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Abstract

We consider the anharmonic crystal, or lattice massless �eld, with 0-boundary conditions
outside DN = ND ∩ Zd; D⊆Rd and N a large natural number, that is the �nite volume Gibbs
measure PN on {’ ∈ RZd

:’x = 0 for every x 6∈ DN} with Hamiltonian
∑

x∼y V (’x − ’y); V a
strictly convex even function. We establish various bounds on PN (
+(DN )), where 
+(DN ) =
{’:’x¿0 for all x ∈ DN}. Then we extract from these bounds the asymptotics (N → ∞) of
PN (·|
+(DN )): roughly speaking we show that the �eld is repelled by a hard-wall to a height
of O(

√
logN ) in d¿3 and of O(logN ) in d = 2. If we interpret ’x as the height at x of an

interface in a (d+ 1)-dimensional space, our results on the conditioned measure PN (·|
+(DN ))
clarify some aspects of the e�ect of a hard-wall on an interface. Besides classical techniques, like
the FKG inequalities and the Brascamp–Lieb inequalities for log-concave measures, we exploit a
representation of the random �eld in term of a random walk in dynamical random environment
(Hel�er–Sj�ostrand representation). c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let D⊂Rd be a connected bounded domain with non-void interior and piecewise
smooth boundary (this class of sets will be denoted by D). For N ∈ Z+ let DN=ND∩Zd

be the basis of the random interface ’ = {’x; x ∈ DN} ∈ 
N = RDN . Consider the
formal Hamiltonian HN

HN (’) =
∑
x∼y

V (’x − ’y); (1.1)

where the summation is over the nearest neighbors of Zd, each couple of nearest-
neighbor points is counted only once, and we set 0 boundary condition on D–

N : ’x ≡ 0;
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x 6∈ DN : The corresponding �nite volume Gibbs state with 0 boundary condition is
given by

PN (d’) ≡ 1
ZN
exp(−HN (’))

∏
x∈DN

d’x: (1.2)

We make the following assumptions on the potential V :
A1. Smoothness. V ∈ C2; �(R), the set of C2 functions with �-H�older continuous

second derivatives, �¿ 0.
A2. Symmetry. V (r) = V (−r); r ∈ R.
A3. Strict convexity. There exists c¿ 0 such that

V ′′¿c: (1.3)

A4. Boundedness. There exists �c ∈ R such that
V ′′6 �c: (1.4)

Sometimes this last condition can be replaced by the weaker constraint on the growth
of V ′′ of at in�nity:
A5. �-growth at in�nity. For some �¿1;

lim sup
r→∞

V ′′(r)
r2�−2

6c� ¡∞: (1.5)

The prototype of interactions satisfying the above conditions is the quadratic or har-
monic potential 1

V ∗(’x − ’y) =
1
2d
(’x − ’y)2:

In this case the measure P∗
N is Gaussian and it is called the (�nite volume) massless

free �eld: it is fully characterized by the mean

E∗N [’x] = 0; x ∈ DN (1.6)

and the covariances

cov∗N (’x; ’y) = G∗
DN
(x; y); x; y ∈ DN ; (1.7)

where G∗
DN
is the Green function of the simple random walk, killed as it exits DN

(cf. Bolthausen and Deuschel, 1993). The behavior as N↗∞ of G∗
DN

is known in
detail (see e.g. Lawler, 1991). In particular in the recurrent dimension d= 2 we have
a logarithmic divergence, var∗N (’x) = O(logN ), whereas in the transient dimensions
d¿3, the variance remains bounded: var∗N (’x)=O(1). In d¿3; G∗

DN
converges to the

in�nite volume Green function G∗, independently of D, and one has therefore existence
of the weak limit P∗ of P∗

N . In the Gaussian case all the in�nite volume massless Gibbs
states are known (see e.g. Georgii, 1998).
In the general non-harmonic case, by using the Brascamp–Lieb (B–L) inequality

(cf. Brascamp and Lieb, 1976; Brascamp et al. 1976), one sees that the variances of
the harmonic and non-harmonic case are comparable (see the appendix for the precise
statements). This has immediate consequences: in d=2 we have the same logarithmic

1 We use the superscript ∗ to denote this special case.
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divergence we encountered in the Gaussian case and varN (’x) = O(1) for N large in
d¿3. In the latter case, as a consequence, the family of measures {PN ; N ∈ Z+} is
tight and we denote by P any limit point of this sequence: the results that we will
present hold for any such a P with the same constant. The structure of the set of
massless Gibbs measures is not yet fully understood: the most advanced results have
been obtained, under A4, by Funaki and Spohn (1997).
The substantial limitation of the B–L inequalities is that they yield only diagonal

estimates. Recently, however Hel�er and Sj�ostrand have introduced a representation
similar to (1.7) for the covariances, but this time in terms of the Green function of a
symmetric random walk in a dynamical random environment (cf. Hel�er and Sj�ostrand,
1994; Deuschel et al., 2000). This representation, which gives a direct derivation of
B–L inequalities, allows for example o�-diagonal estimates, see Section 3.
We remark here that we will repeatedly exploit another well known tool for contin-

uous spin systems with convex interactions: the FKG inequality. As well as the B–L
inequalities, the FKG inequality can be extracted from the H–S representation (Hel�er
and Sj�ostrand, 1994; Naddaf and Spencer, 1997).
The fundamental event (entropic repulsion event) that we will analyze is


+(AN ) = {’ ∈ 
N :’x¿0 for all x ∈ AN};

where A ∈ D with A⊂D. In particular, we want to describe the asymptotic behav-
ior of PN (
+(AN )) and of the conditional measure PN (· |
+(AN )) as N → ∞. Our
main objective is to generalize the result recently obtained for the Gaussian case to
the non-harmonic situation (Bolthausen et al., 1995; Deuschel, 1996). Examples of
situations in which these type of results are of interest are

E1. The construction of droplets on a hard wall with �xed volume (cf. Bolthausen
and Io�e, 1997; Deuschel et al., 2000);

E2. The investigation of the wetting transition (cf. Bricmont et al., 1986; Bolthausen
et al., 2000a);

E3. Questions related to quasi-locality of random �elds (cf. van Enter et al., 1993;
Lebowitz and Maes, 1987).

