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Abstract

A Galton–Watson branching process with immigration evolving in a random environment is
onsidered. Its associated random walk is assumed to be oscillating. We prove a functional limit theorem
n which the process under consideration is normalized by a random coefficient depending on the random
nvironment only. The distribution of the limiting process is described in terms of a strictly stable Levy
rocess and a sequence of independent and identically distributed random variables which is independent
f this process.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction and statement of main result

Let (Ω ,F , P) be a probability space and ∆ be the space of probability measures on
0 := {0, 1, . . .} equipped with the metric of total variation. We consider random elements

Q1, Q2, . . ., mapping the space (Ω ,F , P) into ∆2. It means that Qn , for each n ∈ N, has the
form (Fn, Gn), where Fn, Gn are probability measures on N0. The sequence Π = {Qn, n ∈ N}

s called a random environment.
A sequence of non-negative integer random variables {Zn, n ∈ N0} is called a branching

rocess with immigration in random environment (BPIRE) if Z0 = 0 and

Zn+1 =

Zn+ηn∑
i=1

ξ
(n)
i , n ∈ N0,
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where it is assumed that, conditioned on the random environment Π , the random variables
ξ

(n)
i , ηn : n ∈ N0, i ∈ N

}
are independent. Moreover, for any fixed n ∈ N, the variables

(n)

1 , ξ
(n)

2 , . . . are identically distributed with the distribution Fn+1 and the variable ηn has the
istribution Gn+1. In the language of branching processes Zn is the size of the nth generation
ithout the immigrants which joined this generation; ηn is the number of immigrants which

oined the nth generation; ξ
(n)
i is the offspring number of the i th particle from the set consisting

f nth generation particles and immigrants who joined them.
In other words, the random process {Zn, n ∈ N0}, conditioned on the random environment

, is an inhomogeneous branching Galton–Watson process with immigration (see [9], Chapter
, § 7) and, for each n ∈ N0, the number of immigrants joining the nth generation has
he distribution Gn+1 and the offspring reproduction law of particles of the nth generation
including joined immigrants) is Fn+1. Let fn (·) and gn (·) be the generating functions of the
random) distributions Fn and Gn respectively.

We consider this model under the assumption that the random elements Q1, Q2, . . . are
ndependent and identically distributed.

Set for i ∈ N

X i = ln f ′

i (1) , µi = g′

i (1)

we assume that 0 < f ′

1 (1) < +∞, 0 < g′

i (1) < +∞ a.s.). Introduce the so-called associated
andom walk:

S0 = 0, Sn =

n∑
i=1

X i , n ∈ N.

t is clear that the random vectors (X1, µ1) , (X2, µ2) , . . . are independent and identically
istributed under our assumptions.

We impose the following restriction on the distribution of X1.

ssumption A. The distribution of X1 belongs without centering to the domain of attraction
f a stable law with index α ∈ (0, 2] and the limit law is not a one-sided stable law.

Under Assumption A the Skorokhod functional limit theorem is valid (see, for instance, [16],
hapter 16): there are such positive normalizing constants Cn that, as n → ∞,

Wn
D
→ W, (1)

here Wn =
{
C−1

n S⌊nt⌋, t ≥ 0
}
, the process W = {W (t) , t ≥ 0} is a strictly stable Lévy

rocess with index α ∈ (0, 2] and the symbol
D
→ means convergence in distribution (in this

ase, in the space D [0, +∞) with Skorokhod topology). Moreover,

Cn = n1/αl (n) ,

here {l (n) , n ∈ N} is a slowly varying sequence. It is known that the finite-dimensional
istributions of the process W are absolutely continuous. Note that ρ := P (W (1) > 0) ∈ (0, 1)

nder Assumption A. Thus, the Spitzer–Doney condition is satisfied:

lim
n→∞

P (Sn > 0) = ρ ∈ (0, 1) . (2)

he Spitzer–Doney condition means that the random walk {Sn} is oscillating.
The aim of this paper is to prove a functional limit theorem for the process

{
Z⌊nt⌋, t ≥ 0

}
,

s n → ∞ (see Theorem 1).
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We need some notation and definitions to formulate the theorem. Let for n ∈ N

Mn = max
1≤i≤n

Si , Ln = min
0≤i≤n

Si .

If the Spitzer–Doney condition (2) is satisfied, then, as n → ∞,

{ (Qi , Si , µi ) , i ∈ N | Ln ≥ 0}
D
→
{(

Q+

i , S+

i , µ+

i

)
, i ∈ N

}
, (3)

{ (Qi , Si , µi ) , i ∈ N| Mn < 0}
D
→
{(

Q−

i , S−

i , µ−

i

)
, i ∈ N

}
, (4)

here
{(

Q+

i , S+

i , µ+

i

)}
,
{(

Q−

i , S−

i , µ−

i

)}
are some random sequences. Moreover: a) the se-

uences
{

Q+

i , i ∈ N
}
,
{

Q−

i , i ∈ N
}

can be viewed as random environments; b) the sequences
S+

i , i ∈ N
}
,
{

S−

i , i ∈ N
}

are the corresponding associated random walks (S+

0 = S−

0 = 0); c)
he sequences

{
µ+

i , i ∈ N
}

and
{
µ−

i , i ∈ N
}

are positive and constructed from
{

Q+

i , i ∈ N
}

nd
{

Q−

i , i ∈ N
}
, respectively, the same as the sequence {µi , i ∈ N} is constructed from

Qi , i ∈ N}. Suppose that the sequences
{

Q+

i , i ∈ N
}

and
{

Q−

i , i ∈ N
}

are defined on
he same probability space (Ω∗,F∗, P∗) and are independent (below we denote by E∗ the
xpectation on this probability space).

Relations (3) and (4) follow from Lemma 2.5 of [8] (it is necessary to fix i ∈ N and to
pply an arbitrary bounded and continuous function ϕ : R3i

→ R to the random element
(Q1, S1, µ1) , . . . , (Qi , Si , µi )), and then to apply the mentioned lemma to the obtained
andom variable). We note also that the sequences

{
S+

i , i ∈ N
}

and
{

S−

i , i ∈ N
}

are Markov
hains (see Section 2 of [8] and Section 3 of [14] where these facts and the distribution of
Q+

i , i ∈ N
}
, conditioned on the sequence

{
S+

i , i ∈ N
}
, are discussed).

We now come back to our initial BPIRE. Set Ni = {i, i + 1, . . .} for i ∈ Z. Fix i ∈ N0 and,
or n ∈ Ni , denote by Z i,n the total number of particles in the nth generation which are the
escendants of the immigrants joined the i th generation (we assume that Z i,i = ηi and Z i,n = 0
or i > n and i < 0). Note that the random sequence

{
Z i,n, n ∈ Ni

}
is a standard (without

mmigration) branching process in the random environment {G i+1; Fn, n ∈ Ni+1} and, if this
andom environment is fixed, G i+1 is the distribution of the number of particles in the initial
eneration. Set for n ∈ Ni

ai,n = e−(Sn−Si ).

f the random environment {G i+1; Fn, n ∈ Ni+1} is fixed, the random sequence
ai,n Z i,n, n ∈ Ni

}
is a non-negative martingale with respect to the natural filtration of the

equence
{

Z i,n, n ∈ Ni
}
. Hence (without assuming that the random environment is fixed),

here is a finite limit limn→∞ ai,n Z i,n P-a.s.
Set

Q∗

i =

{
Q+

i , i ∈ N,

Q−

−i+1, i ∈ Z \ N,
(5)

S∗

i =

{
S+

i , i ∈ N,

−S−

−i , i ∈ Z \ N,
(6)

µ∗

i =

{
µ+

i , i ∈ N,

µ−

−i+1, i ∈ Z \ N.
(7)

he sequence Π ∗
:=
{

Q∗

k , k ∈ Z
}

can be considered as a random environment (we denote the
omponents of Q∗

k by G∗

k and F∗

k ). We assume that the probability space (Ω∗,F∗, P∗) is rich
∗
nough to accommodate a branching process with immigration in the random environment Π .
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Fix i ∈ Z and, for j ∈ Ni , denote by Z∗

i, j the total number of particles in the j th
eneration being descendants of immigrants which joined the i th generation (we denote the
umber of such immigrants by η∗

i and assume that Z∗

i,i = η∗

i ). Note that the random sequence{
Z∗

i, j , j ∈ Ni

}
is a branching process in the random environment

{
G∗

i+1; F∗

j , j ∈ Ni+1

}
. The

equence
{

S∗

j − S∗

i , j ∈ Ni

}
is the associated random walk and, given the environment, the

andom variable µ∗

i is the mean of the random variable η∗

i . Set

a∗

i, j = e−

(
S∗

j −S∗
i

)
.

In accordance with the above the limit

lim
j→∞

a∗

i, j Z∗

i, j =: ζ ∗

i (8)

xists P∗-a.s. Furthermore, P∗
(
ζ ∗

i > 0
)

> 0 for i ∈ N0 (see [8], Proposition 3.1).
Introduce the following random series:

Σ1 :=

∑
i∈Z

µ∗

i+1e−S∗
i , Σ2 :=

∑
i∈Z

ζ ∗

i e−S∗
i (9)

t is clear that Σ1 > 0 P∗-a.s. and P∗ (Σ2 > 0) > 0. Both series converge P∗-a.s. under certain
restrictions (see Lemma 4).

Let W be a strictly stable Lévy process with index α (in the sequel we call W simply the
Lévy process). We define the (lower) level L = {L (t) , t ≥ 0} of the Lévy process as

L (t) = inf
s∈[0,t]

W (s) .

Let, further, γ1, γ2, . . . be an independent of W sequence of independent random variables
distributed as the random variable Σ2/Σ1.

