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Abstract

We investigate some asymptotic properties of general Markov processes conditioned not to be
absorbed by the moving boundaries. We first give general criteria involving an exponential convergence
towards the Q-process, that is the law of the considered Markov process conditioned never to reach the
moving boundaries. This exponential convergence allows us to state the existence and uniqueness of the
quasi-ergodic distribution considering either boundaries moving periodically or stabilizing boundaries.
We also state the existence and uniqueness of a quasi-limiting distribution when absorbing boundaries
stabilize. We finally deal with some examples such as diffusions which are coming down from infinity.
c⃝ 2019 Published by Elsevier B.V.
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1. Introduction

Let (Ω ,A,P) be a probability space and let (X t )t∈I be a time-homogeneous Markov process
(where I = Z+ or R+) defined on a metric state space (E, d). We associate with E a σ -algebra
E . For any t ∈ I , denote by Ft = σ (Xs, 0 ≤ s ≤ t) the σ -field generated by (Xs)0≤s≤t∈I . For
any subset F ⊂ E , denote by M1(F) the set of probability measures defined on F and B(F)
the set of the bounded measurable function f : F → R.

We define, for each time t ∈ I , a subset At ∈ E called absorbing subset at time t and we
denote by Et the complement set of At called survival subset at time t . We will call t ↦→ At
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the moving absorbing subset or the moving absorbing boundary. We denote by

τA := inf{t ∈ I : X t ∈ At }

the reaching time of (At )t∈I by the process (X t )t∈I . In all what follows, we will assume that
τA is a stopping time for the filtration (Ft )t∈I . This assumption holds when, for example, the
Markov process (X t )t∈I is continuous and all the sets (At )t∈I are closed.

Even though the process (X t )t∈I is time-homogeneous, we will associate to this process
a family of probability measures (Ps,x )s∈I,x∈E such that, for any s ∈ I and for any x ∈ E ,
Ps,x (Xs = x) = 1 and, for any measure µ on E , define Ps,µ =

∫
Ps,x dµ(x). We denote by Es,x

and Es,µ the corresponding expectations. When the starting time is not needed, we will prefer
the notation Pµ := P0,µ and Eµ := E0,µ.

In this paper, we will deal with the so-called Q-process, quasi-limiting distribution and
quasi-ergodic distribution, defined as below:

Definition 1.

(i) We say that there is a Q-process if there exists a family of probability measures
(Qs,x )s∈I,x∈Es such that for any s ≤ t , x ∈ Es ,

Ps,x (X [s,t] ∈ ·|τA > T )
(d)

−→
T ∈I,T →∞

Qs,x (X [s,t] ∈ ·),

where, for any u, v ∈ I , X [u,v] is the trajectory of (X t )t∈I between times u and v and
where (d) refers to the weak convergence of probability measures.

(ii) We say that α ∈ M1(E) is a quasi-limiting distribution if, for some µ ∈ M1(E0),

Pµ(X t ∈ ·|τA > t)
(d)

−→
t∈I,t→∞

α. (1)

(iii) We say that β ∈ M1(E) is a quasi-ergodic distribution if there exists µ ∈ M1(E0) such
that,

•

1
n

n∑
k=0

Pµ(Xk ∈ ·|τA > n)
(d)

−→
n→∞

β

if I = Z+,
•

1
t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds

(d)
−→
t→∞

β

if I = R+.

For Markov processes absorbed by non-moving boundaries (i.e. At = A0 for any t ∈ I ), the
notions of Q-process, quasi-limiting distribution and quasi-ergodic distribution are dealt with
by the theory of quasi-stationarity, which studies the asymptotic behavior of such processes
conditioned not to be absorbed. In particular, the main object of this theory is the quasi-
stationary distribution, which is defined as a probability measure α such that, for all t ∈ I ,

Pα(X t ∈ ·|τA > t) = α. (2)

In the time-homogeneous setting, it is well known that the notions of quasi-stationary
distributions and quasi-limiting distributions are equivalent. The interested reader can see [16]
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and [10] for an overview of the theory. In particular, these monographs give some results about
the existence of quasi-limiting distributions and Q-processes for several processes: Markov
chains on finite state space and countable space, birth and death processes, diffusion processes
and others. In a same way, existence of quasi-ergodic distributions has been also shown for
such processes. The reader can see [4,12,18] for the study on quasi-ergodic distributions in a
very general framework.

In this article, we will be interested in the existence of a Q-process, a quasi-limiting
distribution and a quasi-ergodic distribution when (At )t∈I depends on the time. More precisely,
we want to generalize the results presented in [17], which were only obtained for discrete-
time Markov chains defined on finite state space. In particular, this paper showed, in a first
time, that the notion of quasi-stationary distribution as defined by the relation (2), considering
that the boundary (An)n∈Z+

is moving, is not well-defined. If moreover the boundary moves
periodically, then the notion of quasi-limiting distribution is not well-defined either. Finally, it
is shown in [17] that, still considering periodic moving boundaries, the probability measure

1
n

n∑
i=1

Pµ(Xk ∈ ·|τA > n)

converges weakly towards a quasi-ergodic distribution β if the initial measure µ satisfies some
assumptions (see [17, Theorem 3]). Moreover, the Q-process is well-defined.

Hence, the main goal of this paper is to recover these results for a more wide class of
Markov processes, such as diffusion processes. In particular, we want to know if the quasi-
ergodic distribution is still well-defined for such processes when the moving boundary (At )t∈I

is periodic.
The main assumption that (X t )t∈I will satisfy in this paper will be based on a Champagnat–

Villemonais type condition. When A does not depend on t , Champagnat and Villemonais
introduce in [6] the following assumption: there exists ν ∈ M1(E) such that

(A1) there exist t0 ≥ 0 and c1 > 0 such that

∀x ∈ E0, Px (X t0 ∈ ·|τA > t0) ≥ c1ν;

(A2) there exists c2 > 0 such that: ∀x ∈ E0, ∀t ≥ 0,

Pν(τA > t) ≥ c2Px (τA > t).

In particular, (A1) can be seen as a conditional version of Doeblin’s condition. Then the authors
show that (A1)–(A2) are equivalent to an exponential uniform convergence of the total variation
distance between the conditional probability Pµ(X t ∈ ·|τA > t) and the unique quasi-stationary
distribution. Moreover, one has, under these assumptions, the existence of a Q-process, as well
as the existence and the uniqueness of the quasi-ergodic distribution (see [8] for this last result).

Champagnat and Villemonais also adapt the assumptions (A1)–(A2) to the
time-inhomogeneous setting in the paper [9]. This time-inhomogeneous version will be used
to our purpose; we refer the reader to Section 3 for more details about it. In particular,
the Assumption (A′), which is introduced in Section 2, is a particular case of their time-
inhomogeneous conditions. In this paper, the existence of a Q-process will be proved, as well as
the exponential convergence in total variation of the probability measure Ps,x (X [s,t] ∈ ·|τA > T )
towards the Q-process, when T goes to infinity. In the same way as in the paper [8], this
exponential convergence implies that the existence and the uniqueness of the quasi-ergodic
distribution is equivalent to an ergodic theorem for the Q-process. In particular, this corollary
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will be applied for periodic moving boundaries to show the existence and the uniqueness of a
quasi-ergodic distribution.

Moreover, the case of a non-increasing converging moving boundary (the notion of conver-
gence will be defined further) will be dealt with. In this case, one can expect an asymptotic
homogeneity of the conditional probability Ps,x (Xs+t ∈ ·|τA > s + t) when s goes to
infinity (in the meaning of Proposition 3 in Section 4.2), and use this property to show the
existence of a quasi-limiting distribution. It will be therefore shown in this paper that, under
the Champagnat–Villemonais condition and some extra assumptions, there exists a unique
quasi-limiting distribution for which the weak convergence (1) holds for any initial law µ.

This paper ends with an application of these results to a one-dimensional diffusion process
coming down from infinity, that is to say, for some t ≥ 0 and y ∈ R+,

lim
x→+∞

Px (τy < t) > 0,

where τy is the hitting time of y by (X t )t∈I . It will be shown that, under additional assump-
tions, the diffusion process (X t )t≥0 satisfies the time-inhomogeneous Champagnat–Villemonais
conditions.

2. Assumptions and general results

From now on, assume that (At )t∈I could depend on time and for any s ∈ I and x ∈ Es ,

Ps,x (τA < ∞) = 1,

and, in order to make sense of the conditioning, we will assume that for any s ≤ t and any
x ∈ Es ,

Ps,x (τA > t) > 0.

We introduce now the main assumption adapted from the Champagnat–Villemonais conditions
introduced in [6]:

Assumption (A′). There exist (νs)s∈I a sequence of probability measures (νs ∈ M1(Es) for
each s ∈ I ), and t0, c1, c2 > 0 such that

(A′1) ∀s ∈ I,∀x ∈ Es ,

Ps,x (Xs+t0 ∈ ·|τA > s + t0) ≥ c1νs+t0;

(A′2) ∀s ≤ t,∀x ∈ Es ,

Ps,νs (τA > t) ≥ c2Ps,x (τA > t).

In this section, the main results and contributions in this paper are presented. Let us recall
that the total variation distance between two probability measures µ and ν on E is defined by

∥µ− ν∥T V := sup
f ∈B1(E)

|µ( f ) − ν( f )|,

where B1(E) := { f ∈ B(E) : ∥ f ∥∞ ≤ 1} and where the notation

µ( f ) :=

∫
E

f (x)µ(dx)

is used. Then let us state our main result:
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Theorem 1. Under Assumption (A′), there exists a Q-process (Definition 1(i)). Furthermore,
there exists C, λ > 0 such that, for any s ≤ t ≤ T and x ∈ Es ,

∥Ps,x (X [s,t] ∈ ·|τA > T ) − Qs,x (X [s,t] ∈ ·)∥T V ≤ Ce−λ(T −t).

Explicit formulae will be provided later in Theorem 5, whose statement is more precise than
the one of the previous theorem.

As written in the introduction, two specific behaviors will be studied in this paper:

• Periodic moving boundaries,
• Non-increasing converging moving boundaries, i.e. At ⊂ As for all s ≤ t and

A∞ :=

⋂
t∈I

At ̸= ∅. (3)

In the periodic case, the following theorem is shown in Section 4.1.

Theorem 2. If (X t )t≥0 satisfies Assumption (A′), then there exists a unique probability measure
β such that, for any µ ∈ M1(E0),

1
t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds

(d)
−→
t→∞

β.

