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Hamiltonians on random walk trajectories
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Abstract

We consider Gibbs measures on the set of paths of nearest-neighbors random walks on Z+.
The basic measure is the uniform measure on the set of paths of the simple random walk on
Z+ and the Hamiltonian awards each visit to site x∈Z+ by an amount �x ∈R, x∈Z+. We give
conditions on (�x) that guarantee the existence of the (in�nite volume) Gibbs measure. When
comparing the measures in Z+ with the corresponding measures in Z, the so-called entropic
repulsion appears as a counting e�ect. c© 1998 Elsevier Science B.V. All rights reserved.
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0. Introduction

We consider trajectories �=(�i)i∈Z of nearest-neighbors random walks on ZZ+, so
that �i ∈Z+ and |�i−�i−1|=1. Let Nx(�)=

∑
i �(�i; x), the number of times that the

path � visits x, where we put �(y; z)= 1 if y= z and zero otherwise. Let �x be given
real numbers, and H be the Hamiltonian

H (�)=
∑
x

�xNx(�)=
∑
i

�(�i):

(Of course the sum is well de�ned only if i runs on a �nite set.) We also study random
walks on Z with symmetric interactions under sign permutation.
The Hamiltonian corresponding to the simple random walk on Z+ with probabilities

p and 1−p for jumping one unit to the right and left, respectively, and with re
ection
at the origin is the one that awards with �0 =−logp each visit to the origin and does
not award the other sites: �x =0 for x¿0. In this case, we have that for �0¿log 2,
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there is a Gibbs measure associated to this Hamiltonian – the one that corresponds to
the stationary Markov chain with p¡ 1

2 – and that for �06log 2 there are no Gibbs
measures associated to this Hamiltonian – in this case the Markov chain is null recurrent
or transient. We show this in Section 1.
Consider a Hamiltonian that awards �x each visit to state x. In Theorems 1.2 and 1.4

below we give su�cient conditions on (�x) that guarantee the existence of a Gibbs
measure when �x is constant for x su�ciently large. When �x+26�x for x su�ciently
large we give only su�cient conditions. These conditions are given in function of
continued fractions.
There is a natural relation between Hamiltonians awarding visits to sites with

Hamiltonians awarding visits to edges: each time that the path jumps from x to x + 1
the award is bx and each time that the path jumps from x + 1 to x the award is cx.
The relation between (�x) and (bx; cx) is given in Lemma 1.1 below. The Hamiltonian
awarding jumps gives rise naturally to the so-called transfer matrix Q=(qx;y), where
qx; x+1 = ebx and qx+1; x =ecx , x¿0; qx;y =0 otherwise (see Georgii, 1988, Ch. 3 for
a discussion on transfer matrices for one-dimensional lattices with a �nite state set,
in particular, the one-dimensional Ising model). If the transfer matrix turns out to be
stochastic (i.e. the sum of each row is one), then the problem reduces to the study of
recurrence properties of birth and death chains. In the general case, the transfer matrix
is still bi-diagonal but not stochastic.
Hence, we consider a positive bi-diagonal matrix Q with the only positive en-

trances qx; x+1 = eb(x) and qx+1; x =ec(x), x¿0. Let R be the common convergence ra-
dius of Q (see de�nition in next section) and f be the right eigenvector with eigen-
value R. The matrix Q is said to be R-positive if the Markov chain with transition
probabilities

p(x; y)=R−1qx;y
fy
fx

is positive recurrent. Kesten (1976) proved that there exists a unique Gibbs state corre-
sponding to a given Hamiltonian if and only if the corresponding matrix Q is R-positive.
The problem left is then to �nd conditions for a positive bidiagonal matrix to be R-
positive.
When qx; x±1 is constant for x su�ciently large, we give necessary and su�cient

conditions on the matrix Q to guarantee R-positivity. These conditions involve careful
analysis of continued fractions.
We then prove that if for �x constant when x¿M there is a Gibbs state, then for

any sequence identical to �x for x6M and non-increasing for x¿M there is also a
Gibbs state. To show this we jointly construct particle systems having Gibbs states as
invariant (and reversible) measures in such a way that one of the systems dominates
the other, coordinate by coordinate. This is called coupling. As a marginal result we
obtain a stationary in�nite particle system on the set of nearest-neighbors random walks
(contained in ZZ) for which a drift in direction to the origin is present only in a �nite
number of x. For periodic boundary conditions the corresponding �nite systems are
null recurrent. See details about this in Section 3.
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A model that shares properties with our model is the so-called solid-on-solid (SOS)
model. The state space is the same as ours but the Hamiltonian is given by

H (�)=−
∑
x

|�x − �x+1|+ h|�x|:

The �rst term awards those con�gurations that have nearest neighbors as close as
possible and the second term awards those con�gurations that stay close to the axis 0.
In our process we force the distance between neighbors to be one and only award
visits to some points: the �eld does not increase with the distance. The Gibbs measure
on trajectories of random walk we study share a property with SOS models: For SOS
models on ZZ Leeuwen and Hilhorst (1981) showed that any positive award to the
origin guarantees the existence of a Gibbs state, while when the model lives in ZZ+, the
award must superate a critical value. This fact is known as entropic repulsion of the
wall x=0. In our case the entropic repulsion appears as a counting e�ect. If there
is a Gibbs state in ZZ+ for some (�x; x¿0), then there is a Gibbs state in ZZ for
(�′x; x∈Z), where �′0 = �0 − log 2 and �′x = �|x| for x 6=0. In particular, since we saw
that log 2 is the critical value above which there is a Gibbs state in ZZ+ in the random
walk case, any positive award to the origin and no award to the other points guarantees
the existence of a Gibbs state in ZZ.
Cesi and Martinelli (1996a, b) and Lebowitz and Mazel (1996) study SOS models

interacting with a wall to which the surface is attracted. The main result is that at low
enough temperature the process shows “layering transition”. In words, this means that
depending on the strength of the �eld, the surface chooses one level k and most of
the heights localize at k with small 
uctuations. Probably this transition is not present
in the measure we study, but this has not been proven.

1. Results

We consider measures in the space of trajectories 
 of a nearest-neighbors non-
negative random walk,


= {w∈ZZ+: |wi − wi+1|=1 ∀i∈Z}:

Let �=(�x: x∈Z+), b=(bx: x∈Z+), c=(cx: x∈Z+) be �xed sequences. We as-
sociated to them pair interaction potentials �� and �b; c on con�gurations w∈
, then
(��)A(w)= (�b; c)A(w)= 0 for A 6= {i; i + 1}. �� is the interaction with weight �x on
site x, and �b; c is the interaction with weights bx on the edge (x; x+1) and cx on the
edge (x + 1; x). Then

(��){i; i+1}(w)=
∑
x∈Z+

�x�(wi+1; x);

(�b; c){i; i+1}(w)=
∑
x∈Z+

(bx�(wiwi+1; x(x + 1)) + cx�(wiwi+1; (x + 1)x)):
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For i6j we put w[i; j] = (wi; : : : ; wj) and by 
[i; j] = {�=w[i; j]: w∈ZZ+} we mean
the set of blocks [i; j] in 
. For x; y∈Z+ and a block �∈
[i; j] we denote by