With the help of these ingredients we define finite-dimensional distributions of a random
process Y = {Y (t), t ≥ 0} which plays an important role in the sequel. First we set Y (0) = 0.
Consider an arbitrary m ∈ N and arbitrary times t1, t2, . . . , tm : 0 = t0 < t1 < t2 < · · · <

tm . The random vector (Y (t1), . . . , Y (tm)) coincides in distribution with the following vector
Ŷ :=

(
Ŷ1, . . . , Ŷm

)
. We first describe the possible values of the vector Ŷ . Its first several

coordinates coincide with γ1, the next several coordinates coincide with γ2 and so on up to
the mth coordinate. The coordinates of the vector Ŷ are specified according to the level L of
he Lévy process W . The first coordinate Ŷ1 is equal to γ1. Let the coordinate Ŷk for some
< m be known. For instance, Ŷk = γl for some l ∈ N. If the level of the Lévy process at the

ime tk+1 remains the same as at the time tk , i.e. L (tk+1) = L (tk), then Ŷk+1 = γl . If the level
f the Lévy process at the time tk+1 is changed, i.e. L (tk+1) < L (tk), then Ŷk+1 = γl+1.

Set for n ∈ N0

an = e−Sn , bn =

n−1∑
i=0

µi+1e−Si (b0 = 0).

ntroduce for each n ∈ N the random process Yn = {Yn (t) , t ≥ 0}, where

Yn (0) = 0, Yn (t) =
a⌊nt⌋

b⌊nt⌋
Z⌊nt⌋, t > 0.

ote that for k ∈ N the ratio bk/ak is equal to the mean of Zk , conditioned on the random
nvironment Π .
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Let the symbol ⇒ mean convergence of random processes in the sense of finite-dimensional
istributions and ln+ x = max (0, ln x) for x > 0.

heorem 1. If Assumption A is valid and E
(
ln+ µ1

)α+ε
< +∞ for some ε > 0, then, as

→ ∞,

Yn ⇒ Y.

A detailed description of the theory of critical branching processes in random environment
s available in [8,17].

A particular case of a subcritical BPIRE (when the offspring generating function fn (·) is
ractional-linear and gn (s) ≡ s for each n ∈ N) was considered in [18]. The main attention
here was paid to obtaining an exponential estimate for the tail distribution of the so-called
ife period of this process (i.e., the time until the first extinction). A more general class of
ubcritical BPIRE was analyzed in [19] where a limit theorem describing the population size
t a distant moment was proved and an exponential estimate for the tail distribution of the life
eriod was established. A strong law of large numbers and a central limit theorem for a wide
lass of subcritical BPIRE were proved in [21].

A critical BPIRE was considered in [10] where sufficient conditions of transience and
ecurrence were obtained. The author of [3], studying a random walk in random environment,
roved a particular case of Theorem 1 (when the offspring generating function fn (·) is
ractional-linear and gn (s) ≡ s for each n ∈ N). We would like to stress that the proof used
n the present paper differs significantly from the one given in [3]. An interesting observation
s made in [3] (for the mentioned special case). It is shown there that the random variable
1 has the exponential distribution with parameter 1 and, therefore, in view of Theorem 1, the
andom variable Σ2/Σ1 has the same distribution. Along with [3] we also mention papers [4–6]
n which critical and supercritical processes (with stopped immigration) are considered under
ome restrictions on their lifetimes.

Recent papers [13,20] contain exact asymptotic formulae for the tail distribution of the life
eriod for critical and subcritical BPIRE.

It should be noted that limit processes similar in the spirit to our process Y arise already
n the study of a standard (without immigration) intermediate subcritical branching process in

random environment (see [2] and [7]), as well as in the study (in the special case described
bove) of a supercritical BPIRE with stopped immigration (see [5]). The construction of such
imit processes is based on the so-called conditional Lévy processes rather than on standard
évy processes.

. Auxiliary statements

Let τn be the first moment when the minimum of the random walk S0, . . . , Sn is attained:

τn = min {i : Si = Ln, 0 ≤ i ≤ n} .

et for n ∈ N

S′

i,n =

{
Sτn+i − Sτn , i ∈ N(−τn),

0, i ∈ Z \ N(−τn).
(10)

or positive integer numbers n1 < n2 set

Ln1,n2 = min
n1≤i≤n2

Si .
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Lemma 1. If the Spitzer–Doney condition (2) is satisfied, then, as n → ∞,{
S′

i,n, i ∈ Z
} D

→
{

S∗

i , i ∈ Z
}
.

Proof. First, we show that for any fixed i ∈ N, as n → ∞,(
S′

1,n, . . . , S′

i,n

) D
→
(
S∗

1 , . . . , S∗

i

)
. (11)

Let A be a
(
S∗

1 , . . . , S∗

i

)
-continuous (relative to the measure P∗) Borel set from Ri . Then for

n ∈ Ni

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn + i ≤ n

)
=

n−i∑
k=0

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn = k

)
=

n−i∑
k=0

P
(
(Sk+1 − Sk, . . . , Sk+i − Sk) ∈ A, Sk < Lk−1, Sk ≤ Lk+1,n

)
and by the Markov property of random walks we have that

P
(
(Sk+1 − Sk, . . . , Sk+i − Sk) ∈ A, Sk < Lk−1, Sk ≤ Lk+1,n

)
= P (Sk < Lk−1) P

(
(Sk+1 − Sk, . . . , Sk+i − Sk) ∈ A, Sk ≤ Lk+1,n

)
= P (Sk < Lk−1) P ((S1, . . . , Si ) ∈ A, Ln−k ≥ 0)

= P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) P (Sk < Lk−1) P (Ln−k ≥ 0)

= P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) P (τn = k) .

Thus,

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn + i ≤ n

)
=

n−i∑
k=0

P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) P (τn = k) . (12)

If the Spitzer–Doney condition is satisfied, then the following generalized arcsine law is
valid (see, for instance, [12], Chapter 8, Theorem 8.9.9): for x ∈ [0, 1]

lim
n→∞

P
(τn

n
≤ x

)
=

sin (πρ)

π

∫ x

0
uρ−1 (1 − u)−ρ du. (13)

We pass to the limit in formula (12), as n → ∞. Due to (13)

lim
n→∞

P (τn + i ≤ n) = lim
n→∞

P (τn/n ≤ 1 − i/n) = 1.

herefore the limit of the left-hand side of (12) coincides with the limit of probability((
S′

1,n, . . . , S′

i,n

)
∈ A

)
, as n → ∞, if at least one of these limits exists.

If ε ∈ (0, 1) and n is large enough, then by (12)

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn + i ≤ n

)
= P1 (n, ε) + P2 (n, ε) , (14)

here

P1 (n, ε) =

⌊(1−ε)n⌋∑
P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) P (τn = k) ,
k=0
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P2 (n, ε) =

n−i∑
k=⌊(1−ε)n⌋+1

P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) P (τn = k) .

Clearly,

P2 (n, ε) ≤

n∑
k=⌊(1−ε)n⌋+1

P (τn = k) = P (τn > ⌊(1 − ε) n⌋)

→
n→∞

1 −
sin (πρ)

π

∫ 1−ε

0
uρ−1 (1 − u)−ρ du →

ε→0
0.

herefore

lim
ε→0

lim sup
n→∞

P2 (n, ε) = 0. (15)

In view of (3) the probability P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0) tends, as n → ∞, to

P∗
((

S+

1 , . . . , S+

i

)
∈ A

)
= P∗

((
S∗

1 , . . . , S∗

i

)
∈ A

)
niformly over 0 ≤ k ≤ ⌊(1 − ε) n⌋. Consequently,

lim
n→∞

P1 (n, ε) = P∗
((

S∗

1 , . . . , S∗

i

)
∈ A

)
lim

n→∞

⌊(1−ε)n⌋∑
k=0

P (τn = k)

= P∗
((

S∗

1 , . . . , S∗

i

)
∈ A

)
lim

n→∞
P (τn ≤ ⌊(1 − ε) n⌋)

= P∗
((

S∗

1 , . . . , S∗

i

)
∈ A

) sin (πρ)

π

∫ 1−ε

0
uρ−1 (1 − u)−ρ du

→
ε→0

P∗
((

S∗

1 , . . . , S∗

i

)
∈ A

)
mplying

lim
ε→0

lim
n→∞

P1 (n, ε) = P∗
((

S∗

1 , . . . , S∗

i

)
∈ A

)
. (16)

It follows from relations (14)–(16) that for i ∈ N0

lim
n→∞

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn + i ≤ n

)
= P∗

((
S∗

1 , . . . , S∗

i

)
∈ A

)
.

hus,

lim
n→∞

P
((

S′

1,n, . . . , S′

i,n

)
∈ A

)
= P∗

((
S∗

1 , . . . , S∗

i

)
∈ A

)
.

his proves the desired relation (11).
We now show that for any fixed i ∈ N, as n → ∞,(

S′

−1,n, . . . , S′

−i,n

) D
→
(
S∗

−1, . . . , S∗

−i

)
. (17)

et B be a
(
S∗

−1, . . . , S∗

−i

)
-continuous (relative to the measure P∗) Borel set from Ri . Then for

∈ Ni

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn − i ≥ 0

)
=

n∑
k=i

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn = k

)
=

n∑
P
(
(Sk−1 − Sk, . . . , Sk−i − Sk) ∈ B, Sk < Lk−1, Sk ≤ Lk+1,n

)
,

k=i
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and by the Markov property and the duality property of random walks we have that

P
(
(Sk−1 − Sk, . . . , Sk−i − Sk) ∈ B, Sk < Lk−1, Sk ≤ Lk+1,n

)
= P ((Sk−1 − Sk, . . . , Sk−i − Sk) ∈ B, Sk < Lk−1) P

(
Sk ≤ Lk+1,n

)
= P ((−S1, . . . ,−Si ) ∈ B, Mk < 0) P

(
Sk ≤ Lk+1,n

)
= P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) P (Mk < 0) P

(
Sk ≤ Lk+1,n

)
= P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) P (τn = k) .

Thus,

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn − i ≥ 0

)
=

n∑
k=i

P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) P (τn = k) , (18)

therefore, if ε ∈ (0, 1) and n is large enough, then

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn − i ≥ 0

)
= P3 (n, ε) + P4 (n, ε) ,

where

P3 (n, ε) =

⌊εn⌋∑
k=i

P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) P (τn = k) ,

P4 (n, ε) =

n∑
k=⌊εn⌋+1

P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) P (τn = k) .