We start our analysis by showing that, for sites x in the interior of DN , that is at
distance dist(x; D–

N )¿�N; �¿ 0, under the hard wall condition 
+(DN ), the random
interface ’x is repelled at height O(logN ) in the recurrent dimension d = 2, respec-
tively O(

√
logN ) in the transient dimensions d¿3. This phenomenon, called entropic

repulsion, is due to the relative sti�ness of the interface and to the local 
uctuations
which push the random interface to in�nity in presence of the hard wall condition (see
Corollaries 2.6 and 2.8 for the precise statements). This result follows from a careful
investigation of the probability of 
+(AN ) for A⊆D with dist(A;D–)¿�: we prove
the existence of 0¡C16C2¡∞ such that

− C26 lim inf
N→∞

1
Nd−2logd(N )

PN (
+(AN ));

6 lim sup
N→∞

1
Nd−2logd(N )

PN (
+(AN ))6− C1; (1.8)
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where we write logd(N ) = logN for d¿3 and log2(N ) = (logN )
2. This result can

be extended to in�nite Gibbs state(s) P in transient dimensions. Probability estimates
for the events considered in (1.8) will be referred to as estimates in the interior (or in
the bulk).
We speak of boundary estimates when dealing with probability estimates for 
+(DN ),

i.e. the repulsion goes all the way to the boundary. The behavior is then characterized
by a pure surface order: for L ∈ N let @LDN = {x ∈ DN : dist(x; D

–
N )6L} then

lim
L→∞

lim sup
N→∞

1
Nd−1 |logPN (
+(DN ))− logPN (
+(@LDN ))|= 0: (1.9)

That is, only the spins at �nite distance to the boundary, are responsible for the leading
surface order of the decay of PN (
+(DN )) = exp(−O(Nd−1)).
The paper is organized as follows. In Section 2 we present the results in the interior

of DN . Section 3 is devoted to the behavior at the boundary. In the appendix we recall
the B–L inequalities in our framework.

2. Results in the interior of DN

2.1. Harmonic results

Let us brie
y recall the results for the Gaussian case where one has a very precise
picture of the entropic repulsion.

Theorem 2.1. Let A;D ∈ D with A⊂D and dist(A;D–)¿ 0; then

lim
N→∞

1
Nd−2logd(N )

logP∗
N (


+(AN )) =−2G∗
d capD(A); (2.1)

where

G∗
d =

{
limN→∞G∗

DN
(0; 0); d¿3;

limN→∞G∗
DN
(0; 0)=logN; d= 2

(2.2)

and

capD(A) = inf
{
1
2‖∇h‖2L2(D): h ∈ H 1

0 (D); h¿1A
}

(2.3)

is the Newtonian capacity of A in D. Next; for each �¿ 0 and � ∈ (0; 1);

lim
N→∞

inf
x∈D�N

P∗
N

(∣∣∣∣∣ ’x√
logd(N )

−
√
4G∗

d

∣∣∣∣∣6�

∣∣∣∣∣
+(DN )

)
= 1: (2.4)

Finally; for d¿3; (2:1) and (2:4) also hold with P∗
N replaced by the in�nite volume

free �eld P∗ and capD(A) replaced by capRd(A).

Proof. For transient dimensions d¿3, (2.1) and (2.4) are proved in Deuschel (1996)
and, respectively, Bolthausen et al. (1995) for the in�nite volume measure. Actu-
ally in this case one can even take � = 1 for domain D satisfying an exterior cone
property (cf. Deuschel and Giacomin, 1999). The quoted result for d = 2 is part of
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Bolthausen et al. (2000b). We remark that the existence of the limit that de�nes G∗
2

in (2.2) is proven in Lawler (1991).

2.2. Lower bounds

We prove here the lower bound for the probability of the entropic repulsion and
give an upper bound for the height of the repulsion. We recall that the notation x ∼ y
means that x; y ∈ Zd are nearest neighbors, i.e. |x − y|= 1.

Theorem 2.2. Assume A1–A3 and A5; take A;D ∈ D with A⊂D and dist(A;D–)¿ 0;
then

lim inf
N→∞

1
Nd−2logd(N )

logPN (
+(AN ))¿− dc�CV

c
G∗

d capD(A);

where

CV = lim sup
N→∞

sup
x∼y

EN [(’x − ’y)2�−2]¡∞:

Proof. In the proofs we will use explicitly the continuum symmetry of the model:
given ’̃ ∈ 
N , let us denote by T’̃ the map from 
N to 
N de�ned by (T’̃’)x=’x+’̃x.
Let us also set P’̃

N =PN ◦ T−1
’̃ . We use a change of measure argument, as in Lemma

2.3 of Bolthausen et al. (1995). The changed measure will be simply obtained by
translating the original �eld, in a way close in spirit to Fr�ohlich and P�ster (1981), in
which one can �nd the following lemma.

Lemma 2.3. Given ’̃ ∈ 
N ; we have that PN -a.s.

log
dP’̃

N

dPN
(’) =

∑
x∼y

[V (’x − ’y)− V (’x − ’y − (’̃x − ’̃y))]:

Proof. The result is a direct consequence of the de�nition of the measure.

We will use the following inequality, which is a consequence of Jensen’s inequality
(see e.g. Lemma 5:4:21 in Deuschel and Stroock (1989)):

log

(
PN (
+(AN ))

P’̃
N (
+(AN ))

)
¿− 1

P’̃
N (
+(AN ))

[H(P’̃
N |PN ) + (1=e)] (2.5)

for any ’̃. Here H is the relative entropy, i.e. H(P’̃
N |PN ) = E’̃N [log (dP

’̃
N =dPN )]: An

upper bound on the relative entropy is provided by the following lemma.

Lemma 2.4. Let ’̃x=a(N ) (x=N ); where a(N )=
√

a logd(N ); a¿ 0; and  ∈ C20 (D);
then

lim sup
N→∞

1
Nd−2logd(N )

H(P’̃
N |PN )6

ac�CV

2
‖∇ ‖2L2(D): (2.6)
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Proof. By means of Lemma 2.3, expanding the sum in Taylor series, we have

H(P’̃
N |PN ) = E’̃N

[∑
x∼y

(V (’x − ’y)− V (’x − ’y − (’̃x − ’̃y)))

]

= EN

[∑
x∼y

(V (’x − ’y + (’̃x − ’̃y))− V (’x − ’y))

]

=
∑
x∼y

[
(’̃x − ’̃y)EN [V ′(’x − ’y)]

+(’̃x − ’̃y)
2
∫ 1

0

∫ t

0
EN [V ′′(’x − ’y + s(’̃x − ’̃y))] ds dt

]
:

