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Abstract

For certain Gaussian processes X (¢) with trend —ctP and variance Vz(t), the ruin time is analyzed
where the ruin time is defined as the first time point ¢# such that X (r) — ct? > u. The ruin time is of
interest in finance and actuarial subjects. But the ruin time is also of interest in other applications, e.g. in
telecommunications where it indicates the first time of an overflow. We derive the asymptotic distribution
of the ruin time as # — oo showing that the limiting distribution depends on the parameters 8, V(¢) and
the correlation function of X (7).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let X (¢), t > 0, be a Gaussian process with mean 0 and variance Vz(t), assuming that V2(t)
is regularly varying at infinity with index 2H,0 < H < 1. Let the trajectories of X be a.s.
continuous and X (0) = 0 a.s. Take 8 > H and ¢ > 0. In [9] we considered under additional
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restrictions the probability of ruin

P{sup(X (t) — ct?) > u}. 1)
>0

For u — o0, the limiting probability of (1) is derived for a certain class of Gaussian processes
which includes self-similar Gaussian processes and fractional Brownian motions. Other cases
are discussed for instance in [6,11] (see also references in this paper).

In recent years, research in ruin theory has focused also on properties of distribution of the
time to ruin. See for example [3,5,7,15] for classical risk models as well as risk models perturbed
by diffusion. The aim of this note is to demonstrate that asymptotic methods in the theory of
Gaussian processes allow us to get approximations not only for the ruin probability (1) but also
for the time of ruin,

T, =inf{t > 0:u+ct? — X(1) <0} < c0.

If ruin happens, then one wants to know when it happens. Hence, continuing the
considerations of Hiisler and Piterbarg [9], we prove a rather general conditional limit theorem
for 7, as u — oo, given that the ruin occurs, i.e. T, < co.

In other contexts, e.g. in telecommunications, such models X (¢) — ctP are considered for the
storage at time ¢. Hence the ruin time indicates the first time of an overflow with storage space u.

2. Main result

As discussed in [9], it is more convenient to study the family of zero-mean Gaussian processes

X (sul/B
X (5) = Cul®)
V(ul/BY(1 + csh)

By changing time t = su'/#, we have

Pisup(X(t) —ct?)y > uy = P {sup XW(s) > _* ,
>0 5>0 V(’/ll/ﬁ)

and 7, = ul/Bt, where

7= inf{s >0: — X (s) 50}, )

u
V(ul/B)

i.e. T denotes the ruin time in the transformed time. The process X ) (s) with mean zero is not
standardized; its variance equals v, 2 (s), where

sHV WP
V (sul/B)

and by assumption,

v, (s) = v(s) withv(s) = sTH 4 csﬂ_H,

sHV /By
V (sul/B) - ®)

as u — 00, uniformly in s in any bounded interval not containing 0. We need a stronger
assumption on V; see assumption Al below. This condition is similar to other second-order
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conditions on regular varying functions. Define

A() =minv,(s) and so(u) = argmin,v,(s),
S

where the last definition means the first time point of hitting A (u). The point

[ H O\
0= (C(ﬁ - H))

is the (unique) minimum point of the function v(s). Notice that
1
v(s) = A+ EB(S — 30)2 + o((s — s0)2), for s — s,

with
A= v(sg) = <L>_H/ﬂ L
c(B—H) B—H
and
H —(H+2)/B
_ HB.
c(B— H))

Clearly, (3) implies so(#) — so as u — oo. For our result on the ruin time, we assume the
following conditions on the Gaussian process X (7).

Al

B =v"(s9) = <

—A 1
v() =AW 1, @
(s —so)? 2
as u — oo uniformly for s in a neighborhood of sq.

Observe that the functions V(t) = +H which is the assumed variance function in [9], and
V(t) = t!, for all large ¢ only, satisfy condition A1. If a second-order condition holds for V (z),
e.g. V(t) = Ct 4 O(t7) with y < H, then one can easily verify that condition A1 holds.

A2 (Local stationarity) One can find a function K2(h), regularly varying at 0 with positive
index a € (0, 2], such that

(u) _ y@) ¢ NE
L EXO@u) - XOuE] 5)
Uu— 00 K2(|S —5'])

uniformly for any s,s’ € S, = [sou) — 8(u),so(u) + 8(u)] with §(u) =
u= 'V wu'/P)logu, with D > 0.

Note that X (s)v,(s) is a standardized Gaussian process.

A3 For some G,y > Oand all s, s’ > 0,

limsup E(X™(s) — X (s")? < Gls —s'|". (6)
u

Under these conditions we derive the conditional limiting distribution of the ruin time given
T, < 00, which is our main result.
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Theorem 1. Let X(t),t > 0, be a Gaussian process with mean 0 and variance Vz(t), being
regularly varying at infinity with index 2H,0 < H < 1. Let 8 > H and ¢ > 0. Assume A1-A3,
then

P((ty — so@)u'"P) /o (u) < x | 7, < 00) = (x)

asu — oo, for all x where o (u) = (AB)~12y=1+1/By (4B and & is the standard normal
distribution function.

