ∈ RN ,
(H3) f is off-diagonal nondecreasing, i.e. for j = 1, . . . , N we have f j (x, y; a) ≤ f j (x, ȳ; a)

for all y, ȳ ∈ RN such that y ≤ ȳ and a ∈ R,



Please cite this article in press as: T. Klimsiak, Systems of quasi-variational inequalities related to the switching problem, Stochastic Processes and
their Applications (2018), https://doi.org/10.1016/j.spa.2018.04.008.

T. Klimsiak / Stochastic Processes and their Applications ( ) – 23

(H4) y ↦→ f (x, y) is continuous for every x ∈ E ,
(H5) f j (·, y) ∈ q L1(E; m) for all y ∈ RN , j = 1, . . . , N .

Consider the following system of equations

− Lu = f (x, u) + µ. (5.2)

Following [19,22] we adopt the following definition of a solution of (5.2).

Definition 5.1. We say that a measurable function u = (u1, . . . , uN ) : E → RN is a solution of
(5.2) (PDE( f + dµ) for short) if f j (·, u) ∈ M, j = 1, . . . , N , and for q.e. x ∈ E ,

u j (x) = Ex

(∫ ζ

0
f j (Xr , u(Xr )) dr +

∫ ζ

0
d Aµ

j

r

)
, j = 1, . . . , N . (5.3)

Remark 5.2. A measurable function u : E → RN satisfying (5.3) may be called a probabilistic
solution of (5.2). Note that if f j (·, u) ∈ L1(E; m) and µ j

∈ Mb then u j is a renormalized
solution of (5.2) (see [21]).

Remark 5.3. (i) If u is a solution of (5.2) in the sense of Definition 5.1 then by [19, Theorem 4.7]
the pair (u(X ),M), where

M j
t = Ex

(∫ ζ

0
f j (Xr , u(Xr )) dr +

∫ ζ

0
d Aµ

j

r |Ft

)
, t ≥ 0, (5.4)

is a solution of BSDEζ (0, f (X, ·) + d Aµ) under the measure Px for q.e. x ∈ E (in fact, M in
(5.4) is an independent of x version of the right-hand side of Eq. (5.4); such a version always
exists, see [7, Section A.3]).
(ii) If (Y,M) is a solution of BSDEζ (0, f (X, ·) + d Aµ) under the measure Px for q.e. x ∈ E ,
and there exists a function u such that u(X ) = Y under the measure Px for q.e. x ∈ E and
f j (·, u) ∈ M, j = 1, . . . , N , then u is a solution of (5.2). This follows directly from Remark 2.2.

Definition 5.4. We say that a measurable function u : E → RN is a subsolution (resp.
supersolution) of (5.2) if there exist µ ∈ M (resp. µ ∈ M) and f (resp. f ) satisfying (H2)
such that µ ≤ µ (resp. µ ≤ µ), f (x, y) ≤ f (x, y), x ∈ E, y ∈ R (resp. f (x, y) ≤ f (x, y), x ∈

E, y ∈ R) and u is a solution of PDE( f + µ) (resp. PDE( f + µ)).

Remark 5.5. By Remark 5.3, if u is a subsolution (resp. supersolution) of (5.2) then u(X ) is the
first component of a subsolution (resp. supersolution) of the equation BSDEζ (0, f (X, ·) + d Aµ)
under the measure Px for q.e. x ∈ E .

Definition 5.6. We say that a quasi-continuous function u on E is a solution of (1.3) if there
exist positive measures ν1, . . . , νN

∈ M such that u is a solution of PDE( f + dµ + dν) with
ν = (ν1, . . . , νN ), and the second and the third condition in (1.3) are satisfied.

We will also need the following hypotheses:

(H6) There exist a subsolution u and a supersolution u of (5.2) such that

u ≤ u, H (·, u) ≤ u,
N∑

j=1

(| f j (·, u; u j )| + | f j (·, u)|) ∈ M,
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(H7) H j is continuous on E × RN equipped with the product topology consisting of quasi-
topology on E and the Euclidean topology on RN and nondecreasing with respect to y.

In the proof of the next theorem we will use some result from [18] on solutions of the usual
obstacle problem for single equation and one quasi-continuous barrier h : E → R. For the
convenience of the reader we recall below the definition of a solution.

