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Abstract

Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance
(GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some
of the basic properties and the asymptotic properties of the spectral densities of these random fields are
studied. The associated self-similar random fields obtained by applying the Lamperti transformation to
GFGCC and GSGCC are studied.
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1. Introduction

Generalization of some well-known stochastic processes indexed by a single parameter to
processes indexed by two parameters has attracted considerable interest recently. For example,
Houdre and Villa [24] generalized fractional Brownian motion parametrized by a single Hurst
index to the bifractional Brownian motion characterized by two indices. Another example is
provided by the multidimensional stationary Gaussian fields with generalized Cauchy covariance
indexed by two parameters introduced by Gneiting and Schlather [21]. These processes can be
regarded as extension of the Gaussian processes with Cauchy covariance used in geostatistics.
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For simplicity, we call such processes the Gaussian field with generalized Cauchy covariance
(GFGCC). Here we would like to point out that one should not confuse such a process with a
stable process with Cauchy marginals.

In general, processes parametrized by two indices can provide more flexibility in their
applications in modeling physical phenomena. In particular, the GFGCC model has an additional
nice and useful property as it allows separate characterization of fractal dimension and long range
dependence (LRD) by two different indices. This is in contrast to models based on fractional
Brownian motion (or fractional Brownian noise) which use a single index to characterize these
two properties. Models based on a stochastic process or field parametrized by a single index seem
inadequate. A detailed analysis on network traffic carried by Park et al. [43] shows that fractional
Brownian motion/fractional Gaussian noise model is inadequate for description of network traffic
for all scales since at very small time scales the traffic fluctuations are no longer statistically
self-similar. The need to replace global scaling by local scaling is essential for processes such
as multifractional Brownian motion introduced independently by Peltier and Vehel [44] and
Benassi, Jaffard and Roux [7].

The main aim of this paper is to study GFGCC and its anisotropic counterpart, which we call
Gaussian sheet with generalized Cauchy covariance (GSGCC). In view of the fact that GFGCC
is widely used in geostatistics and other applications [10,8,47,20,49,39,40,48], it will be useful to
consider its properties in more detail. In these existing applications, usually only the covariance
structure of GFGCC are used, and the sample path properties of GFGCC are rarely mentioned.
However, a better understanding of the sample properties of GFGCC and GSGCC will render
more versatility and flexibility to their applications. Our approach to this subject is mainly
from a physical viewpoint. Basic sample properties such as the long range dependence and the
local self-similarity properties of GFGCC and GSGCC are investigated. A simpler method is
used to derive the asymptotic properties of the spectral densities of GFGCC and GSGCC. By
generalizing the Lamperti transformation to n-dimensional processes, new types of random field
and random sheet with global self-similar property associated with GFGCC and GSGCC are
obtained. Properties of these random field and random sheet are also studied.

2. Isotropic Gaussian field with generalized cauchy covariance

In this section we consider GFGCC, which is a multidimensional isotropic Gaussian random
field in n-dimensional Euclidean space. We first introduce some notations and state some
basic definitions and properties of GFGCC. Denote by N, Z, R and R+ the sets of positive
integers, integers, real numbers and positive real numbers respectively. Let t = (t1, . . . , tn) and

s = (s1, . . . , sn) be two vectors in Rn , and ‖t‖ =
√∑n

i=1 t2
i , n, j ∈ N be its Euclidean norm.

By t → 0+ and t →∞, we mean ti → 0+ and ti →∞ respectively for all i = 1, . . . , n.

Definition 2.1. A random field Xα,β(t) onRn is called a Gaussian field with generalized Cauchy
covariance (or GFGCC) if it is a stationary Gaussian field with mean zero and covariance given
by

Cα,β(τ ) = 〈Xα,β(t + τ)Xα,β(t)〉 =
(
1+ ‖τ‖α

)−β
, (2.1)

where α ∈ (0, 2] and β > 0.