Nx(�)=
j∑
k=i

�(�k ; x) and Nx; y(�)=
j−1∑
k=i

�(�k�k+1; xy);

the number of times � visits x and the number of times � passes through the edge xy,
respectively, this last quantity vanishing if |x − y| 6=1.
For a block �∈
[i; j] we put

H �(�)=
∑
x∈Z+

�xNx(�) and H b; c(�)=
∑
x∈Z+

(bxNx; x+1(�) + cxNx+1; x(�)):

(1.1)

With this notation the Hamiltonians associated to the interactions ��, �b; c on the
intervals [i; j], for con�gurations w∈
, are

H �[i; j ](w)=H
�(w[i; j + 1]) and H b; c[i; j ](w)=H

b; c(w[i − 1; j + 1]): (1.2)

Now, for the Hamiltonians H =H � and H =H b; c, the probability measures associated
to them are (see Georgii, 1988, De�nition 2.9)

�H[i; j ](w)(�)= (Z[i; j ](w))
−1 ∑

w′[i−1; j+1] : w′[k; l]=�
w′
i−1=wi−1 ; w′

j+1=wj+1

eH[i; j ](w
′) for �∈
[k; l]; (1.3)

where

i¡k; j¿l; being Z[i; j ](w)=
∑

w′[i−1; j+1] :
w′
i−1=wi−1 ; w′

j+1=wj+1

eH[i; j ](w
′)

the partition function of w∈
 in [i; j]. We have the following relation between both
Hamiltonians and measures.

Lemma 1.1. Assume that the sequences �, b, c verify the equalities

�x + �x+1 = bx + cx for x∈Z+: (1.4)

Then there exists a real function 
(n; m; p) de�ned in Z3+ such that

H b; c[i; j ](w)=H
�
[i; j ](w) + 
(wi−1; wj+1; j − i): (1.5)

In particular, this relation implies

�H
b; c

[i; j ] (w)(�)= �
H �
[i; j ](w)(�) for any �∈
[k; l]; with [k; l]⊆ [i + 1; j − 1]:

(1.6)

Its proof will be given in the appendix.
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Our results concern particular classes of sequences. We say that the sequence a is
ultimately constant (respectively, ultimately non-increasing) if there exists M =M (a)
such that the sequence (ax: x¿M) is constant (respectively, non-increasing). For a
ultimately constant we denote a= aM (a)+1 so ax = a ∀x¿M (a). Below we will also
use the following notation: a¿0 if ax¿0 ∀x∈Z+.
One of our main results is:

Theorem 1.2. Let � and b+ c be ultimately constant sequences. Then there exists a
unique translational invariant Gibbs state
(i) �� for H � if and only if for some x=0; : : : ; M =M (�) it is veri�ed:

1− e�x+�x+1−2�=4

1− e�x+1+�x+2−2�=4

1−
· · ·

e�M−1+�M−2�=4
1− e�M−�=2

∈ [−∞; 0); (1.7)

where for x=M it means 1− e�M−�=2¡0.
(ii) �b; c for H b; c if and only if for some x=0; : : : ; M =M (b+ c) it is veri�ed:

1− ebx+cx−(b+c)=4

1− ebx+1+cx+1−(b+c)=4

1−
· · ·

ebM−1+cM−1−(b+c)=4
1− ebM+cM−(b+c)=2

∈ [−∞; 0); (1.8)

for x=M it means 1− ebM+cM−(b+c)=2¡0.
The measures ��, �b; c de�ne translational invariant positive recurrent birth and

death chain on Z+. Moreover, the transition probabilities p(x; x + 1), p(x + 1; x) of
these chains are constants for x¿M .

Let us show that part (i) can be deduced from (ii). Let us pick b; c such that

�x + �x+1 = bx + cx:

Since �x = � for x¿M (�); b+c is ultimately constant with M (b+c)=M (�). Then the
conditions of Lemma 1.1 are veri�ed for �; b; c. Now we apply (ii) to the sequences
b, c. Since �x + �x+1 − 2�= bx + cx − (b+ c) for x=0; : : : ; M we �nd that (i) follows
from (ii).
In the proof of (ii) we will characterize R-positivity of a class of 2-periodic ir-

reducible matrices (see Vere-Jones, 1962, Vere-Jones, 1967). Below we precise this
notion. We will deal with matrices Q=(qx;y: x; y∈Z+) verifying

qx;y =0 if |x − y| 6=1 and qx;y¿0 if |x − y|=1: (1.9)

Observe that irreducibility implies that R= lim supN→∞ (Q
2N (u; u))1=2N is a common

convergence radius, i.e. it is independent of u∈Z+. The matrix Q is R-positive if there
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exists a solution to the eigenvector problem:

Qf =Rf where f =(fx: x∈Z+)¿0

and such that the following stochastic matrix P (R) = (p(x; y): x; y∈Z+), with

p(x; y)=R−1qx;y
fy
fx
; x; y∈Z+;

de�nes a positive recurrent Markov chain. We notice that the particular shape of Q
implies that the matrix P (R) de�nes a birth and death chain because p(x; y)= 0 if
|x − y| 6=1. We will consider the sequences p, q de�ned by

px
:= qx; x+1 and qx

:= qx+1; x for x∈Z+:

A key result is the following characterization of R-positivity when p ·q=(pxqx: x∈N)
is ultimately constant.

Theorem 1.3. Let Q=(qx;y: x; y∈Z+) be a positive matrix such that qx;y =0 if
|x − y| 6=1 and qx;y¿0 if |x − y|=1. Assume p · q is ultimately constant. Then Q is
R-positive if and only if for some x=0; : : : ; M =M (p · q), we have

1− pxqx=4pq

1− px+1qx+1=4pq

1−
· · ·

pM−1qM−1=4pq
1− pMqM=2pq

∈ [−∞; 0): (1.10)

For x=M it means 1−pMqM=2pq¡0. Moreover, the transition probabilities p(x; x+
1), p(x + 1; x) of the matrix P (R) associated to Q are constants for x¿M .

Let us introduce the main steps to deduce Theorem 1.2 from Theorem 1.3. Let
Q=(qx;y: x; y∈Z+) be the following irreducible matrix:

qx;y =0 if |x − y| 6=1 and qx; x+1 = ebx ; qx+1; x =ecx for x∈Z+: (1.11)

From de�nition we get

�H
b; c

N (w)(�)=
QN−k+1(w−(N+1); �−k)

∏k−1
i=−k Q(�i; �i+1) · QN−k+1(�k ; wN+1)

Q2N+2(w−(N+1); wN+1)
:

From Theorem 1 in Kesten (1976) for strictly positive matrices and extended in
Theorem C in Gurevich (1984) for irreducible matrices, we have that there exists
a unique translational invariant Gibbs state for the Hamiltonian H b; c if and only if
Q is an R-positive matrix. By using notation (1:11), we have pxqx=pq=ebx+cx−(b+c).
Therefore, Kesten’s theorem allows to reduce Theorem 1.2 from Theorem 1.3 and
Lemma 1.1.
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When the sequences verify some ultimately decreasing properties we get su�cient
conditions for the existence of translational invariant Gibbs states.