Remarks. (1) From the proof it follows that the same result holds also for the argmax,~.o (X (¢) —
cth ), taking into account Lemma 2.6 of Kim and Pollard [10], which states that the point of
absolute maximum of a Gaussian process is a.s. unique.
(2) Note that o (1) may tend to infinity or zero depending on the sign of —1 + 1/8 + H/B.
(3) In the case H = B the behavior of V(¢) could be such that the probability of 7, < oo is
still positive for any u. The analysis of this case is probably rather different and other tools are
necessary.

Example (Fractional Brownian Motion with Linear Trend). Theorem 1 can be applied to the
process Bp(t) — ct, where By is the fractional Brownian motion with Hurst parameter H,
which is considered in finance and communication models. We have g = 1, V() = t7 | so(u) =
50, A(u) = A, so A1-A3 hold, implying by Theorem 1 that

P(CLFH(TM —sou) < x | T, < 00) = D(x)

as u — oo, for any x, where

| — g\HT1/2 H
C = cHi+1 (—) , S0

H T cd—H)

We believe that applying from general considerations of [6], e.g. transformations, one can get,
in the same way, corresponding limit results for the time of ruin in more general Gaussian models.
Here we briefly describe a possible result in the situation of Piterbarg and Prisyazhnuk [14] (see
also [13]), assuming a different behavior of the variance in the neighborhood of the maximum
variance point. They derived an asymptotic result for the exceedance of the level u for a particular
Gaussian process without a trend. Let X (¢),¢ € [0, T], be a zero-mean Gaussian process with
continuous paths, variance o2(¢) and correlation function r(z, s). Let o (¢), ¢ € [0, T], be such
that it has a unique point of maximum at ¢t = ¢y, 0 < t9 < T, such that for some positive a and
<2

o) =1—alt —to/°(1 +o(1)) ast — to.

Assuming the trend, the local stationarity and a condition analogous to A3, then the conditional
distribution of the ruin time defined as in Theorem 1 can be derived. The details will analyzed,
and given in a forthcoming paper.

Further results on such a ruin time are given in [8] dealing with fractional Brownian motions,
weighted sums of fractional Brownian motions, physical fractional Brownian motions and locally
stationary Gaussian processes. A trend is always added to these processes, as in the above case
of Theorem 1.
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3. Further results and proofs

Observe that since we assume Al, Lemma 3 of [9] is still valid under the present conditions.
Indeed, in the case |s —so(u)| < & (see Assumption A1) one can directly use Lemma 3 of [9]. The
corresponding bounds for |s — so(u)| > § follow from Potter’s bounds on V(sul/ﬂ)/V(ul/ﬂ),
with the following application of Fernique’s inequality as appeared in [9]. Thus it is sufficient to
consider the maxima of the process X ™ (s) in the interval S, = [so(u) — 8(u), so(u) + 8(u)],
where 8(u) = u~'V (u'/#)logu.

The distribution of this maximum can be approximated accurately, by restricting the
local behavior of the covariance function of the standardized Gaussian process Y™ (s) :=
X (s)v,(s), with corresponding changes of the barrier uv, (s)/ V@ul/P, by simpler functions
using (4). The assumption (5) in A2 means that we assume Y ® to be locally stationary at the
point so(«) (that is, YW (s — so(u) + so) is locally stationary at sg).

For simplicity define it = u/V (u'/?). Theorem 1 is a consequence of the following theorem
and its corollary. Because of the transformation r = su!/?, we have to investigate only the left
hand side of the following equality:

{ sup XW(s)>a}={ sup (X(1)—ct?) > u},
SES, (x) teT, (x)

where

Su(x) = [so(u) — 8u), so(u) + xii~"' /y/ A(u)B]

and

T, (x) = [so@)u® — uBs(w), soyuP + xi="u/? )/ A(u)B].
Under the same assumptions as Theorem 1 we derive two additional results.
Theorem 2. Under the assumptions of Theorem 1 we have for all x

DU/ A2/a=3/2 5 o—1/a ,~ 5 A*Wi® &
P{ sup XW(s) > it} ~ e ¢ - )
s€Su(x) VBK (a2

asu — oo, withit = u/V u'/P).

Corollary 3. The assumptions of Theorem 1 imply

D1/otA2/a73/2Ha271/ozef%Az(u)ftz

—ctP ~
P{?lzlg(X(t) ct”) > u} JBK G2

asu — oo, with it = u/Vu'/P).