We now use the fact that V ′ is odd, so that EN [V ′(’x − ’y)] = 0. Moreover, since  
has bounded derivatives we have that there exists a constant c such that

sup
x∼y

|’̃x − ’̃y|
a(N )=N

6c (2.7)

and therefore for every s ∈ [− 1; 1]
lim sup
N→∞

sup
x∼y

EN [V ′′(’x − ’y + s(’̃x − ’̃y))] = lim sup
N→∞

sup
x∼y

EN [V ′′(’x − ’y)]

= c�CV ¡∞: (2.8)

We can then pass to the limit to obtain

lim sup
N→∞

1
Nd−2logd(N )

H(P’̃
N |PN )6

ac�CV

2
lim

N→∞
1
Nd

∑
x∼y

N 2[ (x=N )−  (y=N )]2

6
ac�CV

2
‖∇ ‖2L2(D):

We go back to the proof of the lower bound in Theorem 2.2. Observe that there
exists C = C(A) such that

P’̃
N ((


+(AN ))–)6
∑
x∈AN

P’̃
N (’x ¡ 0)6CNd sup

x∈AN

PN (’x ¿a(N )): (2.9)

Next, by the B–L inequality (4.4)

PN (’x ¿a(N ))6exp
(
−ca logd(N )
2G∗

DN
(x; x)

)
: (2.10)

Using G∗
DN
(x; x)6G∗

d for d¿3, immediate consequence of the simple random walk rep-
resentation (1.7), and lim supN→∞ supx∈AN

G∗
DN
(x; x)=logN6G∗

2 for d=2, we conclude
that for each a¿ 2dG∗

d =c

lim
N→∞

P’̃
N (


+(AN ))¿1− lim
N→∞

CNd−ac=2G∗
d = 1: (2.11)

The lower bound then follows from the inequality (2.5), Lemma 2.4, (2.11) and the
fact that

capD(A) = inf{‖∇ ‖2L2(D):  ∈ C20 (D);  ¿1A}:
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In transient dimensions d¿3, we can formulate the corresponding result for the
in�nite measure P: the proof is just a slight modi�cation of the proof of Theorem 2.2
and we leave the details to the interested reader.

Theorem 2.5. Let d¿3 and assume A1–A3 and A5; take A ∈ D; then

lim inf
N→∞

1
Nd−2logN

logP(
+(AN ))¿− dc�C′
V

c
G∗

d capRd(A);

where; for any x ∼ y

C′
V = sup

x∼y
E[(’x − ’y)2�−2]¡∞: (2.12)

As an immediate consequence of FKG and B–L, we have the following upper bound
for the repulsion:

Corollary 2.6. For any C ¿ 2dG∗
d =c we have

lim sup
N→∞

sup
x∈DN

PN (’x ¿
√

C logd(N )|
+(DN )) = 0:

Proof. By the B–L inequality, which can also be applied to the conditioned measure
P+N (·) = PN (·|
+(DN )) (see the appendix) we have

P+N (’x ¿
√

C logd(N ))6exp

(
−c((

√
C logd(N )− E+N [’x]) ∨ 0)2

2G∗
DN
(x; x)

)
:

Thus it su�ces to prove that

lim sup
N→∞

sup
x∈DN

E+N [’x]√
C logd(N )

¡ 1:

Take ’̃x ≡ a(N ); x ∈ DN , where a(N ) =
√

a logd(N ); a¿ 0; and introduce the condi-
tioned probability P’̃;+

N = P’̃
N (·|
+(DN )). Then by FKG and B–L (4.2), we have

E+N [’x]6E’̃;+
N [’x]6

E’̃N [|’x|]
P’̃

N (
+(DN ))
6

a(N ) +
√
(cd)−1G∗

DN
(x; x)

P’̃
N (
+(DN ))

:

Choosing a¿ 2dG∗
d =c as above implies

P’̃
N (


+(DN ))–6
∑
x∈DN

P’̃
N (’x ¡ 0)6CNd sup

x∈DN

PN (’x ¿a(N ))→ 0;

as N → ∞, thus limN→∞P’̃
N (


+(DN )) = 1 and shows the result.

2.3. Upper bounds

Theorem 2.7. Assume A1–A4; take A;D ∈ D with A⊂D; then there exists C1 =
C1(D; A)¿ 0 such that

lim sup
N→∞

1
Nd−2logd(N )

logPN (
+(AN ))6− C1: (2.13)
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Replacing the condition A4 with A5; we have; in transient dimensions d¿3

lim sup
N→∞

1
Nd−2(logN )1=�

logPN (
+(AN ))6− C1: (2.14)

Proof. We give a di�erent argument for the transient and recurrent dimensions. Let
us start with the transient dimensions assuming A1–A3 and A5: let AeN ; A

o
N denote

the even and odd sites of AN and write Fe = �{’x: x ∈ AeN}. Then, conditioning on
even sites

PN (
+(AN )) = EN [PN (
+(AoN )|Fe);
+(AeN )]

= EN


∏

x∈AoN

PN (’x¿0|Fe);
+(AeN )


 :

Next, let mx = (1=2d)
∑

y: |y−x|=1 ’y be the arithmetical mean of the neighbors of ’x.
Note that mx¿0 on 
+(AeN ): For given a¿ 0 de�ne

BN ≡ {x ∈ AoN :mx6a(N )} where a(N ) = (a logN )1=2�;

then, for each � ∈ (0; 1), in view of the above

PN (
+(AN ))6 EN


∏

x∈AoN

PN (’x¿0|Fe); {|BN |¿�|AoN |} ∩ 
+(AeN )




+PN ({|BN |¡�|AoN |} ∩ 
+(AeN )):

Take a site x ∈ BN , then on 
+(AeN ), we have ’y62da(N ), ∀y with |y− x|=1. Note
that A5 implies

lim sup
r→∞

V (r)
r2�

6
c�
2
: (2.15)

Now by FKG and A5, using the explicit expression for PN (·|Fe) we get, with % =
c�(2d)2�

PN (’x¿0|Fe)6PN (’x¿0|’y = 2da(N ); |y − x|= 1)
6 1− C exp(−%a(N )2�)

for some C ¿ 0. Thus on {|BN |¿�|AoN |} ∩ 
+(AeN ) we have the a priori estimate∏
x∈AoN

PN (’x¿0 |Fe)6(1− C exp(−%a logN ))�|A
o
N |6exp(−C′�Nd−a%): (2.16)

This term can be neglected, as soon as a¡ 2=%: On the other hand, we have

{|BN |¡�|AoN |} ∩ 
+(AeN )⊂

 1

|AoN |
∑
x∈AoN

mx¿(1− �)a(N )