The expression of the quasi-ergodic distribution β is spelled out later in Theorem 6.
For converging non-increasing moving boundaries, some extra assumptions are needed

to state the theorems. The following assumptions will be useful to show the asymptotic
homogeneity of the conditional probability Ps,x (Xs+t ∈ ·|τA > s + t):

Assumption (Hhom).

(a) Strong Markov property: For any τ stopping time of Ft = σ (Xs, 0 ≤ s ≤ t) and for
any x ∈ E ,

Px ((Xτ+t )t∈I ∈ ·, τ < ∞|Fτ ) = 1τ<∞PXτ ((X t )t∈I ∈ ·);

(b) Convergence in law for the hitting times: For any x ∈ E0 and for any t ∈ I ,

Ps,x (τA > s + t) −→
s→+∞

Px (τA∞
> t),

where τA∞
:= inf{t ≥ 0 : X t ∈ A∞};

(c) Time-continuity: For any x ∈ E0 and s ≥ 0, the functions t → Ps,x (τA > t) and
t → Px (τA∞

> t) are continuous;
(d) State-continuity: For any t ∈ I , the function x → Px (τA∞

> t) is continuous.

Moreover, defining E∞ as the complement of A∞, let us set the additional following
assumption:

Assumption (H∞). There exists a unique probability measure α∞ ∈ M1(E∞) such that, for
any µ ∈ M1(E∞) and t ≥ 0,

∥Pµ(X t ∈ ·|τA∞
> t) − α∞∥T V ≤ C∞e−γ∞t ,

where C∞, γ∞ > 0.

Then, considering non-increasing converging moving boundaries, one has the following
statement:



Please cite this article as: W. Oçafrain, Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.09.019.

6 W. Oçafrain / Stochastic Processes and their Applications xxx (xxxx) xxx

Theorem 3. Under the Assumptions (A′), (Hhom) and (H∞), for any µ ∈ M1(E0),

Pµ(X t ∈ ·|τA > t)
(d)

−→
t→∞

α∞,

where α∞ is the quasi-stationary distribution defined in the Assumption (H∞).

The existence and the uniqueness of the quasi-ergodic distribution is also shown in
Section 4.2.

3. Exponential convergence towards Q-process and quasi-ergodic distribution

First, we recall Proposition 3.1. and Theorem 3.3. of [9]. In their paper, N. Champagnat
and D. Villemonais took a time-inhomogeneous Markov process and (Zs,t )s≤t a collection of
multiplicative nonnegative random variables (i.e. satisfying Zs,r Zr,t = Zs,t , ∀s ≤ r ≤ t) such
that, for any s ≤ t ∈ I and x ∈ Es , Es,x (Zs,t ) > 0 and supy∈Es Es,y(Zs,t ) < ∞. In our case,
(X t )t∈I is time-homogeneous, however the penalization (Zs,t )s≤t we shall use is given by

Zs,t = 1τA>t , ∀s ≤ t.

and is time-inhomogeneous because (At )t∈I depends on t . For any s ≤ t , define

φt,s : µ ↦→ Ps,µ(X t ∈ ·|τA > t).

Then, by Markov property, the family (φt,s)s≤t is a semi-flow, that is: for any r ≤ s ≤ t ,

φt,r = φt,s ◦ φs,r . (4)

Let t0 ∈ I . For any s ≥ t0 and x1, x2 ∈ Es−t0 , define vs,x1,x2 and vs as follows:

vs,x1,x2 = min
j=1,2

φs,s−t0 (δx j ); (5)

vs = min
x∈Es−t0

φs,s−t0 (δx ), (6)

where the minimum of several measures is understood as the largest measure smaller than all
the considered measures. Finally, for any s ≥ t0, define

ds = inf
t≥0,x1,x2∈Es−t0

Ps,vs,x1,x2
(τA > t + s)

supx∈Es Ps,x (τA > t + s)
; (7)

d ′

s = inf
t≥0

Ps,vs (τA > s + t)
supx∈Es Ps,x (τA > s + t)

. (8)

In particular, vs ≤ vs,x1,x2 and d ′
s ≤ ds . We can now state Proposition 3.1. and Theorem 3.3.

of [9] in our situation (see [9] for a more general framework):

Proposition 1 (Proposition 3.1. [9]). For any s ∈ I such that d ′
s > 0 and y ∈ Es , there exists

a finite constant Cs,y only depending on s and y such that, for all x ∈ Es and t, u ≥ s + t0
with t ≤ u,⏐⏐⏐⏐Ps,x (τA > t)

Ps,y(τA > t)
−

Ps,x (τA > u)
Ps,y(τA > u)

⏐⏐⏐⏐ ≤ Cs,y inf
v∈[s+t0,t]

1
d ′
v

⌊
v−s
t0

⌋
−1∏

k=0

(1 − dv−k). (9)

In particular, if

lim inf
t∈I,t→∞

1
d ′

t

⌊
t−s
t0

⌋
−1∏

k=0

(1 − dt−k) = 0, (10)
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for all s ≥ 0, there exists a positive bounded function ηs : Es → (0,∞) such that

lim
t→∞

Ps,x (τA > t)
Ps,y(τA > t)

=
ηs(x)
ηs(y)

, ∀x, y ∈ Es,

where, for any fixed y, the convergence holds uniformly in x. ηs satisfies for all x ∈ Es and
s ≤ t ∈ I ,

Es,x (1τA>tηt (X t )) = ηs(x).

In addition, the function s → ∥ηs∥∞ is locally bounded on [0,∞).

Theorem 4 (Theorem 3.3 [9]). Assume that

lim inf
t∈I,t→∞

1
d ′

t

⌊
t−s
t0

⌋
−1∏

k=0

(1 − dt−k).

Then there exists (Qs,x )s∈I,x∈Es such that

Ps,x (X [s,s+t] ∈ ·|τA > T )
(d)

−→
T ∈I,T →∞

Qs,x (X [s,s+t] ∈ ·), ∀s, t ∈ I, x ∈ Es,

and Qs,x is given by, for all s ≤ t and x ∈ Es ,

Qs,x (X [s,t] ∈ ·) = Es,x

(
1X[s,t]∈·

1τA>tηt (X t )
Es,x (1τA>tηt (X t ))

)
= Es,x

(
1X[s,t]∈·,τA>t

ηt (X t )
ηs(x)

)
. (11)

Furthermore, under (Qs,x )s∈I,x∈Es , (X t )t∈I is a time-inhomogeneous Markov process. Finally,
this process is asymptotically mixing in the sense that, for any s ≤ t and for any µ, π ∈

M1(Es),

∥Qs,µ(X t ∈ ·) − Qs,π (X t ∈ ·)∥T V ≤ 2

⌊
t−s
t0

⌋
−1∏

k=0

(1 − dt−k),

where

Qs,µ(·) :=

∫
Es

Qs,x (·)µ(dx). (12)

Remark 1. Note that, by the definition (12), when µ is not a Dirac mass,

Qs,µ ̸= lim
T →+∞

Ps,µ(·|τA > T ).

However, using the notation

f ∗ µ(dx) :=
f (x)µ(dx)
µ( f )

, ∀µ ∈ M1(Es), ∀ f ∈ B(Es), (13)

one has

lim
T →+∞

Ps,µ(·|τA > T ) = Qs,ηs∗µ.

Remark 2. We emphasize that, in [9], Proposition 3.1. and Theorem 3.3 are stated for any
penalizations (Zs,t )s≤t . In particular, instead of considering absorbed Markov process, it is
possible to work on renormalized Feynman–Kac semi-group taking

Zs,t = e
∫ t

s g(Xu )du,
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for some measurable functions g. Indeed, the specific choice of Zs,t we did in Proposition 1
and Theorem 4 does not play a role in the proofs.

Under Assumption (A′), and considering t0 ∈ I as defined in Assumption (A′), one has, for
any s ∈ I ,

ds ≥ d ′

s ≥ c1c2 > 0. (14)

Hence, by Proposition 1, (10) is satisfied and, for any s < s + t0 ≤ t ≤ u and x, y ∈ Es ,⏐⏐⏐⏐Ps,x (τA > t)
Ps,y(τA > t)

−
Ps,x (τA > u)
Ps,y(τA > u)

⏐⏐⏐⏐ ≤ Cs,y ×
1

c1c2
(1 − c1c2)

⌊
t−s
t0

⌋
. (15)

From this last equation, we can expect an exponential convergence of the family of probability
measures (Ps,x (X [s,t] ∈ ·|τA > T ))T ≥t towards the Q-process. Let us now reformulate Theo-
rem 1, in a more precise manner:

Theorem 5. Let (X t )t≥0 be a Markov process satisfying Assumption (A′).

1. Then, for any s ≤ t ≤ T and x ∈ Es ,

∥Ps,x (X [s,t] ∈ ·|τA > T ) − Qs,x (X [s,t] ∈ ·)∥T V ≤
1

(c1c2)3 (1 − c1c2)
⌊

T −t
t0

⌋
,

where Qs,x is defined by (11) in Theorem 4.
2. If the Q-process satisfies an ergodic theorem, i.e. there exists a probability measure β

such that for any x ∈ E0,

1
t

∫ t

0
Q0,x (Xs ∈ ·)ds

(d)
−→
t→∞

β, (16)

then for any µ ∈ M1(E0),

1
t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds

(d)
−→
t→∞

β.

The statement of this theorem is implicitly written for I = R+. Obviously, the statement
holds when I = Z+ and, from now, we will confuse integral and sum to deal with quasi-ergodic
distributions when the time space I will not be specified.

Proof of Theorem 5. First we will show the exponential convergence towards the Q-process
essentially thanks to (15). In the second step, we will show the existence and uniqueness of
the quasi-ergodic distribution using a method similar to that used in [8].

Step 1 : Exponential convergence towards the Q-process
We may extend (15) to general initial law µ and π : putting moreover 1/c1c2 inside the
constant, there exists Cs,π > 0 only depending on s and π such that, for any s ≤ t ≤ u,⏐⏐⏐⏐Ps,µ(τA > u)

Ps,π (τA > u)
−

Ps,µ(τA > t)
Ps,π (τA > t)

⏐⏐⏐⏐ ≤ Cs,π (1 − c1c2)
⌊

t−s
t0

⌋
.