Theorem 1.4. (i) If � veri�es that the sequence A=(�x+ �x+1: x∈Z+) is ultimately
decreasing then there exists a translational invariant Gibbs state �� for H � when for
some x=0; : : : ; M =M (A) it is veri�ed:

1− e�x+�x+1−�M+1−�M+2=4

1− e�x+1+�x+2−�M+1−�M+2=4

1−
· · ·

e�M−1+�M−�M+1−�M+2=4
1− e�M−�M+2 =2

∈ [−∞; 0);

where for x=M it means 1− e�M−�M+2 =2¡0.
(ii) If b; c verify that the sequence B=(bx + cx: x∈Z+) is ultimately decreasing

then there exists a translational invariant Gibbs state �b; c for H b; c when for some
x=0; : : : ; M =M (B) it is veri�ed:

1− ebx+cx−bM+1−cM+1=4

1− ebx+1+cx+1−bM+1−cM+1=4

1−
· · ·

ebM−1+cM−1−bM+1−cM+1=4

1− ebM+cM−bM+1−cM+1=2

∈ [−∞; 0);

for x=M it means 1− ebM+cM−bM+1−cM+1=2¡0.

As before part (i) follows from (ii) by taking b; c such that bx+ cx = �x+ �x+1. The
hypothesis �x+2 + �x+16�x+1 + �x for x¿M (�) is equivalent to bx+1 + cx+16bx + cx
for x¿M (�).
Now, we discuss the role of the entropic repulsion of the re
ecting wall at x=0.

Consider the space of trajectories of a simple random walk with nearest-neighbor
jumps without the constraint that it must be positive. The space of con�gurations is

= {w∈ZZ: |wi−wi+1|=1 ∀i∈Z} and the set of blocks [i; j] is 
[i; j] = {�=w[i; j]:
w∈
}. The sequence �=(�x: x∈Z) is restricted to be symmetric with respect to sign
permutation, i.e. it veri�es �x = �−x, for x∈Z. The Hamiltonian H� is de�ned analo-
gously as in Eq. (1.1) but the sum is over Z instead of over Z+. Also �H

�
is de�ned

analogously as in Eq. (1.3). For a block w[i; j]∈
[i; j] we set |w[i; j]|={|wk |: i6k6j}
which is a block in 
[i; j]. For �∈
[i − 1; j + 1] we have∑

�′∈
[i−1; j+1] :
|�′i−1|=|�i−1|; |�′j+1|=|�j+1|

�(|�′|; |�|)= 2N0(|�[i; j]|)
∑

�′∈
[i; j] :
�′i−1=|�i−1|; �′j+1=|�j+1|

�(�′; |�|):

Hence, for i¡j, k¿l, �∈
[k; l], w∈
 we have

�H
�

[i; j ](w)(�)=


 ∑
�̃∈
[k; l]

�(|�̃|; |�|)


−1

�H
�

[i; j ](|w|)(|�|);
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where �=(�x: x∈Z+) veri�es �x = �x for x¿1 and �0 = �0 + log 2. Hence, we have
proved the following result.

Theorem 1.5. If � is invariant under sign permutation and ultimately constant then
there exists a translational invariant Gibbs measure de�ned on the product �-�eld of
ZZ if and only if condition (1:7) holds for �=(�0 + log 2; �x for x¿1).

This shows, in the simplest way, the role of the entropic repulsion of the wall at
x=0. The number 2 to the power (number of visits to the wall) is the extra probability
that each path in the free system obtains with respect to the corresponding path in the
system with the wall.
Observe that Theorem 1.2 can also be written in terms of thermodynamic limits (see

Georgii, 1988, Theorem 7.12). In this purpose de�ne for �xed u; v∈Z+ the following
functional for H =H � or H =H b; c,

�HN;u; v(�)=

∑
�′∈
[−N;N ]: �′−N=u; �

′
N=v; �

′[−k; k]=� e
H (�′)∑

�′∈
[−N;N ]: �′−N=u; �
′
N=v

eH (�′)
for �∈
[−k; k]: (1.12)

The theorem asserts that limN→∞ �
H
N;u; v(�) exists and de�nes a translational invariant

probability measure on 
 if and only if it holds condition (1:7) for H =H �, or condition
(1:8) for H =H b; c. Analogously for Theorem 1.5.
We can give probabilistic interpretation of Theorem 1.2 in some special cases. In this

purpose consider the birth and death chain (Xn) with transition probabilities Q=(qx;y),
where qx;y is the probability of jumping from x to y, where only the transitions x to
x + 1 and x to x − 1 are allowed. The state 0 is a re
ecting barrier i.e. q0;1 = 1.
If the chain is positive recurrent, � is the stationary probability vector, �= �Q, and

P� is the translational invariant probability measure on ZZ+, for �∈
[i; j] we have

P�{(Xi; : : : ; Xj)= �}= ��i
j−1∏
k=i

q�k ; �k+1 ;

then for u; v∈Z+ �xed it is veri�ed

lim
N→∞

P�{(Xi; : : : ; Xj)= �|X−N = u; XN = v}=P�{(Xi; : : : ; Xj)= �}:

Now, assume ((qx; x+1): x∈Z+) is constant for x¿1, so qx; x+1 =p∈ [0; 1] for x¿0
and q0;1 = 1. This chain is positive recurrent if and only if p¡ 1

2 . We set q=1 − p.
We have

P((Xi; : : : ; Xj)= �|Xi= �i)= (pq) j−i=2
(
p
q

)(�j−�i)=2
p−N0; 1(�):

where N0;1(�) is the number of times �k =0, as k varies in {i; : : : ; j − 1}. Putting
b0 =−logp and using the above expression, for a �xed couple u; v∈Z+ and �∈
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[−k; k], we have

P{(X−k ; : : : ; Xk)= �|X−N = u; XN = v}

=

∑
�′∈
[−N;N ]: �′−N=u; �

′
N=v; �

′[−k; k]=� e
b0N0; 1(�′)∑

�′∈
[−N;N ]: �′−N=u; �
′
N=v

eb0N0; 1(�′)
= �H

b; c

N; u; v(�);

with b=(b0; 0; : : : ; 0; : : :), c=(0; : : : ; 0; : : :). By Lemma 1.1 last quantity is equal to
�H

�

N; u; v(�) with �=(b0; 0; : : : ; 0; : : :). Hence limN→∞ �
H b; c
N; u; v(�) is strictly positive and

equal to P�{(X−k ; : : : ; Xk)= �} if p∈ (0; 12 ) and equal to 0 if p¿ 1
2 . This is exactly con-

dition (1:7), respectively, Eq. (1.8), for the sequences �, respectively, b; c, for M =0.
In fact they correspond to �0¿log 2, respectively, b0¿log 2. In this random walk case
b0 =−logp is restricted to be positive. Observe that if qx; x+1 =p for x¿M , then

b0 =−logp; bx = log
qx; x+1
p

; cx = log
1− qx; x+1
1− p = log

1− ebx−b0
1− e−b0 for x6M

and

bx = cx =0 for x¿M:

In this case also limN→∞ �
H �
N; u; v(�) de�ned a probability measure if and only if

b0¿log 2.
Finally, in the context of Theorem 1.3 we point out that for general Q verifying