 : (2.17)

But using the B–L inequality (4.4), we have

logPN


 1
|AoN |

∑
x∈AoN

mx¿(1− �)a(N )


6− (1− �)2ca(N )2

2 var∗N (1=|AoN |
∑

x∈AoN
mx)

: (2.18)
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Using the convergence

lim
N→∞

Nd−2var∗N


 1
|AoN |

∑
x∈AoN

mx


= (1A;GD1A)Rd ; (2.19)

where GD is the Green function of the Laplacian in Rd with Dirichlet boundary con-
ditions, we complete the proof of the upper bound for transient dimensions.
In order to prove the upper bound in the recurrent dimension d=2 under A4, let us

modify the conditioning argument as follows: for �= 2[N
] with 
 ∈ (0; 1) and let us
cover AN with a grid of mesh 2 � and pick one point in the middle of each square:

�= ((�Z× Z) ∪ (Z× �Z)) ∩ AN ; I = (�Z2 + (�=2; �=2)) ∩ AN :

Next, let F� = �(’x: x ∈ �) and set

mx = EN [’x |F�]; �2;∗x = var∗N (’x |F�); x ∈ I:

Then, since the ’x; x ∈ I; are independent under F�, we have

PN (
+(AN ))6EN [PN (
+(I)|F�);
+(�))]=EN

[∏
x∈I

PN (’x¿0|F�);
+(�)

]
:

For �xed a¿ 0, let BN = {x ∈ I :mx(’)¡a logN}, then for each �¿ 0,

EN

[∏
x∈I

PN (’x¿0 |F�);
+(�)

]

6EN

[∏
x∈I

PN (’x¿0 |F�);
+(�) ∩ {|BN |¿�|I |}
]

+PN (
+(�) ∩ {|BN |¡�|I |}):
Using the reversed B–L inequality (4.5) and the fact that �2;∗x ¿�′ log�, we can �nd
C ¡ 1=2 and �¿ 0 such that

PN (’x¿0 |F�) = 1− PN (’x − mx ¡− mx |F�)61− C exp
(
− �m2x
log�

)
:

Thus on 
+(�) ∩ {|BN |¿�|I |},
∏
x∈I

PN (’x¿0 |F�)6
(
1− C exp

(
−�a2(logN )2

log�

))�|I |

6 exp(−�C′N 2−2
N−�a2=
) (2.20)

which can be neglected if a2¡
(2−2
)=�: On the other hand, on 
+(�)∩{|BN |¡�|I |},
we have

1
|I |
∑
x∈I

mx¿(1− �)a logN:

2 The reason for choosing � growing with N is to increase the variance �2;∗x in the reversed B–L inequality
(4.5).
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Next, since mx is a conditional expectation, we have, for each 
 ∈ R+, by Jensen’s
inequality and again by the B–L inequality (4.3)

EN

[
exp

(


|I |
∑
x∈I

mx

)]
6EN

[
exp

(


|I |
∑
x∈I

’x

)]
6exp

(

2

2c
var∗N

(
1
|I |
∑
x∈I

’x

))

with

lim sup
N→∞

var∗N

(
1
|I |
∑
x∈I

’x

)
= C ¡∞

which follows from the estimate

cov∗N (’x; ’y)6O
(
log
(

N
1 + |x − y|

))
(cf. Lawler, 1991). This shows, via Chebychev’s inequality,

lim sup
N→∞

1
(logN )2

logPN (
+(�) ∩ {|BN |¡�|I |})6− (1− �)2a2c
2C

and concludes the proof.

Corollary 2.8. Assume A1–A4; then there exists K ¿ 0; such that for each � ∈ (0; 1);
lim

N→∞
sup

x∈D�N

PN (’x ¡
√

K logd(N ) |
+(DN )) = 0:

Moreover; assuming A5 instead of A4; we have in transient dimensions d¿3

lim
N→∞

sup
x∈D�N

PN (’x ¡K(logN )1=2�|
+(DN )) = 0:

This corollary follows from FKG, once we prove the following Lemma (cf. Deuschel,
1996):

Lemma 2.9. Assume A1–A4; there exists K ¿ 0; such that for all �¿ 0;

lim
N→∞

PN (|{x ∈ D�N :’x ¡
√

K logd(N )}|¿�|D�N | |
+(D�N )) = 0:

Moreover; assuming A5 instead of A4; we have in transient dimensions d¿3

lim
N→∞

PN (|{x ∈ D�N :’x ¡K(logN )1=2�}|¿�|D�N | |
+(D�N )) = 0:

Proof. Set A= �D. Again the proof is slightly di�erent for the transient and recurrent
dimensions. Let us start with the transient case under A5. In view of the proof of the
previous theorem, cf. (2.16), and the lower bound, we can �nd a¿ 0 such that for
each �¿ 0

lim
N→∞

PN (|{x ∈ AoN :mx(’)¡ (a logN )1=2�}|¿�|AoN | |
+(AN )) = 0; (2.21)

where mx(’) = (1=2d)
∑

y:|x−y|=1 ’y. Next, let us show that

lim sup
N→∞

NdlogPN

(∣∣∣∣
{
x ∈ AoN : |’x − mx(’)|¿ (a logN )1=2�

2

}∣∣∣∣¿�|AoN |
)
=−∞:

(2.22)
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Note that (2.21) and (2.22), together with Theorem 2.2, imply

lim
N→∞

PN

(∣∣∣∣
{
x ∈ AoN :’x ¡

(a logN )1=2�

2

}∣∣∣∣¿�|AoN | |
+(AN )
)
= 0:

Of course, we can repeat this argument for the even sites. This shows the result since{∣∣∣∣
{
x ∈ AN :’x ¡

(a logN )1=2�

2

}∣∣∣∣¿�|AN |
}

⊆
{∣∣∣∣
{
x ∈ AoN :’x ¡

(a logN )1=2�

2

}∣∣∣∣¿ �
2
|AoN |

}

∪
{∣∣∣∣
{
x ∈ AeN :’x ¡

(a logN )1=2�

2

}∣∣∣∣¿ �
2
|AeN |

}
:

In order to show (2.22), simply note that

(’x − mx(’))2 =


 1
2d

∑
y:|y−x|=1

(’x − ’y)



2

6
1
2d

∑
y:|y−x|=1

(’x − ’y)2:

