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Abstract

Let X1, X2, . . . be independent variables, each having a normal distribution with negative mean −β < 0
and variance 1. We consider the partial sums Sn = X1 + · · · + Xn , with S0 = 0, and refer to the process
{Sn : n ≥ 0} as the Gaussian random walk. This paper is concerned with the cumulants of the maximum
Mβ = max{Sn : n ≥ 0}.

We express all cumulants of Mβ in terms of Taylor series about β at 0 with coefficients that involve the
Riemann zeta function. Building upon the work of Chang and Peres [J.T. Chang, Y. Peres, Ladder heights,
Gaussian random walks and the Riemann zeta function, Ann. Probab. 25 (1997) 787–802] on P(Mβ = 0)
and Bateman’s formulas on Lerch’s transcendent, expressions of this type for the first and second cumulants
of Mβ have been previously obtained by the authors [A.J.E.M. Janssen, J.S.H. van Leeuwaarden, On
Lerch’s transcendent and the Gaussian random walk, Ann. Appl. Probab. 17 (2007) 421–439]. The method
is systemized in this paper to yield similar Taylor series expressions for all cumulants.

The key idea in obtaining the Taylor series for the kth cumulant is to differentiate its Spitzer-type
expression (involving the normal distribution) k + 1 times, rewrite the resulting expression in terms of
Lerch’s transcendent, and integrate k + 1 times. The major issue then is to determine the k + 1 integration
constants, for which we invoke Euler–Maclaurin summation, among other things.

Since the Taylor series are only valid for β < 2
√
π , we obtain alternative series expansions that can be

evaluated for all β > 0. We further present sharp bounds on P(Mβ = 0) and the first two moments of Mβ .
We show how the results in this paper might find important applications, particularly for queues in heavy
traffic, the limiting overshoot in boundary crossing problems and the equidistant sampling of Brownian
motion.
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1. Introduction

Let X1, X2, . . . be independent variables, each having a normal distribution with mean
−β < 0 and variance 1. We consider the partial sums Sn = X1 + · · · + Xn , with S0 = 0,
and refer to the process {Sn : n ≥ 0} as the Gaussian random walk. In this paper we present
explicit expressions for all moments (in terms of the cumulants) of the maximum

Mβ = max{Sn : n ≥ 0}. (1.1)

These explicit expressions hold for 0 < β < 2
√
π and are in terms of Taylor series about β at

0 with coefficients that involve the Riemann zeta function. The explicit expressions facilitate the
derivation of accurate asymptotic approximations for small values of β. We also present sharp
bounds on P(Mβ = 0), EMβ and Var Mβ .

The distribution of Mβ plays an important role in several areas of applied probability, like
queueing theory, risk theory and sequential analysis. In queueing theory, the most famous model
is the G I /G/1 queue. Determining the stationary waiting time distribution requires the solution
of a linear integral equation of Wiener–Hopf type known as Lindley’s equation (see [23]). In
general, solving Lindley’s equation is challenging, both analytically and numerically. However,
sharp approximations can be obtained in a regime called heavy traffic (see [3,20,22,28]), in which
the load is just below its critical level, and so the queue is only just stable with relatively large
waiting times. Kingman showed [22] that in heavy traffic, the waiting time of a scaled version
of the G I /G/1 queue can be very well approximated by the maximum of the Gaussian random
walk with β ↓ 0. In risk theory, the counterpart of heavy traffic is small-safety loading, a regime
in which the premium charged is close to the typical pay-out for claims. In these classical heavy-
traffic or small-safety loading settings, one is thus typically interested in the distribution of Mβ

for values of β close to zero.
In queueing theory, Mβ for β away from zero plays a key role in a heavy-traffic scaling regime

known as the Halfin–Whitt regime, see [17,20]. Under this regime, the stationary waiting time
is in fact identical in distribution to Mβ . Contrary to the classical heavy-traffic regime, though,
β need not be small, but instead is an important decision variable (see Borst et al. [5] and the
references therein).

Other important applications involving Mβ stem from the fact that the Gaussian random walk
can be obtained from a Brownian motion by equidistant sampling. For this reason, Mβ shows up
in a range of applications, such as sequentially testing for the drift of a Brownian motion [12],
corrected diffusion approximations [24], simulation of Brownian motion [4,8], option pricing [6],
and the thermodynamics of a polymer chain [14].

In all the above-mentioned applications, the moments of the maximum of the Gaussian
random walk are often the principal targets of investigation. In [18] we obtained explicit
expressions for the first two moments of Mβ . We built upon the work of Chang and Peres [10]
on the first descending ladder height Sτ with τ = inf{n ≥ 1 : Sn < 0}. They derived an exact
expression for ESτ , therewith complementing first order approximations of Siegmund [24] and
Chang [9]. By the relation ESτ = −β/P(Mβ = 0) (see Asmussen [3], p. 225), the result leads
to an exact expression for P(Mβ = 0). Chang and Peres start from a Spitzer-type expression for
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P(Mβ = 0). The key idea of Chang and Peres is then to differentiate this expression with respect
to β, and rewrite the resulting expression in terms of the polylogarithm Lis(z) =

∑
∞

n=1 n−s zn ,
with z = exp(−β2/2), case s = 1/2. Subsequently, Chang and Peres present an analytic
continuation of Lis(z), which results in Taylor series about β = 0 with coefficients that involve
the Riemann zeta function. The final result for ESτ is then obtained by integration. As pointed
out in [18], Lis(z) is a special case of Lerch’s transcendent, see (4.9), for which the matter of
analytic continuation has been established in full generality by Bateman (and/or the staff of the
Bateman Manuscript Project), see [15], Section 1.11(8).

While the first two moments were studied in [18] on their own merits, we now generalize the
approach in [18] to obtain a systematic method to compute all cumulants (i.e. moments). The
key idea in obtaining the Taylor series for the kth cumulant is to differentiate its Spitzer-type
expression k + 1 times, rewrite the resulting expression in terms of Lerch’s transcendent, and
integrate k + 1 times. The major issue then is to determine the k + 1 integration constants, which
will be done using Euler–Maclaurin summation, among other things.

The paper is structured as follows. We present our main results in Section 2. These concern
expressions for all cumulants of Mβ in terms of Taylor series about β = 0 with coefficients that
involve the Riemann zeta function, analytic continuation of these series, and sharp bounds on
P(Mβ = 0), EMβ and Var Mβ for small values of β. In Section 3 we discuss three applications:
equidistant sampling of Brownian motion, the limiting overshoot in boundary crossing problems
and a discrete queue under Halfin–Whitt scaling. An outline of the proof of the Taylor series
result is provided in Section 4, while the details are presented in Section 5. The analytic
continuation of these series is outlined in Section 6. The bounds are proved in Section 7.

2. Main results

Spitzer’s identity leads to (see Thm. 3.1 in [26], and e.g. [1,21])

E(es Mβ ) = exp

{
∞∑

n=1

1
n

E(esS+
n − 1)

}
, Re s ≤ 0, (2.1)

with x+
= max{0, x}. The kth cumulant of a random variable A is defined as the kth derivative

of log Ees A evaluated at s = 0. We then see that

log E(es Mβ ) =

∞∑
n=1

1
n

E(esS+
n − 1) =

∞∑
n=1

1
n

∫
∞

0

(
sx +

1
2

s2x2
+ · · ·

)
fS+

n
(x)dx, (2.2)

with fS+
n

the density function of S+
n , and so the kth cumulant of Mβ equals

dk

(ds)k
log E(es Mβ )|s=0 =

∞∑
n=1

1
n

E((S+
n )

k) =: Jk(β), k = 1, 2, . . . . (2.3)

Recall that the first cumulant is the mean, the second cumulant is the variance, the third cumulant
is the central moment E(Mβ − EMβ)

3, and the fourth cumulant is E(Mβ − EMβ)
4
− 3E(Mβ −

EMβ)
2. Using the normality of Sn , it follows immediately from (2.3) that the quantities Jk(β)

can be expressed as

Jk(β) =

∞∑
n=1

1

n
√

2π

∫
∞

β
√

n
(
√

nx − βn)ke−x2/2dx . (2.4)
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In the above form, the definition of Jk(β) extends to the case k = 0, for which it obviously
holds that J0(β) =

∑
∞

n=1
1
n P(Sn > 0). From Spitzer’s identity we then know that J0(β) =

− ln P(Mβ = 0) (see Sec. 8.5 in Chung [13]).
The main contribution in this paper is then the following result for Jk(β) (with ζ(z) the

Riemann zeta function):

Theorem 1. There holds

J0(β) = − lnβ −
1
2

ln 2 −
ζ(1/2)
√

2π
β −

1
√

2π

∞∑
r=1

ζ(−r + 1/2)(−1/2)rβ2r+1

r !(2r + 1)
, (2.5)

and for k = 1, 2, . . .

Jk(β) =
(k − 1)!

2k β−k
+

k∑
j=0

(
k
j

)
(−1) jΓ ( k− j+1

2 )
√

2π
ζ

(
−

1
2

k −
1
2

j + 1
)

2
k− j−1

2 β j

+
(−1)k+1k!

√
2π

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r !(2r + 1) · · · (2r + k + 1)
, (2.6)

when 0 < β < 2
√
π .