Eq. (1.9), and in the absence of any other condition, it was shown in Ferrari, Mart��nez
(1994), by using Theorem 11.2 of Wall (1948) that the chain P (R) is recurrent (but
not necessarily positive recurrent) if and only if the following condition on continued
fractions holds

1− p0q0=R2

1− p1q1=R2

1−
· · ·

pxqx=R2

· · ·

=0:

2. Proof of Theorem 1.3

Let Q=(qx;y) be a non-negative matrix on Z+. Let us consider the general eigen-
value problem:

Qf = rf for r¿0; f¿0 (2.1)

where f =(fx: x∈Z+). Observe that for r¿0 there is at most a unique, up to a homo-
thetic transformation, f¿0 verifying Eq. (2.1). In this case the matrix P (r) = (p(x; y):
x; y∈Z+) de�ned by

p(x; y)= r−1
fy
fx
qx;y for x; y∈Z∗

+ (2.2)
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is a stochastic matrix. Moreover, P (r) de�nes a birth–death chain with {0} being a
re
ecting state: p(x; y)= 0 if |x − y| 6=1, p(0; 1)=1. We put

wx
:=p(x; x + 1)= r−1

fx+1
fx
px: (2.3)

From Eq. (2.2) we get that (wx: x∈Z+) veri�es the equation:

w0 = 1 and wx+1 = 1− r−2pxqx
wx

for x∈Z+: (2.4)

Reciprocally, it is direct to prove that if the sequence w=(wx: x∈Z+) given by
Eq. (2.3) veri�es w¿0 then f de�ned by

f0¿0; fx+1 =f0r−(x+1)
s∏
y=0

wy
py

for x∈Z+;

veri�es Eq. (2.1). Observe that if Eq. (2.1) is veri�ed then necessarily r¿R and if
r¿R then P (r) is transient. Hence, if we are able to show that P (r0) is positive recurrent
for some r0¿0 we get R= r0. Then Q is R-positive if and only if P (r0) is positive
recurrent for some r0¿0.
At this point it is convenient to introduce some new notation and a de�nition. First,

for a¿0 we consider the following continuous and on to strictly increasing function
’a : (0;∞]→ (−∞; 1]:

’a(w)= 1− a
w
:

De�nition 2.1. Let a=(ax¿0: x∈Z+)¿0 be a strictly positive �xed sequence. It is
said to be allowed if it veri�es

’ax ◦ · · · ◦’a0 (1)¿0 ∀x∈Z+: (2.5)

Then if we consider the sequence a with ax =pxqx for x∈Z+, from Eq. (2.4) we
�nd that Q is R-positive if and only if for some r0, the sequence r20a is allowed and
P (r0) is positive recurrent. Hence the proof of the theorem is reduced to show that
condition (1:10) is equivalent to this last property. This follows from the study of
allowed sequences, which we will now develop.
Observe that the inverse of ’a, ’−1

a (w)= a=(1 − w), satis�es analogous properties
as ’a. Also from the de�nition we get

if w¿0 and ’a(w)¿0 then ’a(w)∈ (0; 1): (2.6)

The �rst part of the next result was already proved in Ferrari et al., 1992, and we
supply it for completeness of this work.

Lemma 2.2. The strictly positive sequence a is allowed if and only if it veri�es

∀x∈Z+; ∀y¿x: ’−1
ax ◦ · · · ◦’−1

ay (0)¡1: (2.7)
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Moreover, if a¿0 and d¿0 then

d6a and a is allowed implies d is allowed: (2.8)

Proof. Assume a is allowed. De�ne

w0 = 1 and wx+1 =’ax ◦ · · · ◦’a0 (1) for x∈Z+: (2.9)

From Eq. (2.6) we deduce that wx ∈ (0; 1), ∀x∈Z∗
+. Now, since ’

−1
ay is increasing in

(−∞; 1) we �nd ’−1
ay (0)¡’

−1
ay (wy+1)=wy, and wy¡1 if y¿1, w0 = 1. Therefore by

induction

’−1
ax ◦ · · · ◦’−1

ay (0)¡wx61 for x∈Z+; y¿x:
Then condition (2:5) is veri�ed. Let us show the reciprocal, i.e. Eq. (2.7) implies a is
allowed. We denote

ha(x; y)
:=’−1

ax ◦ · · · ◦’−1
ay (0) for x∈Z+; y¿x: (2.10)

With this notation our hypothesis is ha(x; y)¡1. Let us show that

ha(x; y)∈ (0; 1) for x∈Z+; y¿x: (2.11)

First, observe that ha(y; y)=’−1
ay (0)¿0. Now, assume that for some couple y¿x,

x∈Z+ we have ha(x; y)¡0. Since ha(x; y)=’−1
ax (ha(x+1; y)), we get from the shape

of ’−1
ax that ha(x + 1; y)¿1 contradicting the hypotheses. Then Eq. (2.11) is veri�ed.

Now, since ’a is increasing in [0;∞) we get
0=’a0 (’

−1
a0 (0))=’a0 (ha(1; 1))¡’a0 (1)=w1:

Again from Eq. (2.6), since w1¿0 we deduce w1 ∈ (0; 1). Analogously, 0¡’−1
a0 ◦ · · · ◦

’−1
ay (0)¡1 implies that

0¡’−1
a1 ◦ · · · ◦’−1

ay (0)¡’a0 (1) and then ’a0 (1)¡1:

By recurrence 0¡’−1
ay (0)¡’ay−1 ◦ · · · ◦’a0 (1), then wy¡1 and we get 0¡’ay ◦ · · · ◦

’a0 (1). Then Eq. (2.5) is veri�ed.
Let us show Eq. (2.8). Observe that for x∈Z∗

+ and w¡1 �xed, ’
−1
ax (w) is increasing

in ax. Then hd (y; y)=’−1
dy (0)6’

−1
ay (0)6ha(y; y)¡1. Hence,

hd (y − 1; y)6’−1
dy−1

(’−1
dy (0))6’

−1
dy−1

(’−1
ay (0))6’

−1
ay−1

(’−1
ay (0))= ha(y − 1; y)¡1:

By recurrence hd (x; y)¡1 ∀x∈Z+, y¿x, then the result follows from Eq. (2.7).

Assume a is allowed then ’−1
ay+1(0)∈ (0; 1) and by the increasing property we get

ha(x; y)=’−1
ax ◦ · · · ◦’−1

ay (0)¡’
−1
ax ◦ · · · ◦’−1

ay+1(0)= ha(x; y + 1);

i.e. the sequence ha(x; y) is strictly increasing in y∈Z∗+. Then the following limit
exists and veri�es:

ha(x;∞)= lim
y↗∞

ha(x; y)61:
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Observe that

ha(x; y)=
ax

1− ax+1

1− ax+2
···
1−ay

;

then ha(x;∞) is a continued fraction.
For a¿0 denote by a±= 1

2(1±
√
1− 4a) the �xed points of ’a. Observe that a±(1−

a±)= a. These points are reals (and in this case lie in [0; 1]) if and only if a6 1
4 . Notice

that since ’a is increasing in (0;∞) we get for d¿0
if d¡a− then ’a(d)¡’a(a−)= a−

and

if d¿a+ then ’a(d)¿’a(a+)= a+: (2.12)

Lemma 2.3. Let a¿0 and d∈ (0; 1]. Assume ’na(d)¿0 for all n∈Z+. Then a6 1
4

and d∈ [a−; 1]. Moreover, ’na(a−)= a− ∀n and
lim
n→∞’

n
a(d)= a+ if d∈ (a−; 1]:

In particular, a constant sequence a¿0 is allowed if and only if a6 1
4 and in this

case ha(1;∞)= a−.