Moreover, under the assumption A3, we can �nd �¿ 0 such that

lim sup
N→∞

1
Nd log EN


exp


�

∑
x∈AoN

(’x − mx(’))2






6 lim sup
N→∞

1
Nd log EN


exp


 �
2d

∑
x∈AoN ;y:|y−x|=1

(’x − ’y)2




¡∞ (2.23)

which implies (2.22) by the Chebychev inequality.
Let us now give the proof for the recurrent dimension d= 2. Choose �= 2[N
] as

in the proof of Theorem 2.7 and set Q� = [− �=2; �=2]2 ∩ Z2. Let
I(k) = I + k; �(k) = �+ k; mx(k) = E[’x |F�(k)]; k ∈ Q�:

Next set BN (k)={x ∈ I(k):mx(k)¡a logN} and �BN (k)={x ∈ I(k):’x ¡ (a=2)logN}
Now in view of (2.20) and the lower bound, replacing � by �−2�¿ 0 and choosing
a2¡
(1− 2
)=�, implies

lim
N→∞

PN


 ⋃

k∈Q�

{|BN (k)|¿��−2|I(k)|}|
+(AN )


= 0: (2.24)

Next, let us prove that we can �nd 
 ∈ (0; 1=4) and �¿ 0, such that

lim sup
N→∞

N−�logPN

(∣∣∣{x ∈ I(k):’x − mx(k)¡− a
2
logN

}∣∣∣¿�|I(k)|
)
=−∞:

(2.25)

Indeed, (2.25) implies that we can replace BN (k) by �BN (k) in (2.24) and shows the
result since

{|{x ∈ AN :’x ¡ (a=2)logN}|¿�|AN |}⊆
⋃

k∈Q�

{| �BN (k)|¿��−2|I(k)|}:
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In order to prove (2.25), it su�ces to show that for all �¿ 0

lim sup
N→∞

N−�log EN


exp


�N��2|I(k)|−1

∑
x∈I(k)

1{’x−mx(k)¡−(a=2)log N}




= 0:

(2.26)

Using the B–L inequality (4.4) there exists �′ ¿ 0, independent of 
 such that

PN (’x − mx(k)¡ (a=2)logN |F�(k))6exp
(
−a2(logN )2

2c�2;∗x

)

6 exp(−�′ logN ) = N−�′ :

Thus we get

N−�log EN


exp


�N��2|I(k)|−1

∑
x∈I(k)

1{’x−mx(k)¡−(a=2)log N}






=N−�log EN
∏

x∈I(k)

EN [exp
(
�N��2|I(k)|−11{’x−mx(k)¡−(a=2)log N}

) |F�(k)]

=N−�log EN
∏

x∈I(k)

((e�N
��2|I(k)|−1−1)PN (’x−mx(k)¡(a=2)logN |F�(k))+1)

6N−�|I(k)|((exp(�N��2|I(k)|−1)− 1)exp(−�′logN ) + 1)

6CN 2−2
−�log ((exp(�CN�+4
−2)− 1)N−�′ + 1):

Choosing now 
¡�′=2 and �¡ 2− 4
 shows (2.26).

Remark 2.10. The results of this section, Theorem 2.7 and Corollary 2.8, can be re-
formulated in transient dimensions d¿3 for the in�nite Gibbs state P.

Remark 2.11. Note that in transient dimensions d¿3 under the assumption A5 there
is a gap between the lower bound at height O((logN )1=2�), cf. Corollary 2.8, and the
upper bound at height O(

√
logN ), (cf. Corollary 2.6). The problem is in this case we

do not know the correct exponential tail behavior of the massless �eld: namely the B–
L inequality predicts an upper bound with quadratic tail, PN (’x¿L)6c1 exp(−c2L2),
on the other hand the corresponding reversed B–L inequality valid under A4, (4.5), is
missing under A5. The best lower bound we can get, is the following: for all L¿1

PN (’x¿L)¿
{

c3 exp(−c4L2�); �6d
2 ; x ∈ DN ;

c3 exp(−c4Ld); �¿ d
2 ; dist(x; DN )¿L:

(2.27)

In order to prove (2.27) in the case �¿d=2, we assume that x= 0 and proceed as in
the proof of Lemma 2.4, choosing this time ’̃x=Lf(x=L), f ∈ C∞

0 (Rd;R+), compactly
supported in the unit ball with f(0)=1. Choose N su�ciently large with respect to L:



J.-D. Deuschel, G. Giacomin / Stochastic Processes and their Applications 84 (2000) 333–354 345

by Lemma 2.3 and using the fact that V ′ is odd we arrive at

H(P’̃
N |PN ) =

∑
x∼y

(’̃x − ’̃y)
2
∫ 1

0

∫ t

0
EN [V ′′(’x − ’y + s(’̃x − ’̃y))] ds dt

6
1
2

∑
x∼y

L2[f(x=L)− f(y=L)]2 sup
|t|61

EN [V ′′(’x − ’y + t)]

6 c�22�−2
∑
x∼y

L2[f(x=L)− f(y=L)]2(EN [(’x − ’y)2�−2] + 1)

which holds for L su�ciently large. Therefore, since by the B–L inequality (4.4),

sup
N
sup
x∼y

EN [(’x − ’y)2�−2] = CV ¡∞

we can conclude that there exists c such that

sup
N
H(P’̃

N |PN )6cLd

for every L. Since P’̃
N (’0¿L) = 1

2 , using the entropy inequality (2.5) we conclude.
In case �6d=2 simply take ’̃x=L�0(x), then P’̃

N (’x¿L)= 1
2 and in view of (2.15)

and the above, we see that supN H(P
’̃
N |PN )6cL2�, which implies the result by (2.5).

Besides being relevant for our purposes, the question about the tail behavior of the
massless �eld (say in in�nite volume for d¿3), in spite of looking rather basic, is, to
our knowledge, open.

3. Behavior at the boundary

In this section we investigate the behavior of the repulsion all the way to the bound-
ary. In contrast to the previous section, based on B–L inequalities and the continuum
symmetry of the model, we use here explicitly the more re�ned H–S random walk
representation (cf. Lemma 3.3) and work under the assumption A4.