It is not difficult to show (see our proof of relation (15)) that

lim
ε→0

lim sup
n→∞

P3 (n, ε) = 0.

Due to (4) the probability P ( (−S1, . . . ,−Si ) ∈ B | Mk < 0) tends, as n → ∞, to

P∗
((

−S−

−1, . . . ,−S−

−i

)
∈ B

)
= P∗

((
S∗

−1, . . . , S∗

−i

)
∈ B

)
uniformly over ⌊εn⌋ < k ≤ n. Therefore,

lim
ε→0

lim
n→∞

P4 (n, ε) = P∗
((

S∗

−1, . . . , S∗

−i

)
∈ B

)
.

As a result, we obtain that

lim
n→∞

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn − i ≥ 0

)
= P∗

((
S∗

−1, . . . , S∗

−i

)
∈ B

)
.

Hence,

lim
n→∞

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B

)
= P∗

((
S∗

−1, . . . , S∗

−i

)
∈ B

)
.

Thus, the desired relation (17) is proved.
It can be shown, by the arguments similar to those used in proving of (11) and (17), that

these two relations can be combined into one. To justify this statement one should take into
account that for k ∈ {0, 1, . . . , n}

P
((

S′

1,n, . . . , S′

i,n

)
∈ A,

(
S′

−1,n, . . . , S′

−i,n

)
∈ B, τn = k

)
= P ( (S1, . . . , Si ) ∈ A | Ln−k ≥ 0)

|
× P ( (−S1, . . . ,−Si ) ∈ B Mk < 0) P (τn = k) .
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The lemma is proved.

emark 1. It is not difficult to verify (see Lemma 1 of [1] or the proof of Theorem 1.5 of [8])
that, under the condition {Ln ≥ 0} (or under the condition {Mn < 0}), the random sequence
Si , i ∈ N0} and the random process Wn are asymptotically independent, as n → ∞.
imilarly to relations (12) and (18), one can show that for any a ≤ 0 and b > 0

P
((

S′

1,n, . . . , S′

i,n

)
∈ A, τn + i ≤ n,

Ln

Cn
≤ a,

Sn − Ln

Cn
≤ b

)
=

n−i∑
k=0

P
(

(S1, . . . , Si ) ∈ A,
Sn−k

Cn
≤ b

⏐⏐⏐⏐ Ln−k ≥ 0
)

× P
(

Sk

Cn
≤ a

⏐⏐⏐⏐ Mk < 0
)

P (τn = k)

nd

P
((

S′

−1,n, . . . , S′

−i,n

)
∈ B, τn − i ≥ 0,

Ln

Cn
≤ a,

Sn − Ln

Cn
≤ b

)
=

n∑
k=i

P
(

(−S1, . . . ,−Si ) ∈ B,
Sk

Cn
≤ a

⏐⏐⏐⏐ Mk < 0
)

× P
(

Sn−k

Cn
≤ b

⏐⏐⏐⏐ Ln−k ≥ 0
)

P (τn = k) .

sing these facts and repeating the reasonings given in the proof of Lemma 1, one can show
hat for any a ≤ 0 and b > 0, as n → ∞,{

S′

i,n, i ∈ Z
⏐⏐⏐⏐ Ln

Cn
≤ a,

Sn − Ln

Cn
≤ b

}
D
→
{

S∗

i , i ∈ Z
}
.

Recall that (Ω ,F , P) is the underlying probability space. We introduce new probability
easures P+ and P−. With this aim we define the following functions:

u (x) = 1 +

∞∑
n=1

P (−Sn ≤ x, Mn < 0) , x ≥ 0,

v (x) = 1 +

∞∑
n=1

P (−Sn > x, Ln ≥ 0) , x ≤ 0.

et

I (2)
n := {(i, j) : i, j ∈ {0, . . . , n} and i ≤ j} .

et Fn , n ∈ N0, denote the σ -algebra generated by the segment of the random environment
Q1, . . . , Qn and the random variables Z i, j for (i, j) ∈ I (2)

n . We now introduce a probability
easure P+ on the σ -algebra F∞ := σ

(
∪

∞

n=1Fn
)
, defined for each n ∈ N0 and each

n-measurable non-negative random variable β by the formula

E+β = E (βu (Sn) ; Ln ≥ 0) . (19)

imilarly, we also introduce a probability measure P− on the σ -algebra F∞, defined for each
∈ N0 and each Fn-measurable non-negative random variable β by the formula

E−β = E βv S ; M < 0 . (20)
( ( n) n )
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The existence of measures P+ and P− follows from Lemma 2.4 of [8] (note that it may be
necessary to change the underlying probability space). Thus, three measures P, P+, P− are
defined on one and the same measurable space (Ω ,F∞). To explicitly indicate the measure on
(Ω ,F∞) according to which we consider this or those random elements we use the measure
symbol as a lower index.

For instance, it is shown in Lemma 2.5 of [8] that{(
Q+

i , S+

i , µ+

i

)
, i ∈ N

} D
= {(Qi , Si , µi ) , i ∈ N}P+ . (21)

Similarly (see Lemma 5.2 of [17]),{(
Q−

i , S−

i , µ−

i

)
, i ∈ N

} D
= {(Qi , Si , µi ) , i ∈ N}P− . (22)

Due to (21), (22) and our assumption about the independence of the left-hand sides of these
relations, the product of probability spaces

(
Ω ,F∞, P+

)
and

(
Ω ,F∞, P−

)
may be considered

as a probability space (Ω∗,F∗, P∗) and, consequently, the direct product of the measures P+

and P− may be treated as the measure P∗.

Remark 2. If a random element ξ is given on the space
(
Ω ,F∞, P+

)
we can define the random

element ξ+, specified on the product of the spaces
(
Ω ,F∞, P+

)
and

(
Ω ,F∞, P−

)
by means

of the formula ξ+ (ω1, ω2) = ξ (ω1) for (ω1, ω2) ∈ Ω × Ω . It is clear that the element ξ+

coincides in distribution with the element ξ . Similarly, if a random element ξ is given on
the space

(
Ω ,F∞, P−

)
we can define the random element ξ−, specified on the product of

the spaces
(
Ω ,F∞, P+

)
and

(
Ω ,F∞, P−

)
by means of the formula ξ− (ω1, ω2) = ξ (ω2)

for (ω1, ω2) ∈ Ω × Ω , and the element ξ− coincides in distribution with the element ξ . In
accordance with the agreement we can consider the random elements standing in the left-hand
sides of formulae (21) and (22) as generated by the random elements {(Qi , Si , µi ) , i ∈ N}P+

and {(Qi , Si , µi ) , i ∈ N}P− respectively.

Lemma 2. If the Spitzer–Doney condition (2) is satisfied, then, as n → ∞,{
ai,n Z i,n, i ∈ N0

⏐⏐ Ln ≥ 0
} D

→
{
ζ ∗

i , i ∈ N0
}
,

here
{
ζ ∗

i , i ∈ N0
}

is the random sequence defined by relation (8) .

roof. By virtue of the first part of Lemma 2.5 from [8] for any fixed i ∈ N0 and k ∈ Ni , as
→ ∞,{

a0,k Z0,k, . . . , ai,k Z i,k
⏐⏐ Ln ≥ 0

} D
→
{(

a0,k Z0,k, . . . , ai,k Z i,k
)}

P+ .

ote (see [8], Section 3) that in view of (19) for any fixed j ∈ N0 the random sequence
Z j,k, k ∈ N j

}
P+ is a branching process in the random environment

{
G j+1; Fk, k ∈ N j+1

}
P+ .

ence, the sequence
{

Z j,k, k ∈ N j
}

P+ coincides in distribution with the sequence

Z∗

j,k, k ∈ N j

}
. Moreover,(

a0,k Z0,k, . . . , ai,k Z i,k
)

P+

D
=
(
a∗

0,k Z∗

0,k, . . . , a∗

i,k Z∗

i,k

)
.

hus, as n → ∞,{
a Z , . . . , a Z

⏐⏐ L ≥ 0
} D

→
(
a∗ Z∗ , . . . , a∗ Z∗

)
.
0,k 0,k i,k i,k n 0,k 0,k i,k i,k
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Due to (8) P∗-a.s.

lim
k→∞

(
a∗

0,k Z∗

0,k, . . . , a∗

i,k Z∗

i,k

)
=
(
ζ ∗

0 , . . . , ζ ∗

i

)
.

t means, in view of the second part of Lemma 2.5 from [8], that, as n → ∞,{
a0,n Z0,n, . . . , ai,n Z i,n

⏐⏐ Ln ≥ 0
} D

→
(
ζ ∗

0 , . . . , ζ ∗

i

)
.

The lemma is proved.

Set for n ∈ N

Z ′

i,n =

{
Zτn+i,n, i ∈ N(−τn),

0, i ∈ Z \ N(−τn),
(23)

a′

i,n =

{
an/aτn+i , i ∈ N(−τn),

1, i ∈ Z \ N(−τn).
(24)

emma 3. If the Spitzer–Doney condition (2) is satisfied, then, as n → ∞,{
a′

i,n Z ′

i,n, i ∈ Z
} D

→
{
ζ ∗

i , i ∈ Z
}
,

where
{
ζ ∗

i , i ∈ N0
}

is the random sequence defined by relation (8).

Proof. First, we show that for any fixed i ∈ N0, as n → ∞,(
a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

) D
→
(
ζ ∗

0 , . . . , ζ ∗

i

)
. (25)

Let A be an arbitrary one-dimensional
(
ζ ∗

0 , . . . , ζ ∗

i

)
-continuous (relative to the measure P∗)

Borel set from Ri+1. Set for k ∈ N0, n ∈ Nk

Ẑk,n = ak,n Zk,n

and for k ∈ N0, n ∈ Nk+i

Ẑk,n =
(
Ẑk,n, . . . , Ẑk+i,n

)
.