Thus, by Theorem 4 and letting u → ∞,⏐⏐⏐⏐µ(ηs)
π (ηs)

−
Ps,µ(τA > t)
Ps,π (τA > t)

⏐⏐⏐⏐ ≤ Cs,π (1 − c1c2)
⌊

t−s
t0

⌋
. (17)

Using Markov property, for any s ≤ t ≤ T and for any x ∈ Es ,

Ps,x (X [s,t] ∈ ·|τA > T )
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= Es,x

(
1X[s,t]∈·

1τA>tPt,X t (τA > T )
Ps,x (τA > T )

)
= Es,x

(
1X[s,t]∈·

1τA>tPt,X t (τA > T )
Es,x (1τA>tPt,X t (τA > T ))

)
= Es,x

(
1X[s,t]∈·1τA>t

Pt,X t (τA > T )
Ps,x (τA > t)Es,x (Pt,X t (τA > T )|τA > t)

)
= Es,x

(
1X[s,t]∈·1τA>t

Pt,X t (τA > T )
Ps,x (τA > t)Pt,φt,s (δx )(τA > T )

)
.

Using this last equality and (11), for any s ≤ t ≤ T , for any x ∈ Es and any B ∈ E ,⏐⏐Ps,x (X [s,t] ∈ B|τA > T ) − Qs,x (X [s,t] ∈ B)
⏐⏐

=

⏐⏐⏐⏐Es,x

(
1X[s,t]∈B1τA>t

Ps,x (τA > t)

(
Pt,X t (τA > T )

Pt,φt,s (δx )(τA > T )
−

ηt (X t )
φt,s(δx )(ηt )

))⏐⏐⏐⏐
≤ Ct,φt,s (δx )(1 − c1c2)

⌊
T −t
t0

⌋
Es,x

(
1X[s,t]∈B1τA>t

Ps,x (τA > t)

)
,

where the last inequality follows from (17). Moreover, for any s ≤ t ,

Es,x

(
1X[s,t]∈B1τA>t

Px (τA > t)

)
= Ps,x

(
X [s,t] ∈ B|τA > t

)
≤ 1, ∀B ∈ E .

Hence, for any s ≤ t , x ∈ Es and B ∈ E ,⏐⏐Ps,x (X [s,t] ∈ B|τA > T ) − Qs,x (X [s,t] ∈ B)
⏐⏐ ≤ Ct,φt,s (δx )(1 − c1c2)

⌊
T −t
t0

⌋
.

Without loss of generality, one can assume t − s ≥ t0, since for any t ≤ s + t0,

{X [s,t] ∈ B} = {X [s,s+t0] ∈ B̃},

where B̃ := {ω : [s, s + t0] → E : ω[s,t] ∈ B} is a measurable set.
Note that [9] provides an explicit formula of Cs,y in the proof of Proposition 3.1. for
s and y fixed. Adapting this formula for a general probability measure π and recalling
that we put the term 1/c1c2 inside Cs,π , one explicit formula of Cs,π for s ∈ I can be

Cs,π =
1

c1c2

supz∈Es Ps,z(τA > vs)
d ′
vs
Ps,π (τA > vs)

, (18)

where vs ∈ I is the smaller time v ≥ s + t0 such that d ′
v > 0 (with d ′

v as defined in
(8)). Then, by (14), vs = s + t0 and d ′

s+t0
≥ c1c2, so

Cs,π ≤ C
supz∈Es Ps,z(τA > s + t0)

Ps,π (τA > s + t0)
, ∀s ≥ 0,∀π ∈ M1(Es),

where we set C :=
1

(c1c2)2 . Thus, for any x ∈ Es ,

Ct,φt,s (δx ) ≤ C
supz∈Et Pt,z(τA > t + t0)
Pt,φt,s (δx )(τA > t + t0)

.

Now, the following lemma is needed:
Lemma 1. For any s ≤ t such that t − s ≥ t0, for any x ∈ Es ,

φt,s(δx ) ≥ c1νt . (19)
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In particular, the condition (A′1) holds replacing t0 by any time t1 greater than t0.
The proof of this lemma is postponed at the end of this proof. Then, by Lemma 1 and
using (A’2),

Pt,φt,s (δx )(τA > t + t0) ≥ c1Pt,νt (τA > t + t0)

≥ c1c2 sup
z∈Et

Pt,z(τA > t + t0).

As a result Ct,φt,s (δx ) ≤ 1/(c1c2)3, and⏐⏐Ps,x (X [s,t] ∈ B|τA > T ) − Qs,x (X [s,t] ∈ B)
⏐⏐ ≤

1
(c1c2)3 (1 − c1c2)

⌊
T −t
t0

⌋
.

This concludes the first step.
Step 2 : Convergence towards the quasi-ergodic distribution

We just proved that for any 0 ≤ s ≤ t and x ∈ E0,

∥Px (Xs ∈ ·|τA > t) − Q0,x (Xs ∈ ·)∥T V ≤
1

(c1c2)3 (1 − c1c2)
⌊

t−s
t0

⌋
.

Note that, in the same way, it was possible to consider a general initial law µ instead
of a Dirac measure δx , so that the inequality

∥Pµ(Xs ∈ ·|τA > t) − Q0,η0∗µ(Xs ∈ ·)∥T V ≤
1

(c1c2)3 (1 − c1c2)
⌊

t−s
t0

⌋
(20)

holds for any probability measure µ on E0 (the notation η0 ∗ µ is defined in (13)).
As a result for any 0 ≤ s ≤ t , for any µ ∈ M1(E0),⏐⏐⏐⏐⏐⏐⏐⏐1t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds −

1
t

∫ t

0
Q0,η0∗µ(Xs ∈ ·)ds

⏐⏐⏐⏐⏐⏐⏐⏐
T V

≤
1

(c1c2)3t

∫ t

0
(1 − c1c2)

⌊
t−s
t0

⌋
ds

≤
1

(c1c2)3t

∫ t

0
(1 − c1c2)

t−s
t0

−1ds

=

(
−

t0
(c1c2)3(1 − c1c2) log(1 − c1c2)

)
×

1 − (1 − c1c2)
t
t0

t
.

Let β be as defined in (16). Then for any µ ∈ M1(E0) and f ∈ B(E),⏐⏐⏐⏐1t
∫ t

0
Eµ( f (Xs)|τA > t)ds − β( f )

⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐⏐⏐1t
∫ t

0
Pµ(Xs ∈ ·|τA > t)ds −

1
t

∫ t

0
Q0,η0∗µ(Xs ∈ ·)ds

⏐⏐⏐⏐⏐⏐⏐⏐
T V

+

⏐⏐⏐⏐1t
∫ t

0
EQ

0,η0∗µ( f (Xs))ds − β( f )
⏐⏐⏐⏐

≤

(
−

t0
(c1c2)3(1 − c1c2) log(1 − c1c2)

)
×

1 − (1 − c1c2)
t
t0

t

+

⏐⏐⏐⏐1t
∫ t

0
EQ

0,η0∗µ( f (Xs))ds − β( f )
⏐⏐⏐⏐ ,
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where EQ
0,η0∗µ is the expectation with respect to Q0,η0∗µ. Then, using the ergodic

theorem for the Q-process,⏐⏐⏐⏐1t
∫ t

0
Eµ( f (Xs)|τA > t)ds − β( f )

⏐⏐⏐⏐ −→
t→∞

0. □

Proof of Lemma 1. Applying the condition (A′1) to the starting time t − t0,

Pt−t0,y(X t ∈ ·, τA > t) ≥ c1νt (·)Pt−t0,y(τA > t), ∀y ∈ Et−t0 .

Then, for any probability measure µ, integrating the last inequality over µ(dx) and dividing
by Pt−t0,µ(τA > t), one obtains

Pt−t0,µ(X t ∈ ·|τA > t) ≥ c1νt , ∀µ ∈ M1(Et−t0 ).

Hence, using the semi-flow property (4) of (φt,s)s≤t , for any s ≥ 0 and t ≥ s + t0,

φt,s(δx ) = φt,t−t0 ◦ φt−t0,s(δx ) = Pt−t0,φt−t0,s (δx )(X t ∈ ·|τA > t) ≥ c1νt ,

which is (19). □

Remark 3. The time-homogeneity of the Markov process (X t )t∈I does not play a particular role
in the previous proof. In particular, Theorem 5 can be applied to time-inhomogeneous Markov
process. However, in the next section, the time-homogeneity of (X t )t∈I will be needed.

4. Some behaviors of moving boundaries and quasi-ergodicity

In this section, we will focus on two types of behavior for the moving boundaries

1. when A is γ -periodic with γ > 0;
2. when A is non-increasing and converges at infinity towards A∞ ̸= ∅.

Under Assumption (A′), the existence of the Q-process is provided by Theorem 4 (Theorem
3.3, [9]) and we get moreover an exponential convergence towards the Q-process provided by
Theorem 5. Now we want to investigate on the existence of a quasi-ergodic distribution in the
two cases described above.

4.1. Quasi-ergodic distribution when A is γ -periodic

In this subsection, we will work on periodic moving boundaries and we will assume that the
Markov process (X t )t≥0 satisfies the Assumption (A′). In particular, considering Assumption
(A′) for s = 0, for any x ∈ E0 and t ∈ I ,

1. Px (X t0 ∈ ·|τA > t0) ≥ c1νt0 ;
2. Pν0 (τA > t) ≥ c2Px (τA > t).

As Lemma 1 claims, any time t1 greater than t0 is suitable for the condition (A′1). Hence,
without loss of generality, t0 will be taken such that t0 = n0γ with n0 ∈ N. Moreover, by
periodicity of A, it is easy to see that (νs)s≥0 can be chosen as a γ -periodic sequence. As a
result, one has

νt0 = νn0γ = ν0.

In all what follows, we will consider such a choice of (νs)s≥0. The aim is to obtain the
convergence of 1

t

∫ t
0 Pµ(Xs ∈ ·|τA > t)ds towards a quasi-ergodic distribution which will
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be unique. Let us state the following result, which is the more precise version of Theorem 2
introduced in Section 2:

Theorem 6. Assume A is γ -periodic with γ > 0, and assume that Assumption (A′) is satisfied.
Then for any µ ∈ M1(E0),

1
t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds

(d)
−→
t→∞

1
γ

∫ γ

0
Q0,βγ (Xs ∈ ·)ds,

where βγ is the invariant measure of (Xnγ )n∈N under Q0,·, i.e.