Theorem 3.1. Assume A1–A4; then for each D ∈ D; there exists 0¡C16C2¡∞
such that

− C26 lim inf
N→∞

1
Nd−1 logPN (
+(DN ))

6 lim sup
N→∞

1
Nd−1 logPN (
+(DN ))6− C1: (3.1)

Moreover

lim
L→∞

lim sup
N→∞

1
Nd−1 |logPN (
+(DN ))− logPN (
+(@LDN ))|= 0: (3.2)

The basic step in the proof of the above is the following re�nement of the lower
bound
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Lemma 3.2. Let DN (L) ≡ DN\@LDN . There exists L0¿ 0 and c1¡∞ such that

PN (
+(DN (L)))¿exp
(
−c1Nd−1 logd(L)

L

)
; ∀L¿L0; ∀N¿L: (3.3)

Proof. Notation. In what follows c1; c2; : : : are positive constants, not depending on N
or L, which values may di�er from line to line. If the constants depend on L, we write
c1(L); c2(L); : : : .
Let

WN (L) = {x ∈ DN :L6 dist(x; D–
N )62L}:

Then it su�ces to prove that

PN (
+(WN (L)))¿exp
(
−c2Nd−1 logd(L)

L

)
; ∀L¿L0; ∀N¿L: (3.4)

for some c2¡∞. In fact, since DN (L)⊆
⋃m

‘=0WN (2‘L), for some m6log2(N=L)− 1,
we have by FKG in view of (3.4),

logPN (
+(DN (L)))¿
m∑

‘=0

logPN (
+(WN (2‘L)))

¿−c2Nd−1L−1
m∑

‘=0

2−‘logd(2
‘L)¿− c1Nd−1L−1logd(L):

In order to prove (3.4), we use the same conditioning argument as in the proof of the
corresponding result in the Gaussian case (cf. Deuschel, 1996). Let VN (L)= {x ∈ DN :
L=36 dist(x; D–

N )63L} and, for K ∈ (0; 1) to be chosen later, set �= VN (L) ∩ �dZd,
where

�d =

{
[KL2=d]; d¿3;
[K L

(log L)1=2 ]; d= 2:
(3.5)

Next, write F�=�(’x: x ∈ �) and W ′
N (L)=WN (L)\�. Let ad(L)=

√
a logd(L); a¿ 0,

then by FKG

PN (
+(WN (L)))¿ EN [PN (
+(W ′
N (L))|F�);
+(�)]

¿ EN


 ∏

x∈W ′
N (L)

PN (’x¿0|F�);
⋂
x∈�

{’x¿ad(L)}

 : (3.6)

Let mx = EN [’x|F�]: We will see below, Lemma 3.3, that we can choose K ¿ 0, and
L0¿ 1, such that for all N¿L¿L0, on the set

⋂
x∈�{’x¿ad(L)} we have

mx¿ 1
2ad(L) for all x ∈ W ′

N (L): (3.7)

Let �2;∗x = var∗N (’x|F�): Note that by the B–L inequality (4.2) and (4.6)

sup
x∈W ′

N (L)
varN (’x|F�)6 sup

x∈W ′
N (L)

�2;∗x 6
{

c3; d¿3;
c3 log L d= 2:
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Thus, by the B–L inequality, (4.4) and (4.6), we have, on
⋂

x∈�{’x¿ad(L)}
PN (’x¿0|F�) = 1− PN (’x − mx ¡− mx|F�)

¿ 1− exp
(
− m2x
2c�2;∗x

)
¿1− exp(−c4a log L):

Putting this in the above estimate and using FKG, we get

PN (
+(WN (L)))¿ (1− exp(−c4a log L))|W
′
N (L)|PN

( ⋂
x∈�

{’x¿ad(L)}
)

¿ exp(−c5Nd−1L1−c4a)
∏
x∈�

PN (’x¿
√

a logd(L)):

Choose a¿ 2=c4, so that, in view of the result we want to prove, we can get rid of
the �rst factor. Next using the reversed B–L inequality (4.5) and the fact that

inf
x∈�

�2;∗x ¿
{

c6; d¿3;
c6log L d= 2

we have

PN (’x¿
√

a logd(L))¿C exp
(
−D

a logd(L)

�2;∗x

)
¿exp(−c7a log L):

Thus ∏
x∈�

PN (’x¿
√

a logd(L))¿exp(−|�|c7a log L)¿exp(−c8AK−2Nd−1L−1logd(L))

which concludes the proof, once (3.7) is proved.

We postpone the proof of (3.7) at the end of this subsection. A direct consequence
of the above lemma is

Proof of Theorem 3.1. By FKG, we have, for all L¿1

PN (
+(@LDN ))PN (
+(DN (L)))6PN (
+(DN ))6PN (
+(@LDN )); (3.8)

where PN (
+(@LDN ))¿exp(−(log 2)|@LDN |). In view of the above Lemma this implies
(3.2) and the lower bound in (3.1). In order to prove the upper bound in (3.1), it
su�ces to show for �xed L¿1 that

lim sup
N→∞

1
Nd−1 logPN (
+(@LDN ))6− c1(L):

The argument, which works in both transient and recurrent dimension, is just a rerun
of the �rst part of the proof of Theorem 2.7: let W e

N ;W
o
N denote the even and odd

sites of WN (L) and write Fe = �{’x: x ∈ W e
N}. For given a¿ 0, let BN ≡ {x ∈ W o

N :
mx = EN [’x |Fe]6a}; then, conditioning on even sites

PN (
+(WN ))6 EN


 ∏

x∈W o
N

PN (’x¿0 |Fe); {|BN |¿(1=2)|W o
N |} ∩ 
+(W e

N )




+PN ({|BN |¡(1=2)|W o
N |} ∩ 
+(W e

N )):
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The reversed B–L inequality, (4.5) and (4.6), implies on {|BN |¿ 1
2 |W o

N |} ∩ 
+(W e
N )

the a priori estimate∏
x∈W o

N

PN (’x¿0 |Fe)6(1− C exp(−4dDa))(1=2)|W
o
N |6exp

(
− log 2

2
|W o

N |
)

as soon as a¡ log (2C)=(4dD). On the other hand, proceeding as in the proof of
Theorem 2.7 and using the estimate

lim
N→∞

|W o
N |var∗N


 1
|W o

N |
∑
x∈W o

N

’x


6c2(L);

cf. [10], one shows

lim sup
N→∞

1
|W o

N |
logPN ({|BN |¡ (1=2)|W o

N |} ∩ 
+(W e
N ))

6 lim sup
N→∞

1
|W o

N |
logPN


 1
|W o

N |
∑
x∈W o

N

mx¿
a
2


6− c3(L)

for some c3(L)¿ 0, which completes the proof of the upper bound.