Theorem 1 generalizes some previously obtained results. For P(Mβ = 0) we get

P(Mβ = 0) =
√

2β exp

{
β

√
2π

∞∑
r=0

ζ(1/2 − r)
r !(2r + 1)

(
−β2

2

)r}
, (2.7)

a result that was already obtained by Chang and Peres [10], Thm. 1.1 on p. 788. An alternative
proof of (2.7) was presented in [18], along with the derivations of (2.6) for k = 1, 2, yielding

EMβ =
1

2β
+
ζ(1/2)
√

2π
+

1
4
β +

β2
√

2π

∞∑
r=0

ζ(−1/2 − r)
r !(2r + 1)(2r + 2)

(
−β2

2

)r

, (2.8)

and

Var Mβ =
1

4β2 −
1
4

−
2ζ(−1/2)

√
2π

β −
β2

24
−

2β3
√

2π

∞∑
r=0

ζ(−3/2 − r)(−β2/2)r

r !(2r + 1)(2r + 2)(2r + 3)
. (2.9)

We need not necessarily rely on Theorem 1 to obtain exact results on the moments of Mβ ,
since the the normality of Sn leads to (2.4). In comparing (2.6) and (2.4) it is evident that (2.6)
provides more qualitative insight into the role of β. For β ↓ 0, (2.6) is a powerful result that
clearly shows the difference between Jk(β) and its limiting value (k − 1)!(2β)−k . For moderate
values of β, (2.6) provides valuable information on the influence of β.

From a numerical viewpoint, (2.6) has advantages over (2.4) as well. It is clear that the infinite
series in (2.6) converge more rapidly for smaller values of β, while the contrary holds for their
Gaussian-type counterparts (2.4) (for a comparison of speed of convergence, see Sec. 6 of [18]).
An advantage of (2.4) is that it holds for all β > 0, and that it can be used to derive the bounds
presented in Theorem 3 below.

The series over r in (2.5) and (2.6) converge for |β| < 2
√
π while it is clear from (2.4) that

Jk(β) makes sense for all β > 0. In Section 6 we present alternative series expansions for Jk(β)

that can be evaluated for all β > 0. The alternative expansions for Jk(β), k = 0, 1, 2, lead to the
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result below. The result is in the same spirit but more explicit than what was developed by Chang
and Peres in Section 2 of [10].

Theorem 2. We have for β > 0

P(Mβ = 0) =
√

2β exp
{
ζ(1/2)
√

2π
β +

β

π
Re
[

e
π i
4 S0

(
−iβ2

4π

)]}
, (2.10)

EMβ =
1

2β
+
ζ(1/2)
√

2π
+

1
4
β +

β2

2π2 Re
[
−e

π i
4 S1

(
−iβ2

4π

)]
, (2.11)

Var Mβ =
1

4β2 −
1
4

−
2ζ(−1/2)

√
2π

β −
β2

24
−
β3

4π3 Re
[

e
π i
4 S2

(
−iβ2

4π

)]
, (2.12)

in which

S0(b) =

√
π

√
b

∞∑
n=1

(
arcsin(b/n)1/2 − (b/n)1/2

)
, (2.13)

S1(b) =

√
π

2b

∞∑
n=1

1
n

(√
n −

√
n − b

)
, (2.14)

S2(b) =

√
π

4b

∞∑
n=1

1
n2

(√
n −

√
n − b

)
. (2.15)

Remark. For larger values of β, the terms in (2.4) for n = 2, 3, . . . are dominated by the term
for n = 1. Upon some rewriting we get from (2.4) that

1

n
√

2π

∫
∞

β
√

n
(
√

nx − βn)ke−x2/2dx = (2n)
1
2 k−1k! ikerfc z, (2.16)

with inerfc the n times repeated integral of the complementary error function, see Abramowitz
and Stegun [2], 7.2 on pp. 299–300. From [2], 7.2.14 on p. 300, we then get the asymptotic series

1

n
√

2π

∫
∞

β
√

n
(
√

nx − βn)ke−x2/2dx ∼
2

√
π
(2n)−3/2β−k−1e−

1
2 nβ2

∞∑
m=0

(−1)m(2m + k)!
m!(2nβ2)m

=
β−k−1

n
√

2πn
e−

1
2 nβ2

[
k! −

(k + 2)!
2nβ2 +

(k + 4)!
8n2β4 − · · ·

]
.

(2.17)

When we apply this, for instance, with β = 10, we see that the term in the series in (2.4) for Jk(β)

with n = 2 is about 2−3/2e−50 times the term with n = 1: this second term and all subsequent
terms are totally negligible. For this value of β, the accuracy of

β−k−1e−
1
2 nβ2

n
√

2πn

∣∣∣∣∣
n=1

(2.18)

as an approximation of the first term is of order (k + 2)(k + 1)/200 (relative error).

We shall now present some bounds and approximations. The expressions (2.5)–(2.9) all
involve infinite series, comprising the Riemann zeta function, that converge absolutely for
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0 < β < 2
√
π . For small values of β the terms involving higher powers of β are quite small. It

follows, for instance, from (2.7) that

P(Mβ = 0) =
√

2β exp
{
ζ(1/2)
√

2π
β +O(β3)

}
, (2.19)

where ζ(1/2)/
√

2π ≈ −0.5826 and the constant implied by the O-symbol is of the order
|ζ(−1/2)/6

√
2π | ≈ 0.0138 when β > 0 is away from 2

√
π (see [18], (6.3) where ζ(1/2 − r) is

estimated). This is in fact Chang’s result on the expected first descending ladder height ESτ for
the Gaussian family (we recall the relation ESτ = −β/P(Mβ = 0)), see Chang [9], Thm. 4.2 on
p. 732 (see also Siegmund [24], Lemma 2 on p. 705). Likewise, we get from (2.8)

EMβ =
1

2β
+
ζ(1/2)
√

2π
+

1
4
β +O(β2), (2.20)

which is a refinement of Kingman’s result, [22], (51) on p. 156, and Siegmund’s result, [24],
Thm. 1 on p. 704, in the sense that it is more specific about the terms after the constant
ζ(1/2)/

√
2π . Similarly, we have

Var Mβ =
1

4β2 −
1
4

−
2ζ(−1/2)

√
2π

β −
1

24
β2

+O(β3). (2.21)

More generally, the expression on the first line on the right-hand side of (2.6) provides an
approximation of Jk(β) whose absolute and relative error decays quickly with k when β > 0
is well below 2

√
π . This is so since for these values of β the term on the second line of the

right-hand side of (2.6) is of order (k − 1)!(β/2π)k+1, compare [18], Sec. 6.
We now present some sharp bounds on the expressions in (2.7)–(2.9) that rely solely on β and

do not contain the Riemann zeta function.

Theorem 3. (i) There holds for 0 < β ≤
√

2/π

P(Mβ = 0) ≤ 2
(

1 − e−β2/2
)1/2

exp
{
−
β

√
π

+
1
8
β2
}
, (2.22)

P(Mβ = 0) ≥ 2
(

1 − e−β2/2
)1/2

exp
{
−

3β

2
√

2π
+

1
8
β2

−
β3

9
√

2π

}
. (2.23)

(ii) There holds for β > 0

EMβ ≤
1

2β
−

1
√
π

+
1
4
β −

β2

12
√
π

+
β4

240
√
π
, (2.24)

EMβ ≥
1

2β
−

3

2
√

2π
+

1
4
β −

β2

12
√

2π
−

β4

24
√

2π
. (2.25)

(iii) There holds for β > 0

Var Mβ ≤
1

4β2 −
1
4

+
β

3
√
π

−
1

16
β2

+
β3

60
√
π
, (2.26)

Var Mβ ≥
1

4β2 −
1
4

+
β

3
√

2π
−

β3

30
√

2π
−

β5

63
√

2π
. (2.27)
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Table 1
P(Mβ = 0) for various values of β

β 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7900

P(Mβ = 0) 0.1334 0.2518 0.3564 0.4485 0.5293 0.6000 0.6615 0.7099
(2.23) 0.1332 0.2509 0.3541 0.4441 0.5215 0.5873 0.6421 0.6827
(2.22) 0.1337 0.2527 0.3582 0.4515 0.5335 0.6053 0.6678 0.7169
(2.19) 0.1334 0.2517 0.3562 0.4480 0.5283 0.5981 0.6582 0.7049

The exact values of P(Mβ = 0) are approximated by truncating the infinite series in (2.7) at r = 50. In (2.19) the term
O(β3) has been omitted.

Table 2
EMβ for various values of β

β 0.1000 0.2500 0.5000 0.7500 1.0000 1.5000 2.0000

EMβ 4.4420 1.4773 0.5321 0.2484 0.1264 0.0347 0.0090
(2.25) 4.4263 1.4619 0.5172 0.2318 0.1017 −0.0490 −0.2474
(2.24) 4.4603 1.4954 0.5492 0.2643 0.1411 0.0503 0.0354
(2.20) 4.4424 1.4799 0.5424 0.2716 0.1674 0.1257 0.1674

The exact values of EMβ are approximated by truncating the infinite series in (2.8) at r = 50. In (2.20) the term O(β2)
has been omitted.

For Theorem 3(i) we note that 2(1 − e−β2/2
)1/2 =

√
2β(1 +O(β2)), see (2.7). Furthermore,

comparing Theorem 3(i) with (2.7) and Theorem 3(ii) with (2.8), we note that

0.5642 ≈
1

√
π
< −

ζ(1/2)
√

2π
<

3

2
√

2π
≈ 0.5984 (2.28)

with −ζ(1/2)/
√

2π ≈ 0.5826. Finally, comparing Theorem 3(iii) with (2.9), we note that

0.1330 ≈
1

3
√

2π
< −

2ζ(−1/2)
√

2π
<

1
3
√
π

≈ 0.1881 (2.29)

with −2ζ(−1/2)/
√

2π ≈ 0.1659.
Tables 1–3 display the bounds and/or approximations for P(M = 0), EM and Var M ,

respectively, for various values of β. In Figs. 1–3 we have plotted P(M = 0), βEM and
β2Var M , respectively, as a function of β.