Note that (2.1) has the same functional form as the characteristic function of the generalized
multivariate Linnik distribution first studied by Anderson [2]. Cα,β(τ ) is positive-definite for the



S.C. Lim, L.P. Teo / Stochastic Processes and their Applications 119 (2009) 1325–1356 1327

above ranges of α and β, and it is completely monotone for 0 < α ≤ 1, β > 0. Xα,β(t) becomes
the Gaussian field with usual Cauchy covariance when α = 2, β = 1.

Recall that a random field X (t) is H -self-similar (Hss) if X (ct)=d cH X (t), where =d
denotes equality in the sense of finite-dimensional distributions of X . Self-similar property
requires scale invariance to hold for all scales. This is rather too restrictive for many applications.
We also know from Samorodnitsky and Taqqu [46] that a stationary Gaussian random field
such as Xα,β(t) can not be a self-similar field. However, Xα,β(t) satisfies a weaker self-similar
property known as local self-similarity considered by Kent and Wood [27].

Definition 2.2. Let α ∈ (0, 2]. A centered stationary Gaussian field is locally self-similar (lss)
of order α/2 if for ‖τ‖ → 0+, its covariance C(τ ) satisfies

C(τ ) = A − B‖τ‖α
[
1+ O

(
‖τ‖δ

)]
(2.2)

for some positive constants A, B and δ.

Since as ‖τ‖ → 0+,

Cα,β(τ ) = 1− β‖τ‖α
[
1+ ‖τ‖α

]
, (2.3)

the GFGCC Xα,β(t) is α/2–lss, with A = 1, B = β and δ = α. Adler [1] called the class of
Gaussian fields which satisfy (2.2) the indexed-α fields. These processes are also known as the
Adler processes according to some authors, for example Lang and Roueff [33]. They form a very
rich class of Gaussian random fields, which include the centered Gaussian field Ξα,β(t) with
powered exponential covariance〈

Ξα,β(t + τ)Ξα,β(t)
〉
= e−β‖τ‖

α

, (2.4)

which have the same functional form as the characteristic function of the multivariate symmetric
stable distribution as given in Kotz, Kozubowski and Podgorski [30], and Garoni and Frankel
[16]. Instead of using (2.2) to characterize local self-similarity, one can also use the definition
of locally asymptotically self-similar (lass) property first introduced by Benassi, Jaffard and
Roux [7] for multifractional Brownian motion BH(t)(t), which is a generalization of fractional
Brownian motion with the Hurst index replaced by the Hurst function H(t), 0 < H(t) < 1.
It can be shown that under some regularity conditions on H(t), the multifractional Brownian
motion BH(t)(t) is lass. This property can be adapted to GFGCC if we take H(t) as constant
with its value in (0, 1).

Definition 2.3. A stochastic process X (t) is lass at a point t0 with order κ if

lim
ε→0+

{
X (t0 + εu)− X (t0)

εκ

}
u∈Rn
=d Tt0(u), (2.5)

and Tt0(u) is nontrivial. Here the convergence and equality are in the sense of finite dimensional
distributions, and Tt0(u) is called the tangent field of X (t) at the point t0.

Proposition 2.4. GFGCC is a lass random field of order α/2; and its tangent field is Lévy
fractional Brownian field of index α/2.

Proof. By using (2.3), the covariance of the increment field ∆τ Xα,β(t) := Xα,β(t+τ)−Xα,β(t),
for ρ, σ → 0+ is given by〈

∆ρXα,β(t)∆σ Xα,β(t)
〉
= β

(
‖ρ‖α + ‖σ‖α − ‖ρ − σ‖α

)
+ O

(
‖ρ‖2α, ‖σ‖2α

)
.
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Let ρ = εu and σ = εv, then

lim
ε→0+

〈
∆εu Xα,β(t)

εα/2

∆εvXα,β(t)

εα/2

〉
= lim

ε→0+

{
β
(
‖u‖α + ‖v‖α − ‖u − v‖α

)
+ O(εα)

}
= 2β

〈
Bα/2(u)Bα/2(v)

〉
,

where Bα/2(u) is the index-α/2 Lévy fractional Brownian field with zero mean and covariance
given by〈

Bα/2(u)Bα/2(v)
〉
=

1
2

(
‖u‖α + ‖v‖α − ‖u − v‖α

)
, u, v ∈ Rn . (2.6)

Thus up to a multiplicative constant
√

2β, the tangent field of GFGCC at any point t0 ∈ Rn is
the Lévy fractional Brownian field indexed by α/2. �

The tangent field of Xα,β(t) at the point t0 reflects the local structure of the random field at t0.
In other words, GFGCC behaves locally like a Lévy fractional Brownian field. This provides an
example to the general results on tangent fields considered by Falconer [14].