Proof. We shall �rstly prove:

if d(1− d)6a then ’(n)a (d) decreases with n∈Z+ (2.13)

and

if d(1− d)¿a then ’(n)a (d) increases with n∈Z+: (2.14)

Let us prove Eq. (2.13). We have

’(n+1)a (d)= 1− a
’na(d)

:

Now, ’a(d)= 1−a=d6d if and only if d(1−d)6a. For n¿1 we have ’(n+1)a (d)6
’(n)a (d) if and only if

1− a
’na(d)

61− a

’(n−1)a (d)
;

i.e. if and only if ’na(d)6’
(n−1)
a (d). Then by recurrence (2:13) is veri�ed. This argu-

ment also proves Eq. (2.14). Hence if d(1− d)= a we have ’(n)a (d)=d for n∈Z∗+.
Since ’(n)a (d) is monotone, denote its limit by �= limn→∞ ’

(n)
a (d). From the hypoth-

esis and Eq. (2.6) we get �∈ [0; 1]. If �=0 we have ’(n+1)a (d)=’a(’
(n)
a (d)) which

is a contradiction because ’(n)a (d)→n→∞ 0 and ’a(0)=−∞. Then �∈ (0; 1]. Hence,
from continuity of ’a on �¿0 we get ’a(�)= limn→∞ ’

(n+1)
a (d). Then, �=’a(�), i.e.

�(1− �)= a. Therefore �∈{a−; a+}. Since �(1− �)6 1
4 we �nd a6

1
4 .
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Assume d(1 − d)¡a. Then d¡a− or d¿a+. In this case the sequence ’na(d) is
strictly decreasing. Since x(1− x) is increasing for x¡ 1

2 we necessarily have ’
(n)
a (d)

(1−’(n)a (d))6d(1− d)¡a. Hence there is a contradiction with limn→∞ ’
(n)
a (d)= �∈

{a+; a−}, i.e. the hypothesis ’(n)a (d)¿0 ∀n∈Z+ is not veri�ed. Then d¿a+. From
Eq. (2.12) we get that ’a(d)¿a+ and by recurrence we also get that ’

(n)
a (d)¿a+ for

n∈Z∗+. On the other hand, since limn→∞ ’
(n)
a (d)= �∈{a−; a+} we conclude

limn→∞ ’
(n)
a (d)= a+.

Now assume d(1 − d)¿a. Then d∈ (a−; a+). In this case the sequence ’(n)a (d) is
increasing. We conclude limn→∞ ’

(n)
a (d)= a+.

Finally, if the constant sequence a¿0 is allowed we necessarily have a6 1
4 .

Reciprocally if a6 1
4 and d=1, Eqs. (2.13) and (2.12) imply ’

(n)(1) is decreasing
and ’(n)(1)¿a+, so a is allowed. Also by previous analysis ’(n)(1) →n→∞ a+, then
ha(1;∞)= 1− limn→∞ ’

(n)(1);= a−.

We remark that the last part of previous lemma can be deduced, by using monotonic
properties, from Wall (Theorem 8.2, p. 39).
Let a be a �xed strictly positive sequence. We denote by

ra=(rax: x∈Z+) for r¿0 and I(a)= {r¿0: ra is allowed}:

Lemma 2.4. If a¿0 then I(a)=� or I(a)= (0; r∗] for some 0¡r∗6(4a)−1. If a
is ultimately constant then I(a) 6=� i.e. I(a)= (0; r∗] for some 0¡r∗6(4a)−1.

Proof. Assume I(a)=�. From the second part of Lemma 2.2 we have: 0¡r′¡r; r ∈
I(a) implies r′ ∈I(a). Then I(a)= (0; r∗] for 0¡r∗6∞. Since r ∈I(a) implies
’−1
ra0 (0)= ra0¡1 we �nd r

∗ is �nite. Let us show r∗=supI(a) belongs to I(a).
Let r0 ∈I(a) and denote I0 =I(a)∩ [r0;∞). We also put hr(x; y) := hra(x; y). Let us
show that

∀y¿x; x¿1; H (x; y)= sup
r∈I0

hr(x; y)¡1:

In fact, if for some couple H (x; y)= 1 we can take (rn)∈I0 with limn→∞ hrn(x; y)
= 1 then limn→∞ ’

−1
rnax−1

(hrn(x; y))¿ limn→∞ ’
−1
r0ax−1

(hrn(x; y)=∞, which contradicts
supr∈I0

hr(x − 1; y)61.
We have r∗=supI0. By continuity of ’−1

rax (w) as a function of r, for x∈Z+
and w¡1 �xed, and since hr(x; y)6H (x; y)¡1 for r ∈I0, we deduce by recurrence
hr∗(x; y)6H (x; y)¡1 for all y¿x; x¿1.
Now, by continuity we have hr∗(0; y)61 for all y∈Z+. If hr∗(0; y)¡1 for some

y∈Z+ we should have hr∗(0; y)= 1. Since ’−1
r0ay(0)∈ (0; 1) for y∈Z+ we get: ’−1

r0ay(0)
¡’−1

r0ay(’
−1
r0ay+1(0)). Hence by induction we obtain hr∗(0; y)¡hr∗(0; y + 1)61, then

hr∗(0; y)= 1¡hr∗(0; y + 1)61, which is a contradiction. Then hr∗(x; y)¡1 ∀x∈Z+,
y¿x. We conclude r∗ ∈I(a).
Now, let us show the second part of the lemma. Then assume that a is ultimately

constant and M =M (a). First, observe that if M =0, i.e. a is constant then Lemma 2.3
implies I(a)= (0; (4a)−1]. Now let us consider the general case. Take r ∈ (0; (4a)−1]
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small, we have

hr(M + 1;∞)= (ar)+ with (ar)+ = 1
2 (1−

√
1− 4ar)

and hr(x; y)= (ar)+ for y¿x¿M + 1. We have hr(M + 1;∞)= (1 + �′)ar¡1 for r
small enough and �′¿0 constant (not depending on r). Then

hr(M;∞)=’−1
aM r((ar)+)6(1 + �

′′)ar¡1

for r small enough and �′′ constant. Also hr(x; y)6(1 + �′′)ar for y¿x¿M . By
recurrence we show hr(0;∞)= (1 + �)ar for r small enough and � constant. Also
hr(x; y)6(1 + �)ar for y¿x¿0. Hence r ∈I(a) for r small enough. From the �rst
part of this lemma we deduce I(a)= (0; r∗] for some r∗ ∈ (0; (4a)−1].

Now, remind notation (2.9), w0 = 1, wx+1 =’ax ◦ · · · ◦’a0 (1) for x∈Z+.