3. Applications

3.1. Equidistant sampling of Brownian motion

Let the process {Bt : t ≥ 0} be a Brownian motion with negative drift coefficient −β and
variance parameter σ 2, so that

Bt = B0 − βt + σWt , (3.1)

where {Wt : t ≥ 0} is a Wiener process (standard Brownian motion). Let

M̃ = max{Bt : t ≥ 0}. (3.2)
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Table 3
Var Mβ for various values of β

β 0.1000 0.2500 0.5000 0.7500 1.0000 1.5000 2.0000

Var Mβ 24.7662 3.7889 0.8229 0.2969 0.1276 0.0280 0.0062
(2.27) 24.7633 3.7830 0.8146 0.2871 0.1134 −0.0324 −0.2306
(2.26) 24.7682 3.7933 0.8296 0.3043 0.1350 0.0343 0.0139
(2.21) 24.7662 3.7889 0.8225 0.2954 0.1242 0.0162 −0.0224

The exact values of Var Mβ are approximated by truncating the infinite series in (2.9) at r = 50. In (2.21) the termO(β3)
has been omitted.

Fig. 1. Plot of P(Mβ = 0), along with the bounds (2.24) and (2.25), and Chang’s result (2.19) with O(β3) deleted. The
exact values of P(Mβ = 0) are approximated by truncating the infinite series in (2.7) at r = 50.

We take B0 = 0, and then it is well known that P(M̃ ≥ x) = e−(2β/σ 2)x (exponential distribution
with rate 2β/σ 2, see e.g. Chen and Yao [11], Lemma 5.5 on p. 102). It thus follows that

E(es M̃ ) =
2β/σ 2

2β/σ 2 − s
, (3.3)

and so the kth cumulant of M̃ equals

(k − 1)!
2kβkσ−2k . (3.4)

We set σ to 1 (without loss of generality). One way then to see the Gaussian random walk
is the (equidistantly) sampled version of this Brownian motion, and by increasing the sampling
frequency the Gaussian random walk will converge to the Brownian motion. How fast is this
convergence? To address this question we first extend our definition of the Gaussian random
walk. Let the Gaussian random walk be defined by

S(β, ν) := {Sn(β, ν) : n = 0, 1, . . .}, (3.5)
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Fig. 2. Plot of βEMβ , along with β times the bounds (2.24) and (2.25), and the approximation (2.20) with O(β2)
deleted. The exact values of EMβ are approximated by truncating the infinite series in (2.8) at r = 50.

Fig. 3. Plot of β2Var Mβ , along with β2 times the bounds (2.26) and (2.27), and the approximation (2.21) with O(β3)
deleted. The exact values of Var Mβ are approximated by truncating the infinite series in (2.9) at r = 50.

where Sn(β, ν) = 0 and Sn(β, ν) = Xν,1+· · ·+Xν,n , with Xν,1, Xν,2, . . . independent variables,
each having a normal distribution with mean −β/ν < 0 and variance 1/ν. Let

Mν,β = max{Sn(β, ν) : n = 0, 1, . . .}. (3.6)
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Our earlier definition of the Gaussian random walk corresponds to S(β, 1) with its associated
maximum M1,β =: Mβ . Since

Mν,β
d
= ν−1/2 Mν−1/2β , (3.7)

where d
= denotes equality in distribution, all characteristics of Mν,β can be expressed in those of

Mβ .
We now sample the Brownian motion at points 0, 1/ν, 2/ν, . . . , with ν some positive integer,

and use as a measure of convergence the difference in all-time maximum between the Brownian
motion and its sampled version (where we know that EM̃ = 1/(2β)). From our results on EMβ

for the Gaussian random walk (2.8), together with (3.4) and (3.7), we find that

EM̃ − EMν,β = −
ζ(1/2)
√

2πν
+O(1/ν). (3.8)

Results similar to (3.8), in slightly different settings, have been presented in Asmussen et al. [4],
Thm. 2 on p. 884, and Calvin [8], Thm. 1 on p. 611. A crucial difference is that our result
(3.8) is obtained from the exact expression for EMν,β , while the results in [4,8] are derived
from considering the Brownian motion in a finite time interval, and estimating its maximum by
Euler–Maclaurin summation.

The leading part of the right-hand side of (3.8) does not depend on the drift β. However, from
Theorem 1 we can easily obtain higher-order asymptotics that do involve the drift, like

EM̃ − EMν,β = −
ζ(1/2)
√

2πν
+
β

4ν
+O(ν−3/2). (3.9)

Moreover, our exact analysis of Mβ leads to asymptotic expressions up to any order, for all cumu-
lants of the maximum. For example, it readily follows from (2.9) that (with Var M̃ = 1/(4β2))

Var M̃ − Var Mν,β = −
1

4ν
−

2ζ(−1/2)
√

2π

β

ν3/2 +O(ν−2), (3.10)

where −2ζ(−1/2)/
√

2π ≈ 0.1659.

3.2. Limiting overshoot in boundary crossing problems

The first (descending) ladder height τ = inf{n ≥ 1 : Sn < 0} fulfils a crucial role in
applications of random walk theory (see e.g. Asmussen [3], Feller [16] and Siegmund [24]).
One important application is the asymptotic analysis of boundary crossing problems [25]. In the
latter case, a quantity of interest is the expected limiting overshoot which arises in e.g. sequential
analysis [12,31], corrected diffusion approximations [24] and option pricing [6].

Define the overshoot Ra by

Ra = −Sτa − a, (3.11)

where τ(a) is the first passage time inf{n ≥ 1 : Sn < −a}. Hence, Ra is the excess of the
random walk over the boundary −a at the time it first downcrosses −a. Standard results from
renewal theory say that Ra converges in distribution to a random variable R∞ we refer to
as the limiting overshoot (see [3], Thm. 2.1 on p. 224). For the expected limiting overshoot
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ER∞ = lima→∞ ERa =: ρ(β) it is known that ρ(β) = −ES2
τ /2ESτ (see e.g. Woodroofe [31],

corollary 2.2 on p. 20).
A relation between the moments of τ and the moments of Mβ can be found in Asmussen [3],

Thm. 2.2 on p. 270,

n∑
k=0

(
n + 1

k

)
EMk

βEXn+1−k
=

ESn+1
τ

Eτ
, n = 1, 2, . . . . (3.12)

From (3.12) for n = 1 we get ES2
τ = Eτ(1 + β2

− 2βEMβ) which together with ESτ = −βEτ
yields

ρ(β) =
1 + β2

2β
− EMβ . (3.13)

Combining (3.13) and (2.8) immediately leads to the result below.

Corollary 1. There holds

ρ(β) = −
ζ(1/2)
√

2π
+

1
4
β −

β2
√

2π

∞∑
r=0

ζ(−1/2 − r)
r !(2r + 1)(2r + 2)

(
−β2

2

)r

, (3.14)

when 0 < β < 2
√
π .

Corollary 1 complements results obtained earlier by several authors. Chernoff [12] showed that
ρ(0) = −ζ(1/2)/

√
2π , Siegmund [24], Problem 10.2 on p. 227, showed that ρ′(0) = 1/4 (see

also Wijsman [29]), and Chang and Peres [10], p. 801, showed that ρ′′(0) = ζ(3/2)/2(2π)3/2

(which equals −ζ(−1/2)/
√

2π by Riemann’s relation, cf. (6.3)).

3.3. A discrete queue under Halfin–Whitt scaling

The proof of Theorem 1 consists of finding an analytic expression in terms of Lerch’s
transcendent, see (4.9) below, of the quantity

Tk,i (β) =

∞∑
n=1

nk+1/2
∫

∞

β

e−
1
2 nx2

x i dx (3.15)

with i = 0, 1, . . . and k ∈ Z. This has an application in the analysis of a specific queue in heavy
traffic. Consider the process

W0 = 0; Wm+1 = (Wm + Am − s)+, m = 0, 1, . . . , (3.16)

in which x+
= max{0, x} and the Am are i.i.d. according to a random variable A having a Poisson

distribution with mean λ (the arrival rate) and s (service capacity) is a positive integer larger than
λ. Denote by W the random variable following the stationary distribution of the process defined
in (3.16).

We then consider a heavy-traffic regime in which the arrival rate is just below the service
capacity according to s = λ + β

√
λ, with β > 0 fixed and λ → ∞. This regime has a

long history in queueing theory (see Borst et al. [5] for an overview), and is referred to as the
Halfin–Whitt regime or square-root safety staffing, see [5,17,20]. It is readily seen (see [19]) that
the distribution of W/

√
λ converges to that of Mβ as λ → ∞. The analysis of this equilibrium
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distribution for finite λ is, however, far more complicated than in the case of the Gaussian random
walk. We show in [19] that

− ln P(W = 0) =

∞∑
n=1

p(ns)
n1/2

1
√

2π

∫
∞

β̂

e−
1
2 nx2

ϕ(x/
√

s)dx (3.17)

in which

β̂ =

(
−2s

(
1 −

λ

s
+ ln

λ

s

))1/2

≈
s − λ
√
λ

= β, (3.18)

where ≈ is sharp for large values of λ. Furthermore, p(n) = nne−n
√

2πn/n! and ϕ is a function
analytic in |x | < 2

√
π with ϕ(0) = 1. For p there is Stirling’s formula, see Abramowitz and

Stegun [2], 6.1.37 on p. 257,

p(n) ∼ 1 −
1

12n
+

1
288n2 + · · · =

∞∑
l=0

pl

nl , n → ∞, (3.19)

and for ϕ there is the power series representation

ϕ(x) = 1 −
2
3

x +
1

12
x2

+ · · · =

∞∑
i=0

bi x i , |x | < 2
√
π. (3.20)

Thus for − ln P(W = 0) there is the asymptotics

− ln P(W = 0) ∼
1

√
2π

∞∑
l,i=0

plbi s−l−i/2T−l−1,i (β̂), s → ∞, (3.21)

with T defined in (3.15).
Similar expressions, though somewhat more complicated than the one in (3.17), exist for

EW and Var W and these give rise to asymptotic expansions as in (3.21) involving Tk,i with
i = 0, 1, . . .; k = 0,−1,−2 . . . and k = 1, 0,−1 . . ., respectively. Hence, for 0 < β < 2

√
π ,

we can use the analytic expression for Tk,i as found in Section 5 in the asymptotic formula (3.21)
and its counterparts for EW and Var W .