The fractal dimension of the graph of a random field X (t) depends on the local property of
the random field. The local irregularities of the graph are measured by the parameter α, which
can be regarded as the fractal index of the random field. Thus the behavior of the covariance
function at the origin to a great extent determines the roughness of the random field. The results
on the fractal dimension of an lss field are treated by Adler [1], Kent and Wood [27], Davies and
Hall [11]. A nice property of α/2–lss fields is that their fractal dimension is determined by α.

Definition 2.5. Let X (t) be a stationary Gaussian field and let σ 2(τ ) =
〈
∆τ X (t)2

〉
be the

variance of the increment process ∆τ X (t) := X (t+τ)−X (t). If there exists α ∈ (0, 2] satisfying

α = sup
{
ς : σ 2(τ ) = o

(
‖τ‖ς

)
as ‖τ‖ → 0

}
= inf

{
ς : ‖τ‖ς = o

(
σ 2(τ )

)
as ‖τ‖ → 0

}
, (2.7)

then α/2 is called the fractal index of the random field X (t). Equivalently, α/2 is the local Hölder
index of the random field.

Clearly, condition (2.7) is fulfilled by random field which satisfies (2.2) such as the GFGCC
Xα,β(t). Adler had shown that α/2 is the upper bound of the indices for which, with probability
one, the graph of X (t) satisfies a global regularity of the same order. Thus, α characterizes
the roughness of the sample path. The fractal dimension of GFGCC can be obtained by using
the following result for the fractal (Hausdorff) dimension of an lss field as given in Adler [1],
chapter 8.

Proposition 2.6. The fractal dimension D of the graph of a locally self-similar field X (t), t ∈
Rn , of fractal index α/2, over a hyperrectangle C =

∏n
i=1[ai , bi ], is given by

D = n + 1−
α

2
. (2.8)

The estimation of α for lss field has been studied extensively, see for example Wood and
Chan [50], Istas and Lang [25], Kent and Wood [27], Lang and Roueff [33]. The parameter
β is also known as topothesy in the studies of roughness of surfaces by Wood and Chan [50],
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and Davies and Hall [11]. The topothesy of a cross section provides a measure of the roughness
which is scale-dependent in contrast to fractal dimension which is scale-invariant.

The Gaussian random field Xα,β(t) can have SRD (short range dependence) or LRD (long
range dependence), depending on the values of the parameters α and β. For this purpose we make
use of the following definition which is a generalization of the one-dimensional case considered
by Flandrin et al. [15], Lim and Muniandy [36]:

Definition 2.7. A stationary centered Gaussian field with covariance C(τ ) is said to be a long
range dependent process if∫

Rn
+

|C(τ )| dnτ = ∞. (2.9)

Otherwise it is short range dependent.

Proposition 2.8. The GFGCC Xα,β(t) is a long range dependent random field if and only if
0 < αβ ≤ n.

Proof. In order to obtain the condition for the Gaussian random field with covariance (2.1) to
be LRD, we make use of the following integral identity given in Gradshteyn and Ryzhik [22],
3.251, no. 11:∫

∞

0
xµ−1 (1+ xρ

)−ν dx =
1
ρ

B

(
µ

ρ
, ν −

µ

ρ

)
,

where ρ > 0, 0 < µ < ρv and B(x, y) = 0(x)0(y)/0(x + y) is the beta function. Using polar
coordinates, one gets∫

Rn
+

∣∣Cα,β(τ )∣∣ dnτ =

∫
Rn
+

(
1+ ‖τ‖α

)−β dnτ

=
2π

n
2

2n0
( n

2

) ∫ ∞
0

rn−1(1+ rα)−βdr. (2.10)

For large r ,

rn−1(1+ rα)−β ∼ rn−1−αβ .