Then for n ∈ Ni

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A, τn + i ≤ n

)
=

n−i∑
k=0

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A, τn = k

)
=

n−i∑
k=0

P
(
Ẑk,n ∈ A, Sk < Lk−1, Sk ≤ Lk+1,n

)
and

P
(
Ẑk,n ∈ A, Sk < Lk−1, Sk ≤ Lk+1,n

)
= P (Sk < Lk−1) P

(
Ẑk,n ∈ A, Sk ≤ Lk+1,n

)
= P (Sk < Lk−1) P

(
Ẑ0,n−k ∈ A, Ln−k ≥ 0

)
= P

(
Ẑ0,n−k ∈ A

⏐⏐ Ln−k ≥ 0
)

P (Sk < Lk−1) P (Ln−k ≥ 0)

= P
(

Ẑ ∈ A
⏐⏐ L ≥ 0

)
P τ = k .
0,n−k n−k ( n )
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Thus,

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A, τn + i ≤ n

)
=

n−i∑
k=0

P
(

Ẑ0,n−k ∈ A
⏐⏐ Ln−k ≥ 0

)
P (τn = k) ,

herefore, if ε ∈ (0, 1) and n is large enough, then

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A, τn + i ≤ n

)
= P1 (n, ε) + P2 (n, ε) ,

here

P1 (n, ε) =

⌊(1−ε)n⌋∑
k=0

P
(

Ẑ0,n−k ∈ A
⏐⏐ Ln−k ≥ 0

)
P (τn = k) ,

P2 (n, ε) =

n−i∑
k=⌊(1−ε)n⌋+1

P
(

Ẑ0,n−k ∈ A
⏐⏐ Ln−k ≥ 0

)
P (τn = k) .

t is easy to show (see the proof of relation (15)) that

lim
ε→0

lim sup
n→∞

P2 (n, ε) = 0.

y Lemma 2

lim
n→∞

P
(

Ẑ0,n−k ∈ A
⏐⏐ Ln−k ≥ 0

)
= P∗

((
ζ ∗

0 , . . . , ζ ∗

i

)
∈ A

)
niformly over 0 ≤ k ≤ ⌊(1 − ε) n⌋. Therefore

lim
ε→0

lim
n→∞

P1 (n, ε) = P∗
((

ζ ∗

0 , . . . , ζ ∗

i

)
∈ A

)
.

s a result, we obtain that

lim
n→∞

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A, τn + i ≤ n

)
= P∗

((
ζ ∗

0 , . . . , ζ ∗

i

)
∈ A

)
.

ence,

lim
n→∞

P
((

a′

0,n Z ′

0,n, . . . , a′

i,n Z ′

i,n

)
∈ A

)
= P∗

((
ζ ∗

0 , . . . , ζ ∗

i

)
∈ A

)
.

hus, the desired relation (25) is proved.

We now show that for any fixed i ∈ N, as n → ∞,(
a′

−1,n Z ′

−1,n, . . . , a′

−i,n Z ′

−i,n

) D
→
(
ζ ∗

−1, . . . , ζ
∗

−i

)
. (26)

ith this aim we use the continuity theorem for Laplace transform. Let λ1, . . . , λi ∈ R+ :=

x ∈ R : x ≥ 0}. Note that for n ∈ Ni

E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j a′

− j,n Z ′

− j,n

⎞⎠ ; τn − i ≥ 0

⎞⎠
=

n∑
k=i

E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j a′

− j,n Z ′

− j,n

⎞⎠ ; τn = k

⎞⎠
=

n∑
E
(
exp

(
−Σk,n

)
; Sk < Lk−1, Sk ≤ Lk+1,n

)
, (27)
k=i
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where

Σk,n =

i∑
j=1

λ j Ẑk− j,n.

Let the generation numbering of our initial BPIRE determine the time scale. Consider
without reference to the initial BPIRE) a branching process in the random environment
Fk+1, Fk+2, . . .} generated at time k ∈ N0 by a fixed set of particles which is divided into
pairwise non-intersecting subsets whose cardinalities are l1, . . . , li ∈ N0, respectively. For
∈ Nk , we denote Zk,n

(
l j
)

the total number of particles at time n being descendants of the
articles from the j th subset (we assume that Zk,k

(
l j
)

= l j ).
Set for k ∈ N0, n ∈ Nk , l = (l1, . . . , li ) ∈ Ni

0

Zk,n (l) =
(
Zk,n (l1) , . . . , Zk,n (li )

)
, Sk,n = (Sk+1 − Sk, . . . , Sn − Sk)

and for k ∈ N0, n ∈ Nk

Zk,−i,n =
(
Zk−1,n, . . . , Zk−i,n

)
, ak,−i,n =

(
ak−1,n, . . . , ak−i,n

)
.

Let PΠ (A) := P ( A | Π ), EΠ ξ := E ( ξ | Π ), where A ∈ F and ξ is a random variable
efined on (Ω ,F , P). Denote by IA the indicator of A ∈ F .

Let k ∈ Ni and n ∈ Nk . Given the random environment Π the distribution of the random
ector Zk,−i,n conditioned on the event

{
Zk,−i,k = l

}
, where l ∈ Ni

0, coincides with the
istribution of the random vector Zk,n (l). Hence, taking into account the equality ak,−i,n =

k,nak,−i,k , we obtain (in the same way as in [8], p. 659) that for each bounded and measurable
numerical function f (x, y, z), x ∈ Ni

0, y ∈ Ri
+

, z ∈ Rn−k ,

E
(

f
(
Zk,−i,n, ak,−i,n, Sk,n

)
; Zk,−i,k = l, ak,−i,k ∈ dy, S0,k ∈ dz

)
= E

(
EΠ

(
f
(
Zk,−i,n, ak,ny, Sk,n

)
; Zk,−i,k = l

)
; ak,−i,k ∈ dy, S0,k ∈ dz

)
= E

(
EΠ f

(
Zk,n (l) , ak,ny, Sk,n

)
PΠ

(
Zk,−i,k = l

)
I{ak,−i,k∈dy, S0,k∈dz}

)
= E f

(
Zk,n (l) , ak,ny, Sk,n

)
P
(
Zk,−i,k = l, ak,−i,k ∈ dy, S0,k ∈ dz

)
the latter equality is justified by the fact that the (random) expectation

EΠ f
(
Zk,n (l) , ak,ny, Sk,n

)
s expressed through the environment Qk+1, . . . , Qn and the random variable

PΠ

(
Zk,−i,k = l

)
I{ak,−i,k∈dy, S0,k∈dz}

s expressed through the environment Qk−i+1, . . . , Qk). Thus,

E
(

f
(
Zk,−i,n, ak,−i,n, Sk,n

) ⏐⏐ Zk,−i,k, ak,−i,k, S0,k
)

=
(
E f

(
Zk,n (l) , ak,ny, Sk,n

))
l=Zk,−i,k , y=ak,−i,k

.

ence,

E
(
exp

(
−Σk,n

)
; Sk < Lk−1, Sk ≤ Lk+1,n

)
= E

(
E
(

exp
(
−Σk,n

)
I{Sk<Lk−1, Sk≤Lk+1,n}

⏐⏐⏐ Zk,−i,k, ak,−i,k, S0,k

))
= E

(
E
(

exp
(
−Σk,n

)
I{Sk≤Lk+1,n}

⏐⏐⏐ Zk,−i,k, ak,−i,k, S0,k

)
; Sk < Lk−1

)
( ( ) )
= E U Zk,−i,k, ak,−i,k ; Sk < Lk−1 ,
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A

where

U (l, y) = E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j y j Ẑk,n
(
l j
)⎞⎠ ; Sk ≤ Lk+1,n

⎞⎠
for l = (l1, . . . , li ) ∈ Ni

0 and y = (y1, . . . , yi ) ∈ Ri
+

. Note that

U (l, y) = E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j y j Ẑ0,n−k
(
l j
)⎞⎠ ; Ln−k ≥ 0

⎞⎠ .

or each n ∈ N, we introduce the function

Hn (l, y) = E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j y j Ẑ0,n
(
l j
)⎞⎠ ⏐⏐⏐⏐⏐⏐ Ln ≥ 0

⎞⎠
or l = (l1, . . . , li ) ∈ Ni

0 and y = (y1, . . . , yi ) ∈ Ri
+

. As a result, we obtain that

E
(
exp

(
−Σk,n

)
; Sk < Lk−1, Sk ≤ Lk+1,n

)
= E

(
Hn−k

(
Zk,−i,k, ak,−i,k

) ⏐⏐ Sk < Lk−1
)

P (Sk < Lk−1) P (Ln−k ≥ 0)

= E
(

Hn−k
(
Zk,−i,k, ak,−i,k

) ⏐⏐ Sk < Lk−1
)

P (τn = k) . (28)

Set Ql,m = (Ql , . . . , Qm) for l, m ∈ N. In the sequel, we explicitly include a random
nvironment in the notation. For example, we write Zk,−i,k

⟨
Qk−i+1,k

⟩
instead of Zk,−i,k . Set

Qk = Q̃1, . . . , Qk−i+1 = Q̃i , . . . , Q1 = Q̃k

nd consider the random environment Q̃1, . . . , Q̃k . Then

E
(

Hn−k
(
Zk,−i,k

⟨
Qk−i+1,k

⟩
, ak,−i,k

) ⏐⏐ Sk < Lk−1
)

= E
(

Hn−k
(
Z0,−i,0

⟨
Q̃i,1

⟩
, (̃a1, . . . , ãi )

) ⏐⏐ M̃k < 0
)
,

where the symbols ã1, . . . , ãi , M̃k, Q̃i,1 have the same meaning for the random environment
Q̃1, . . . , Q̃k as the symbols a1, . . . , ai , Mk, Qi,1 mean for the random environment Q1, . . . , Qk .
urther, the random environments Q̃1, . . . , Q̃k and Q1, . . . , Qk are identically distributed.
herefore

E
(

Hn−k
(
Z0,−i,0

⟨
Q̃i,1

⟩
, (̃a1, . . . , ãi )

) ⏐⏐ M̃k < 0
)

= E
(

Hn−k
(
Z0,−i,0

⟨
Qi,1

⟩
, (a1, . . . , ai )

) ⏐⏐ Mk < 0
)
.

s a result, setting ψ i = Z0,−i,0
⟨
Qi,1

⟩
and ai = (a1, . . . , ai ), we obtain that

E
(

Hn−k
(
Zk,−i,k

⟨
Qk−i+1,k

⟩
, ak,−i,k

) ⏐⏐ Sk < Lk−1
)

= E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)
. (29)

We have from (27)–(29) that

E

⎛⎝exp

⎛⎝−

i∑
j=1

λ1a′

− j,n Z ′

− j,n

⎞⎠ ; τn − i ≥ 0

⎞⎠
=

n∑
E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

P (τn = k) .
k=i
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Therefore, if ε ∈ (0, 1) and n is large enough, then

E

⎛⎝exp

⎛⎝−

i∑
j=1

λ1a′

− j,n Z ′

− j,n

⎞⎠ ; τn − i ≥ 0

⎞⎠
= E1 (n, ε) + E2 (n, ε) + E3 (n, ε) , (30)

here

E1 (n, ε) =

⌊εn⌋∑
k=i

E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

P (τn = k) ,

E2 (n, ε) =

n∑
k=⌊(1−ε)n⌋+1

E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

P (τn = k) ,

E3 (n, ε) =

⌊(1−ε)n⌋∑
k=⌊εn⌋+1

E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

P (τn = k) .