4. Proof of Theorem 1

Starting from (2.4), we can express Jk(β) as

Jk(β) =

∞∑
n=1

nk−1/2
√

2π

∫
∞

β

(y − β)ke−
1
2 ny2

dy

=
1

√
2π

k∑
i=0

(
k
i

)
(−β)k−i Tk−1,i (β), (4.1)

where

Tk−1,i (β) =

∞∑
n=1

nk−1/2
∫

∞

β

e−
1
2 nx2

x i dx . (4.2)
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In Section 5 we shall conduct a detailed study of the quantities Tk−1,i (β), leading to

Tk−1,i (β) =
Γ (k + 1/2)

2k − i
2k+1/2β i−2k

+ Lk−1,i

−

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+i+1

r !(2r + i + 1)
(4.3)

for i = 0, 1, . . . , i 6= 2k, and

Tk−1,2k(β) = −Γ
(

k +
1
2

)
2k+1/2 lnβ + Lk−1,2k

−

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+2k+1

r !(2r + 2k + 1)
, (4.4)

where

Lk−1,i =
1
2
Γ
(

i + 1
2

)
2

i+1
2 ζ

(
−k +

1
2

i + 1
)
, i = 0, 1, . . . , i 6= 2k, (4.5)

Lk−1,2k = 2k+1/2Γ (k + 1/2)

(
k−1∑
j=0

1
2 j + 1

−
1
2

ln 2

)
. (4.6)

For k = 0 we have directly from (4.4) and (4.6) that J0(β) = − ln P(Mβ = 0) =
1

√
2π

T−1,0.
For k = 1, 2, . . . we observe that

J (k+1)
k (β) = (−1)k+1k!

∞∑
n=1

nk−1/2
√

2π
e−

1
2 nβ2

, (4.7)

where we have differentiated the expression on the second line of (4.1) k + 1 times with respect
to β, using

d
dβ

[∫
∞

β

f (y, β)dy
]

= − f (β, β)+

∫
∞

β

∂ f
∂β
(y, β)dy. (4.8)

The right-hand side of (4.7) can be expressed in terms of Lerch’s transcendent Φ, defined as
the analytic continuation of the series

Φ(z, s, v) =

∞∑
n=0

(v + n)−s zn, (4.9)

which converges for any real number v 6= 0,−1,−2, . . . if z and s are any complex numbers
with either |z| < 1, or |z| = 1 and Re(s) > 1. Note that ζ(s) = Φ(1, s, 1). Indeed,

J (k+1)
k (β) =

(−1)k+1k!
√

2π
e−

1
2β

2
Φ
(

z = e−
1
2β

2
, s =

1
2

− k, v = 1
)
. (4.10)

We then use the important result derived by Bateman [15], Section 1.11(8) (with ζ(s, v) :=

Φ(1, s, v) the Hurwitz zeta function)
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Φ(z, s, v) =
Γ (1 − s)

zv
(ln 1/z)s−1

+ z−v
∞∑

r=0

ζ(s − r, v)
(ln z)r

r !
, (4.11)

which holds for | ln z| < 2π, s 6= 1, 2, 3, . . . , and v 6= 0,−1,−2, . . . , to obtain

J (k+1)
k (β) =

(−1)k+1k!
√

2π

(
Γ (k + 1/2)

(
2
β2

)k+1/2

+

∞∑
r=0

ζ

(
−k − r +

1
2

)
(− 1

2β
2)r

r !

)
(4.12)

for 0 < β < 2
√
π . Hence

J (k+1)
k (β)−

(−1)k+1k!
√

2π
Γ (k + 1/2)

2k+1/2

β2k+1

=
(−1)k+1k!

√
2π

∞∑
r=0

ζ

(
−k − r +

1
2

)
(− 1

2β
2)r

r !
. (4.13)

The right-hand side of (4.13) is a well-behaved function of β. We integrate identity (4.13) from 0
to β and use dominated convergence of the series on the right-hand side of (4.13) to interchange
sum and integral, see (4.11). This results in

Jk(β)−
(−1)k+1k!

√
2π

Γ (k + 1/2)2k+1/2 β−k

−2k(−2k + 1) · · · · · −k

= L0 + L1β + · · · + Lkβ
k
+
(−1)k+1k!

√
2π

×

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r !(2r + 1)(2r + 2) · · · · · (2r + k + 1)
, (4.14)

where Lk, Lk−1, . . . , L0 are integration constants that appear subsequently when integrating
(4.13) k + 1 times. We observe that

(−1)k+1k!
√

2π

Γ (k + 1/2)2k+1/2

−2k(−2k + 1) · · · · · −k
=
(k − 1)!

2k , (4.15)

and we are left with determining the L0, . . . , Lk . Thus from (4.1) and (4.2) (with Cz j [ f (z)]
denoting the coefficient of z j in f (z))

L j =
1

√
2π

k∑
i=0

(
k
i

)
(−1)k−i Cβ j

[
βk−i Tk−1,i

]
=

1
√

2π

(
k

k − j

)
(−1) j Lk−1,k− j

=
1

√
2π

(
k
j

)
(−1) j 1

2
Γ
(

k − j + 1
2

)
2

k− j+1
2 ζ

(
−

1
2

k −
1
2

j + 1
)
, (4.16)

for j = 0, 1, . . . , k, where it has been used that βk−i Tk−1,i has non-zero coefficients for the
terms β−k , βk−i and βk+2r+1, r = 0, 1, . . . , only. From (4.14)–(4.16) we then get Theorem 1.

An alternative proof of Theorem 1 starts from the last line expression in (4.1) for Jk(β) and
uses the full result (4.2) for i = 0, 1, . . . , k. Thus
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Jk(β) =
1

√
2π

Γ (k + 1/2)2k+1/2β−k
k∑

i=0

(
k
i

)
(−1)k−i

2k − i

+

k∑
i=0

(
k
i

)
(−1)k−i Γ (

i+1
2 )

√
2π

ζ

(
−k +

1
2

i + 1
)

2
i−1

2 βk−i

−
1

√
2π

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)r

r !
β2r+k+1

k∑
i=0

(
k
i

)
(−1)k−i

2r + i + 1
. (4.17)

To complete this proof of Theorem 1 we only need to establish that

1
√

2π
Γ (k + 1/2)2k+1/2

k∑
i=0

(
k
i

)
(−1)k−i

2k − i
=
(k − 1)!

2k , (4.18)

i.e., that

k∑
i=0

(
k
i

)
(−1)k−i

2k − i
=
(k − 1)!k!

(2k)!
, (4.19)

and that

k∑
i=0

(
k
i

)
(−1)k−i

2r + i + 1
=

−(−1)k+1k!

(2r + 1) · · · · · (2r + k + 1)
, r = 0, 1, . . . . (4.20)

The identities (4.19) and (4.20) follow from the relation

k∑
i=0

(
k
i

)
(−1)k−i

x − i
=

k!

x(x − 1) · · · · · (x − k)
, (4.21)

by plugging in x = 2k > k and x = −2r − 1 < 0, respectively. The identity in (4.21) is readily
obtained by partial fraction expansion of the right-hand side.

5. Proof of the result for Tk,i

We shall conduct a study of the quantities

Tk,i (a) =

∞∑
n=1

nk+1/2
∫

∞

a
e−

1
2 nx2

x i dx, (5.1)

for integer k and i = 0, 1, . . . which is required (with a = β and k − 1 instead of k) in (4.2). The
main result is (5.4) and (5.5) with Lk,i and Lk,2k+2 given in (5.53) and (5.54), respectively. We
intend to use this result in a different setting (Halfin–Whitt scaling, see Section 3.3) and this is
why we passed to a neutral variable a (instead of β) and shifted the integer k by one unit.

We have when 1
2 a2 < 2π by (4.11)

T ′

k,i (a) = −

∞∑
n=1

nk+1/2e−
1
2 na2

ai
= −ai e−

1
2 a2

Φ
(

z = e−
1
2 a2
, s = −k −

1
2
, v = 1

)

= −Γ (k + 3/2)2k+3/2ai−2k−3
−

∞∑
r=0

ζ(−k − r −
1
2 )(−1/2)r a2r+i

r !
. (5.2)
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Hence

T ′

k,i (a)+ Γ (k + 3/2)2k+3/2ai−2k−3
= −

∞∑
r=0

ζ(−k − r −
1
2 )(−1/2)r a2r+i

r !
, (5.3)

where the right-hand side of (5.3) is well-behaved as a ↓ 0. Therefore, upon integration from 0
to a,

Tk,i (a)+
Γ (k + 3/2)2k+3/2

i − 2k − 2
ai−2k−2

= Lk,i −

∞∑
r=0

ζ(−k − r −
1
2 )(−1/2)r a2r+i+1

r !(2r + i + 1)
(5.4)

when i 6= 2k + 2, and

Tk,2k+2(a)+ Γ (k + 3/2)2k+3/2 ln a

= Lk,2k+2 −

∞∑
r=0

ζ(−k − r −
1
2 )(−1/2)r a2r+2k+3

r !(2r + 2k + 3)
, (5.5)

where

Lk,i = lim
a↓0

[
Tk,i (a)+

Γ (k + 3/2)2k+3/2

i − 2k − 2
ai−2k−2

]
, i = 0, 1, . . . , i 6= 2k + 2, (5.6)

and

Lk,2k+2 = lim
a↓0

[
Tk,2k+2(a)+ Γ (k + 3/2)2k+3/2 ln a

]
. (5.7)