We conclude this section with the proof of the crucial inequality (3.7): recall the
de�nitions �d=[KL2=d], for d¿3, and �2 = [KL(log L)−1=2], �=VN (L)∩�dZd, where
VN (L) = {x ∈ DN :L=36dist(x; D

–
N )63L} and W ′

N (L) =WN (L) \� with WN (L) = {x ∈
DN :L6dist(x; D

–
N )62L}.

Lemma 3.3. There exists K ∈ (0; 1) and L0¿ 1; such that; for all M ¿ 0; N¿L¿L0;
on {’x¿M : x ∈ �}

inf
x∈W ′

N (L)
mx = inf

x∈W ′
N (L)

EN [’x |F�]¿M=2: (3.9)

Proof. Using the H–S random walk representation (Hel�er and Sj�ostrand, 1994;
Deuschel et al., 2000) the point is to show that a non-degenerate symmetric random
walk is more likely to get trapped at � before exiting the domain DN : for �xed  ∈ R�

let H 
N (’) be the Hamiltonian on D′

N=DN\� with boundary conditions ’x= x; x ∈ �,
and, as usual, ’x = 0; x 6∈ DN . Next consider the di�usion generator on 
′

N = RD′
N

L =
∑
x∈D′

N

(
@2

@’2x
− @

@’x
H

 
N (’)

@
@’x

)

and consider the Markov process (�(t); X (t))t∈[0;∞) on RD′
N × Zd generated by

L = L +
d∑

i=1

∇∗
i [a

 
i (·; ’)∇i]; (3.10)

where ∇i is the discrete gradient, ∇∗
i its adjoint on ‘2(Zd) and

a 
i (x; ’) =




V ′′(’x+ei − ’x); x; x + ei ∈ D′
N ;

V ′′(’x −  x+ei); x ∈ D′
N ; x + ei ∈ �;

V ′′(’x); x ∈ D′
N ; x + ei 6∈ DN ;

c; x; x + ei 6∈ DN :
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We refer to Deuschel et al. (2000), Section 2 for a detailed construction of this process:
we just remark that, by the structure of the generator (3.10) one can �rst construct the
RD′

N -valued process {�(t)}t¿0 generated by L and then the associated jump process
{X (t)}t¿0, which has time dependent, in fact �-dependent, inhomogeneous rates. Let
P 
(’;x) denote the law of the Markov process {(�(t); X (t))}t¿0 with initial condition
(�(0); X (0)) in (’; x) and write P 

x =
∫

′

N
P 
(’;x)P

 
N (d’), where P

 
N=PN (· |F�). Finally,

P 
(�;x) will denote the law of the {X (t); t¿0} with frozen di�usion path {�(t); t¿0}.
By frozen we mean that we �x the realization of the process {�(t)}t¿0 and look at
the evolution of the random process {X (t)}t¿0: all the estimate with frozen di�usion
� are uniform in {�(t)}t¿0.
Introduce the stopping times �N = inf{t¿0:X (t) 6∈ DN}, �� = inf{t¿0:X (t) ∈ �}

and �= �N ∧ ��. Then, using the result of Deuschel et al. (2000) Section 2, we have
the following representation:

mx = EN [’x|F�] =
∑
y∈�

(∫ 1

0
P� 

x (X (�) = y) d�

)
 y:

Thus if  x¿M for every x ∈ � we have that

mx ¿M


∫ 1

0

∑
y∈�

P� 
x (X (�) = y) d�


=M

(∫ 1

0
P� 

x (X (�) ∈ �) d�

)

= M

(∫ 1

0
P� 

x (�� ¡�N ) d�

)
: (3.11)

Now the result will follow once we prove that we can choose K ¿ 0, L0¿ 1 such that

P� 
x (�� ¡�N )¿ 1

2 ; ∀� ∈ [0; 1]; x ∈ W ′
N (L); ∀N¿L¿L0: (3.12)

The proof of (3.12) goes as follows. For any T ¿ 0, we have

P� 
x (��¿�N )6P� 

x (�N ¡T ) + P� 
x (�� ¿T ): (3.13)

We quote the following Aronson estimates, which are proven in Appendix B of
Giacomin et al. (1999): consider the transition kernel of the random walk with frozen
di�usion path, then there exist C; � ∈ (0;∞) depending only on d; c; �c such that

P� 
(�;x)(X (s) = y)6

C
1 ∨ sd=2

exp
(
− |x − y|

C(1 ∨ s1=2)

)
(3.14)

for every x; y ∈ Zd and s¿0, and

P� 
(�;x)(X (s) = y)¿

�
1 ∨ sd=2

(3.15)

for every s¿ 0 and x; y ∈ Zd such that |x−y|26s. From the upper bound (3.14), one
�rst shows that

P� 
x (�N ¡T )6P� 

x

(
sup

t∈[0;T ]
|X (t)|¿L

)
6c1 exp

(
− L

c1T 1=2

)
(3.16)
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for some 1¡c1¡∞, (see Proposition 6:5 in Bass (1998, p.179)). Next, following
the argument of the proof of Lemma A:7 of Bolthausen and Deuschel (1993), let us
show that

P� 
x (�� ¿T )6exp(−c2T=K2L2); x ∈ W ′

N (L) (3.17)

for any T ¿ 2�2. These two inequalities imply the result: setting T =L2=(c1log(4c1))2;
for L¿L0 such that T ¿ 2�2, and choosing K ¿ 0 su�ciently small implies
P� 

x (��¿�N )61=2.
In view of the lower bound (3.15), we have, for each x ∈ W̃ N (L) ≡ {x ∈ Zd :

L=26dist(x; D–
N )65L=2}\�

P� 
(�;x)(X (s) ∈ �) =

∑
y∈�

P� 
(�;x)(X (s) = y)¿

�
2d=2

�−d; �26s62�2: (3.18)

On the other hand, using again the Aronson estimate (3.14) and evaluating the expres-
sion, we get

sup
y∈�;�

E� 
(�;y)

[∫ 2�2

0
1�(X (s)) ds

]
6cd(�); (3.19)

where cd(�)6c3 for d¿3 and cd(�)6c3 log�, for d = 2. Thus, using the strong
Markov property we have, for each x ∈ W̃ N (L)

�
2d=2

�−d+26
∫ 2�2

�2
P� 
(�;x)(X (s) ∈ �) ds6E� 

(�;x)

[∫ 2�2

0
1�(X (s)) ds

]

6P� 
(�;x)(��62�

2) sup
y∈�;�

E� 
(�;y)

[∫ 2�2

0
1�(X (s)) ds

]