Similar to relation (15) we conclude that

lim
ε→0

lim sup
n→∞

E1 (n, ε) = 0, (31)

lim
ε→0

lim sup
n→∞

E2 (n, ε) = 0. (32)

Let l = (l1, . . . , li ) ∈ Ni
0 be fixed. It is not difficult to demonstrate that for each j ∈

1, . . . , i}

lim
n→∞

Ẑ0,n
(
l j
)

=: ζ0
(
l j
)

(33)

xists a.s. on the probability space
(
Ω ,F∞, P+

)
. By the arguments analogous to those used in

emma 2 one can show, as n → ∞,{
Ẑ0,n (l1) , . . . , Ẑ0,n (li )

⏐⏐ Ln ≥ 0
} D

→ (ζ0 (l1) , . . . , ζ0 (li ))P+ . (34)

or y = (y1, . . . , yi ) ∈ Ri
+

set

H (l, y) = E+

⎛⎝exp

⎛⎝−

i∑
j=1

λ j y jζ0
(
l j
)⎞⎠⎞⎠ .

t follows from (34) by the dominated convergence theorem that for each y = (y1, . . . , yi ) ∈ Ri
+

lim
n→∞

Hn (l, y) = H (l, y) . (35)

ote that H (l, y) is continuous in y1, . . . , yi and, for each n ∈ N, the function Hn (l, y) is not
ncreasing with respect to these variables. This means that the convergence in (35) is uniform
n every compact subset of Ri

+
.

By Lemma 2.5 of [8], as n → ∞,{
Z0,−i,0

⟨
Qi,1

⟩
, ai

⏐⏐ Mn < 0
} D

→
(
Z0,−i,0

⟨
Qi,1

⟩
, ai
)

P− .

n view of (20), when the passage from the measure P to the measure P−, a branching process
n the random environment Q transforms into a branching process in the same environment.
i,1
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t

By formula (22) (see also (5) and (6))(
Qi,1

)
P−

D
=
(
Q−

i , . . . , Q−

1

)
=
(
Q∗

−i+1, . . . , Q∗

0

)
,

(ai )P−

D
=

(
e−S−

1 , . . . , e−S−

i

)
=

(
eS∗

−1 , . . . , eS∗
−i

)
=
(
a∗

−1,0, . . . , a∗

−i,0

)
,

herefore(
Z0,−i,0

⟨
Qi,1

⟩
, ai
)

P−

D
=
(
Z∗

0,−i,0, a∗

0,−i,0

)
,

where for k ∈ Z and l ∈ Nk

Z∗

k,−i,l =
(
Z∗

k−1,l , . . . , Z∗

k−i,l

)
, a∗

k,−i,l =
(
a∗

k−1,l , . . . , a∗

k−i,l , a∗

k,l

)
.

Thus, as n → ∞,{
ψ i , ai

⏐⏐ Mn < 0
} D

→
(
Z∗

0,−i,0, a∗

0,−i,0

)
. (36)

By (35), (36) and Theorem 5.5 of [11] we see that for each fixed l ∈ Ni
0, as n → ∞,{

Hm(n) (l, ai )
⏐⏐ Mn < 0

} D
→ H

(
l, a∗

0,−i,0

)
(37)

if m (n) → +∞. Since 0 ≤ Hn (l, y) ≤ 1 for n ∈ N, l ∈ Ni
0 and y ∈ Ri

+
, it follows from (37)

by the dominated convergence theorem that

lim
n→∞

E ( Hn−k (l, ai ) | Mk < 0) = E∗ H
(
l, a∗

0,−i,0

)
(38)

uniformly in ⌊εn⌋ < k ≤ ⌊(1 − ε) n⌋.
Now we show that

lim
n→∞

E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

= E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
(39)

uniformly in ⌊εn⌋ < k ≤ ⌊(1 − ε) n⌋. For N > 0 we write

E
(

Hn−k
(
ψ i , ai

) ⏐⏐ Mk < 0
)

= E4 (k, n, N ) + E5 (k, n, N ) , (40)

where

E4 (k, n, N ) = E
(

Hn−k
(
ψ i , ai

)
I{|ψ i |≤N}

⏐⏐⏐ Mk < 0
)

,

E5 (k, n, N ) = E
(

Hn−k
(
ψ i , ai

)
I{|ψ i |>N}

⏐⏐⏐ Mk < 0
)

(here |a| is the norm of a ∈ Ri ). Since

E5 (k, n, N ) ≤ P
( ⏐⏐ψ i

⏐⏐ > N
⏐⏐ Mk < 0

)
,

it follows from (36) that

lim
N→∞

lim sup
n→∞

E5 (k, n, N ) = 0 (41)

uniformly in ⌊εn⌋ < k ≤ ⌊(1 − ε) n⌋. Clearly,

E4 (k, n, N ) =

∑
l∈Ni

0: |l|≤N

E
(

Hn−k (l, ai ) I{ψ i =l}

⏐⏐⏐ Mk < 0
)

. (42)

We can deduce from (36) a stronger relation than (37): as n → ∞,{ ⏐⏐ } D (
∗

(
∗

))

ψ i , Hm(n) (l, ai ) Mn < 0 → Z0,−i,0, H l, a0,−i,0
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if m (n) → +∞. Therefore, by the dominated convergence theorem

lim
n→∞

E
(

Hn−k (l, ai ) I{ψ i =l}

⏐⏐⏐ Mk < 0
)

= E∗
(
H
(
l, a∗

0,−i,0

)
; Z∗

0,−i,0 = l
)

(43)

niformly in ⌊εn⌋ < k ≤ ⌊(1 − ε) n⌋. From (42) and (43) we find that

lim
N→∞

lim
n→∞

E4 (k, n, N ) = E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
(44)

niformly in ⌊εn⌋ < k ≤ ⌊(1 − ε) n⌋. From (40), (41) and (44) we obtain the desired relation
(39).

It follows from (39) that

lim
ε→0

lim
n→∞

E3 (n, ε) = E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
. (45)

Now (30)–(32) and (45) imply

lim
n→∞

E

⎛⎝exp

⎛⎝−

i∑
j=1

λ j a′

− j,n Z ′

− j,n

⎞⎠ ; τn − i ≥ 0

⎞⎠ = E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
.

ence,

lim
n→∞

E exp

⎛⎝−

i∑
j=1

λ j a′

− j,n Z ′

− j,n

⎞⎠ = E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
. (46)

We now analyze a branching process in the random environment
{

F∗

1 , F∗

2 , . . .
}

initiated at
ime 0 by a fixed set of particles which is divided into i pairwise non-intersecting subsets whose
ardinalities are l1, . . . , li ∈ N0, respectively. For n ∈ N0, we denote Z∗

0,n

(
l j
)

the total number
f particles at time n being descendants of the particles from the j th subset (we assume that

Z∗

0,0

(
l j
)

= l j ). Suppose that the random environment Π ∗ is fixed, then the distribution of the
andom vector Z∗

0,−i,n conditioned on the event
{
Z∗

0,−i,0 = l
}
, where l ∈ Ni

0, coincides with the
istribution of the random vector

(
Z∗

0,n (l1) , . . . , Z∗

0,n (li )
)
. For each n ∈ N, we introduce the

unction

Vn (l, y) = E∗ exp

⎛⎝−

i∑
j=1

λ j y j a∗

0,n Z∗

0,n

(
l j
)⎞⎠

or l = (l1, . . . , li ) ∈ Ni
0 and y = (y1, . . . , yi ) ∈ Ri

+
. Taking now into account properties of

onditional expectation we find that

E∗ exp

⎛⎝−

i∑
j=1

λ j a∗

− j,n Z∗

− j,n

⎞⎠ = E∗Vn
(
Z∗

0,−i,0, a∗

0,−i,0

)
. (47)

ote that(
a∗

0,n Z∗

0,n (l1) , . . . , a∗

0,n Z∗

0,n (li )
) D

=
(
Ẑ0,n (l1) , . . . , Ẑ0,n (li )

)
P+ . (48)

n view of (48)

Vn (l, y) = E+ exp

⎛⎝−

i∑
λ j y j Ẑ0,n

(
l j
)⎞⎠ . (49)
j=1
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Recall (see (8) and (33)) that P∗-a.s.

lim
n→∞

(
a∗

−1,n Z∗

−1,n, . . . , a∗

−i,n Z∗

−i,n

)
=
(
ζ ∗

−1, . . . , ζ
∗

−i

)
(50)

nd P+-a.s.

lim
n→∞

(
Ẑ0,n (l1) , . . . , Ẑ0,n (li )

)
= (ζ0 (l1) , . . . , ζ0 (li )) . (51)

sing (49) and (51) and applying the dominated convergence theorem we see that for l ∈ Ni
0

and y ∈ Ri
+

lim
n→∞

Vn (l, y) = H (l, y) , (52)

where, recall, H (l, y) = E+ exp
(
−
∑i

j=1 λ j y jζ0
(
l j
))

. Applying the dominated convergence
theorem again we obtain from (47), (50) and (52) that

E∗ exp

⎛⎝−

i∑
j=1

λ jζ
∗

− j

⎞⎠ = E∗ H
(
Z∗

0,−i,0, a∗

0,−i,0

)
. (53)

It follows from (46) and (53) that for λ1, . . . , λi ∈ R+

lim
n→∞

E exp

⎛⎝−

i∑
j=1

λ j a′

− j,n Z ′

− j,n

⎞⎠ = E∗ exp

⎛⎝−

i∑
j=1

λ jζ
∗

− j

⎞⎠ . (54)

learly (54) implies (26).
It can be shown, by repeating the reasonings used to prove (25) and (26), that these two

elations can be combined into one.
The lemma is proved.

emark 3. It is not difficult to verify, using Remark 1, that Lemma 3 admits the following
eneralization: for any a ≤ 0 and b > 0, as n → ∞,{

a′

i,n Z ′

i,n, i ∈ Z
⏐⏐⏐⏐ Ln

Cn
≤ a,

Sn − Ln

Cn
≤ b

}
D
→
{
ζ ∗

i , i ∈ Z
}
.