Definition 5.7. Let N = 1. We say that a pair (u, ν) is a solution of the obstacle problem
for L with lower barrier h and the right-hand side f + dµ (OP( f + dµ, h) for short) if u is
quasi-continuous, ν is a positive measure such that ν ∈ M, u ≥ h q.e., and

− Lu = f (x, u) + µ+ ν,

∫
E

(u − h) dν = 0.

In the sequel, for µ = (µ1, . . . , µN ) we write |µ| =
∑N

j=1|µ
j
|, ∥µ∥T V =

∑N
j=1∥µ

j
∥T V .

Theorem 5.8. Assume (H1)–(H7). Then there exists a minimal solution of (1.3) such that
u ≤ u ≤ u.

Proof. We first observe that the data f (X, ·), H j (X, ·), ξ := 0, T := ζ , Y := u(X ),
Y := u(X ) satisfy assumptions (A1)–(A5), (A7), (A8) under the measure Px for q.e. x ∈ E
(see Remark 5.3). Set Y 0

:= Y . By Theorem 3.11, for q.e. x ∈ E there exist a solution
(Y n, j ,Mn, j , K n, j ) of RBSDEζ (0, f j (X, Y n−1

; ·) + d Aµ
j
, H j (X, Y n−1)), n ≥ 1, j = 1, . . . , N ,

and a solution (Y,M, K ) of the following RBSDE with oblique reflection⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y j

t =

∫ ζ

t
f j (Xr , Yr ) dr +

∫ ζ

t
d Aµ

j

r +

∫ ζ

t
d K j

r −

∫ ζ

t
d M j

r , t ∈ [0, ζ ],

Y j
t ≥ H j (X t , Yt ), t ∈ [0, ζ ],∫ ζ

0
(Y j

t − H j (X t , Yt )) d K j
t = 0, j = 1, . . . , N

(5.5)

under the measure Px , and moreover, Y n
t ↗ Yt , t ∈ [0, ζ ], Px -a.s. Set u0 = u. By [18,

Theorem 3.2], for every n ≥ 1,

u j
n(X t ) = Y n, j

t , Aν
j
n

t = K n, j
t ,

where (u j
n, ν

j
n ) is a solution of OP( f j (·, un−1; ·) + dµ j , H j (·, un−1)). Since Y n

≤ Y n+1 Px -a.s.
for q.e. x ∈ E , we have un ≤ un+1 q.e. Therefore putting u j

= supn≥0u j
n and u = (u1, . . . , uN )

we obtain

u(X t ) = Yt , t ∈ [0, ζ ], Px -a.s.

for q.e. x ∈ E . By Theorem 3.11, f j (·, u) ∈ M. Observe that the triple (Y j ,M j , K j ) is a solution
to RBSDEζ (0, f j (X, u(X ); ·)+d Aµ

j
, H j (X, u(X ))), j = 1, . . . , N . By [18, Theorem 3.2] there

exists ν j
∈ M such that K j

= Aν
j

and (u j , ν j ) is a solution to OP( f j (·, u; ·) + dµ j , H j (·, u)).
This implies that the pair (u, ν), where ν = (ν1, . . . , νN ), is a solution of (1.3). □

Remark 5.9. Assume that (E, D[E]) has the dual Markov property, (H2) and (H3) are satisfied,
and hypotheses (H1), (H6) hold true with M replaced by M0,b. Assume also that µ ∈ M0,b

f (·, u) ∈ L1(E; m). Let (u, ν) be a solution of (1.3). Then ν j
∈ M0,b and f j (·, u) ∈ L1(E; m),
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j = 1, . . . , N . Indeed, since u ≤ u, we have

Ex

∫ ζ

0
d Aν

j

r ≤ Ex

∫ ζ

0
f j,−(Xr , u(Xr )) dr + Ex

∫ ζ

0
f

j,+
(Xr , u(Xr )) dr

+ Ex

∫ ζ

0
d Aµ

j,−
+ Ex

∫ ζ

0
d Aµ

j,+

r .

By [22, Lemma 2.6], the above inequality implies that

∥ν j
∥T V ≤ ∥ f j,−(·, u)∥L1 + ∥ f

j,+
(·, u)∥L1 + ∥µ j,−

∥T V + ∥µ j,+
∥T V .