Therefore, the integral (2.10) is divergent for all β > 0, 0 < αβ ≤ n. For β > 0 and αβ > n, we
have

2π
n
2

2n0
( n

2

) ∫ ∞
0

rn−1(1+ rα)−βdr =
π

n
2

2n−1α0
( n

2

) B
( n

α
, β −

n

α

)
<∞.

Therefore the condition for Xα,β(t) to be a Gaussian field with LRD is 0 < αβ ≤ n. �

The discussion above shows that it is possible to characterize the fractal dimension D and the
LRD property separately. If the covariance is re-expressed as (1+ ‖τ‖α)−γ /α , which behaves
like ‖τ‖−γ in the large-‖τ‖ limit, then Xα,γ /α(t) is LRD if and only if 0 < γ ≤ n. Thus
α (0 < α ≤ 2) and γ (γ > 0), respectively, provide separate characterization of fractal
dimension and LRD/SRD. The separate characterization of the fractal dimension (local property)
and LRD (global property) for GFGCC appears to offer a more natural and flexible model than
that based on a single parameter such as in Lévy fractional Brownian field. We note that this
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feature of separate characterization of local self-similarity (hence fractal dimension) and long
range dependence is present in any stationary Gaussian field with covariance C(τ ) satisfying the
asymptotic behaviors C(τ ) ∼ A − B‖τ‖α as ‖τ‖ → 0+, and C(τ ) → ‖τ‖−γ as ‖τ‖ → ∞,
with α ∈ (0, 2], γ > 0. Similarly, one can also have a Gaussian stationary process which has
separate parametrization of fractal dimension and short range dependence [38]. The ability to
have separate characterization of fractal dimension and Hurst effect is a desirable property in the
modeling of physical and geological phenomena.

3. Asymptotic properties of spectral density of GFGCC

In this section, we consider the spectral density of Xα,β(t) and its asymptotic properties.
Though the covariance of GFGCC is given by a relatively simple expression, the analytic
simplicity of the covariance function is not inherited by the corresponding spectral density.
This is similar to the case of the stationary Gaussian field Ξα,β(t) with powered exponential
covariance (2.4) which have simple form, but its spectral density in general does not have
closed analytic expression. In the case of GFGCC in R, a detailed study of spectral densities
(in terms of probability distributions correspond to the characteristic functions of generalized
Linnik distributions) have been carried out by Kotz et al. [29] for 0 < α < 2, β = 1, n = 1; by
Ostrovskii [41] for 0 < α < 2, β = 1, n ∈ N; and by Erdogan and Ostrovskii [13] for 0 < α < 2,
β > 0, n = 1. They employed the contour integration representations and series expansions
of the generalized Linnik distributions. However the techniques used in these works are less
accessible to practitioners. In this section, we derive the asymptotic properties of the spectral
densities of GFGCC for 0 < α ≤ 2 and β > 0, which can be regarded as an extension to the
results on generalized multivariate Linnik distributions. The techniques used in our derivations
are mathematically more tractable.

Recall that the spectral density S(ω) of a stationary field X (t) is defined as the Fourier
transform of its covariance function C(t) = 〈X (t)X (0)〉:

S(ω) =
1

(2π)n

∫
Rn

e−iω.t C(t)dn t,

if the integral is convergent. If the integral does not converge, we consider C(t) as a generalized
function and define S(ω) as the Fourier transform of C(t) in the Schwartz space of test
functions [17]. Namely, for any test function ψ(ω) in the Schwartz class of Rn , we require

〈S(ω), ψ(ω)〉 = 〈C(t), ψ̂(t)〉,

where

ψ̂(t) =
1

(2π)n

∫
Rn

e−iω.tψ(ω)dnω.

Alternatively, the spectral density can also be defined to be the function satisfying

C(t) =
∫
Rn

eiω.t S(ω)dnω.