Lemma 4. If the conditions of Theorem 1 are satisfied, then P∗-a.s.

Σ1 < +∞, Σ2 < +∞.

Proof. It follows from the proof of Lemma 2.7 of [8] that, if the conditions of Theorem 1 are
satisfied, then the series

∑
∞

i=0 µi+1e−Si converges P+-a.s. Hence, the series
∑

∞

i=0 µ+

i+1e−S+

i

onverges P∗-a.s. Similarly we can prove that the series
∑

∞

i=1 µ−

i eS−

i converges P∗-a.s. As
result, we obtain (see (6) and (7)) that the series

∑
i∈Z µ∗

i+1e−S∗
i converges P∗-a.s. Thus,

1 < +∞ P∗-a.s. (see (9)).
Fix i ∈ Z. If the random environment Π ∗ is fixed, the random sequence

{
a∗

i, j Z∗

i, j , j ∈ Ni

}
s a martingale. Therefore

E∗
(

a∗

i, j Z∗

i, j

⏐⏐ Π ∗
)

= µ∗

i+1 (55)

or j ∈ Ni . By (8), (55) using Fatou’s lemma we obtain that

E∗
(
ζ ∗

i

⏐⏐ Π ∗
)

≤ lim inf E∗
(

a∗

i, j Z∗

i, j

⏐⏐ Π ∗
)

= µ∗

i+1
j→∞
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and, consequently,

E∗

(
ζ ∗

i e−S∗
i

⏐⏐⏐ Π ∗

)
= e−S∗

i E∗
(
ζ ∗

i

⏐⏐ Π ∗
)

≤ µ∗

i+1e−S∗
i . (56)

e have proved that the series
∑

i∈Z µ∗

i+1e−S∗
i converges P∗-a.s. This fact combined with (56)

mplies convergence of the series
∑

i∈Z E∗

(
ζ ∗

i+1e−S∗
i

⏐⏐⏐ Π ∗

)
P∗-a.s. Since the random variables

∗

i e−S∗
i are non-negative, it follows that the series

∑
i∈Z ζ ∗

i e−S∗
i converges a.s. if the random

nvironment Π ∗ is fixed. Hence, Σ2 < +∞ P∗-a.s. (see (9)).
The lemma is proved.

Set

Σ (1)

1 =

∞∑
i=0

µ+

i+1e−S+

i =

∑
i∈N0

µ∗

i+1e−S∗
i , (57)

Σ (2)

1 =

∞∑
i=1

µ−

i eS−

i =

∑
i∈Z\N0

µ∗

i+1e−S∗
i . (58)

learly,

Σ1 = Σ (1)

1 + Σ (2)

1 (59)

nd by virtue of Lemma 4 P∗-a.s.

Σ (1)

1 < +∞, Σ (2)

1 < +∞. (60)

emma 5. If the conditions of Theorem 1 are satisfied, then P∗-a.s., as n → ∞,{
n−1∑
i=0

µi+1e−Si

⏐⏐⏐⏐⏐ Ln ≥ 0

}
D
→ Σ (1)

1 , (61){
n−1∑
i=1

µi eSi

⏐⏐⏐⏐⏐ Mn < 0

}
D
→ Σ (2)

1 . (62)

roof. Let f : R → R be a bounded and continuous function. By virtue of (3) for fixed k ∈ N{
f

(
k∑

i=0

µi+1e−Si

) ⏐⏐⏐⏐⏐ Ln ≥ 0

}
D
→ f

(
k∑

i=0

µ+

i+1e−S+

i

)
s n → ∞. Recalling (60) we conclude that

lim
k→∞

f

(
k∑

i=0

µ+

i+1e−S+

i

)
= f

(
Σ (1)

1

)
∗-a.s. From these two facts, in view of Lemma 2.5 of [8], it follows that{

f

(
n−1∑
i=0

µi+1e−Si

) ⏐⏐⏐⏐⏐ Ln ≥ 0

}
D
→ f

(
Σ (1)

1

)
.

hus, relation (61) is true. Relation (62) can be proved by similar arguments.
The lemma is proved.
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(

Remark 4. It is not difficult to verify that if we combine the left-hand sides of relations (3) and
(61) (or (4) and (62)), then the respective statements concerning convergence in distribution
of the four dimensional tuples of the random elements given Ln ≥ 0 (or Mn < 0) are still in
force.

Set for n ∈ N

µ′

i,n =

{
µτn+i , i ∈ N(−τn),

0, i ∈ Z \ N(−τn).
(63)

Let

Σ (1)

1 (n) =

n−1−τn∑
j=0

µ′

j+1,ne−S′
j,n , Σ (2)

1 (n) =

τn∑
j=1

µ′

− j+1,ne−S′
− j,n . (64)

Lemma 6. If the conditions of Theorem 1 are satisfied, then P∗-a.s., as n → ∞,({(
µ′

i,n, S′

i,n

)
, i ∈ Z

}
,Σ (1)

1 (n) ,Σ (2)

1 (n)
)

D
→

({(
µ∗

i , S∗

i

)
, i ∈ Z

}
,Σ (1)

1 ,Σ (2)

1

)
.

Proof. Fix i ∈ N. Let f : R2i+1
→ R be a bounded and continuous function. Similarly to (12),

one can show that for n ∈ Ni

E
(

f
(
µ′

1,n, S′

1,n, . . . , µ
′

i,n, S′

i,n,Σ
(1)

1 (n)
)

; τn + i ≤ n
)

=

n−i∑
k=0

E ( f (µ1, S1, . . . , µi , Si , bn−k) | Ln−k ≥ 0) P (τn = k) , (65)

where, recall, bn =
∑n−1

i=0 µi+1e−Si for n ∈ N. Repeating the arguments of Lemma 1 and using
Lemma 5 and Remark 4, we can deduce from (65) (see also (6), (7), (57)) that

lim
n→∞

E f
(
µ′

1,n, S′

1,n, . . . , µ
′

i,n, S′

i,n,Σ
(1)

1 (n)
)

= E∗ f

⎛⎝µ+

1 , S+

1 , . . . , µ+

i , S+

i ,
∑
j∈N0

µ+

j+1e−S+

j

⎞⎠
= E∗ f

(
µ∗

1, S∗

1 , . . . , µ∗

i , S∗

i ,Σ (1)

1

)
.

Thus, as n → ∞,(
µ′

1,n, S′

1,n, . . . , µ
′

i,n, S′

i,n,Σ
(1)

1 (n)
)

D
→

(
µ∗

1, S∗

1 , . . . , µ∗

i , S∗

i ,Σ (1)

1

)
. (66)

Fix i ∈ N0. Let f : R2i+3
→ R be a bounded and continuous function. It is easy to show

see the proof of relation (18)) that for any n ∈ Ni

E
(

f
(
µ′

0,n, S′

0,n, . . . , µ
′

−i,n, S′

−i,n,Σ
(2)

1 (n)
)

; τn − i ≥ 0
)

=

n∑
k=i

E

⎛⎝ f

⎛⎝µ1, −S0, . . . , µi+1, −Si ,

k∑
j=1

µ j eS j

⎞⎠ ⏐⏐⏐⏐⏐⏐ Mk < 0

⎞⎠P (τn = k)
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t

and therefore (see Lemma 5, Remark 4 and (6), (7), (58)).

lim
n→∞

E f
(
µ′

0,n, S′

0,n, . . . , µ
′

−i,n, S′

−i,n,Σ
(2)

1 (n)
)

= E∗ f

⎛⎝µ−

1 , −S−

0 , . . . , µ−

i+1, −S−

i ,

∞∑
j=1

µ−

j eS−

j

⎞⎠
= E∗ f

(
µ∗

0, S∗

0 , . . . , µ∗

−i , S∗

−i ,Σ
(2)

1

)
.

Thus, as n → ∞,(
µ′

0,n, S′

0,n, . . . , µ
′

−i,n, S′

−i,n,Σ
(2)

1 (n)
)

D
→

(
µ∗

0, S∗

0 , . . . , µ∗

−i , S∗

−i ,Σ
(2)

1

)
. (67)

Since the left-hand sides of (66) and (67) are asymptotically independent and their right-hand
sides are independent, these two relations can be combined into one.

The lemma is proved.

Remark 5. It is not difficult to verify, using Remark 1, that statement of Lemma 6 admits the
following generalization: for any a ≤ 0 and b > 0, as n → ∞,({(

µ′

i,n, S′

i,n

)
, i ∈ Z

}
,Σ (1)

1 (n) ,Σ (2)

1 (n)

⏐⏐⏐⏐ Ln

Cn
≤ a,

Sn − Ln

Cn
≤ b

)
D
→({(

µ∗

i , S∗

i

)
, i ∈ Z

}
,Σ (1)

1 ,Σ (2)

1

)
.