Lemma 2.5. Let a¿0 be allowed and ultimately constant with ax = a for x¿M =
M (a). Then wM¿a− and
(i) if r∗=(4a)−1 then wn+M¿ 1

2 ∀n¿0;

(ii) if r∗¡(4a)−1 then



limn→∞ wn= a+¿

1
2 if wM¿a−;

wn+M = a−¡1
2 ∀n¿0 if wM =a−

or equivalently
if ’−1

a0 ◦ · · · ◦’−1
aM (a−)= 1:

Proof. If wM¡a−, Lemma 2.3 implies that wM+n=’
(n)
a (wM ) is not strictly positive. Let

a= 1
4 , then a+ = a−=

1
2 . If wM¿

1
2 , we get from Eq. (2.12) that wM+n=’

(n)
a (wM )¿ 1

2

for every n∈Z+. If wM = 1
2 , then wM+n=’

(n)
a (wM )= 1

2 .
Let a¡ 1

4 . If wM¿a− then, from Lemma 2.3 we �nd limn→∞ wM+n= limn→∞
’na(wM )= a+¿

1
2 . If wM = a−; wM+n= a−¡

1
2 for n∈Z+.

Lemma 2.6. Let a¿0 be ultimately constant with ax = a for x¿M =M (a) and such
that a is allowed. Let r∗=supI(a). Then

(i) if r∗=(4a)−1 then wn+M¿ 1
2 ∀n¿0;

(ii) if r∗¡(4a)−1 then wn+M = a−¡ 1
2 ∀n¿0.

Moreover, we have the equivalence

r∗¡(4a)−1 if and only if ’−1
ax=4a

◦ · · · ◦’−1
aM =4a

( 12 )∈ (1;+∞] for some
x=0; : : : ; M: (2.15)

Proof. Part (i) follows from Lemma 2.5(i). Let us show that r∗¡(4a)−1 is equivalent
to conditions (2.15). In this purpose we shall evaluate r∗. Let us denote r̃=(4a)−1
and ãx = axr̃

2 = ax=4a for 06x6M . From Lemmas 2.2, 2.4 and 2.5 we get

hr(x; y)¡1 for y¿x¿M + 1 if and only if r6r̃:

In this case hr(x; y)¡hr(M + 1;∞)= 1
2 for y¿x¿M + 1.

Since ’−1
ãM is increasing in (−∞; 1) we get that hr̃(x; y)¡1 for all y¿x¿M if and

only if ’−1
ãM (

1
2 )61. Assume ’

−1
ãM (

1
2 )61. If M¿1 use again the increasing property of
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’−1
ãM−1

to �nd that hr̃(M;∞)=’−1
ãM (

1
2 )¡1 and

hr̃(x; y)¡1 ∀y¿x¿M − 0 if and only if ’−1
ãM (

1
2 )¡1

and hr̃(M − 1;∞)=’−1
ãM−1

◦’−1
ãM (

1
2 )61:

By a recurrence argument we �nd hr̃(x; y)¡1 ∀y¿x¿1 if and only if
’−1
ãx ◦ · · · ◦’−1

ãM (
1
2 )¡1 for x=1; : : : ; M and ’−1

ã0 ◦ · · · ◦’−1
ãM (

1
2 )61:

If this condition holds we get r∗= r̃=(4a)−1. Hence if r∗¡r̃ condition (2.15) is
veri�ed.
Now let us show part (b). From Lemma 2.5(ii) we must show that conditions (2.15)

implies ’−1
a0r∗ ◦ · · · ◦’−1

aM r∗((r
∗a)+)= 1. Let us �rst assume that ’−1

ãx ◦ · · · ◦’−1
ãM (

1
2 )

61 for x=1; : : : ; M and ’−1
ã0 ◦ · · · ◦’−1

ãM (
1
2 )∈ (1;+∞]. Observe that necessarily ’−1

ã0
◦ · · · ◦−1

ãM (
1
2 )¡1 for x¿2 because if it is= 1 then ’

−1
ãx−1

◦ · · · ◦’−1
ãM (

1
2 )=∞. Now,

since a is ultimately constant we have I(a)= (0; r∗] with r∗¡r̃. From Lemmas
2.2 and 2.4 and since ’−1

b (w) is increasing in b¿0 when w¡1 is �xed we get
hr∗(x; y)¡hr̃(x; y)¡1 ∀y¿x¿0. Hence ’−1

a0r∗ ◦ · · · ◦’−1
aM r∗((r

∗a)+)61.
Assume ’−1

a0r∗ ◦ · · · ◦’−1
aM r∗((r

∗a)+)¡1. Remind that for r∗¡r¡r̃ we have hr(x; y)
¡hr̃(x; y)¡1 ∀y¿x¿0. Hence hr(1; y)¿0 and since (ra)+ is continuous in r we also
get that hr(0; y) in continuous on r. Also it is increasing in r. Since

hr̃(1;∞) =’−1
r̃a0 ◦ · · · ◦’−1

r̃aM (1)¿1 and hr∗(1;∞)
=’−1

a0r∗ ◦ · · · ◦’−1
aM r∗((r

∗a)+)¡1
we �nd that there exists r ∈ (r∗; r̃) such that hr(0;∞)=’−1

a0r ◦ · · · ◦’−1
aM r((ra)+)= 1.

We get hr(0; y)¡hr(0;∞)= 1 ∀y∈Z+, then r ∈I(a) which contradicts r∗=supI(a).
Hence ’−1

r∗a0 ◦ · · · ◦’−1
r∗aM (a+)=1.

Now assume hr̃(x;∞)=’−1
ãx ◦ · · · ◦’−1

ãM (
1
2 )∈ (1;∞] for some 16x6M . Let x the

biggest one for which it occurs. Now, by applying Lemma 2.4 to the sequence a(x−1) =
(ay: y¿x − 1) we have I(a(x−1))= (0; r∗x−1] with r∗x−1¡r̃, this last relation because

hr̃(x − 1;∞)= lim
y→∞

ax−1
1− hr̃(1; y)¡0

and condition (2:11). Since hr(x; y)¿0 for all y¿x, we use continuity of hr(x;∞) in
r ∈ (0; r̃) to get that hr∗x−1

(x;∞)= 1. If x¿1 we �nd hr∗x−1
(x−1;∞)= +∞, so we can

apply the same argument to x − 1 to arrive �nally to hr∗(1;∞)=’−1
r∗a0 ◦ · · · ◦’−1

r∗aM
((r∗a)+)= 1. As we pointed out before, Lemma 2.4(ii) implies the result.

Let us develop conditions (2.15). It is

ax=4a

1− ax+1=4a
···

1−
aM−1=4a
1− aM =2a

∈ (1;+∞] for some x=0; : : : ; M; (2.16)

where, for x=M it means aM =2a¿1.
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From Lemma 2.6 we deduce the theorem. In fact from Lemma 2.6 we get that a nec-
essary and su�cient condition in order that P(r0) is positive recurrent for some r0¿0 is
that condition (2.16) is veri�ed. But this condition is exactly the same as the condition
of the theorem because of the choice ax =pxqx and the fact that ax=a=pxqx=pq.
The last assertion of Theorem 1.3, i.e. that the sequences (p(x; x+1)); (p(x+1; x))

of the matrix P(r0) are constants for x¿M , follows from Lemma 2.6(ii).

3. Monotonicity and Proof of Theorem 1.4

In this section we show Theorem 1.4. The key of the proof is the following property
of monotonicity.