For GFGCC, since

Jν(z) ∼

√
π

2z
cos

(
z −

πν

2
−
π

4

)
(3.1)
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as z→∞ ([3], page 209), we find that when αβ > n−1
2 , it’s spectral density is

Sα,β(ω) =
1

(2π)n

∫
Rn

eiω.t

(1+ ‖t‖α)β
dn t =

‖ω‖
2−n

2

(2π)
n
2

∫
∞

0

J n−2
2
(‖ω‖t)

(1+ tα)β
t

n
2 dt, (3.2)

where Jν(z) is the Bessel function. When α = 2, using no. 4 of 6.565 in [22], we have the explicit
formula

S2,β(ω) =
‖ω‖β−

n
2

2
n
2+β−1π

n
20(β)

K n
2−β

(‖ω‖), (3.3)

if β > (n− 1)/4. Here Kν(z) is the modified Bessel function. The formula no. 7 of 6.576 in [22]
shows that if β ∈ (0, n), then∫

Rn
eiω.t

(
‖ω‖β−

n
2

2
n
2+β−1π

n
20(β)

K n
2−β

(‖ω‖)

)
dnω

= (2π)
n
2

∫
∞

0

J n−2
2
(ω‖t‖)

(ω‖t‖)
n−2

2

(
ωβ−

n
2

2
n
2+β−1π

n
20(β)

K n
2−β

(ω)

)
ωn−1dω =

(
1+ ‖t‖2

)−β
.

Therefore, (3.3) is still the spectral density when β ∈ (0, (n − 1)/4]. For general α < 2, no
explicit formula such as (3.3) can be found for Sα,β(ω). When n = 1, the formula (3.2) gives
the spectral density of Xα,β(t) for all values of α ∈ (0, 2] and β > 0. For n ≥ 2, we would also
like to find a formula for the spectral density that is valid for all α ∈ (0, 2) and β > 0. For this
purpose, it would be beneficial to investigate the case n = 1 first. When n = 1, we can rewrite
(3.2) as

Sα,β(ω) =
1
π

Re
∫
∞

0

ei|ω|t

(1+ tα)β
dt.

Let

f (ζ ) =
ei|ω|ζ

(1+ ζα)β
, −π < arg ζ ≤ π,

and consider the region Dr in the complex plane defined by

Dr = {z ∈ C : |z| ≤ r, Re z > 0, Im z > 0} .

When α ∈ (0, 2), the function f is an analytic function on the domain Dr . Therefore, by Cauchy
integral formula,∮

∂Dr

f (ζ )dζ = 0. (3.4)

Notice that the boundary of Dr , ∂Dr , consists of three components: the line segment lr,1 along
the real axis from 0 to r , the arc Cr of the circle |z| = r from r to ir , and the line segment lr,2
along the imaginary axis from ir to 0. On the arc Cr , if r > 1, then

| f (ζ )| ≤
e−|ω|Im ζ

(rα − 1)β
.
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Therefore,

lim
r→∞

∫
Cr

f (ζ )dζ = 0,

and (3.4) implies that

lim
r→∞

∫
lr,1

f (ζ )dζ = − lim
r→∞

∫
lr,2

f (ζ )dζ.

This gives us:

Sα,β(ω) =
1
π

Re
∫
∞

0

ei|ω|t dt

(1+ tα)β
= −

1
π

Im
∫
∞

0

e−|ω|u(
1+ e

iπα
2 uα

)β du. (3.5)

For n ≥ 2, we can derive a formula similar to (3.5). Recall that the Hankel’s function of the first
kind H (1)

ν (z) is defined as

H (1)
ν (z) = Jν(z)+ iNν(z),

where Nν(z) is the modified Bessel function of the second kind or called the Neumann function.
Using Hankel’s function, we can rewrite (3.2) as

Sα,β(ω) =
‖ω‖

2−n
2

(2π)
n
2

Re
∫
∞

0

H (1)
n−2

2
(‖ω‖t)

(1+ tα)β
t

n
2 dt.

For z→∞, we have ([22], no. 3 of 8.451)

H (1)
ν (z) ∼

√
2
π z

exp
{

i
(

z −
πν

2
−
π

4

)}
.