By our assumptions, ∥ f
j,+

(·, u)∥L1 + ∥µ j,−
∥T V + ∥µ j,+

∥T V < ∞. Observe that by (H2)
and (H3), f j (·, u) ≥ f j (·, u; u j ) q.e. Hence, by (H6), ∥ f j,−(·, u)∥L1 < ∞. Therefore
ν j

∈ M0,b, j = 1, . . . , N . Observe that f j (·, u; u j ) ∈ L1(E; m) by (H3) and (H6). Now
the integrability of f (·, u) follows from [22, Proposition 3.10].

Remark 5.10. Under the assumptions of Remark 5.9 the functions u j , j = 1, . . . , N , have
the property that Tk(u j ) ∈ De[E] for k ≥ 0, where Tk(y) = max(min(y, k),−k). This follows
from Remark 5.9 and [19, Proposition 5.9]. Therefore under the assumptions of Remark 5.9 the
function u j is a solution of the first equation in (1.3) in the sense of Stampacchia, or, in different
terminology, are solution in the sense of duality (see [19, Proposition 5.3]). Equivalently, it is a
renormalized solution of this equation (see [21]).

Proposition 5.11. Let N = 1. Assume (H1), (H3), (H4), (H5). Moreover, assume that there
exists a real valued measurable function v on E such that Lv ∈ M and f (·, v) ∈ M. Then there
exists a solution u of PDE( f + dµ).

Proof. Set β = −Lv. Observe that the data f (X, ·), V := Aµ, ξ := 0, S := v(X ), T := ζ

satisfy the assumptions of Theorem 2.9 under the measure Px for q.e. x ∈ E . From the proof
of Theorem 2.9 it follows that there exists a solution (Y,M) of BSDEζ (0, f (X, ·) + d Aµ), and
that Y = Ỹ + S, where (Ỹ , M̃) is a solution of BSDET (0, fS + d Aµ − d Aβ) under measure
Px for q.e. x ∈ E . By [19, Theorem 4.7] there exists a solution ũ of PDE( fv + dµ − dβ) with
fv(x, y) = f (x, v(x) + y), and ũ(X ) = Ỹ . Hence Y = ũ(X ) + v(X ). It is clear (see Remark 2.2)
that u := ũ + v is a solution of PDE( f + dµ). □

In the next proposition we will need the following hypothesis.

(H8) There exist a subsolution u and a supersolution u of (5.2), and a measurable function
v : E → RN such that Lv j

∈ M, j = 1, . . . , N , and

u ≤ u,
N∑

j=1

| f j (·, u; v j )| + | f j (·, u; v j )| ∈ M.

Proposition 5.12. Assume (H1)–(H5), (H8). Then there exists a minimal solution u of (5.2) such
that u ≤ u ≤ u.

Proof. Observe that the data f (X, ·), Y := u(X ), Y := u(X ), S := v(X ), V := Aµ, ξ :=

0, T := ζ satisfy the assumptions of Theorem 3.11 under the measure Px for q.e. x ∈ E .
Set u0 = u. By Theorem 3.11, for q.e. x ∈ E there exist a unique solution (Y n,Mn) of
BSDEζ (0, f (X, Y n−1) + d Aµ) and a minimal solution (Y,M) of BSDEζ (0, f (X, ·) + d Aµ) such
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that Y ≤ Y ≤ Y under the measure Px . By Proposition 5.11 (see also Remark 5.3), Y n, j
= u j

n(X )
Px -a.s. for q.e. x ∈ E , where u j

n is the solution of PDE( f j (·, un−1; ·) + dµ j ). From the proof of
Theorem 3.11 it follows that Y n

≤ Y n+1. Hence un ≤ un+1 q.e. Set u = supn≥1un . It is clear that
Y = u(X ) Px -a.s. for q.e. x ∈ E . Hence, by Remark 5.3, u is a minimal solution of PDE( f +dµ)
such that u ≤ u ≤ u. □

Theorem 5.13. Assume (H1)–(H7). Then there exists a minimal solution un of the system

− Lu j
n = f j (·, un) + n(u j

n − H j (·, un))− + µ j (5.6)

such that u ≤ un ≤ u. Moreover, un ↗ u q.e., where u is the minimal solution of (1.3) such that
u ≤ u ≤ u.