Proof of Theorem 2. From [9] we know that for the regularly varying function K 2(¢) and any
positive D there exists a standardized stationary (and therefore locally stationary) Gaussian
process U (s) such that

Lk (GG +m - U(s)]2

=D
hi0 K2(h)
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where D = D + £ for any small positive &, and that we have for any s, s € S, and u sufficiently
large

corr(X ™ (s)vy (s), X (s v, (s") > corr(U(s), U(s")). (7

By analogy there also exists a standardized stationary Gaussian process U corresponding to
D = D — ¢ such that the reverse of the inequality (7) holds.
Hence this means that mainly the probability

P [Els € Su(x): Us) > ﬁvu(s)}

has to be investigated since by use of Slepian’s inequality (see e.g. Leadbetter et al. [12]), we
have for u sufficiently large and D = D + &,

P { max X% (s) > 12} =P [Els € S,(x): X®(s)v(s) > ftvu(s)}
SES, (x)

IA

P {Els € Su(x): U(s) > ﬁvu(s)} . (8)
Further, using (4), we get for arbitrarily small positive ¢ and all sufficiently large u,

P {Els € S,(x): U(s) > ﬁvu(s)}

<P {Els € S,(x):Us) > it <A(u) + %(B —&)(s — so(u))2)} . 9)

The lower bound for the left hand term in (8) is found by selecting D = D — & in the definition
of U(s), by applying the same arguments as above with Slepian’s inequality and using (4), since

P{ max X®(s) > ﬁ}
sES, (x)

> P {Els €S, (x): U(s) > ﬁvu(s)}

> P {as € Su(x): U(s) > it (A(u) + %(B +e)(s — So(u))2>} :
Define
w(s) = wy(s) = A(u) + %é(s —sou))?, where B=B —corB =B +e.
It remains to analyze
P {Els € Su(x): Us) > ﬁw(s)} .

We are going to apply Cuzick’s [4] result for stationary Gaussian processes. In [9] Briker’s
result (see [1,2]) was applied by verifying his assumptions (f1) to (f5) (for nonstationary, but
locally stationary Gaussian processes) for S, in a slightly simpler situation (A(u#) = A). Briker’s
conditions (f1) to (f5) in the case of a stationary process coincide with Cuzick’s ones. However,
we note that we apply Cuzick’s theorem to a sequence of intervals S, (x) and S, which are not
increasing as assumed in the results of Cuzick or Briker, but which are decreasing (to sp). A
careful investigation of Cuzick’s and Briker’s proofs shows that only intervals S, and S, (x) are
necessary, which are infinitely longer than A = K~'(1/it) as u — ooc. This holds obviously in
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our case. By a simple modification of the arguments in [9] we can show that the conditions f1-£5
of [4] or [2] hold also by assumptions A1, A2 and A3. Thus by Cuzick’s or Brdker’s Theorem we
get

P{U(s) > aw(s) for some s € S, (x)} ~ A, (x) = / Ay (s)ds (10)
Su(x)

where
hus) = He2 ™y @) /K (1/(/ Duis)i)

with ¢ (x) = ¢(x)/x and @ the standard normal density. Note that in the cited papers of Cuzick
and Briker the constant H, is defined with respect to a fractional Brownian motion with variance
s% whereas here we use the common definition of H,, with respect to the fractional Brownian
motion x (s) with variance 2s%. Therefore H, (Cuzick—Briker) = H,2~1/*.

It remains now to evaluate the integral (10). We define

k(s) = k(s,u) = 1/K ! (1/(\/Bw(s)a)) .

Notice that from Al it follows that so(#) — so. Therefore, we have by the regularity of K for
s € Sy, uniformly,

k(s) ~ k(so(w) ~ (VBusn)) K~ ]

Using y = (A(u)B)~'/?x, the integral (10) can be written as

so(u)+yii~!
/ Au(s)ds = Ha2_1/“/ k(s)y (w(s)) ds
S () s0(u)—8(u)

so(u)+yi~!
~ k(so) Hy2 /e / ¥ (i (5)) ds

500)—8(u)
k(so) Hy2~ 1/ /‘0(”)”[‘1
V2w, (so) Jsow)—sw)

—_ i~ ! ~
_ k(so) Hu 27/ /‘ O 32 (A% A W Bo(1) =50 0)?)
S

V2 iuwy (s0) Jsow—8w)
as u — oo. Now change variables

v =1/ AW)Bii(s — so(u))

and recall the definition of y. Since §(u)u = logu — 0o as u — oo, we obtain that

k(so)Hy 271/

/ Ay (s)ds ~
Su(x) mﬁzwu(so)

(v Dy (50)) ¥/ Hy2~ /e

VA@BK=1(1/id)i2w,(s0)

A1/o 42/a—3/2 ~1/a }
N D'/%A H,?2 e_%Az(u)uz o(x)

VBK-1(1/d)i2

122,20
e 2l w; (s) ds

ds (11

1 ~
e—jAz(u)uz @(X)

e 2O g (x)
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asu — 00.Since D = D+ Zand B = B + ¢ for any &, & > 0, the proof of Theorem 2 is
complete. [

Proof of Corollary 3. This result follows from the last relation by letting x = co. O

Proof of Theorem 1. As mentioned in the introduction of this section, it remains to analyze the
crossings of the transformed process X ) (s) in the interval S, (x) for u — oo. Noting that
P( sup XW(s) > i)

SES, (x)

P((tu — so@u'P) fo(u) < x | 7, < 00) ~ P = o0)

the statement follows by applying Theorem 2 to the numerator and Corollary 3 to the
denominator. [
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