6 cd(�)P
� 
(�;x)(��62�

2):

That is

inf
x∈W̃ N (L);�

P� 
(�;x)(��62�

2)¿
{

c4�−d+2; d¿3;
c4(log�)−1; d= 2:

Let �̃N=inf{s¿0:X (s) 6∈ W̃ N (L)}, then by the Markov property and the usual renewal
argument, for any T ¿ 2�2 and x ∈ W ′

N (L)

P� 
(�;x)(��¿T )6P� 

(�;x)(��¿2[T=2�
2]�2; �̃N¿T ) + P� 

(�;x)(�̃N ¡T )6P� 
(�;x)(�̃N ¡T )

+



(1− c4�−d+2)[T=2�

2]6exp(−c4

[
T
2�2

]
�−d+2)6exp(−c5T=�−d); d¿3;

(1− c4(log�)−1)[T=2�
2]6exp(−c4

[
T
2�2

]
(log�)−1)exp(−c5T=(�2log�)); d= 2;

where as above, possibly changing c1,

P� 
(�;x)(�̃N ¡T )6c1 exp

(
− T

c1L2

)
:

This proves (3.17) by the de�nition of �.
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Remark 3.4. In view of Lemma 3:1, using precisely the same argument as in the
proof of Proposition 3:7 in Deuschel (1996), with the corresponding adaptations for
the recurrent dimensions, cf. proof of Corollary 2.8, one shows that at distance L from
the boundary of DN , the spins are repelled at height O(logd(L)).

Remark 3.5. In view of (3.2), it is natural to ask whether, for each �xed L¿ 0, the
limit

lim
N→∞

1
Nd−1 logPN (
+(@LDN )) =−�D(L) (3.20)

exists. This is a delicate question involving the in
uence of the boundary conditions.
For simplicity, let us consider a cube DN = [ − N; N ]d ∩ Zd, and denote by @i

LDN ,
i =−d; : : : ; d the di�erent pieces of the L boundary:

@i
LDN = {x ∈ DN :N − L6xi6N} and

@−i
L DN = {x ∈ DN : − N6xi6− N + L}:

Then, a subadditive argument, based on the estimate (3.3) shows the convergence

lim
N→∞

1
Nd−1 logPN (
+(@i

LDN )) =−�i(L): (3.21)

The main di�culty is to prove that the di�erent pieces of the boundary are asymptot-
ically independent:

lim
N→∞

1
Nd−1 logPN

(⋂
i


+(@i
LDN )

)
=
∑

i

lim
N→∞

1
Nd−1 logPN (
+(@i

LDN )):

The lower bound follows from FKG

PN (
+(@LDN )) = PN (∩i
+(@i
LDN ))¿

∏
i

PN (
+(@i
LDN ))

and therefore,

lim inf
N→∞

1
Nd−1 logPN (
+(@LDN ))¿−

∑
i

�i(L): (3.22)

We expect that, as in the Gaussian case (cf. Deuschel, 1996) the corresponding upper
bound holds

lim sup
N→∞

1
Nd−1 logPN (
+(@LDN ))6−

∑
i

�i(L):

This with (3.22) would imply (3.21), and, using (3.2)

lim
N→∞

1
Nd−1 logPN (
+(DN )) =−

d∑
i=−d

�i; where �i = lim
L→∞

�i(L): (3.23)

4. Appendix A. The Brascamp–Lieb inequalities

We brie
y review the B–L inequalities for log-concave measures in the context of
massless �elds. These inequalities were originally discovered in Brascamp and Lieb
(1976) and applied for the �rst time to massless �elds in Brascamp et al. (1976).
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In the same set up of the introduction, let us consider the probability measure
on RDN

P�
N (d’) ≡

1
Z�
N
exp (−HN (’)− �(’))

∏
x∈DN

d’x; (4.1)

where �:RDN → R is a C2 convex function which is either non-negative or �(’)¿−
c
∑

x |’x| for some c¿0. Then the following two inequalities hold for every choice of
f:Zd → R (Brascamp and Lieb, 1976; Deuschel et al. 2000; Hel�er and Sj�ostrand,
1994):

var�N

(∑
x

f(x)’(x)

)
6
1
cd
E∗N


(∑

x

f(x)’(x)

)2= 1
cd

〈f;G∗
DN

f〉; (4.2)

E�N

[
exp

(∑
x

f(x)’(x)− E�N
(∑

x

f(x)’(x)

))]

6E∗N

[
exp

(
(cd)−1=2

∑
x

f(x)’(x)

)]

=exp
(
1
2cd

〈f;G∗
DN

f〉
)

; (4.3)

where 〈f;G∗
DN

f〉=∑x;y f(x)G∗
DN
(x; y)f(y). Using Chebychev’s inequality, this implies

the following concentration:

P�
N

(∣∣∣∣∣
∑
x

f(x)’(x)− E�N
[∑

x

f(x)’(x)

]∣∣∣∣∣¿L

)
62 exp

(
− dcL2

2〈f;G∗
DN

f〉
)

: (4.4)

In the case �(’)=
∑

x g(x)’(x) we have a corresponding reversed inequality (Deuschel
et al. 2000) Lemma 2.9:

P�
N

(∣∣∣∣∣
∑
x

f(x)’(x)− E�N
[∑

x

f(x)’(x))

]∣∣∣∣∣¿L

)

¿c( �c)exp
(
− 2d �c2L2

c〈f;G∗
DN

f〉
)

(4.5)

and c( �c) can be chosen equal to exp(−2 log 2 �cd−2). The �rst inequality in the formulas
(4.2) and (4.3) as well as inequalities (4.4) and (4.5) hold also if we are conditioning
to the event E = {’:’x =  x for every x ∈ A}, A⊂DN and  ∈ RDN , that is if we
make in the �rst line of (4.2)–(4.5) the replacements

E�N (·)→ E�N (·|FA)( ) and E∗N (·)→ E∗N (·|FA)( 0); (4.6)

where  0 ≡ 0.
As already observed in Deuschel and Giacomin (1999), (4.2)–(4.4) hold also if

P�
N (d’) is replaced by the conditioned measure PN (d’|
+(A)), A⊂Zd. This is an
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immediate consequence of (4.2), and (4.4), because we can approximate PN (d’|
+(A))
by choosing �(’) = k

∑
x∈A ’4x1(−∞;0)(’x), k¿0, and letting k↗∞.

Finally we remark that the extension of the B–L inequalities to the in�nite volume
cases (quickly) considered in this paper is straightforward.
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