Proposition 3.1. Let b; c; b′; c′ be sequences such that

bx+1 + cx+1 − (bx + cx)6b′x+1 + c′x+1 − (b′x + c′x)

for all x. For each N; u; v, call �N = �H
b; c

N; u; v and �
′
N = �

H b
′ ; c′

N; u; v . Then it follows:

�N6�′N

stochastically. Furthermore, if there exists a unique measure �′= limN→∞ �
′
N , then

there exists a unique measure �= limN→∞ �N and �6�
′ stochastically.

We prove the proposition using coupling. First �x u and v in Z+. Then �x N such
that 2N + 1 and u + v have the same parity and |u − v|62N + 1. We construct a
continuous time Markov process �(t)(= �N (t)) on the set of paths

CN =C2N+1(u; v)= {�∈Z{−N;:::; N}
+ : �−N = u; �N = v}

for which �N is reversible. The notation �i(t) indicates the value at coordinate i of the
process at time t. We put

�(x)=
ebx+cx

ebx+cx + ebx−1+cx−1
:

Let

�i±y =
{
�i± 2 if y= i and �i−1 = �i+1 = �i± 1;
�y otherwise:

Let the process �(t) be the Markov process in the �nite state space CN with generator

LNf(�)=
∑
i

[�(�i−1)[f(�i+)− f(�)] + (1− �(�i−1))[f(�i−)− f(�)]]:

In words, at site i the value of � can change only if both neighbors of i have the same
value (say) x. In this case there are only two possible moves at each site i:

x x − 1 x → x x + 1 x at rate �(x);

x x + 1 x → x x − 1 x at rate 1− �(x);
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where the value of the site i is the one in the middle of each group of 3. It is a simple
matter to show that �N is reversible for the process with generator LN . On the other
hand, since we are dealing with a �nite state ergodic Markov process, we have that
starting with any con�guration �∈CN , the process converges in distribution to �N . We
can say the same of the process induced by �′(x) instead of �(x), where

�′(x)=
eb

′
x+c

′
x

eb′x+c′x + eb
′
x−1+c

′
x−1
:

Call L′N , S
′
N (t) and �

′(t)(= �′N (t)) the corresponding generator, semigroup and process.
We perform now the Harris graphical construction of the process. With this aim we

attach to each site i in {−N + 1; : : : ; N − 1} a Poisson process of rate 1. To each
event of each Poisson process attach a uniform random variable in [0; 1]. Call Ui; k the
uniform random variable in [0; 1] attached to the kth event of the Poisson process of i.
Call �(i; k) the time of occurrence of the kth event of the Poisson process of i. All
these processes and variables are mutually independent.
De�ne T0 = 0 and for n¿1,

Tn= inf{�(i; k)¿Tn−1: i∈{−N; : : : ; N}; k¿1};
Kn= k if Tn= �(i; k);

In= i if Tn= �(i; k)

(hence Tn= �(In; Kn)) and

�(Tn)=




(�(Tn−1))In+ if �In−1(Tn−1 − 1)= �In+1(Tn−1)= �In(Tn−1)
and U (In; Kn)¡�(�In−1(Tn−1));

(�(Tn−1))In− if �In−1(Tn−1 + 1)= �In+1(Tn−1)= �In(Tn−1)
and U (In; Kn)¿�(�In−1(Tn−1));

�(Tn−1) otherwise:

De�ne �(t)= �(Tn) for t ∈ [Tn; Tn+1). It is immediate to check that the above construc-
tion gives the process with generator LN .
The process �′(t) is de�ned using the same Poisson processes and uniform ran-

dom variables but substituting � with �′ where it corresponds. In this way, we have
constructed a coupling between the processes �(t) and �′(t).

Lemma 3.2. With the above coupling, if

bx+1 + cx+1 − bx − cx6b′x+1 + c′x+1 − b′x − c′x (3.1)

for all x and

�i(0)6�′i(0)

for all i, then

P(�i(t)6�′i(t) for all i)= 1:



64 P.A. Ferrari, S. Mart��nez / Stochastic Processes and their Applications 78 (1998) 47–68

In other words, if the increments of bx+cx are dominated by the increments of b′x+c
′
x,

then the coupling conserves order for initial con�gurations in the same sublattice.

Proof. Notice �rst that under Eq. (3.1), for all x it holds

�(x)6�′(x):

We prove for all n that, if �(Tn−1)6�′(Tn−1), then �(Tn)6�′(Tn). Assume that at the
Poisson time Tn, In= i, U (In; Kn)= u and call x(i; n)= �i(Tn), x′(i; n)= �′i(Tn). Since
by hypothesis x(n − 1; i) and x′(n − 1; i) have the same parity and the length of the
jump cannot exceed 2, we have to consider only two cases: (1) x(n−1; i)= x′(n−1; i)
and (2) x(n− 1; i) + 2= x′(n− 1; i).
In case (1) we have

�i(Tn) = x(n− 1; i) + 21{u¡�(x(n− 1; i − 1))}

×1{x(n− 1; i − 1)= x(n− 1; i + 1)= x(n− 1; i) + 1}

−21{u¿�(x(n− 1; i − 1))}

×1{x(n− 1; i − 1)= x(n− 1; i + 1)= x(n− 1; i)− 1}

6 x(n− 1; i) + 21{u¡�′(x′(n− 1; i − 1))}

×1{x′(n− 1; i − 1)= x′(n− 1; i + 1)= x(n− 1; i) + 1}

−21{u¿�′(x′(n− 1; i − 1))}

×1{x′(n− 1; i − 1)= x′(n− 1; i + 1)= x(n− 1; i)− 1}

= �′i(Tn):

The inequality is obtained for the positive terms because
(a) since for all x, �(x)6�′(x), in the set {x(n − 1; i − 1)= x(n − 1; i + 1)=
x(n− 1; i)− 1= x′(n− 1; i − 1)= x′(n− 1; i + 1)= x′(n− 1; i)− 1},

1{u¡�(x(n− 1; i − 1))}61{u¡�′(x′(n− 1; i − 1))};

(b) in the set {x(n − 1; i)= x′(n − 1; i)}, if x(n − 1; i − 1)¡x′(x − 1; i − 1), then
1{x(n − 1; i − 1)= x(n − 1; i + 1)= x(n − 1; i) + 1}=0 while 1{x′(n − 1; i − 1)=
x′(n−1; i+1)= x(n−1; i)+1}¿0; if x(n−1; i+1)¡x′(x−1; i+1), then 1{x(n−1; i−1)=
x(n − 1; i + 1)= x(n − 1; i) + 1}=0 while 1{x′(n − 1; i − 1)= x′(n − 1; i + 1)=
x(n− 1; i) + 1}¿0.
Analogous reasons show that the negative terms are non-increasing.
To show case (2), we need only to show that a jump up for x(n− 1; i) and a jump

down for x′(n− 1; i)= x(n− 1; i) + 2 cannot occur simultaneously. This could happen
in the set {x(n − 1; i − 1)= x(n − 1; i + 1)= x(n − 1; i) + 1= x′(n − 1; i − 1)= x′(n −
1; i+ 1)= x′(n− 1; i)− 1}. But the jump up occurs if u¡�(x(n− 1; i− 1)), while the
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jump down occurs if u¿�′(x(n−1; i−1)). Since for all x, �(x)6�′(x), the two jumps
cannot occur simultaneously.