∀n ∈ N, βγ = Q0,βγ (Xnγ ∈ ·) =

∫
E0

βγ (dx)Q0,x (Xnγ ∈ ·).

Proof of Theorem 6. We want to show an ergodic theorem for the time-inhomogeneous
Markov process (X t )t≥0 under (Qs,x )s≥0,x∈Es . Since (At )t≥0 is γ -periodic, for any 0 ≤ s ≤ t ,
for any x ∈ Es ,

Qs+kγ,x (X t+kγ ∈ ·) = Qs,x (X t ∈ ·), ∀k ∈ Z+. (21)

Moreover, for any n ∈ Z+,

Q0,x (Xnγ ∈ ·) = lim
t→∞

Px (Xnγ ∈ ·|τA > t)

= lim
m∈Z+,m→∞

Px (Xnγ ∈ ·|τA > mγ )

= lim
m∈Z+,m→∞

Px (Yn ∈ ·|τ∂ > m),

where τ∂ is defined by

τ∂ =

{
inf{n ≥ 1 : ∃t ∈ ((n − 1)γ, nγ ], X t ∈ At } if Y0 ∈ E0
0 if Y0 ∈ A0

and (Yn)n∈Z+
is the time-homogeneous Markov chain defined by

Yn =

{
Xnγ for n < τ∂
∂ otherwise

where ∂ plays the role of an absorbing state for (Yn)n∈Z+
. In other words, τ∂ is an absorbing

time for (Yn)n∈Z+
and, under (Q0,x )x∈E0 , the chain (Xnγ )n∈Z+

is the Q-process of (Yn)n∈Z+
.

By Assumption (A′) and recalling that we chose (νs)s≥0 as γ -periodic, (Yn)n∈Z+
satisfies the

following Champagnat–Villemonais type condition:

1.

∀x ∈ E0, Px (Yn0 ∈ ·|τ∂ > n0) ≥ c1ν0;

2.

∀x ∈ E0,∀n ∈ Z+, Pν0 (τ∂ > n) ≥ c2Px (τ∂ > n).

where we recall that n0 =
t0
γ

. Hence, by Theorem 3.1 in [6], there exists βγ ∈ M1(E0), C > 0
and ρ ∈ (0, 1) such that for any n ∈ Z+,

∥Q0,x (Xnγ ∈ ·) − βγ ∥T V ≤ Cρn, ∀x ∈ E0.
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This implies that, under Q0,·, (Xnγ )n∈N is Harris recurrent. We can therefore apply Theorem
2.1 in [13] and deduce that, for any nonnegative function f ,

1
t

∫ t

0
f (Xs)ds −→

t→∞
EQ

0,βγ

(
1
γ

∫ γ

0
f (Xs)ds

)
, Q0,x -almost surely, ∀x ∈ E0,

where EQ
0,µ(G) =

∫
GdQ0,µ for any measurable nonnegative function G and µ ∈ M1(E0).

It extends to f ∈ B(E) using f = f+ − f− with f+, f− non negative functions. Thus, by
bounded Lebesgue’s convergence theorem, for any x ∈ E0 and for any f ∈ B(E),

1
t

∫ t

0
EQ

0,x ( f (Xs))ds −→
t→∞

EQ
0,βγ

(
1
γ

∫ γ

0
f (Xs)ds

)
.

Hence the condition (16) is satisfied. We conclude the proof using the second part of
Theorem 5. □

Remark 4. In [13], Höpfner and Kutoyants claimed their results for Markov processes with
continuous paths. It is easy to see using their arguments that the statement in Theorem 2.1. can
be generalized to any time-inhomogeneous Markov processes (X t )t∈I such that the condition
of periodicity (21) is satisfied and the chain (Xnγ )n∈Z+

is Harris recurrent. See also Proposition
5 of [14].

4.2. Quasi-ergodic distribution when A converges at infinity

In this subsection, we assume that A is non-increasing and let A∞ be as defined in (3). In
what follows, we will first state the existence and uniqueness of a quasi-limiting distribution
under these assumptions. Then we will deal with quasi-ergodic distribution.

4.2.1. Quasi-limiting distribution
First we state the following proposition which will be useful to prove the theorem on the

existence and the uniqueness of the quasi-limiting distribution.

Proposition 2. Under Assumptions (A′), for any B ∈ E , the quantities

lim sup
t→∞

Ps,µ(X t ∈ B|τA > t) and lim inf
t→∞

Ps,µ(X t ∈ B|τA > t)

do not depend on any couple (s, µ) such that µ ∈ M1(Es).

Proof of Proposition 2. We recall the statement of [9, Theorem 2.1], which is adapted to our
case:

Theorem 7 (Theorem 2.1., [9]). For any s ∈ I , for any µ1, µ2 ∈ M1(Es), for any t ≥ s + t0,

∥Ps,µ1 (X t ∈ ·|τA > t) − Ps,µ2 (X t ∈ ·|τA > t)∥T V ≤ 2(1 − c1c2)
⌊

t−s
t0

⌋
. (22)

Let B ∈ E . First we remark that, for s fixed, lim supt→∞ Pµ(X t ∈ B|τA◦θs > t) does not
depend on µ ∈ M1(Es). This is straightforward since, thanks to (22), for any s ≥ 0 and any
µ1, µ2 ∈ M1(Es),

∥Ps,µ1 (X t ∈ ·|τA > t) − Ps,µ2 (X t ∈ ·|τA > t)∥T V −→
t→0

0,
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which implies that, for any s ≥ 0 and µ1, µ2 ∈ M1(Es),

lim sup
t→∞

Ps,µ1 (X t ∈ B|τA > t) = lim sup
t→∞

Ps,µ2 (X t ∈ B|τA > t). (23)

Now for any u ≥ 0, recalling the notation φt,s(µ) = Ps,µ(Xs+u ∈ ·|τA > s + u) for any s ≤ t
and µ ∈ M1(Es),

lim sup
t→∞

Ps,µ(X t ∈ B|τA > t) = lim sup
t→∞

Ps,µ(X t+u ∈ B|τA > t + u)

= lim sup
t→∞

Ps+u,φu+s,s (µ)(X t ∈ B|τA > t)

= lim sup
t→∞

Ps+u,ν(X t ∈ B|τA > t), (24)

where we used first the semi-flow property of (φt,s)s≤t , and then (23) with a given probability
measure ν ∈ M1(Es+u).

Hence (24) show that lim supt→∞ Ps,µ(X t ∈ B|τA > t) does not depend on any couple
(s, µ) satisfying s ∈ I and µ ∈ M1(Es). A similar reasoning shows that lim inft→∞ Ps,µ(X t ∈

B|τA > t) does not depend on s and µ either. □

Before showing the existence of a quasi-limiting and a quasi-ergodic distribution, let us state
the following proposition providing a uniform-in-time convergence of the time-inhomogeneous
conditioned semi-group towards the time-homogeneous limit semi-group.

Proposition 3. Under Assumptions (Hhom) and (H∞), for any x ∈ E0,

lim
s→∞

sup
0≤t≤T

∥Ps,x (X t+s ∈ ·|τA > s + T ) − Px (X t ∈ ·|τA∞
> T )∥T V = 0. (25)

Remark 5. Taking T = t , (25) implies that, for any x ∈ E0,

lim
s→∞

sup
t≥0

∥Ps,x (X t+s ∈ ·|τA > s + t) − Px (X t ∈ ·|τA∞
> t)∥T V = 0.

This is actually a stronger version than the definition of asymptotic pseudotrajectories as
introduced by Benaı̈m and Hirsch in [3], for which the supremum is usually only taken on
a compact set of time. In a practical way, it is difficult to use the weak version to show the
convergence of the time-inhomogeneous semi-flow; considering instead a uniform convergence
on R+ will be useful for our purpose. The interested reader can see [2] for more details about
asymptotic pseudotrajectories.

Proof of Proposition 3. Let x ∈ E0. Then for any 0 ≤ t ≤ T , s ≥ 0 and B ∈ E ,

|Ps,x (X t+s ∈ B|τA > s + T ) − Px (X t ∈ B|τA∞
> T )|

= |Ps,x (X t+s ∈ B|τA > s + T ) − Ps,x (Xs+t ∈ B|τA∞
> s + T )|

=

⏐⏐⏐⏐Ps,x (τA∞
> s + T )

Ps,x (τA > s + T )
Ps,x (X t+s ∈ B, τA > s + T )

Ps,x (τA∞
> s + T )

−
Ps,x (Xs+t ∈ B, τA∞

> s + T )
Ps,x (τA∞

> s + T )

⏐⏐⏐⏐
≤

⏐⏐⏐⏐Ps,x (τA∞
> s + T )

Ps,x (τA > s + T )
Ps,x (Xs+t ∈ B, τA > s + T )

Ps,x (τA∞
> s + T )

−
Ps,x (X t+s ∈ B, τA > s + T )

Ps,x (τA∞
> s + T )

⏐⏐⏐⏐
+

⏐⏐⏐⏐Ps,x (Xs+t ∈ B, τA > s + T )
Ps,x (τA∞

> s + T )
−

Ps,x (Xs+t ∈ B, τA∞
> s + T )

Ps,x (τA∞
> s + T )

⏐⏐⏐⏐
≤

⏐⏐⏐⏐Ps,x (τA∞
> s + T )

Ps,x (τA > s + T )
− 1

⏐⏐⏐⏐× Ps,x (Xs+t ∈ B, τA > s + T )
Ps,x (τA∞

> s + T )
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+

⏐⏐⏐⏐Ps,x (Xs+t ∈ B, τA > s + T ) − Ps,x (Xs+t ∈ B, τA∞
> s + T )

Ps,x (τA∞
> s + T )

⏐⏐⏐⏐
≤

⏐⏐⏐⏐Ps,x (τA∞
> s + T )

Ps,x (τA > s + T )
− 1

⏐⏐⏐⏐+ Ps,x (τA ≤ s + T < τA∞
)

Ps,x (τA∞
> s + T )

,

where we used several times the fact that A∞ ⊂ At for any t (in particular to say that
Ps,x (τA > s + u) ≤ Ps,x (τA∞

> s + u) for any u ≥ 0). Hence it is enough to prove that

sup
t≥0

Ps,x (τA ≤ s + t < τA∞
)

Px (τA∞
> t)

−→
s→∞

0. (26)

As a matter of fact, (26) is equivalent to

sup
t≥0

⏐⏐⏐⏐Ps,x (τA > s + t)
Px (τA∞

> t)
− 1

⏐⏐⏐⏐ −→
s→∞

0.

and it is easy to check that, for general functions (s, t) → f (s, t), ( f (s, ·))s≥0 converges
uniformly towards the constant function equal to 1 if and only if

(
1

f (s,·)

)
s≥0

also converges
uniformly towards 1.