Lemma 7. If the conditions of Theorem 1 are satisfied, then, as n → ∞,

{
bn − bτn+i

bn
, i ∈ N0

}
D
→

⎧⎨⎩
∑

∞

j=i µ+

j+1 exp
(
−S+

j

)
Σ1

, i ∈ N0

⎫⎬⎭ ,

{
bτn−i

bn
, i ∈ N

}
D
→

⎧⎨⎩
∑

∞

j=i+1 µ−

j exp
(

S−

j

)
Σ1

, i ∈ N

⎫⎬⎭ ,

{
aτn+i

bn
, i ∈ N0

}
D
→

{
exp

(
−S+

i

)
Σ1

, i ∈ N0

}
,

{
aτn−i

bn
, i ∈ N

}
D
→

{
exp

(
S−

i

)
Σ1

, i ∈ N

}
.

Proof. To simplify the presentation we check the first statement only. If j ∈ N0 and τn + j ≤ n
hen (see (10), (63) and (64))

bτn+ j

bn
=

∑τn+ j−1
k=0 µk+1 exp (−Sk)∑n−1

k=0 µk+1 exp (−Sk)
=

∑τn+ j−1
k=0 µk+1 exp

(
−
(
Sk − Sτn

))∑n−1
k=0 µk+1 exp

(
−
(
Sk − Sτn

))
=

∑ j−1
k=0 µ′

k+1,n exp
(
−S′

k,n

)
+ Σ (2)

1 (n)

(1) (2)
.

Σ1 (n) + Σ1 (n)
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N
s
e
a

S

Since the last expression is a bounded continuous function of the random element mentioned
in Lemma 6, it follows that(

bτn

bn
, . . . ,

bτn+i

bn

)
D
→

(
Σ (2)

1 , . . . ,Σ (2)

1 +
∑i−1

j=0 µ+

j+1 exp
(
−S+

j

))
Σ (1)

1 + Σ (2)

1

as n → ∞. Whence, taking into account (59) we obtain the required relation. The remaining
three statements may be proved by similar arguments.

The lemma is proved.

Remark 6. The random element constructed from the left-hand sides of all the relations
included in Lemmas 3 and 7 converges in distribution to the random element constructed
from the respective right-hand sides of the relations included in these lemmas. Moreover (see
Remarks 3 and 5), the random element constructed from the left-hand sides is asymptotically
independent, as n → ∞, of the random event{

C−1
n Ln ≤ a, C−1

n (Sn − Ln) ≤ b
}

for any a ≤ 0 and b > 0.

Remark 7. Lemma 7 (for i = 0) implies the following statement: if the conditions of
Theorem 1 are satisfied, then, as n → ∞,

aτn

bn
=

exp (−Ln)

bn

D
→

1
Σ1

.

ote that this statement, first, substantially generalizes the main result of [15] and, secondly,
hows that one may choose for scaling of Z⌊nt⌋ in Theorem 1 a more simple coefficient
xp
(
−
(
S⌊nt⌋ − L⌊nt⌋

))
instead of a⌊nt⌋/b⌊nt⌋. In view of (1) this leads to the hypothesis that,

s n → ∞,{
C−1

n ln
(
Z⌊nt⌋ + 1

)
, t ≥ 0

} D
→ {W (t) − L (t) , t ≥ 0} .

A particular case of this result is established by Theorem 2 of [3].

3. Proof of the main result

First part. We establish convergence of one-dimensional distributions: if t > 0, then, as
n → ∞,

a⌊nt⌋

b⌊nt⌋
Z⌊nt⌋

D
→

Σ2

Σ1
. (68)

et for r ∈ N

U (i)
r =

τr +i−1∑
j=τr −i

Z j,r ,

V (i)
r =

τr −i−1∑
j=0

Z j,r +

r−1∑
j=τr +i

Z j,r .

It is clear that for i ∈ N

Z⌊nt⌋ =

⌊nt⌋−1∑
Z j,⌊nt⌋ = U (i)

⌊nt⌋ + V (i)
⌊nt⌋. (69)
j=0
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i

A

a

B

H

A

Note that

E
(

a j,⌊nt⌋ Z j,⌊nt⌋
⏐⏐ Q1,⌊nt⌋

)
= µ j+1, (70)

f 0 ≤ j < ⌊nt⌋. Observing that a⌊nt⌋ = a j a j,⌊nt⌋ for 0 ≤ j < ⌊nt⌋ we obtain by (70) that

E
(

a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋

)

= Eb−1
⌊nt⌋

⎛⎝τ⌊nt⌋−i−1∑
j=0

a j a j,⌊nt⌋ Z j,⌊nt⌋ +

⌊nt⌋−1∑
j=τ⌊nt⌋+i

a j a j,⌊nt⌋ Z j,⌊nt⌋

⎞⎠
= Eb−1

⌊nt⌋

⎛⎝τ⌊nt⌋−i−1∑
j=0

µ j+1a j +

⌊nt⌋−1∑
j=τ⌊nt⌋+i

µ j+1a j

⎞⎠
= E

bτ⌊nt⌋−i +
(
b⌊nt⌋ − bτ⌊nt⌋+i

)
b⌊nt⌋

. (71)

pplying Lemma 7 to the right-hand side of (71), we conclude that

lim
n→∞

E
(

a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋

)
= E

∑
∞

j=i µ+

j+1 exp
(
−S+

j

)
+
∑

∞

j=i+1 µ−

j exp
(

S−

j

)
Σ1

nd, therefore (see (60)),

lim
i→∞

lim
n→∞

E
(

a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋

)
= 0. (72)

y Markov inequality for any ε > 0

P
(

a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋ ≥ ε

)
≤ ε−1E

(
a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋

)
.

ence, taking into account (72) we obtain that

lim
i→∞

lim
n→∞

P
(

a⌊nt⌋

b⌊nt⌋
V (i)

⌊nt⌋ ≥ ε

)
= 0. (73)

Observe that we may assume in the sequel that i ≤ τ⌊nt⌋ < ⌊nt⌋ − i (see the proof of
Lemma 1). Note that (see (23), (24))

U (i)
⌊nt⌋ =

i−1∑
j=−i

Zτ⌊nt⌋+ j,⌊nt⌋ =

i−1∑
j=−i

Z ′

j,⌊nt⌋

and, therefore,

a⌊nt⌋

b⌊nt⌋
U (i)

⌊nt⌋ =

i−1∑
j=−i

aτ⌊nt⌋+ j

b⌊nt⌋
a′

j,⌊nt⌋ Z ′

j,⌊nt⌋. (74)

pplying Lemmas 3, 7 and the first part of Remark 6 to (74), we obtain that, as n → ∞,

a⌊nt⌋

b⌊nt⌋
U (i)

⌊nt⌋
D
→

1
Σ1

i−1∑
ζ ∗

j e−S∗
j . (75)
j=−i

132



V.I. Afanasyev Stochastic Processes and their Applications 139 (2021) 110–138

I

W

I

T

R
g

W

w

c

Hence, for any fixed i ∈ N and for all but a countable set of x ≥ 0

lim
n→∞

P
(

a⌊nt⌋

b⌊nt⌋
U (i)

⌊nt⌋ ≤ x
)

= P

⎛⎝ 1
Σ1

i−1∑
j=−i

ζ ∗

j e−S∗
j ≤ x

⎞⎠ . (76)

n view of Lemma 4 (see (9))

lim
i→∞

P

⎛⎝ 1
Σ1

i−1∑
j=−i

ζ ∗

i e−S∗
i ≤ x

⎞⎠ = P
(
Σ2

Σ1
≤ x

)
. (77)

e obtain by (76) and (77) that

lim
i→∞

lim
n→∞

P
(

a⌊nt⌋

b⌊nt⌋
U (i)

⌊nt⌋ ≤ x
)

= P
(
Σ2

Σ1
≤ x

)
. (78)

t follows from (69), (73) and (78) that for all but a countable set of x ≥ 0

lim
n→∞

P
(

a⌊nt⌋

b⌊nt⌋
Z⌊nt⌋ ≤ x

)
= P

(
Σ2

Σ1
≤ x

)
.

his proves (68).

emark 8. It is not difficult to verify (see Remark 6) that relation (75) admits the following
eneralization: for any a ≤ 0 and b > 0, as n → ∞,{

a⌊nt⌋

b⌊nt⌋
U (i)

⌊nt⌋

⏐⏐⏐⏐ L⌊nt⌋

Cn
≤ a,

S⌊nt⌋ − L⌊nt⌋

Cn
≤ b

}
D
→

1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j .

Second part. Now we establish convergence of two-dimensional distributions. Select 0 <

t1 < t2, fix an ε > 0 and introduce the following random events:

An,ε =
{

L⌊nt1⌋ > L⌊nt1⌋,⌊nt2⌋ + εCn
}
,

Bn,ε =
{

L⌊nt1⌋ < L⌊nt1⌋,⌊nt2⌋ − εCn
}
,

Dn,ε =
{⏐⏐L⌊nt1⌋ − L⌊nt1⌋,⌊nt2⌋

⏐⏐ ≤ εCn
}
.

e show that, as n → ∞,{
a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋

⏐⏐⏐⏐ An,ε

}
D
→ (γ1, γ2) , (79){

a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋

⏐⏐⏐⏐ Bn,ε

}
D
→ (γ1, γ1) , (80)

here γ1, γ2 are independent random variables and γ1
d
= γ2

d
= Σ2/Σ1.