Below we shall determine the Lk,i , and to that end we distinguish between the cases
I. i > 2k + 2,

II. i = 2k + 2,
III.a i = 1, 3, . . . , 2k + 1,
III.b i = 0, 2, . . . , 2k.

Note that when k ≤ 0, some or all the cases in II and III are degenerate since we restrict to i =

0, 1, . . . . Furthermore, for Theorem 1 it is only necessary to consider Tk−1,i with k = 0, 1, . . .
and i = 0, 1, . . . , k. However, this does not significantly ease the problem at hand, and for future
work on the queueing model sketched in Section 3.3, it is necessary to solve the full problem.
Case I. We have for i > 2k + 2 that

Lk,i = lim
a↓0

Tk,i (a) =

∞∑
n=1

nk+1/2
∫

∞

0
e−

1
2 nx2

x i dx

=
1
2
Γ
(

i + 1
2

)
2

i+1
2

∞∑
n=1

1
ni/2−k =

1
2
Γ
(

i + 1
2

)
2

i+1
2 ζ

(
i
2

− k
)
, (5.8)

and this is a finite, positive number since i > 2k + 2.
Case II. We assume that 2k+2 ≥ 0 and we determine Lk,2k+2. To that end we write Tk,2k+2(a) as

Tk,2k+2(a) =

∞∑
n=1

nk+1/2
∫

∞

a
e−

1
2 nx2

x2k+2dx

= 2k+3/2
∞∑

n=1

1
n

∫
∞

√
nδ

e−u2
u2k+2du, (5.9)
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where δ =
1
2 a2. Now

∫
∞

0 e−u2
u2k+2du =

1
2Γ (k + 3/2), and this leads to writing the series on

the second line of (5.9) as
∞∑

n=1

1
n

∫
∞

√
nδ

e−u2
u2k+2du = δ

∞∑
n=1

1
nδ

(∫
∞

√
nδ

e−u2
u2k+2du −

1
2
Γ (k + 3/2)e−nδ

)

−
1
2
Γ (k + 3/2) ln(1 − e−δ). (5.10)

The function

x > 0 7−→
1
x

(∫
∞

√
x

e−u2
u2k+2du −

1
2
Γ (k + 3/2)e−x

)
(5.11)

decays exponentially as x → ∞, is O(xk+1/2) as x ↓ 0, and is smooth everywhere else on
(0,∞). It is elementary to show that the first expression on the second line of (5.10) tends to∫

∞

0

1
x

(∫
∞

√
x

e−u2
u2k+2du −

1
2
Γ (k + 3/2)e−x

)
dx =: Ik (5.12)

as δ ↓ 0. Since ln(1 − e−δ) = ln δ +O(δ) as δ =
1
2 a2

↓ 0, we thus see that

Tk,2k+2(a)+ 2k+1/2Γ (k + 3/2) ln
(

1
2

a2
)

−→ 2k+3/2 Ik (5.13)

as a ↓ 0. We finally compute Ik by partial integration as

Ik = −

∫
∞

0
ln x

(
−

1
2

x−1/2e−x xk+1
+

1
2
Γ (k + 3/2)e−x

)
dx

=
1
2
Γ ′(k + 3/2)−

1
2
Γ (k + 3/2)Γ ′(1) = Γ (k + 3/2)

(
− ln 2 +

k∑
j=0

1
2 j + 1

)
, (5.14)

where Abramowitz and Stegun [2], 6.3.2 and 6.3.4 on p. 258, has been used. Therefore,

Lk,2k+2 = lim
a↓0

[
Tk,2k+2(a)+ 2k+3/2Γ (k + 3/2) ln a

]
= lim

a↓0

[
2k+3/2 Ik + 2k+1/2Γ (k + 3/2) ln 2

]
= 2k+3/2Γ (k + 3/2)

(
k∑

j=0

1
2 j + 1

−
1
2

ln 2

)
. (5.15)

Case III.a. We assume k ≥ 0, and we let i = 2m + 1 with m = 0, 1, . . . , k. We rewrite∫
∞

a
e−

1
2 nx2

x2m+1dx =
1
2

(
2
n

)m+1 ∫ ∞

1
2 na2

e−vvmdv. (5.16)

From Szegö [27], Section 1, we have∫
∞

y
e−vvmdv = m!e−y

m∑
r=0

yr

r !
. (5.17)
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Consequently,

Tk,2m+1(a) =

∞∑
n=1

nk+1/2 1
2

(
2
n

)m+1

m!e−
1
2 na2

m∑
r=0

( 1
2 na2)r

r !

= m!2m
m∑

r=0

( 1
2 a2)r

r !

∞∑
n=1

nk−m+r−1/2e−
1
2 na2

. (5.18)

Now, by Bateman’s result (4.11), we have for 1
2 a2 < 2π that

∞∑
n=1

nk−m+r−1/2e−
1
2 na2

= e−
1
2 a2

Φ
(

z = e−
1
2 a2
, s = −k + m − r +

1
2
, v = 1

)

= Γ (k − m + r + 1/2)
(

1
2

a2
)−k+m−r−1/2

+

∞∑
r ′=0

ζ(−k + m − r +
1
2 − r ′)(−1/2)r

′

a2r ′

(r ′)!

= Γ (k − m + r + 1/2)2k−m+r+1/2a−2k+2m−2r−1

+ ζ

(
−k + m +

1
2

)
+O(a2). (5.19)

Hence,

Tk,2m+1(a) = m!2m
m∑

r=0

2−r a2r

r !
Γ (k − m + r + 1/2)2k−m+r+1/2a−2k+2m−2r−1

+ m!2mζ

(
−k + m +

1
2

)
+O(a2)

= 2k+1/2a−2k+2m−1
m∑

r=0

m!

r !
Γ (k − m + r + 1/2)+ m!2mζ

(
−k + m +

1
2

)
+O(a2). (5.20)

Lemma 1.

m∑
r=0

m!

r !
Γ (k − m + r + 1/2) =

Γ (k + 3/2)
k − m + 1/2

. (5.21)

Proof. From (5.6) we have that

Tk,2m+1(a)+
Γ (k + 3/2)

2m − 2k + 1
2k+3/2a2m−2k−1 (5.22)

has a finite limit as a ↓ 0. Then (5.20) immediately gives the result. Of course, a direct proof is
also possible. Using Γ (x + 1) = xΓ (x) repeatedly, one rewrites the identity to be proved as



1946 A.J.E.M. Janssen, J.S.H. van Leeuwaarden / Stochastic Processes and their Applications 117 (2007) 1928–1959

m∑
r=0

m!

r !
(x + r − 1)(x + r − 2) · · · · · x = (x + m)(x + m − 1) · · · · · (x + 1), (5.23)

and this is readily proved by induction. �

From the lemma we have that

Lk,2m+1 = m!2mζ

(
−k + m +

1
2

)
(5.24)

as Lk,2m+1 is the limit of (5.22) as a ↓ 0 (see the last line of (5.20)).

Case III.b. We assume k ≥ 0 and we let i = 2m, m = 0, 1, . . . , k. We have now with δ =
1
2 a2

and the substitution u = x
√

n/2 that

Tk,2m(a) =

∞∑
n=1

nk+1/2
∫

∞

a
e−

1
2 nx2

x2mdx

= 2m+1/2
∞∑

n=1

nk−m
∫

∞

√
nδ

e−u2
u2mdu

= 2m+1/2δm−k
∞∑

n=1

(nδ)k−m
∫

∞

√
nδ

e−u2
u2mdu. (5.25)

Set

f (x) = g(δx); g(y) = yk−m
∫

∞

√
y

e−u2
u2mdu. (5.26)

We apply the Euler–Maclaurin summation formula (see De Bruijn [7], Sec. 3.6, pp. 40–42)

N∑
n=1

f (n) =

∫ N

1
f (x)dx +

1
2

f (1)+
1
2

f (N )

+

p∑
j=1

B2 j

(2 j)!
( f (2 j−1)(N )− f (2 j−1)(1))+ Rp,N , (5.27)

in which

Rp,N = −

∫ N

1
f (2p)(x)

B2p (x − bxc)

(2p)!
dx, (5.28)

where the Bn(t) denote the Bernoulli polynomials, defined by

zezt

ez − 1
=

∞∑
n=0

Bn(t)zn

n!
, (5.29)

and the Bn = Bn(0) denote the Bernoulli numbers. Since f and all its derivatives decay
exponentially fast as x → ∞, we can let N → ∞ in (5.27), and we obtain

∞∑
n=1

f (n) =

∫
∞

1
f (x)dx +

1
2

f (1)−

p∑
j=1

B2 j

(2 j !)
f (2 j−1)(1)+ Rp, (5.30)
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where Rp = limN→∞ Rp,N . In terms of g, see (5.25) and (5.26), we have

Tk,2m(a) = 2m+1/2δm−k

{∫
∞

1
g(δx)dx +

1
2

g(δ)−

p∑
j=1

B2 j

(2 j !)
δ2 j−1g(2 j−1)(δ)+ Rp

}
,

(5.31)

where δ =
1
2 a2 and

Rp = −δ2p
∫

∞

1
g(2p)(x)

B2p (x − bxc)

(2p)!
dx . (5.32)

We use (5.31) with a p such that δm−k Rp → 0 as δ =
1
2 a2

↓ 0. It turns out that any p ≥ 1
with 2p − 1 > k − m achieves this goal. To see this we note that g decays exponentially as
y → ∞ and

g(y) = yk−m

(∫
∞

0
e−u2

u2mdu −

∫ √
y

0
e−u2

u2mdu

)