Fix t ≥ 0. Since A is non-increasing, for any s < s ′,

Ps,x (τA ≤ s + t < τA∞
)

Px (τA∞
> t)

≥
Ps′,x (τA ≤ s ′

+ t < τA∞
)

Px (τA∞
> t)

.

Moreover, using the convergence in law for the hitting times of Assumption (Hhom), one has,
for any t ≥ 0,

Ps,x (τA ≤ s + t < τA∞
)

Px (τA∞
> t)

−→
s→∞

0.

Finally, by the strong Markov property of Assumption (Hhom), for any t ≥ 0,

Ps,x (τA ≤ s + t < τA∞
) = Es,x (1τA≤s+tφ(XτA , τA, t + s)),

where φ(·, ·, ·) is defined as follows

∀z ∈ E∞,∀0 ≤ u ≤ t, φ(z, u, t) = Pz(τA∞
> t − u).

By Assumption (H∞), there exists a unique quasi-stationary distribution α∞ for the process
(X t )t∈I absorbed at A∞. Then we recall (see [10,16]) that there exists λ∞ > 0 such that

Pα∞
(τA∞

> t) = e−λ∞t , ∀t ≥ 0.

In [6] it is shown (Proposition 2.3.) that, under (H∞), there exists a positive bounded function
η∞ defined on (0,∞) such that

η∞(x) = lim
t→∞

eλ∞tPx (τA∞
> t), ∀x ∈ E∞. (27)

where the convergence holds for the uniform norm on E∞. Thus, by [Proposition 2.3, [6]],
1τA≤t+s

φ(XτA ,τA,t+s)
Px (τA∞

>t) is uniformly bounded and converges almost surely towards 1τA<∞eλ∞τA

η∞(XτA )
η∞(x) . Then, by the bounded Lebesgue’s convergence theorem, for any s ≥ 0,

lim
t→∞

Ps,x (τA ≤ s + t < τA∞
)

Px (τA∞
> t)

= lim
t→∞

Es,x

(
1τA≤s+t

φ(XτA , τA, t + s)
Px (τA∞

> t)

)
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= Es,x

(
1τA<∞eλ∞τA

η∞(XτA )
η∞(x)

)
.

For any s ≥ 0, we can therefore define fs : t →
Ps,x (τA≤s+t<τA∞

)
Px (τA∞

>t) on the Alexandroff extension
R+ ∪ {∞} setting

fs(∞) := lim
t→∞

Ps,x (τA ≤ s + t < τA∞
)

Px (τA∞
> t)

= Es,x

(
1τA<∞eλ∞τA

η∞(XτA )
η∞(x)

)
.

Then, like any t ∈ R, ( fs(∞))s≥0 is non-increasing and since η∞ vanishes on A∞ and
η∞ is continuous (this is due to the state-continuity of Assumption (Hhom) and the uniform
convergence (27)),

lim
s→∞

fs(∞) = lim
s→∞

Es,x

(
1τA<∞eλ∞τA

η∞(XτA )
η∞(x)

)
= 0.

We conclude to the uniform convergence (26) using Dini’s theorem for a non-increasing
sequence of functions. □

Now one will prove Theorem 3 stated in Section 2, which is recalled below:

Theorem 8. Under Assumptions (A′), (Hhom) and (H∞), for any µ ∈ M1(E0),

Pµ(X t ∈ ·|τA > t)
(d)

−→
t→∞

α∞,

where α∞ is the quasi-stationary distribution defined in Assumption (H∞).

Proof of Theorem 8 (Theorem 3). Fix B ∈ E and note that, by Assumption (H∞), for any
µ ∈ M1(E∞),

lim sup
t→∞

Pµ(X t ∈ B|τA∞
> t) = lim inf

t→∞
Pµ(X t ∈ B|τA∞

> t) = α∞(B),

where we recall that α∞ is the quasi-stationary distribution of (X t )t∈I absorbed at A∞. By
Proposition 2, for a given s ∈ I , lim supt→∞ Ps,µ(X t ∈ B|τA > t) and lim inft→∞ Ps,µ(X t ∈

B|τA > t) do not depend on µ ∈ M1(Es). Denote therefore by Fsup and Fin f the functions
defined by, for any s ≥ 0 and any µ ∈ M1(Es),

Fsup(s) := lim sup
t→∞

Ps,µ(Xs+t ∈ B|τA > s + t) = lim sup
t→∞

Ps,x (Xs+t ∈ B|τA > s + t)

and

Fin f (s) := lim inf
t→∞

Ps,µ(Xs+t ∈ B|τA > s + t) = lim inf
t→∞

Ps,x (Xs+t ∈ B|τA > s + t)

for a given x ∈ E0. Then Fsup and Fin f do not depend on s either (by Proposition 2), hence
for any s ≥ 0,

Fsup(s) = lim
u→∞

Fsup(u),

and

Fin f (s) = lim
u→∞

Fin f (u).

Moreover, by the uniform convergence (25) of Proposition 3,

lim
u→∞

Fsup(u) = lim
u→∞

lim sup
t→∞

Pu,x (Xu+t ∈ B|τA > u + t)
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= lim sup
t→∞

Px (X t ∈ B|τA∞
> t)

= α∞(B).

Similarly,

lim
u→∞

Fin f (u) = α∞(B).

Hence, for any s ≥ 0 and µ ∈ M1(Es),

lim sup
t→∞

Ps,µ(X t ∈ B|τA > t) = lim inf
t→∞

Ps,µ(X t ∈ B|τA > t) = α∞(B). □

Remark 6. It can be interesting to compare this result and this proof with the one of [1,
Theorem 3.11] obtained by Bansaye et al. In particular, they used a different property of
asymptotic homogeneity, which is uniform-in-state in their case.

4.2.2. Quasi-ergodic distribution
Now we can state the existence and uniqueness of the quasi-ergodic distribution:

Theorem 9. Under the assumptions of Theorem 8, for any µ ∈ M1(E0),

1
t

∫ t

0
Px (Xs ∈ ·|τA > t)ds

(d)
−→
t→∞

β∞,

where β∞ is the unique invariant measure of the Q-process of (X t )t≥0 absorbed by A∞.

Proof of Theorem 9. We will show that the Q-process converges weakly towards a probability
measure. Fix B ∈ E . Since we have the following inequality shown in Theorem 3.3 of [9]

∥Qs,µ1 (X t ∈ ·) − Qs,µ2 (X t ∈ ·)∥T V ≤ 2(1 − c1c2)
⌊

t−s
t0

⌋
,

for any µ1, µ2 ∈ M1(Es). We get therefore that

lim sup
t→∞

Qs,µ1 (X t ∈ B) = lim sup
t→∞

Qs,µ2 (X t ∈ B),

and we can therefore use the reasoning of the proof of Proposition 2 to show that, for any
s, u ∈ I , for any µ, ν ∈ M1(Es) × M1(Es+u),

lim sup
t→∞

Qs,µ(X t ∈ B) = lim sup
t→∞

Qs+u,ν(X t ∈ B).

In particular, for any s ≥ 0, µ ∈ M1(Es) and x ∈ E0,

lim sup
t→∞

Qs,µ(X t ∈ B) = lim
u→∞

lim sup
t→∞

Qu,x (X t ∈ B).
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By the uniform convergence (25) of Proposition 3, for any s ≥ 0, µ ∈ M1(Es) and x ∈ E0,

lim sup
t→∞

Qs,µ(X t ∈ B) = lim
u→∞

lim sup
t→∞

Qu,x (Xu+t ∈ B)

= lim
u→∞

lim sup
t→∞

lim
T →∞

Pu,x (Xu+t ∈ B|τA > u + T )

= lim sup
t→∞

lim
T →∞

Px (X t ∈ B|τA∞
> T )

= lim sup
t→∞

Q∞

x (X t ∈ B),

where, for any x ∈ E∞,

Q∞

x (X t ∈ B) = lim
T →∞

Px (X t ∈ B|τA∞
> T )

is well-defined by [6, Theorem 3.1] under Assumption (H∞). This theorem states moreover
that (X t )t∈I admits under (Q∞

x )x∈E∞
a unique invariant measure β∞ and for any x ∈ E∞,

lim
t→∞

Q∞

x (X t ∈ ·) = β∞.

Thus, for any B ∈ E , s ≥ 0 and x ∈ Es ,

lim sup
t→∞

Qs,x (X t ∈ B) = β∞(B)

= lim inf
t→∞

Qs,x (X t ∈ B).

Finally, thanks to the convergence in law of the Q-process we just prove, we can deduce the
weak ergodic theorem using Cesaro’s rule

lim
t→∞

1
t

∫ t

0
Q0,x (Xs ∈ ·)ds = β∞.

Hence the condition (16) holds. As a result we can apply the second part of Theorem 5 and
conclude the proof. □

5. Example: Diffusion on R

Let (X t )t≥0 be a diffusion on R satisfying the following stochastic differential equation

d X t = dWt − V (X t )dt, (28)

where (Wt )t∈R+
is Brownian motion on R and V ∈ C1(R). We assume that, under Px , there

exists a strongly unique non explosive solution of (28) such that X0 = x almost surely.
Let h be a positive bounded C1-function. We define τh the random time defined by

τh = inf{t ≥ 0 : X t ≤ h(t)}.

Let us also recall the definition of the semi-flow (φt,s)s≤t when the absorbing boundary is h:

φt,s : µ ↦→ Ps,µ(X t ∈ ·|τh > t), ∀s ≤ t.

5.1. Preliminaries on one-dimensional diffusion processes coming down from infinity

We assume that (X t )t∈R+
comes down from infinity (in the sense given in [5]), that is, there

exists y > hmax := sups≥0 h(s) and t > 0 such that

lim
x→∞

Px (τy < t) > 0, (29)
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where, for any z ∈ R,

τz := inf{t ≥ 0 : X t = z}.