Therefore, we can show as in the n = 1 case that

Sα,β(ω) = −
‖ω‖

2−n
2

(2π)
n
2

Im
∫
∞

0

H (1)
n−2

2
(i‖ω‖u)(

1+ e
iπα

2 uα
)β (iu) n

2 du.

Using the formula ([22], no. 1 of 8.407)

Kν(z) =
iπ
2

e
iνπ

2 H (1)
ν (iz),

we have finally

Sα,β(ω) = −
‖ω‖

2−n
2

2
n−2

2 π
n+2

2

Im
∫
∞

0

K n−2
2
(‖ω‖u)(

1+ e
iπα

2 uα
)β u

n
2 du. (3.6)

This formula agrees with the formula for multivariate Linnik distribution proved in [41] for
α ∈ (0, 2), β = 1 and n ∈ N. Notice that the right hand side of (3.6) is well-defined for all
α, β > 0. Using the formula (no. 2 of 6.521 in [22]),∫

∞

0
x Kν(ax)Jν(bx)dx =

bν

aν(a2 + b2)
, ν > −1,
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we have∫
Rn

eiω.t

− ‖ω‖
2−n

2

2
n−2

2 π
n+2

2

Im
∫
∞

0

K n−2
2
(‖ω‖u)(

1+ e
iπα

2 uα
)β u

n
2 du

 dnω

= (2π)
n
2 ‖t‖

2−n
2

∫
∞

0
J n−2

2
(ω‖t‖)ω

n
2

− ω
2−n

2

2
n−2

2 π
n+2

2

Im
∫
∞

0

K n−2
2
(ωu)(

1+ e
iπα

2 uα
)β u

n
2 du

 dω

= −
2‖t‖

2−n
2

π
Im

∫
∞

0

u
n
2(

1+ e
iπα

2 uα
)β ∫ ∞

0
ωK n−2

2
(ωu)J n−2

2
(ω‖t‖)dωdu

= −
2
π

Im
∫
∞

0

u(
1+ e

iπα
2 uα

)β
(u2 + ‖t‖2)

du

= −
1
π i

∫
∞

−∞

u(
1+ e

iπα
2 uα

)β
(u2 + ‖t‖2)

du.

When α ∈ (0, 2), residue calculus implies that this last integral is equal to

2Re su=−i‖t‖
u

(u − i‖t‖)
(

1+ e
iπα

2 uα
)β = 1

(1+ ‖t‖α)β
.

This shows that (3.6) is indeed the spectral density of GFGCC for all α ∈ (0, 2) and β > 0. We
would also like to remark that although the formula (3.6) is derived under the assumption n ≥ 2,
but since

K−1/2(z) =

√
π

2z
e−z,

therefore when n = 1, the formula (3.6) reduces to the formula (3.5). We summarize the result
as follows:

Proposition 3.1. If α ∈ (0, 2) and β > 0, the spectral density of the GFGCC Xα,β(t) is given
by

Sα,β(ω) = −
‖ω‖

2−n
2

2
n−2

2 π
n+2

2

Im
∫
∞

0

K n−2
2
(‖ω‖u)(

1+ e
iπα

2 uα
)β u

n
2 du. (3.7)

If α = 2 and β > 0, the spectral density of the GFGCC X2,β(t) is given by

S2,β(ω) =
‖ω‖β−

n
2

2
n
2+β−1π

n
20(β)

K n
2−β

(‖ω‖). (3.8)

The spectral density for different values of α and β are plotted in Figs. 1–3. To find the high
frequency behavior of the spectral density, we first consider the case where α = 2. Using the fact
that ([22], no. 6 of 8.451) as z→∞,
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Kν(z) ∼

√
π

2z
e−z

∞∑
j=0

1
(2z) j

0
(
ν + j + 1

2

)
j !0

(
ν − j + 1

2

) .
This implies that as ‖ω‖ → ∞,

S2,β(ω) ∼
‖ω‖β−

n+1
2

2
n−1

2 +βπ
n−1

2 0(β)
e−‖ω‖

∞∑
j=0

1
(2‖ω‖) j

0
(

j − β + n+1
2

)
j !0

(
n+1

2 − j − β
) , (3.9)

with leading term

S2,β(ω) ∼
‖ω‖β−

n+1
2

2
n−1

2 +βπ
n−1

2 0(β)
e−‖ω‖.