=
1
2
Γ (m + 1/2)yk−m

−

∞∑
j=0

(−1) j

j !
yk+ j+1/2

2m + 2 j + 1
, y > 0. (5.33)

As a consequence of (5.33) we have that

g(2p)(y) = O(yk+1/2−2p), y ↓ 0, (5.34)

since k − m < 2p − 1 < 2p. Therefore

Rp = −δ2p−1

(∫ 1

δ

+

∫
∞

1

)
g(2p)(y)

B2p (y/δ − by/δc)
(2p)!

dy

= O
(
δ2p−1

∫ 1

δ

yk+1/2−2pdy

)
+O(δ2p−1) = O(δq)+O(δ2p−1), (5.35)

where q = 2p − 1 when k +
1
2 − 2p > −1 and q = k +

1
2 when k +

1
2 − 2p < −1. In either

case we have q ≥ k − m +
1
2 , whence

δm−k Rp = O(δ1/2), δ ↓ 0, (5.36)

and our goal, to show that δm−k Rp → 0 as δ ↓ 0, has been achieved.
We next consider the terms∫

∞

1
g(δx)dx,

1
2

g(δ), and δ2 j−1g(2 j−1)(δ), j = 1, . . . , p, (5.37)

that occur on the right-hand side of (5.31) with p ≥ 1 such that 2p − 1 > k − m. We have∫
∞

1
g(δx)dx =

1
δ

∫
∞

0
g(y)dy −

1
δ

∫ δ

0
g(y)dy. (5.38)
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Now from (5.33)

1
δ

∫ δ

0
g(y)dy =

1
2
Γ (m + 1/2)

δk−m

k − m + 1
+O(δk+1/2). (5.39)

Also, by partial integration,∫
∞

0
g(y)dy =

∫
∞

0
yk−m

(∫
∞

√
y

e−u2
u2mdu

)
dy

=
1

2(k − m + 1)

∫
∞

0
yk+1/2e−ydy =

Γ (k + 3/2)
2(k − m + 1)

. (5.40)

Thus ∫
∞

1
g(δx)dx =

Γ (k + 3/2)δ−1

2(k − m + 1)
−

Γ (m + 1/2)
2(k − m + 1)

δk−m
+O(δk+1/2). (5.41)

Next we have from (5.33)

1
2

g(δ) =
1
4
Γ (m + 1/2)δk−m

+O(δk+1/2). (5.42)

Finally, from (5.33) for j = 1, . . . , p

δ2 j−1g(2 j−1)(δ) =
1
2
Γ (m + 1/2)

(k − m)!δk−m

(k − m − 2 j + 1)!
+O(δk+1/2). (5.43)

Note that the first quantity on the right-hand side of (5.43) should be read as 0 when 2 j − 2 ≥

k − m.
Combining (5.36) and (5.41)–(5.43) we see from (5.31) that

Tk,2m(a) = 2m+1/2δm−k

{
Γ (k + 3/2)δ−1

2(k − m + 1)
−

Γ (m + 1/2)
2(k − m + 1)

δk−m
+O(δk+1/2)

+
1
4
Γ (m + 1/2)δk−m

+O(δk+1/2)

−
1
2
Γ (m + 1/2)

p∑
j=1

B2 j

(2 j)!
(k − m)!δk−m

(k − m − 2 j + 1)!

}
+O(δ1/2). (5.44)

That is,

Tk,2m(a) = 2m+1/2 Γ (k + 3/2)δm−k−1

2(k − m + 1)
−

1
2
Γ (m + 1/2)2m+1/2Ck−m,p +O(δ1/2), (5.45)

where for n = 0, 1, . . .,

Cn,p =
−1

n + 1
+

1
2

−

p∑
j=1

B2 j

(2 j)!
n!

(n − 2 j + 1)!
. (5.46)

Lemma 2. There holds

Cn,p = ζ(−n), for n = 0, 1, . . . , n ≤ 2p − 2. (5.47)
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Proof. First consider the case that n = 0. Then n!/(n − 2 j + 1)! = 0 by convention, and the∑p
j=1 on the right-hand side of (5.46) vanishes altogether. From ζ(0) = −1/2, see Abramowitz

and Stegun [2], 23.2.11 on p. 807, we conclude that (5.47) holds for n = 0.
When n = 1, 2, . . . we have that all terms j with 2 j − 1 > n in the series on the right-hand

side of (5.46) vanish. Also, B2 j+1 = 0 for j = 1, 2, . . . . Therefore, since n ≤ 2p − 2,

p∑
j=1

B2 j

(2 j)!
n!

(n − 2 j + 1)!
=

n+1∑
i=2

Bi

i !
n!

(n + 1 − i)!

=
−B0

n + 1
− B1 +

1
n + 1

n+1∑
i=0

(
n + 1

i

)
Bi . (5.48)

By Abramowitz and Stegun [2], 23.1.3 and 23.1.7 on p. 804 (x = h = 0), we have

B0 = 1, B1 = −
1
2
;

n+1∑
i=0

(
n + 1

i

)
Bi = Bn+1, n = 0, 1, . . . . (5.49)

Furthermore, by Abramowitz and Stegun [2], 23.2.14-15 on p. 807, we have

Bn+1

n + 1
= −ζ(−n), n = 1, 2, . . . . (5.50)

The result then follows for n = 1, 2, . . . by inserting (5.49) and (5.50) into (5.48). �

Restoring the variable a via δ =
1
2 a2, we see from (5.45) and the lemma that for m =

0, 1, . . . , k

Tk,2m(a) =
Γ (k + 3/2)

2k − 2m + 2
2k+3/2a2m−2k−2

+
1
2
Γ (m + 1/2)2m+1/2ζ(−k + m)+O(a).

(5.51)

Hence, we have for m = 0, 1, . . . , k

Lk,2m = lim
a↓0

[
Tk,2m(a)+

Γ (k + 3/2)
2m − 2k − 2

2k+3/2a2m−2k−2
]

=
1
2
Γ (m + 1/2)2m+1/2ζ(−k + m). (5.52)

Combining (5.8), (5.24) and (5.52) we have for integer i ≥ 0

Lk,i =
1
2
Γ
(

i + 1
2

)
2

i+1
2 ζ

(
−k +

1
2

i
)
, i 6= 2k + 2, (5.53)

while from (5.15) we have

Lk,2k+2 = 2k+3/2Γ (k + 3/2)

(
k∑

j=0

1
2 j + 1

−
1
2

ln 2

)
. (5.54)

For k < 0, the right-hand side of (5.54) equals −2k+1/2Γ (k +3/2) ln 2, and the case that k = −1
yields −

1
2

√
2π ln 2, as should.
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Comment on the proof. Despite the fact that the validity range of (5.53) contains i =

0, 1, . . . , 2k + 1, we have not been able to find an argument that works both for odd and for
even such i . Clearly, one cannot use the argument of III.a for even i , the formula (5.17) being
crucial. The argument of III.b cannot be used for odd i since in that case the g that would appear
in (5.26) has leading order behaviour 1

2 m!yk−m−1/2, and no high-order 2p derivative of this latter
function vanishes (as was the case in (5.33) for i = 2m, even).

6. Alternative series expressions for the Bateman series

In this section we shall prove Theorem 2. Consider for k = 0 the series

Q0(β) =
−1

√
2π

∞∑
r=1

ζ(−r + 1/2)(−1/2)rβ2r+1

r !(2r + 1)
(6.1)

and for k = 1, 2, . . . the series

Qk(β) =
(−1)k+1k!

√
2π

∞∑
r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r !(2r + 1) · · · (2r + k + 1)
(6.2)

that occur in the expression (2.5) and (2.6) for J0(β) and Jk(β), k = 1, 2, . . . , respectively. Note
that Qk(β) in (6.2) with k = 0 differs from Q0(β) in (6.1) only in that in the latter the term with
r = 0 is excluded. The series in (6.1) and (6.2) converge for |β| < 2

√
π while it is clear from

(2.4) that Jk(β)makes sense for all β > 0. In this section we present alternative series expansions
for Jk(β) that can be evaluated for all β > 0; these alternative expressions are intimately related
to Lerch’s transformation formula, Bateman [15], 1.11(7) on p. 29.