In this case, as remarked in the subsection 4.5.2. of [7], (X t )t≥0 satisfies then∫ 1

0

1
x

(
sup

y∈(z,Λ−1
z (x)]

1
Λz(y)

∫ y

z
Λz(ξ )2m(dξ )

)
dx < ∞,

where, for any z ≥ 0, Λz is the scale function of X satisfying Λz(z) = 0 and defined by

Λz(x) =

∫ x

z
e2
∫ y

0 V (ξ )dξdy, ∀x ≥ z (30)

and m is the speed measure of (X t )t≥0 defined by

m(dξ ) = 2e−2
∫ ξ

0 V (ξ ′)dξ ′

dξ.

In particular, for any z ≥ 0, the process Y z
:= (Λz(X t ))t≥0 is a local martingale and, since X

is solution of (28), by Itô’s formula, for any t ≥ 0,

Y z
t = Y z

0 +

∫ t

0
Λ′

z(Λ
−1
z (Y z

s ))dWs .

Note that Λ′
z = Λ′

0 = e2
∫

·

0 V (ξ )dξ for any z. So denoting for any x, z ≥ 0 σz(x) := Λ′
z(Λ

−1
z ) =

Λ′

0(Λ−1
z ), one has

dY z
t = σz(Y z

t )dWt .

Adapting [7, Theorem 4.6] for general diffusion processes, we deduce that for any t > 0,
there exists Az

t < ∞ such that

Px (t < τz) ≤ Az
t Λz(x), ∀x ≥ z.

So let u1 ≥ 0 be arbitrarily chosen. One has for any z ≥ 0,

Px (u1 < τz) ≤ Az
u1
Λz(x), ∀x ≥ z (31)

or, equivalently,

PΛ−1
z (x)(u1 < τz) ≤ Az

u1
x, ∀x ≥ 0.

Denoting for any r ≥ 0 and for any process (Rt )t≥0 τr (R) := inf{t ≥ 0 : Rt = r}, one has for
any z ≥ 0 and x ≥ r ,

PΛ−1
z (x)(u1 < τΛ−1

z (r )) = P
(
τr (Y z) > u1

⏐⏐Y z
0 = x

)
.

Since z → Λ−1
z (x) is increasing for any x > 0, then, for any x > 0 and for any z ≥ z′,

σz(x) ≥ σz′ (x). (32)

Thus, using the same reasoning as in the proof of Lemma 4.2. in the paper [9], it is possible
to show that (32) implies that, for any z ≥ z′ and x ≥ r

P
(
τr (Y z′

) > u1

⏐⏐⏐Y z′

0 = x
)

≥ P
(
τr (Y z) > u1

⏐⏐⏐Ỹ z
0 = x

)
or, equivalently,

PΛ−1
z (x)(u1 < τΛ−1

z (r )) ≤ PΛ−1
z′

(x)(u1 < τΛ−1
z′

(r )). (33)



Please cite this article as: W. Oçafrain, Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.09.019.

20 W. Oçafrain / Stochastic Processes and their Applications xxx (xxxx) xxx

Taking z′
= r = 0, for any x ≥ 0,

PΛ−1
z (x)(u1 < τz) ≤ PΛ−1

0 (x)(u1 < τ0) ≤ A0
u1

x, ∀x ≥ 0.

In conclusion, one has, for any z ≥ 0,

Px (u1 < τz) ≤ A0
u1
Λz(x), ∀x ≥ z. (34)

One sets A := A0
u1

. Let us now state and prove the following lemma.

Lemma 2. There exists u0 ≥ 0, κ > 0 a family of probability measures (ψz)z∈[0,hmax ] such
that, for any z ∈ [0, hmax ],

Px (Xu ∈ ·|τz > u) ≥ κψz, ∀x > z,∀u > u0. (35)

The difference between this lemma and [7, Theorem 4.1] is that the time u0 and the constant
κ do not depend on z. The sketch of the proof is inspired from the proof of the Theorem 4.1
presented in [7, Subsection 5.1].

Proof of Lemma 2. The following proof is divided into two steps.

Step 1.: Mimicking the Step 1 in the proof of [7, Theorem 4.1]
The aim of this first step is to prove that there exist ϵ, c > 0 not depending on z such that

Px (Λz(Xu1 ) ≥ ϵ|τz > u1) ≥ c, ∀x > z. (36)

Since, for any z ∈ [0, hmax ], Λz(X ) is a local martingale, one has for any x ∈ (z,Λ−1
z (1)),

Λz(x) = Ex (Λz(Xu1∧τz∧τ
Λ−1

z (1)
))

= Px (τz > u1)Ex (Λz(Xu1∧τ
Λ−1

z (1)
)|τz > u1) + Px (τΛ−1

z (1) < τz ≤ u1).

By Markov property,

Px (τΛ−1
z (1) < τz ≤ u1) ≤ Ex (1τ

Λ−1
z (1)

<τz∧u1PΛ−1
z (1)(τz ≤ u1))

≤ Px (τΛ−1
z (1) < τz)PΛ−1

z (1)(τz ≤ u1)

= Λz(x)PΛ−1
z (1)(τz ≤ u1),

where the following identity is used

Px (τa < τb) =
Λz(x) − Λz(b)
Λz(a) − Λz(b)

, ∀x ∈ [a, b].

As a result, using (34), one has, for any x ∈ (z,Λ−1
z (1)),

Ex (1 − Λz(X1∧τ
Λ−1

z (1)
)|1 < τz) ≤ 1 −

1
A′

z
,

where A′
z := A/PΛ−1

z (1)(u1 < τz). But, since z ∈ [0, hmax ], the inequality (33) applied to r = 0
implies that

PΛ−1
z (1)(u1 < τz) ≥ PΛ−1

hmax
(1)(u1 < τhmax ).

So, defining A′
:= A/PΛ−1

hmax
(1)(u1 < τhmax ), one has

Ex (1 − Λz(Xu1∧τ
Λ−1

z (1)
)|u1 < τz) ≤ 1 −

1
A′
, ∀x ∈ (z,Λ−1

1 (1)).
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Thus, using Markov’s inequality,

Px

(
Λz(Xu1∧τ

Λ−1
z (1)

) ≤
1

2A′ − 1

⏐⏐⏐⏐τz > u1

)
≤ 1 −

1
2A′

.

Then, since A′ > 1 by (34), 1/(2A′
− 1) < 1. Thus, for any ϵ ∈ (0, 1/(2A′

− 1)) and
x ∈ (z,Λ−1

z (1/(2A′
− 1))),

Px (Λz(Xu1 ) ≥ ϵ, τz > u1)
≥ Px (τΛ−1

z (1/(2A′−1)) < u1 ∧ τz, τΛ−1
z (ϵ) ◦ θτ

Λ−1
z (1/(2A′−1))

> u1 + τΛ−1
z (1/(2A′−1)))

= Px (τΛ−1
z (1/(2A′−1)) < u1 ∧ τz)PΛ−1

z (1/(2A′−1))(τΛ−1
z (ϵ) > u1)

≥ Px

(
Λz(Xu1∧τ

Λ−1
z (1)

∧τz ) ≥ 1/(2A′
− 1)

)
PΛ−1

z (1/(2A′−1))(τΛ−1
z (ϵ) > u1)

≥
Px (τz > u1)

2A′
PΛ−1

z (1/(2A′−1))(τΛ−1
z (ϵ) > u1)

≥
Px (τz > u1)

2A′
PΛ−1

hmax
(1/(2A′−1))(τΛ−1

hmax
(ϵ) > u1),

where (33) is used again. So, if ϵ is chosen such that PΛ−1
hmax

(1/(2A′−1))(τΛ−1
hmax

(ϵ) > u1) > 0 (it is
possible since PΛ−1

hmax
(1/(2A′−1))(τz > u1) > 0), then there exist ϵ ∈ (0, 1/(2A′

− 1)) and c > 0

(not depending on z) such that, for any x ∈ (z,Λ−1
z (1/(2A′

− 1))),

Px (Λz(Xu1 ) ≥ ϵ|τz > u1) ≥ c.

For x ≥ Λ−1
z (1/(2A′

− 1)),

Px (Λz(Xu1 ) > ϵ|τz > u1) ≥ Px (Λz(Xu1 ) > ϵ, τz > u1)
≥ Px (τΛ−1

z (ϵ) > u1)

≥ PΛ−1
z (1/(2A′−1))(τΛ−1

z (ϵ) > u1)

≥ PΛ−1
hmax

(1/(2A′−1))(τΛ−1
hmax

(ϵ) > u1) > 0.

Finally, there exist ϵ ∈ (0, 1/(2A′
− 1)) and c > 0 (not depending on z) such that, for any

x ≥ z,

Px (Λz(Xu1 ) ≥ ϵ|τz > u1) ≥ c.

Step 2. Mimicking the steps 2 and 3 in the proof of [7, Theorem 4.1].
Now, taking the exact same reasoning as the one presented in the second step of the proof

of Theorem 4.1 [7, Subsection 5.1], one can prove that, for any z ∈ [0, hmax ], for all x ≥ ϵ,

PΛ−1
z (ϵ)(Λz(Xu2,z ) ∈ ·, τz > u2,z) ≥ c1,zψz,

where

• u2,z can be any time satisfying c′

1,z := infy>z Py(τz < u2,z) > 0,
• c1,z := c′

1,zPΛ−1
z (ϵ)(τz > u2,z),

• and ν̃z := PΛ−1
z (ϵ)(Λz(Xu2,z ) ∈ ·|τz > u2,z).

In particular, for z = 0, one chooses u2,0 such that

inf
y>0

Py(τ0 < u2,0) > 0. (37)
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Hence, for any z ∈ [0, hmax ] and x > z,

Px (τz < u2,0) ≥ Px (τ0 < u2,0) ≥ inf
y>0

Py(τ0 < u2,0) = c′

1,0.

Hence, for any z ∈ [0, hmax ],

c′

1,z = inf
x>z

Px (τz < u2,0) > c′

1,0.

In other words, we can set for any z ∈ [0, hmax ]

u2,z = u2,0.

Hence, one can define for any z ∈ [0, hmax ],

c1,z := c′

1,zPΛ−1
z (ϵ)(τz > u2,0), ν̃z := PΛ−1

z (ϵ)(Λz(Xu2,0 ) ∈ ·|τz > u2,0).

As a result, doing the same computation as those presented in Step 3 of the proof of Theorem
4.1 in [7], and defining u0 := u1 + u2,0, for any x > z,

Px (Λz(Xu0 ) ∈ ·|τz > u0) ≥ c1,zcν̃z ≥ cc′

1,0PΛ−1
hmax

(ϵ)(τhmax > u2,0)ν̃z .