For general α ∈ (0, 2), to find the high frequency behavior of Sα,β(ω), we make use of
Eq. (3.7). Making a change of variable and using

1(
1+ e

iπα
2 uα
‖ω‖α

)β = m∑
j=0

(−1) j

j !

0(β + j)

0(β)
e

iπα j
2

uα j

‖ω‖α j + O(‖ω‖−α(m+1)), (3.10)

as ‖ω‖ → ∞, we find that

Sα,β(ω) = −
‖ω‖−n

2
n−2

2 π
n+2

2

Im
∫
∞

0
K n−2

2
(u)

u
n
2(

1+ e
iπα

2 uα
‖ω‖α

)β du

= −
‖ω‖−n

2
n−2

2 π
n+2

2

1
0(β)

Im
∫
∞

0
K n−2

2
(u)

m∑
j=0

(−1) j

j !
0(β + j)e

iπα j
2

uα j

‖ω‖α j u
n
2 du

+O
(
‖ω‖−α(m+1)−n

)
as ‖ω‖ → ∞.

Using the formula ([22], no. 16 of 6.561)∫
∞

0
xµKν(x)dx = 2µ−10

(
1+ µ+ ν

2

)
0

(
1+ µ− ν

2

)
, Re (µ+ 1− |ν|) > 0,

and the definition of asymptotic expansion ([3], page 611), we conclude that as ‖ω‖ → ∞,
Sα,β(ω) behaves asymptotically as

1

π
n+2

2

1
0(β)

∞∑
j=1

(−1) j−12α j

j !
0(β + j)0

(
α j + n

2

)
0

(
α j + 2

2

)
sin

πα j

2
‖ω‖−α j−n .

(3.11)

Notice that there is a drastic change of high frequency limit of Sα,β(ω)when α < 2 and α = 2. In
fact, naively putting α = 2 in (3.11) give identically zero terms. This is a hint that as ‖ω‖ → ∞,
S2,β(ω) does not have polynomial decay, instead it decays exponentially as is verified by (3.9).
We summarize the results as follows:



S.C. Lim, L.P. Teo / Stochastic Processes and their Applications 119 (2009) 1325–1356 1335

Fig. 1. The spectral density Sα,β (‖ω‖) as a function of ‖ω‖ when n = 3 and αβ = 1.5.

Proposition 3.2. If α ∈ (0, 2) and β > 0, the high frequency limit of the spectral density Sα,β(ω)
is given by the following asymptotic series:

Sα,β(ω) ∼
1

π
n+2

2

1
0(β)

∞∑
j=1

(−1) j−12α j

j !
0(β + j)0

(
α j + n

2

)

×0

(
α j + 2

2

)
sin

πα j

2
‖ω‖−α j−n . (3.12)

If α = 2 and β > 0, the high frequency limit of the spectral density S2,β(ω) is given by the
following asymptotic series:

S2,β(ω) ∼
‖ω‖β−

n+1
2

2
n−1

2 +βπ
n−1

2 0(β)
e−‖ω‖

∞∑
j=0

1
(2‖ω‖) j

0
(

j − β + n+1
2

)
j !0

(
n+1

2 − j − β
) .

When α ∈ (0, 2), β = 1, n ∈ N and α ∈ (0, 2), β > 0, n = 1, (3.12) agrees with the results
given in [41,13] respectively. In particular, we observe that when α ∈ (0, 2), the high frequency
behavior of the spectral density of GFGCC is

Sα,β(ω) ∼
2αβ

π
n+2

2

0

(
α + n

2

)
0

(
α + 2

2

)
sin

πα

2
‖ω‖−α−n

→ 0+, ‖ω‖ → ∞, (3.13)

which is independent of β. Kent and Wood [27] have shown that if a random field has spectral
density satisfying (3.13), then its covariance satisfies (2.2) with locally self-similar property.
However, the converse is not true.