Proof of Proposition 3.1. Call SN (t) and S ′N (t) the semigroups corresponding to the
processes �(t) and �′(t). If �N and �′N are measures on CN such that �N6�′N stochas-
tically, then there exists a measure on (CN )2 with marginals �N and �′N concentrating
mass in the set {(�; �′)∈ (CN )2: �6�′ and �i; �′i have the same parity}. Applying
Lemma 3.2 to the initial con�gurations �; �′ with distributions �N and �′N , respectively,
and such that �6�′, we obtain that �(t)6�′(t). This implies that

�NSN (t)6�′NS
′
N (t)

for all t and, since �N = limt→∞ �NSN (t) and �
′
N = limt→∞ �

′
NS

′
N (t), we have �N6�

′
N .

To show the second part of the proposition, observe that both �N and �′N de�ne
birth and death processes on Z+ conditioned to �xed starting and ending points. But
since the thermodynamic limit �′ de�nes a stationary positive recurrent birth and death
process and any weak limit � of �N satis�es �6�′, then � de�nes a stationary positive
recurrent birth and death process. Hence � must be unique.

Proof of Theorem 1.4. We only need to show part (ii). Assume that b; c are sequences
such that there exists an M¿0 such that bx+1 + cx+1 − bx − cx60 for all x¿M . Let
sequences b′; c′ be de�ned by

b′x =
{
bx if x6M;
bM if x¿M;

c′x =
{
cx if x6M;
cM if x¿M:

Then b; c satisfy conditions (1.8) of Theorem 1.2. Now apply Proposition 3.1 to the
sequences b; c and b′; c′. This proves (ii).

Comment about the invariant measure for the in�nite particle system. The process
�N (t) with generator LN de�ned on CN converges, as N→∞, to a process �∞(t)
on ZZ. In fact, since the rates of 
ipping are bounded by 1 and the process is one
dimensional, it is a simple matter to show that

lim
N→∞

SN (t)= S(t);

a semigroup corresponding to the generator L= limN LN . See Liggett (1985) for a
discussion about generators and semigroups. On the other hand, since �N is invariant
for SN (t),

�NSN (t)= �N :

This implies that if the weak limit

lim
N→∞

�N = �

exists, then � is invariant for S(t). Notice that this process corresponds to interacting
random walks or birth and death chains, one for each i. Each one of these walks jumps
two units at rate at most 1.
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Now, assume that (�x) is ultimately constant and satis�es the conditions of
Theorem 1.2. Let

�CN =C2N+1(u; v)= {�∈Z{−N;:::; N}
+ : �−N = �N}

The space �CN corresponds to periodic boundary conditions. For �∈ �CN consider the
generator

�LNf(�)=
∑
i

[ ��(�i−1)[f(�i+)− f(�)] + (1− ��(�i−1))[f(�i−)− f(�)]]:

de�ning �� as � but assuming ��(N + 1)= ��(−N + 1). Let �SN (t) the corresponding
semigroup. For the process with generator �LN , there is a drift in the direction of the
origin at most for a �nite number of con�gurations. It is not hard to show that under
periodic boundary conditions the countable state process with generator �LN is null
recurrent.
On the other hand, the in�nite volume process with generator S(t) can be obtained

as the limit of any one of the semigroups SN (t) or �SN (t).
Under the conditions of Theorem 1.2, the process with generator LN accepts an

invariant measure �N and this measure converges to �, as N→∞. Theorem 1.2 guar-
antees that this measure is a Gibbs state. Hence the in�nite volume process has � as
invariant measure. This invariant measure is obtained when pinning the extremes at
the �nite values u and v.
The curious fact is that the pinning disappears in the in�nite volume limit but the

invariant measure persists. The invariant measure cannot be obtained using the limit
of the periodic system.
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Appendix. Proof of Lemma 1.1

Obviously Eq. (1.6) follows from relation (1.5) because the 
 term simpli�es in
the measures �H. Let us show this last equality. First let us introduce some notation.
For i6j in Z put �=w[i − 1; j + 1]. Also it is convenient to set �(−1)=wi−1,
�(+1)=wj+1, in fact, the boundary terms will appear in the sums with a periodicity,
with this notation we have �((−1)z)=wi−1 if z is odd, and �((−1)z)=wj+1 if z
is even. We shall use recurrence to get relations between Nx;Nx; y, then we put the
boundary condition

N−1(�)=N−1;0(�)=N0;−1(�)= 0: (A.1)
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Observe that the following relations are veri�ed:

Nx(�)=Nx; x+1(�) +Nx; x−1(�) + �(x; �(+1))

and

Nx(�)=Nx+1; x(�) +Nx−1; x(�) + �(x; �(−1)) for any x∈Z+: (A.2)

By recurrence, it is direct to check that Eq. (A.2) with boundary relations (A.1) have
the unique solution:

Nx+1; x(�)=
x∑
y=0

(−1)x+yNy(�) +
x∑
y=0

(−1)x+y+1�(y; �((−1)x+y+1));

Nx; x+1(�)=
x∑
y=0

(−1)x+yNy(�) +
x∑
y=0

(−1)x+y+1�(y; �((−1)x+y)):
(A.3)

We set H =H b; c[i; j](w) and H =H
�
[i; j](w). Let K =(wi−1 ∨wj+1)+(j−i+4), then wx¡K

for x∈ [i − 1; j + 1]. Hence Nx(�)= 0, Nx; x+1(�)= 0, Nx+1; x(�)= 0 for x¿K . From

Eqs. (1.1), (1.2) and (A.3) we can decompose H =H
1
+ H

2
, with

H
1
=
∑
x∈Z+

(bx + cx)


 x∑

y=0

(−1)x+yNy(�)


= K∑

y=0

(
K∑
x=y

(−1)x+y(bx + cx)
)
Ny(�)

and

H
2
=
∑
x∈Z+


bx x∑

y=0

(−1)x+y+1�(y; �((−1)x+y))

+cx
x∑
y=0

(−1)x+y+1�(y; �((−1)x+y+1))

 :

Then

H
2
=

K∑
y=0

(
K∑
x=y

(−1)x+y+1(bx�(y; �((−1)x+y)) + cx�(y; �((−1)x+y+1)))
)

= 
1(wi−1; wj+1; K):

On the other hand, by using relations (1.4) we get

H
1
=

K∑
y=0

(
K∑
x=y

(−1)x+y(�x + �x+1)
)
Ny(�)=

K∑
y=0

(�y + (−1)y+K�K+1)Ny(�)

=H +


 K∑

y=0

(−1)y+KNy(�)


�K+1 =H +NK;K+1(�)�K+1 + 
2(wi−1; wj+1; K);

with 
2(wi−1; wj+1; K)=−∑K
y=0(−1)xy+1�(y; �((−1)x+y))�K+1. This last equality fol-

lowing from Eq. (A.3). Since NK;K+1(�)= 0 we �nd H =H + 
(wi−1; wj+1; j− i) with

(wi−1; wj+1; j − i)= 
1(wi−1; wj+1; K) + 
2(wi−1; wj+1; K). Then Eq. (1.5) is shown.
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