In conclusion, to get (almost) (35), one has to set κ := cc′

1,0PΛ−1
hmax

(ϵ)(τhmax > u2,0) and
ψz := PΛ−1

z (ϵ)(Xu2,0 ∈ ·|τz > u2,0) and one has

Px (Xu0 ∈ ·|τz > u0) ≥ κψz, ∀x > z. (38)

To get (35) exactly, just note that Lemma 1 (seen in the proof of Theorem 5) can be applied
to the conditional probability Px (Xu ∈ ·|τz > u), in such a way that the inequality (38) holds
for any u greater than u0. □

5.2. Periodic absorbing function

Before showing that the Assumption (A′) is satisfied when h is periodic or converging, we
will need to give some hypothesis on the function V as defined in (28). In both cases we will
deal with, the absorbing function h will be Lipschitz, i.e.

L := sup
s≤t

|h(t) − h(s)|
|t − s|

< ∞.

Now we state the assumption we need on the function V

Assumption 1 (Hypothesis on V ).

• V is such that the process X satisfying (28) comes down from infinity.
• V is positive and increasing on [−Lu0,∞) (where u0 is mentioned in Lemma 2).
• supx∈R V ′(x) − V 2(x) < ∞.

Note that the functions V : x → (x − c)α with α > 1 and c > 0 are suitable functions.
Now the following proposition is stated and proved:

Proposition 4. Let (X t )t≥0 be a diffusion process following (28), such that Assumption 1 is
satisfied. Assume moreover that h is a periodic function, with period γ > 0.
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Then Assumption (A′) holds. In particular, there exists a probability measure βγ such that,
for any x > h(0),

1
t

∫ t

0
Px (Xs ∈ ·|τA > t)ds −→

t→∞
βγ .

Proof of Proposition 4. We will show that the two points in Assumption (A′) are satisfied.

1. Denote by Tmax the set defined by

Tmax = {t ≥ 0 : h(t) = hmax }.

where we recall that hmax = sups≥0 h(s). The main part of this proof is to show that
there exists Cmax > 0 such that, for any s ∈ Tmax and any u ∈ [u0, u0 + γ ]

Ps,x (Xs+u ∈ ·|τh > s + u) ≥ Cmaxψhmax , ∀x > hmax . (39)

where u0 and ψhmax are defined in Lemma 2. Then we will generalize (39) to any s ≥ 0
using Markov property.

First step: Proof of (39)
Let s ∈ Tmax . For any x > hmax , for any t ≥ 0,

Ps,x (X t+s ∈ ·|τh > s + t) ≥
Px (τhmax > t)

Ps,x (τh > s + t)
Px (X t ∈ ·|τhmax > t).

Using the Champagnat–Villemonais type condition (35) for z = hmax , for any u ≥ u0,

Px (Xu ∈ ·|τhmax > u) ≥ κψhmax , ∀x ∈ (hmax ,∞)

Then we obtain for any u0 ≤ u ≤ u0 + γ ,

Ps,x (Xs+u ∈ ·|τh > s + u) ≥
Px (τhmax > u)

Ps,x (τh > s + u)
κψhmax

≥
Px (τhmax > u0 + γ )
Ps,x (τh > s + u0)

κψhmax .

Recalling that h is Lipschitz and that we defined L = sups≤t
|h(t)−h(s)|

|t−s| , for any x ∈

(hmax ,∞),
Px (τhmax > u0 + γ )
Ps,x (τh > s + u0)

≥
Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

,

where

τu→hmax −Lu := inf{t ≥ 0 : X t = hmax − Lt}.

To show that

inf
x∈(hmax ,∞)

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

> 0

using a continuity argument, it is enough to show that

lim inf
x→hmax

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

> 0 (40)

and

lim inf
x→∞

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

> 0. (41)
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(41) is obvious since

lim inf
x→∞

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

≥ lim
x→∞

Px (τhmax > u0 + γ ) > 0.

Thus let us focus on (40). Our strategy will be to reduce the study to the case of a
Brownian motion. Denote by (Mt )t≥0 the exponential local martingale defined by, for
any t ,

Mt := exp
(

−

∫ t

0
V (Ws)dWs −

1
2

∫ t

0
V 2(Ws)ds

)
= exp

(
F(W0) − F(Wt ) +

1
2

∫ t

0
(V ′(Ws) − V 2(Ws))ds

)
,

where F is a primitive of V that we choose as a positive function on [−Lu0,∞) (it is
possible since F is necessarily non-decreasing by the assumptions on V ). Under Px for
x ∈ (hmax , hmax + 1], W0 = x almost surely. Moreover denote by τW

hmax
and τW

u→hmax −Lu
the following random times:

τW
hmax

:= inf{t ≥ 0 : Wt = hmax },

τW
u→hmax −Lu := inf{t ≥ 0 : Wt = hmax − Lt}.

Thus, since F is non-decreasing, the stopped local martingale (Mt∧u0∧τW
u→hmax −Lu

)t≥0 is

almost surely bounded by exp
(
F(hmax + 1) +

u0
2 supy∈R V ′(y) − V 2(y)

)
and is therefore

a martingale. Likewise, the stopped local martingale (Mt∧u0+γ∧τW
hmax

)t≥0 is also a
martingale. By Girsanov’s theorem,

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

=

Ex

(
1τW

hmax
>u0+γ Mu0+γ∧τW

hmax

)
Ex

(
1τW

u→hmax −Lu>u0
Mu0∧τW

u→hmax −Lu

)
=

Ex

(
1τW

hmax
>u0+γ Mu0+γ

)
Ex

(
1τW

u→hmax −Lu>u0
Mu0

) .
For any x ∈ (hmax , hmax + 1],

Ex (1τW
hmax

>u0+γ Mu0+γ ) ≥ Ex

(
1τW

hmax
>u0+γ Mu0+γ1sups∈[0,u0+γ ] Ws≤hmax +2

)
.

On the event {sups∈[0,u0+γ ] Ws ≤ hmax + 2},

Mu0+γ ≥ exp
(

−F(hmax + 2) +
u0 + γ

2
inf

s∈[hmax ,hmax +2]
(V ′(s) − V 2(s))

)
=: M̃u0+γ .

As a result,

Ex (1τW
hmax

>u0+γ Mu0+γ ) ≥ M̃u0+γEx

(
1τW

hmax
>u0+γ1sups∈[0,u0+γ ] Ws≤hmax +2

)
≥ M̃u0+γPx

(
τW

hmax
> u0 + γ

)
inf

y∈(hmax ,hmax +1]
Py

×

(
sup

s∈[0,u0+γ ]
Ws ≤ hmax + 2

⏐⏐⏐⏐τW
hmax

> u0 + γ

)
.
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Noting that

lim
y→hmax

Py

(
sup

s∈[0,u0+γ ]
Ws ≤ hmax + 2

⏐⏐⏐⏐τW
hmax

> u0 + γ

)
= P

(
sup

s∈[0,u0+γ ]
W +

s ≤ 2

)
> 0,

where (W +
t )t≥0 is a Brownian meander (see [11], Theorem 2.1.), we deduce finally that

there exists c > 0 such that for any x ∈ (hmax , hmax + 1]

Ex (1τW
hmax

>u0+γ Mu0+γ ) ≥ cPx
(
τW

hmax
> u0 + γ

)
.

On the other side, as we said before, (Mt∧u0∧τW
u→hmax −Lu

)t≥0 is almost surely bounded by

exp
(
F(hmax + 1) +

u0
2 supy∈R V ′(y) − V 2(y)

)
. Hence there exists d > 0 such that, for

any x ∈ (hmax , hmax + 1],

Ex

(
1τW

u→hmax −Lu>u0
Mu0

)
≤ dPx (τW

u→hmax −Lu > u0).

As a result, for any (hmax , hmax + 1],

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

≥
c
d

Px (τW
hmax

> u0 + γ )

Px (τW
u→hmax −Lu > u0)

.

For any x > hmax , denote by pW
hmax

(x, ·) and pW
u→hmax −Lu(x, ·) the density functions of

τW
hmax

and τW
u→hmax −Lu which are known to be equal to

pW
hmax

(x, t) =
x − hmax
√

2π t3
exp

(
−

(x − hmax )2

2t

)
and

pW
u→hmax −Lu(x, t) =

x − hmax
√

2π t3
exp

(
−

1
2t

(x − hmax + Lt)2
)
.

Then, for any x ∈ (hmax , hmax + 1],

Px (τW
hmax

> u0 + γ )

Px (τW
u→hmax −Lu > u0)

=

∫
∞

u0+γ
pW

hmax
(x, t)dt∫

∞

u0
pW

u→hmax −Lu(x, t)dt
.

By l’Hôpital’s rule,

lim
x→hmax

Px (τW
hmax

> u0 + γ )

Px (τW
u→hmax −Lu > u0)

= lim
x→hmax

∫
∞

u0+γ
∂x pW

hmax
(x, t)dt∫

∞

u0
∂x pW

u→hmax −Lu(x, t)dt

=

∫
∞

u0+γ
∂x pW

hmax
(hmax , t)dt∫

∞

u0
∂x pW

u→hmax −Lu(hmax , t)dt
> 0.

As a result,

lim inf
x→hmax

Px (τhmax > u0 + γ )
Px (τu→hmax −Lu > u0)

≥
c
d

lim
x→hmax

Px (τW
hmax

> u0 + γ )

Px (τW
u→hmax −Lu > u0)

> 0.

In conclusion, infx∈(hmax ,∞)
Px (τhmax>u0+γ )

Px (τu→hmax −Lu>u0) > 0 and (39) holds with Cmax = κ ×

infx∈(hmax ,∞)
Px (τhmax>u0+γ )

Px (τu→hmax −Lu>u0) .
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Second step: Generalization and conclusion
Now let s ≥ 0. Then there exists s ′

≥ 0 such that s + s ′
∈ Tmax . As a result we can

construct a function g : R+ → R+ as follows

g(s) = inf{s ′
≥ 0 : s + s ′

∈ Tmax }. (42)

In particular, g(s) = 0 if s ∈ Tmax . Since h is a continuous function, s + g(s) ∈ Tmax

for any s ≥ 0. Moreover, since h is γ -periodic, then for any s ≥ 0, g(s) ≤ γ .
Thus, by the semi-flow property of (φt,s)s≤t , one has for any x ∈ Es ,

Ps,x (Xs+u0+γ ∈ ·|τh > s + u0 + γ ) = φs+u0+γ,s(δx )

= φs+u0+γ,s+g(s) ◦ φs+g(s),s(δx )

= Ps+g(s),φs+g(s),s (δx )(Xs+u0+γ ∈ ·|τh > s + u0 + γ ).