Proof. Observe that u is a supersolution of (5.6), whereas u is a subsolution of (5.6). Moreover,
f j (·, u) + n(u j

− H j (·, u))− = f j (·, u) ∈ M and f j (·, u; u j ) + n(u j
− H j (·, u))− =

f j (·, u; u j ) ∈ M by (H6). Therefore (H8) is satisfied for (5.6) with v := u. Hence, by
Proposition 5.12, there exists a minimal solution un to (5.6) such that u ≤ u ≤ u q.e. By
Remark 5.3, un(X ) is the first component of the solution of BSDEζ (0, fn(X, ·) + d Aµ) with
f j
n (t, y) = f j (X t , y) + n(y j

− H j (X t , y))−. By the construction (see Proposition 5.12), it is
the minimal solution of BSDEζ (0, fn(X, ·) + d Aµ). By Theorem 3.14, the sequence {un(X )} is
nondecreasing and un(X ) ↗ Y , where Y is the first component of the minimal solution of (5.5)
such that u(X ) ≤ Y ≤ u(X ) under the measure Px for q.e. x ∈ E . In particular un ≤ un+1 q.e.,
n ≥ 1. Set ũ := supn≥1un . It is clear that Y = ũ(X ) Px -a.s. for q.e. x ∈ E . On the other hand, by
Theorem 5.8, there exists the minimal solution u to (1.3) such that u ≤ u ≤ u, and by the proof
of Theorem 5.8, for q.e. x ∈ E the process u(X ) is the first component of the minimal solution
to (5.5) under the measure Px . Hence ũ(X ) = u(X ) Px -a.s. for q.e. x ∈ E , which implies that
ũ = u q.e. Of course, this implies that un ↗ u q.e. □

5.2. Application to the switching problem

In the theorem below we keep the notation introduced in Section 4, and we assume that

H j (x, y) = max
i∈A j

(−c j,i (x) + yi ), (5.7)

where c j,i are quasi-continuous functions on E such that for some constant c > 0,

c j,i (x) ≥ c, x ∈ E, i ∈ A j , j = 1, . . . , N .

Proposition 5.14. Let (H1), (H2) be satisfied. Assume that f j does not depend on yi , i ̸= j ,
and H j is of the form (5.7). Then there exists at most one solution to (1.3).

Proof. By the definition of a solution u to (1.3), the process u(X ) is the first component
of the solution to (5.5) under the measure Px for q.e. x ∈ E (see also Remark 5.3) and
Ex

∫ ζ
0 | f (Xr , u(Xr ))| dr < ∞ for q.e. x ∈ E . Since F is quasi-left continuous and Aµ is

continuous, the desired result follows from Corollary 4.4. □
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Theorem 5.15. Assume that f does not depend on y, H j are of the form (5.7), and f j , µ j
∈ M,

j = 1, . . . , N. Then there exists a unique solution u of (1.3). Moreover,

u j (X t ) = sup
S∈A

Ex

(∫ ζ

0
f w

j
r (Xr ) dr +

∫ ζ

0
d Aµ

w
j
r

r −

∑
n≥1

c
w

j
τn−1 ,w

j
τn

(Xτn )1{τn<ζ }

)
and

u j (x) = Ex

(∫ ζ

0
f w

j,∗
r (Xr ) dr +

∫ ζ

0
d Aµ

w
j,∗
r

r −

∑
n≥1

c
w

j,∗
τn−1 ,w

j,∗
τn

(Xτn )1{τn<ζ }

)
,

where

w
j,∗
t = j1[0,τ∗

1 )(t) +

∑
n≥1

ξ j,∗
n 1[τ∗

n ,τ
∗
n+1)(t)

and

τ
j,∗

0 = 0, τ
j,∗

k = inf{t ≥ τ
j,∗

k−1 : uξ
j,∗

k−1 (X t ) = H ξ
j,∗

k−1 (X t , u(X t ))} ∧ ζ, k ≥ 1,

ξ
j,∗

0 = j, ξ
j,∗

k = max{i ∈ A
ξ

j,∗
k−1

; uξ
j,∗

k−1 (Xτk ) = −c
ξ

j,∗
k−1,i

(Xτk ) + ui (Xτk )}, k ≥ 1.

Proof. We know that F is quasi-left continuous and Aµ is continuous. Therefore the theorem
follows from Theorem 4.3, Remarks 3.13, 4.2 and Proposition 5.12. □
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