Using Riemann’s relation, see Whittaker and Watson [30], Section 13.151 on p. 269,

ζ(1 − s) =
2

(2π)s
Γ (s)ζ(s) cosπs (6.3)

with s = k + r + 1/2, for k, r = 0, 1, . . . , we have

ζ(−k − r + 1/2) =

(
2
π

)1/2 Γ (k + r + 1/2)ζ(k + r + 1/2)
(2π)k+r cos

1
2
π(k + r + 1/2). (6.4)

Therefore, for k = 0, 1, . . . from (6.4) and using that

cos
1
2
π(k + r + 1/2) = Re[e

π i
4 ik ir

], (6.5)

we get

Qk(β) = 2
(

−β

2π

)k+1

Re
[

e
π i
4 ik Sk

(
β2

4π i

)]
, (6.6)

in which

Sk(b) =

∑
r

Γ (k + r + 1/2)ζ(k + r + 1/2)
r !(2r + 1) · · · (2r + k + 1)

br , |b| < 1. (6.7)

The summations over r in (6.7) are from 1 to ∞ and from 0 to ∞ for the cases k = 0 and
k = 1, 2, . . . , respectively.
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We shall express Sk(b) in a form that can be used to evaluate Qk(β) for all β > 0. We start
by using

ζ(k + r + 1/2) =

∞∑
n=1

n−k−r−1/2, (6.8)

where we need that k + r ≥ 1 (explaining why for Q0(β) the term with r = 0 was deleted). This
yields

Sk(b) =

∞∑
n=1

1
nk+1/2 Tk(b/n), (6.9)

in which

Tk(t) =

∑
r

Γ (k + r + 1/2)tr

r !(2r + 1) · · · (2r + k + 1)
, |t | < 1, (6.10)

with the same convention for the summation over r as before. Let Un denote the Chebyshev
polynomial of the second kind and degree n = 0, 1, . . . , see Abramowitz and Stegun [2], item
22.3.7 in Table 22.3 on p. 775. We define an R-operation for a function f (t) having a Laurent
series

∑
∞

j=−∞
c j t j in 0 < |t | < 1 by

R[ f (t)] =

∞∑
j=0

c j t j
= f (t)−

−1∑
j=−∞

c j t j . (6.11)

Proposition 1. (i) We have for |t | < 1

T0(t) =
√
π

(
arcsin

√
t

√
t

− 1
)
. (6.12)

(ii) We have for k = 1, 2, . . . , |t | < 1

Tk(t) =
−

√
π

k2k R
[
(1 − t)1/2Uk−1(

√
t)

(t1/2)k+1

]
. (6.13)

Proof. (i) By analyticity it is sufficient to consider t = x2 with 0 ≤ x < 1. There holds

T0(x2) =
1
x

∞∑
r=1

Γ (r + 1/2)x2r+1

r !(2r + 1)
=

√
π

x

∫ x

0

∞∑
r=1

(
−1/2

r

)
(−y2)r dy

=

√
π

x

∫ x

0

(
1√

1 − y2
− 1

)
dy =

√
π

(
arcsin x

x
− 1

)
. (6.14)

(ii) We first write

ψk(t) :=
−

√
π

k2k
(1 − t)1/2Uk−1(

√
t)

(t1/2)k+1 =

∞∑
j=−∞

c j t j , (6.15)

where we note that Uk−1 is odd when k − 1 is odd and even when k − 1 is even, so that ψk(t)
in (6.15) has indeed a Laurent expansion in powers of t . Writing again t = x2 and denoting with
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Cxn [ f (x)] the coefficient of xn in f (x), we have that (6.13) is equivalent with

−
√
π

k2k Cx2 j+k+1 [(1 − x2)1/2Uk−1(x)] =
Γ (k + j + 1/2)

j !(2 j + 1) · · · (2 j + k + 1)
, j = 0, 1, . . . .

(6.16)

We first verify (6.16) for k = 1, 2. Since U0(x) = 1, we must show that

−
1
2
√
πCx2 j+1 [(1 − x2)1/2] =

Γ ( j + 3/2)
j !(2 j + 1)(2 j + 2)

, j = 0, 1, . . . . (6.17)

The left-hand side of (6.17) equals −
1
2
√
π(−1) j+1

(
1/2
j+1

)
while the right-hand side equals

1
4

Γ ( j + 1/2)
( j + 1)!

=
1
4
( j − 1/2)( j − 3/2) · · · · · −1/2 · Γ (−1/2)

( j + 1)!

=
1
4
(−1) j+1

(
1/2
j + 1

)
· −2

√
π. (6.18)

Next U1(x) = 2x , whence we should verify whether

−
1
4
√
πCx2 j+3 [(1 − x2)1/2x] =

Γ ( j + 5/2)
j !(2 j + 1)(2 j + 2)(2 j + 3)

, j = 0, 1, . . . . (6.19)

The left-hand side of (6.19) equals −
1
4
√
π(−1) j+1

(
1/2
j+1

)
, while the right-hand side equals

1
8Γ ( j + 1/2)/( j + 1)!, and this gives (6.19) from (6.18).

We now assume that we have established (6.16) for k = 1, 2, . . . , n + 1 (for n = 1, 2, . . .).
Using that Un+1(x) = 2xUn(x)−Un−1(x), see Abramowitz and Stegun [2], item 22.7.5 in Table
22.7 on p. 782, we write the left-hand side of (6.16) for k = n + 2 as

−
√
π

(n + 2)2n+2 Cx2 j+n+3 [(1 − x2)1/2Un+1(x)]

=
n + 1
n + 2

Γ (n + j + 3/2)
j !(2 j + 1) · · · (2 j + n + 2)

−
n

4(n + 2)
Γ (n + j + 3/2)

( j + 1)!(2 j + 3) · · · (2 j + n + 3)
.

(6.20)

Here validity of (6.16) for k = n +1 and for k = n (with j +1 instead of j) has been used. Some
standard manipulations show that the right-hand side of (6.20) equals

Γ (n + j + 5/2)
j !(2 j + 1)(2 j + 2) · · · (2 j + n + 3)

. (6.21)

This establishes (6.16) for k = n + 2, and the proof is complete. �

Proposition 2. For the function ψk defined in (6.15) we find that

R[ψk(t)] = ψk(t)−
1

2k+1

⌊
k−1

2

⌋∑
r=0

Γ (k −
1
2 − r)Γ (− 1

2 − r)

Γ ( 1
2 k − r)Γ ( 1

2 k +
1
2 − r)

t−1−r . (6.22)
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Proof. Following the proof of Proposition 1(ii) we can show that (6.16) also holds for j =

−1,−2, . . . ,−b
k+1

2 c. For this the denominator j !(2 j +1) · · · (2 j + k +1) of the right-hand side
of (6.16) is interpreted as 2k+1( j + b

k+1
2 c)!( j +

1
2 )( j +

3
2 ) · · · ( j + b

k
2c +

1
2 ), and then the result

follows upon some administration with Γ -functions. An alternative proof for both Propositions 1
and 2 follows from expressing Tk(t) in terms of hypergeometric functions, and using [2], items
15.1.15 and 15.1.17 on p. 556, for the cases of even and odd k, respectively. �

Combining (2.7), (6.1), (6.6) and (6.9) and Proposition 1(i) yields the result for P(Mβ = 0)
in Theorem 2. By the explicit regularization in Proposition 2, similar results can be obtained for
Sk(b), k = 1, 2, . . . , leading to expressions for the cumulants Jk(β) through (6.6), (6.2) and
(2.6) that are valid for all values of β > 0. We get, for instance,

S1(b) =

√
π

2b

∞∑
n=1

1
n

(√
n −

√
n − b

)
, (6.23)

S2(b) =

√
π

4b

∞∑
n=1

1
n2

(√
n −

√
n − b

)
, (6.24)

S3(b) =
−

√
π

24b2

∞∑
n=1

1
n3

(
√

n
(

n −
9
2

b
)

+
√

n − b(4b − n)
)
. (6.25)

We note that the series in (2.13) and (6.23)–(6.25) have terms that are analytic in a set that
allows evaluation of Sk(b), k = 0, 1, 2, 3, for all points b = β2/4π i with β > 0. The series
converge for these values of b, although convergence is slow, especially for the series (2.13)
and (6.23). Nevertheless, the series can be evaluated conveniently by using a dedicated form of
Euler–Maclaurin summation.

An alternative to using Euler–Maclaurin summation techniques is as follows. We can do the
developments of this section equally well with series Qk R(β) where the subscript R refers to the
fact that the terms with index r ≤ R have been omitted in the series (6.1) and (6.2). This gives
rise to functions Tk R(t), by correspondingly deleting terms in the series (6.10), and functions
Sk R(b) associated with Tk R as in (6.9). Now these Tk R(t) are O(t R+1) as t → 0, whence the
terms in the series (6.9) for Sk R are O(n−k−R−3/2), n → ∞. Thus, by moving an appropriate
number of terms from the Bateman series to the polynomial part of the representation (2.6) for
Jk(β) we achieve that the remaining infinite series can still be evaluated for all β > 0 in the form
of an infinite series with explicitly given terms having any desired decay rate.

7. Proofs of the bounds on P(Mβ = 0), EMβ and Var Mβ

In this section we present the proof of Theorem 3 on bounds for P(Mβ = 0), EMβ and
Var Mβ . It turns out that these three quantities can be expressed in terms of a simple analytic
expression together with a series of the form

δ

∞∑
n=1

f (δn) =: I f (δ), δ > 0, (7.1)

with δ =
1
2β

2 typically small and f a rapidly decaying, positive, decreasing, convex function on
(0,∞) for which

∫
∞

0 f (x)dx =: I f is finite ( f does not need to be bounded at x = 0). For such
functions f there is the following result.
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Proposition 3. There holds, for f as above,

I f +
1
2
δ f (δ)−

∫ δ

0
f (x)dx ≤ I f (δ) ≤ I f −

∫ δ/2

0
f (x)dx, δ > 0. (7.2)

Furthermore, I f (δ) decreases from I f =
∫

∞

0 f (x)dx to 0 as δ increases from 0 to ∞.

The proof of the inequality (7.2) uses basic facts from advanced calculus. The monotonicity is
established by basic facts as well, but is not entirely trivial. Monotonicity can be checked easily
for the special case where f is of the form

ft (x) = (1 − x/t)+, x ≥ 0, (7.3)

for some t > 0. Then writing a general f as

f (x) =

∫
∞

0
t f ′′(t) ft (x)dt, x > 0, (7.4)

we get monotonicity of I f (δ) for general f as above. In (7.4) we assume that f is twice
differentiable on [x,∞) with t f ′′(t) and f ′(t) absolutely integrable on [x,∞). We may note
here that the monotonicity result fails to hold when the definition of I f (δ) is changed into
δ
∑

∞

n=1 f (δ(n − α)) with α positive but arbitrarily small.
Note that the difference between the far right-hand side and the far left-hand side of (7.2)

equals
∫ δ
δ/2( f (x)− f (δ))dx and that this number can be bounded by 1

4δ( f (δ/2)− f (δ)).
The bounds in (7.2) on I f (δ) are in terms of the “global” quantity I f =

∫
∞

0 f (x)dx and the
“local” quantities δ, f (δ),

∫ a
0 f (x)dx with a = δ/2. In the cases at hand we are able to evaluate

the global quantity, and to estimate and bound the local quantities. We shall now present the
details for the three cases.