Now by (39), for any x > h(s),

Ps+g(s),φs+g(s),s (δx )(Xs+u0+γ ∈ ·|τh > s + u0 + γ ) ≥ Cmaxψhmax .

since u0 + γ − g(s) ∈ [u0, u0 + γ ]. Hence, for any s ≥ 0 and x > h(s),

Ps,x (Xs+u0+γ ∈ ·|τh > s + u0 + γ ) ≥ Cmaxψhmax .

As a result the first condition in Assumption (A′) holds denoting for any s ≥ 0,

νs = ψhmax ,

t0 = γ + u0, (43)

c1 = Cmax .

2. For the second condition of Assumption (A′), we will use some part of the proof of [7,
Theorem 4.1]. First we recall [7, Lemma 5.1] :
Lemma 3 (Lemma 5.1., [7]). There exists a > hmax such that ψhmax ([a,∞)) > 0 and,
for any k ∈ N,

Pa(Xku0∧τhmax
≥ a) ≥ e−ρku0 ,

with ρ > 0.
So let a be as in the previous lemma. It is shown in [7] that we can choose b > a large
enough such that

sup
x≥b

Ex (eρτb ) < ∞. (44)

Using Markov property, for any s ≥ 0, t ≥ 0, and for any s0 = k0γ with k0 ∈ N,

Ps,a(τh > s + t) ≥ Ps,a(τh > s + s0 ∧ τhmax + t)

≥ Ps,a(Xs+s0∧τhmax
≥ b, τh > s + s0 ∧ τhmax + t)

≥ Pa(Xs0∧τhmax
≥ b)Ps+s0,b(s + s0 + t < τh)

≥ Pa(Xs0∧τhmax
≥ b)Ps,b(s + t < τh).

Then, for s0 > 0 fixed, C := 1/Pa(Xs0∧τhmax
≥ b) < ∞, and for any s ≤ t ,

Ps,b(t < τh) ≤ CPs,a(t < τh).
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Thanks to Markov property again, for any u ≤ t ∈ R+

Pa(Xu∧τhmax
≥ a)Ps+u,a(s + t < τh) ≤ Ps,a(s + t < τh). (45)

According to Markov property, for any u ∈ R+,

Pa(Xu∧τhmax
≥ a) ≥ Pa(X⌊

u
u0

⌋u0∧τhmax
≥ a)Pa(X (u−⌊

u
u0

⌋u0)∧τhmax
≥ a)

≥ C ′Pa(X⌊
u

u0
⌋u0∧τhmax

≥ a), (46)

where

C ′
:= inf

v∈[0,u0]
Pa(Xv∧τhmax

≥ a) > 0

since v → Pa(Xv∧τhmax
≥ a) is continuous and Pa(Xv∧τhmax

≥ a) > 0 for any
v ∈ [0, u0]. Gathering all these inequalities and using also Lemma 3, for any x ≥ b,

Ps,x (t + s < τh) ≤ Px (τb > t) +

∫ t

0
Ps+u,b(t + s < τh)Px (τb ∈ du) (47)

≤ sup
x≥b

Ex (eρτb )e−ρt
+ C

∫ t

0
Ps+u,a(t + s < τh)Px (τb ∈ du)

≤ sup
x≥b

Ex (eρτb )e−ρ⌊t/u0⌋u0

+
C
C ′

Ps,a(s + t < τh)
∫ t

0

1
Pa(X⌊u/u0⌋u0∧τhmax

≥ a)

× Px (τb ∈ du)

≤ sup
x≥b

Ex (eρτb )eρu0e−ρ
(⌊

t
u0

⌋
+1
)

u0

+
C
C ′

Ps,a(t + s < τh)
∫ t

0
eρuPx (τb ∈ du)

≤ sup
x≥b

Ex (eρτb )eρu0Pa(X(⌊t/u0⌋+1)u0∧τhmax
≥ a)

+
C
C ′

Ps,a(t + s < τh)
∫ t

0
eρuPx (τb ∈ du)

≤ sup
x≥b

Ex (eρτb )eρu0Ps,a(τh > s + t)

+
C
C ′

Ps,a(t + s < τh)
∫ t

0
eρuPx (τb ∈ du). (48)

We deduce from (44) that, for any t ≥ 0,

sup
x≥b

Ps,x (t + s < τh) ≤ C ′′Ps,a(t + s < τh),

where

C ′′
=

(
eρu0 +

C
C ′

)
sup
x≥b

Ex (eρτb ) < ∞.

Since ψhmax ([a,∞)) > 0, we conclude the point 2. of Assumption (A′) setting

c2 =
1

C ′′
. □
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5.3. When h is decreasing and converges at infinity

Let us now state the main proposition of this subsection:

Proposition 5. Let (X t )t≥0 be a diffusion process following (28), such that Assumption 1 is
satisfied. Assume moreover that h is a decreasing C1-function going to 0 as t goes to infinity.

Then Assumption (A′) holds.

Since this is a diffusion process on R+, (X t )t≥0 satisfies the strong Markov property and
the two assumptions of continuity presented in Assumption (Hhom). Moreover, since t → X t is
continuous almost surely and, for any s ≥ 0, τh(s) is the hitting time of the closed set [−1, h(s)],
then τh(s)−→s→∞τ0 almost surely, which entails the convergence in law of the hitting times
of Assumption (Hhom). In other words, Assumption (Hhom) is satisfied for such a process and
Proposition 5 entails therefore the existence of a probability measure α on (0,+∞) such that,
for any x > h(0),

Pµ(X t ∈ ·|τh > t)
(d)

−→
t→∞

α.

Proof of Proposition 5.

1. Adapting exactly the same reasoning as Proposition 4, we can show that for any s ≥ 0
and any x > h(s),

Ps,x (Xs+u0 ∈ ·|τh > s + u0) ≥ d̃sκ0ψh(s),

where we recall that u0, κ0 and ψz are such that (35) holds, and where ds is defined by

d̃s =
Px (τh(s) > u0)

Px (τu→h(s)−Lu > u0)
.

We have therefore to show that

inf
s≥0

d̃s > 0.

For any z ∈ [0, h(0)] define (X (z)
t )t≥0 by the solution of

d X (z)
t = dWt − V (X (z)

t + z)dt.

In particular, X (0) (d)
= X . Likewise, for any y ∈ R and z ∈ [0, h(0)], we denote

τ (z)
y := inf{t ≥ 0 : X (z)

t = y} and τ (z)
u→y−Lu := inf{t ≥ 0 : X (z)

t = y − Lt}. Since V
is positive and increasing on [−Lu0,∞), then, using Theorem 1.1 in [[15], Chapter VI,
p.437], we can show that for any x > 0 and z ∈ [0, h(0)],

Px (τ (z)
0 > u0) ≥ Px (τ (h(0))

0 > u0)

and that

Px (τ (z)
u→−Lu > u0) ≤ Px (τ (0)

u→−Lu > u0).

Then, for any x > 0 and s ≥ 0,

Px+h(s)(τh(s) > u0) = Px (τ (h(s))
0 > u0)

≥ Px (τ (h(0))
0 > u0)

≥
Px (τ (h(0))

0 > u0)

Px (τ (0)
u→−Lu > u0)

Px+h(s)(τu→h(s)−Lu > u0).
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To conclude, it is enough to see that infx>0
Px (τ (h(0))

0 >u0)

Px (τ (0)
u→−Lu>u0)

> 0 using the same techniques

as the point 1 of Proposition 4.
As a result the first hypothesis of Assumption (A′) holds setting for any s ≥ 0,

νs =

{
ψh(0) if s ≤ u0
ψh(s−u0) if s > u0

t0 = u0,

c1 = κ0 × inf
s≥0

d̃s .

2. The reasoning is the same as the point 2. in the proof of Proposition 4 and the technical
computations could be hidden if they are already explicitly written for the periodic case.
Noting that, for any z ∈ [0, h(0)] and any y ≥ h(0), ψz([y,∞)) > 0, then, by Lemma
3, there exists a > h(0) such that, for any z ∈ [0, h(0)], ψz([a,∞)) > 0 and for any
k ∈ N

Pa(Xku0∧τh(0) ≥ a) ≥ e−ρku0 ,

where ρ > 0. We deduce that for any s ≥ 0

Pa(Xku0∧τh(s) ≥ a) ≥ e−ρku0 .

As in the proof of Proposition 4, we can choose b > a large enough such that

sup
x≥b

Ex (eρτb ) < ∞.

Since h is non-increasing, for any s, t ≥ 0 and s0 ≥ 0,

Ps+s0,b(τh > s + s0 + t) ≥ Ps,b(τh > s + t).

Hence, according to Markov property,

Ps,a(s + t < τh) ≥ Pa(Xs0∧τh(s) ≥ b)Ps,b(s + t < τh)

≥ Pa(Xs0∧τh(0) ≥ b)Ps,b(s + t < τh).

for any t ≥ 0 and any s0 ≥ 0. Hence, for s0 fixed, C :=
1

Pa (Xs0∧τh(0) ≥b) < ∞, and for any
s ≤ t ,

Ps,b(t < τh) ≤ CPs,a(t < τh).

Likewise, one finds an analog of the inequality (45)

Pa(Xu∧τh(s) ≥ a)Ps+u,a(t + s < τh) ≤ Ps,a(t < τh),

and using the same reasoning as for the inequality (46),

Pa(Xu∧τh(s) ≥ a) ≥ C ′Pa(X⌊
u

u0
⌋u0∧τh(s) ≥ a),

with

C ′
:= inf

v∈[0,u0]
Pa(Xv∧τh(0) ≥ a) > 0.

Hence, using these previous inequalities and doing again the array of computation
(47)–(48), we deduce that, for any s ≤ t ,

sup
x≥b

Ps,x (t < τh) ≤ C ′′Ps,a(t < τh),
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where

C ′′
:=

(
eρu0 +

C
C ′

)
sup
x≥b

Ex (eρτb ) < ∞.

Since ψh(s)([a,∞)) > 0 for any s ≥ 0, we conclude the proof of the point 2 setting

c2 =
1

C ′′
. □
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