First we establish (79). With this aim we prove that, for any fixed i ∈ N and for all but a
ountable set of (x1, x2) ∈ R2

+
,

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
a⌊nt2⌋

b⌊nt2⌋

U (i)
⌊nt2⌋

≤ x2

⏐⏐⏐⏐ An,ε

)

= P

⎛⎝ 1
Σ1

i+1∑
ζ ∗

j e−S∗
j ≤ x1

⎞⎠P

⎛⎝ 1
Σ1

i+1∑
ζ ∗

j e−S∗
j ≤ x2

⎞⎠ . (81)

j=−i j=−i
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By virtue of Remark 7, as n → ∞,

b⌊nt1⌋

exp
(
−L⌊nt1⌋

) D
→ χ1, (82)

b⌊nt2⌋ − b⌊nt1⌋

exp
(
−
(
L⌊nt1⌋,⌊nt2⌋

)) D
=

b⌊nt2⌋−⌊nt1⌋

exp
(
−
(
L⌊nt2⌋−⌊nt1⌋

)) D
→ χ2, (83)

here χ1 and χ2 are positive identically distributed random variables. The left-hand sides of
elations (82) and (83) are independent. Set L (t1, t2) = inft∈[t1,t2] W (t). Taking into account
he estimate (see (1))

lim
n→∞

P
(

An,ε

)
= P (L (t1) > L (t1, t2) + ε) > 0,

e obtain by (82) and (83) that, as n → ∞,{
b⌊nt1⌋

b⌊nt2⌋ − b⌊nt1⌋

⏐⏐⏐⏐ An,ε

}
D
→ 0. (84)

herefore, if the event An,ε occurred, we can replace the coefficient a⌊nt2⌋/b⌊nt2⌋ for U (i)
⌊nt2⌋

at
he left-hand part of (81) by the coefficient

a⌊nt2⌋

b⌊nt2⌋ − b⌊nt1⌋

=
exp

(
−
(
S⌊nt2⌋ − S⌊nt1⌋

))∑⌊nt2⌋−⌊nt1⌋

i=⌊nt1⌋
µi+1 exp

(
−
(
Si − S⌊nt1⌋

)) =
ã⌊nt2⌋−⌊nt1⌋

b̃⌊nt2⌋−⌊nt1⌋

,

here the values ã⌊nt2⌋−⌊nt1⌋ and b̃⌊nt2⌋−⌊nt1⌋ are constructed from the random environment
Q̃i := Q⌊nt1⌋+i , i = 1, . . . , ⌊nt2⌋ − ⌊nt1⌋, just as the values a⌊nt2⌋−⌊nt1⌋ and b⌊nt2⌋−⌊nt1⌋ are
constructed from the random environment Q1,⌊nt2⌋−⌊nt1⌋.

Further, given An,ε, the inequality τ⌊nt2⌋ > τ⌊nt1⌋ is true. We may assume that ⌊nt2⌋ − i >

⌊nt2⌋ > τ⌊nt1⌋ + i . Thus, if the random environment {Qn, n ∈ N} is fixed, the distribution
f the random variable U (i)

⌊nt1⌋
is completely determined by the random environment Q1,⌊nt1⌋

nd the distribution of the random variable U (i)
⌊nt2⌋

is completely determined by the random
nvironment Q⌊nt1⌋+1,⌊nt2⌋. Moreover, U (i)

⌊nt2⌋
= Ũ (i)

⌊nt2⌋−⌊nt1⌋
, where Ũ (i)

⌊nt2⌋−⌊nt1⌋
has the same

eaning for the environment Q̃i , i = 1, . . . , ⌊nt2⌋ − ⌊nt1⌋, as U (i)
⌊nt2⌋−⌊nt1⌋

has for the
nvironment Q1,⌊nt2⌋−⌊nt1⌋.

Summarizing the arguments above, we see that to prove (81) it is sufficient to show that

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
ã⌊nt2⌋−⌊nt1⌋

b̃⌊nt2⌋−⌊nt1⌋

Ũ (i)
⌊nt2⌋−⌊nt1⌋

≤ x2

⏐⏐⏐⏐ An,ε

)

= P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ x1

⎞⎠P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ x2

⎞⎠ . (85)

Note that

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
ã⌊nt2⌋−⌊nt1⌋

b̃⌊nt2⌋−⌊nt1⌋

Ũ (i)
⌊nt2⌋−⌊nt1⌋

≤ x2, An,ε

)
=

∫ 0

−∞

∫
+∞

0
P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
L⌊nt1⌋

Cn
∈ da,

S⌊nt1⌋ − L⌊nt1⌋

Cn
∈ db

)
× P

(
a⌊nt2⌋−⌊nt1⌋ U (i)

⌊nt2⌋−⌊nt1⌋
≤ x2,

L⌊nt2⌋−⌊nt1⌋
< b − a − ε

)
.

b⌊nt2⌋−⌊nt1⌋ Cn
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S

(

s

T

Hence, taking into account Remark 8 we deduce that, as n → ∞,

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
ã⌊nt2⌋−⌊nt1⌋

b̃⌊nt2⌋−⌊nt1⌋

U (i)
⌊nt2⌋

≤ x2, An,ε

)

∼ P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ x1

⎞⎠P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ x2

⎞⎠
×

∫ 0

−∞

∫
+∞

0
P
(

L⌊nt1⌋

Cn
∈ da,

S⌊nt1⌋ − L⌊nt1⌋

Cn
∈ db

)
× P

(
L⌊nt2⌋−⌊nt1⌋

Cn
< b − a − ε

)
.

ince the last integral is equal to P
(

An,ε

)
, we obtain (85) and, as a result, the required relation

(81).
It follows from (81) that (see (78))

lim
i→∞

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
b⌊nt2⌋

a⌊nt2⌋

U (i)
⌊nt2⌋

≤ x2

⏐⏐⏐⏐ An,ε

)
= P

(
Σ2

Σ1
≤ x1

)
P
(
Σ2

Σ1
≤ x2

)
. (86)

Applying now the same arguments which we have used in First part of the proof to establish
68) from (78), we obtain (79) from (86).

We now prove (80). To this aim we check that, for any fixed i ∈ N and for all but a countable
et of (x1, x2) ∈ R2

+
,

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

≤ x1,
a⌊nt2⌋

b⌊ntk⌋

U (i)
⌊nt2⌋

≤ x2

⏐⏐⏐⏐ Bn,ε

)

= P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ min (x1, x2)

⎞⎠ . (87)

Set

Z ′

i,n (m) = Zτn+i,m,

U (i)
n (m) =

i+1∑
j=−i

Z ′

j,n (m) .

Similarly to relation (84), it can be shown that, as n → ∞,{
b⌊nt2⌋ − b⌊nt1⌋

b⌊nt1⌋

⏐⏐⏐⏐ Bn,ε

}
D
→ 0.

herefore, if the event Bn,ε occurred, we can replace the coefficient a⌊nt2⌋/b⌊nt2⌋ for U (i)
⌊nt2⌋

at the
left-hand part of (87) by the coefficient a⌊nt2⌋/b⌊nt1⌋. Given that the random event Bn,ε occurred,
τ⌊nt2⌋ = τ⌊nt1⌋, and hence,

U (i)
⌊nt1⌋

=

i+1∑
Z ′

i,⌊nt1⌋
(⌊nt1⌋) = U (i)

⌊nt1⌋
(⌊nt1⌋) ,
j=−i
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B

U (i)
⌊nt2⌋

=

i+1∑
j=−i

Z ′

i,⌊nt1⌋
(⌊nt2⌋) = U (i)

⌊nt1⌋
(⌊nt2⌋) .

Thus, to prove (87) it is sufficient to show that

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

(⌊nt1⌋) ≤ x1,
a⌊nt2⌋

b⌊nt1⌋

U (i)
⌊nt1⌋

(⌊nt2⌋) ≤ x2

⏐⏐⏐⏐ Bn,ε

)

= P

⎛⎝ 1
Σ1

i+1∑
j=−i

ζ ∗

j e−S∗
j ≤ min (x1, x2)

⎞⎠ . (88)

Applying the arguments similar to those used to establish relation (26), we can show that{
a′

i,m Z ′

i,n (m) , i ∈ Z
} D

→
{
ζ ∗

i , i ∈ Z
}
,

as m ≥ n → ∞. Moreover,{(
a′

i,n Z ′

i,n (n) , a′

i,m Z ′

i,n (m)
)
, i ∈ Z

} D
→
{(

ζ ∗

i , ζ ∗

i

)
, i ∈ Z

}
(89)

and (see Remark 3) the left-hand side of this relation is asymptotically independent from the
random event

{
C−1

n Ln ≤ a, C−1
n (Sn − Ln) ≤ b

}
for any a ≤ 0 and b > 0. It follows from

(89) that (see the proof of (75))(
an

bn
U (i)

n (n) ,
am

bn
U (i)

n (m)

)
D
→

1
Σ1

⎛⎝ i+1∑
j=−i

ζ ∗

j e−S∗
j ,

i+1∑
j=−i

ζ ∗

j e−S∗
j

⎞⎠ , (90)

as m ≥ n → ∞. From (90) we obtain the desired relation (88) and, as a result, (87). Now
statement (80) follows from (87) in a standard way.

Finally, according to (1)

lim
ε→0

lim
n→∞

P
(

An,ε

)
= P (L (t1) > L (t1, t2)) = P (L (t1) > L (t2)) , (91)

lim
ε→0

lim
n→∞

P
(
Bn,ε

)
= P (L (t1) < L (t1, t2)) = P (L (t1) = L (t2)) (92)

and

lim
ε→0

lim
n→∞

P
(
Dn,ε

)
= 0. (93)

y the total probability formula

P
(

a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋ ≤ x1,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋ ≤ x2

)
= P

(
a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋ ≤ x1,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋ ≤ x2

⏐⏐⏐⏐ An,ε

)
P
(

An,ε

)
+ P

(
a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋ ≤ x1,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋ ≤ x2

⏐⏐⏐⏐ Bn,ε

)
P
(
Bn,ε

)
+ P

(
a⌊nt1⌋

b
Z⌊nt1⌋ ≤ x1,

a⌊nt2⌋

b
Z⌊nt2⌋ ≤ x2

⏐⏐⏐⏐ Dn,ε

)
P
(
Dn,ε

)
, (94)
⌊nt1⌋ ⌊nt2⌋
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where (x1, x2) ∈ R2
+

. Combining (79), (80) and (91)–(94) we deduce that

lim
n→∞

P
(

a⌊nt1⌋

b⌊nt1⌋

Z⌊nt1⌋ ≤ x1,
a⌊nt2⌋

b⌊nt2⌋

Z⌊nt2⌋ ≤ x2

)
= P (γ1 ≤ x1, γ2 ≤ x2) P (L (t1) > L (t2))

+ P (γ1 ≤ x1, γ1 ≤ x2) P (L (t1) = L (t2))

for all but a countable set of (x1, x2) ∈ R2
+

. This gives the desired convergence of two-
dimensional distributions.

Third part. The proof of convergence of multidimensional distributions (for dimensions
exceeding two) is carried out by induction using the reasonings of Second part of the proof.
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