7.1. Details for P(Mβ = 0)

We have by Spitzer’s identity (Thm. 3.1 in [26]) that

− ln P(Mβ = 0) = δ

∞∑
n=1

1
nδ

1
√
π

∫
∞

√
δn

e−u2
du, δ =

1
2
β2. (7.5)

The right-hand side of (7.5) is of the form I f (δ), but it tends to ∞ when δ ↓ 0. In order to apply
the above approach, we write (7.5) as

− ln P(Mβ = 0) = −δ

∞∑
n=1

f (δn)−
1
2

ln
(
1 − e−δ

)
, (7.6)

where we have set

f (x) =
e−x

2x
−

1
x
√
π

∫
∞

√
x

e−u2
du, x > 0, (7.7)

and where we have used that − ln(1 − e−δ) =
∑

∞

n=1 n−1e−nδ . Note that f is rapidly decaying
and that f (x) = O(1/

√
x), x ↓ 0, whence I f =

∫
∞

0 f (x)dx is finite.

Proposition 4. The f defined in (7.7) is positive, decreasing and convex on (0,∞).
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Proof. We use the inequality, see Abramowitz and Stegun [2], 7.1.13 on p. 298,

ey2
∫

∞

y
e−u2

du <
1

y +

√
y2 + 4/π

, y > 0. (7.8)

From (7.8), with y =
√

x , the positivity of the f easily follows. Next, we compute for x > 0

f ′(x) =
−e−x

2x2

(
1 + x −

1
√
π

x1/2
)

+
1

x2√π

∫
∞

√
x

e−u2
du, (7.9)

f ′′(x) =
e−x

2x3

(
2 + 2x + x2

−
3

2
√
π

x1/2
−

3
2
√
π

x3/2
)

−
2

x3√π

∫
∞

√
x

e−u2
du. (7.10)

Thus for y > 0

f ′(y2) < 0 ⇔ ey2
∫

∞

y
e−u2

du <
1
2
√
π

(
1 + y2

−
1

√
π

y
)
, (7.11)

f ′′(y2) > 0 ⇔ ey2
∫

∞

y
e−u2

du <
1
2
√
π

(
1 + y2

+
1
2

y4
−

3
4
√
π

y −
3

4
√
π

y3
)
. (7.12)

Both inequalities in the right-hand side statements in (7.11) and (7.12) follow easily from (7.8),
and the proof is complete. �

Proposition 5. We have that I f =
∫

∞

0 f (x)dx = ln 2.

Proof. See [18], (3.11). �

To bound I f (δ) according to (7.2) we need to approximate f (x) and
∫ a

0 f (x)dx . To that end we
note that for x > 0

f (x) =
1

√
πx

−
1
2

+ E(x); E(x) =
1

x
√
π

∫ √
x

0

(
1 − e−u2

)
du −

e−x
− (1 − x)

2x
,

(7.13)

and that by Taylor expansion

E(x) =

∞∑
l=2

(−1)l x l−3/2

(l − 1)!

[
1

(2l − 1)
√
π

−
x1/2

2l

]
, x > 0. (7.14)

It is easily seen that the terms in the latter series have alternating signs and decrease in modulus to
0 when 0 ≤ x ≤ 1/π . Hence, retaining only 0 or 1 term in this series, we get for x, a ∈ [0, 1/π ]

0 ≤ E(x) ≤
x1/2

3
√
π

−
1
4

x, (7.15)

and

0 ≤

∫ a

0
E(x)dx ≤

2a3/2

9
√
π

−
1
8

a2. (7.16)
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Using (7.15) and (7.16) in (7.13), we get from (7.6) with Propositions 3–5 the inequalities

ln P(Mβ = 0) ≤
1
2

ln(1 − e−δ ) + ln 2 −

(
2δ
π

)1/2

+
1
4
δ, (7.17)

ln P(Mβ = 0) ≥
1
2

ln(1 − e−δ ) + ln 2 −

(
9δ
4π

)1/2

+
1
4
δ −

2δ3/2

9
√
π

+
1
8
δ2, (7.18)

for 0 < δ ≤ 1/π . From (7.17) and (7.18) we get Theorem 3(i) on restoring β ≤
√

2/π according
to δ =

1
2β

2 (in the resulting inequality (2.23) the 1
8δ

2 on the right-hand side of (7.18) has been
omitted).

7.2. Details for EMβ and Var Mβ

We have from (2.4) by the substitutions u =
1
2 ny2, δ =

1
2β

2

βk Jk(β) =

∞∑
n=1

βknk−1/2
√

2π

∫
∞

β

(y − β)ke−
1
2 ny2

dy

=
2k
√
π
δ

∞∑
n=1

(δn)
k
2 −1

∫
∞

√
δn
(u −

√
δn)ke−u2

du. (7.19)

Thus

βk Jk(β) =
2k
√
π
δ

∞∑
n=1

fk(δn) (7.20)

with

fk(x) = x
k
2 −1

∫
∞

√
x
(u −

√
x)ke−u2

du. (7.21)

Proposition 6. f1 and f2 are positive, decreasing and convex on (0,∞).

Proof. Clearly fk is positive for k = 1, 2, . . . . From

fk(x) = x
k
2 −1

∫
∞

0
uke−(u+

√
x)2 du, x > 0, (7.22)

we compute

f ′

k(x) = x
k
2 −2

∫
∞

0
uk
[

k
2

− 1 − x − u
√

x
]

e−(u+
√

x)2du, x > 0. (7.23)

Clearly, f ′

k(x) < 0 when k = 1, 2 and x > 0. More particularly,

f ′

1(x) = −

∫
∞

0
u
(

1
2x3/2 +

1
x1/2 +

u
x

)
e−(u+

√
x)2 du, (7.24)

and this increases in x > 0 since both

1
2x3/2 +

1
x1/2 +

u
x

and e−(u+
√

x)2 (7.25)
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are positive and decreasing in x > 0 when u ≥ 0. Similarly,

f ′

2(x) = −

∫
∞

0
u2
(

1 +
u

x1/2

)
e−(u+

√
x)2 du (7.26)

increases in x > 0. This completes the proof. �

Proposition 7. We have
∫

∞

0 fk(x)dx = (k − 1)!4−k√π .

Proof. This follows from Theorem 1 and the fact that δ
∑

∞

n=1 fk(δn) tends to
∫

∞

0 fk(x)dx when
δ =

1
2β

2
↓ 0. �

We finally need to approximate fk(x) and
∫ a

0 fk(x)dx . To that end we observe that for
k = 1, 2, . . .

fk(x) = x
k
2 −1

∫
∞

0
(u −

√
x)ke−u2

du − (−1)k Ek(x), x > 0, (7.27)

where

Ek(x) = x
k
2 −1

∫ √
x

0
(
√

x − u)ke−u2
du, x > 0. (7.28)

The term comprising the integral on the right-hand side of (7.27) can be evaluated,

x
k
2 −1

∫
∞

0
(u −

√
x)ke−u2

du =
1
2

k∑
j=0

(
k
j

)
(−1) j x

1
2 k+

1
2 j−1Γ

(
k − j + 1

2

)
, (7.29)

simply by expanding (u −
√

x)k .

Proposition 8. We have for x > 0

xk−1/2

k + 1

(
1 −

1
3

x
)

≤ Ek(x) ≤
xk−1/2

k + 1
. (7.30)

Proof. The second inequality in (7.30) follows from e−u2
≤ 1 and computing the resulting

integral on the right-hand side of (7.28). As to the first inequality we note that both (
√

x − u)k

and e−u2
are non-negative and decreasing for u ∈ [0,

√
x], whence the average of the product

(
√

x − u)ke−u2
over [0,

√
x] is at least equal to the product of the averages of (

√
x − u)k and

e−u2
over [0,

√
x]. Then the first inequality in (7.30) follows upon using e−u2

≥ 1 − u2 in the
latter average and computing the resulting integrals. �

As a consequence of Proposition 8 we have for a > 0

ak+1/2

(k + 1)(k + 1/2)

(
1 −

1
3

k + 1/2
k + 3/2

a
)

≤

∫ a

0
Ek(x)dx ≤

ak+1/2

(k + 1)(k + 1/2)
. (7.31)

Using (7.30) and (7.31) in (7.27), and combining that with (7.28) and (7.29), we get from
(7.20) with Propositions 3, 6 and 7, for k = 1, 2 the inequalities

β J1(β) ≤
1
2

−

(
2δ
π

)1/2

+
1
2
δ −

δ3/2

3
√

2π
+

δ5/2

30
√

2π
, (7.32)



1958 A.J.E.M. Janssen, J.S.H. van Leeuwaarden / Stochastic Processes and their Applications 117 (2007) 1928–1959

β J1(β) ≥
1
2

−

(
9δ
4π

)1/2

+
1
2
δ −

δ3/2

6
√
π

−
δ5/2

6
√
π
, (7.33)

and

β2 J2(β) ≤
1
4

−
1
2
δ +

4δ3/2

3
√

2π
−

1
4
δ2

+
2δ5/2

15
√

2π
, (7.34)

β2 J2(β) ≥
1
4

−
1
2
δ +

2δ3/2

3
√
π

−
2δ5/2

15
√

2π
−

8δ7/2

63
√
π
, (7.35)

and this holds for all δ > 0. From (7.32)–(7.35) we get Theorem 3(ii) and (iii) on restoring β > 0
according to δ =

1
2β

2 and remembering that J1(β) = EMβ and J2(β) = Var Mβ .
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