In this connection we remark that for the Gaussian stationary field Ξα,β(t) with powered
exponential covariance which is lss with〈

Ξα,β(t + τ)Ξα,β(t)
〉
= e−β‖τ‖

α

= 1− β‖τ‖α
[
1+ O(‖τ‖α)

]
, ‖τ‖ → 0+, (3.14)

its small ‖τ‖ behavior has a similar form as that of GFGCC (2.3). Thus it is not surprising that
this two random fields have the same tail behavior for their spectral densities at high frequencies
as given by (3.13). The detailed calculation carried out by Garoni and Frankel [16] for the
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Fig. 2. The spectral density Sα,β (‖ω‖) as a function of ‖ω‖ when n = 3 and αβ = 3.

Fig. 3. The spectral density Sα,β (‖ω‖) as a function of ‖ω‖ when n = 3 and αβ = 4.5. α = 0.4, 0.8, 1.2, 1.6, 2 for
S1, S2, S3, S4, S5 respectively.

probability distribution of the multivariate Lévy stable distribution with characteristic function
given by (3.14) confirms this. We also note that (3.12) can be used to verify that the tangent field
at any point t0 has spectral density which varies as ‖ω‖−α−n for ‖ω‖ → ∞. If we let α = 2H ,
then the tangent field is just the Lévy fractional Brownian field in Rn . Such a relationship can be
viewed as a consequence of the Tauberian–Abelian theorem (see e.g. [28]).

For the low frequency behavior of the spectral density Sα,β(ω), we first consider the case
α = 2. Using 8.485, 8.445, 8.446 of [22], we find that if ν 6∈ Z,

Kν(z) = K−ν(z) =
π

2 sin(πν)

{
∞∑
j=0

(z/2)2 j−ν

j !0( j + 1− ν)
−

∞∑
j=0

(z/2)2 j+ν

j !0( j + 1+ ν)

}
; (3.15)

whereas when ν = ±m, where m is a nonnegative integer,

Kν(z) =
1
2

m−1∑
j=0

(−1) j (m − j − 1)!
j !

( z

2

)2 j−m

+ (−1)m+1
∞∑
j=0

(z/2)m+2 j

j !(m + j)!

{
ln

z

2
−

1
2
ψ( j + 1)−

1
2
ψ( j + 1+ m)

}
. (3.16)
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Here ψ(z) = 0′(z)/0(z) is the logarithm derivative of the Gamma function. Therefore from
(3.8), we find that:

• if β > n/2, then as ‖ω‖ → 0+,

S2,β(ω) ∼
0
(
β − n

2

)
2nπ

n
20(β)

(3.17)

• if β = n/2, then as ‖ω‖ → 0+,

S2,β(ω) ∼
1

2n−1π
n
20
( n

2

) {− ln ‖ω‖ + ln 2+ ψ(1)}

=
1

2n−1π
n
20
( n

2

) {− ln ‖ω‖ + ln 2− γ } , (3.18)

where γ is the Euler constant

• if β < n/2, then as ‖ω‖ → 0+,

S2,β(ω) ∼
0
( n

2 − β
)

22βπ
n
20(β)

‖ω‖2β−n . (3.19)

In fact, by considering the cases β − n
2 ∈ Z and β − n

2 6= Z separately and substituting
the series (3.15) and (3.16) into (3.8), we can express the spectral density S2,β(ω) in terms of
convergent power series in ‖ω‖.

For general α ∈ (0, 2), the low frequency behavior of Sα,β(ω) depends on the arithmetic
nature of α and β. The method we are going to employ does not allow the derivation of the
whole asymptotic series as obtained by Kotz et al. [29], Erdogan and Ostrovskii [41,13]. We
will only derive the leading behavior of the spectral density Sα,β(ω), which only depends on
the algebraic conditions αβ > n, αβ = n or αβ < n. These conditions are less stringent than
the arithmetic conditions considered in [29,41,13]. However, the simpler method employed here
provides the necessary Sαβ(ω), ‖ω‖ → 0+ asymptotic behaviors which are sufficient for most
practical purposes.

When αβ > n, since ([22], Eq. 8.402)

Jν(z) =
zν

2ν0(ν + 1)
+ O

(
zν+2

)
as z→ 0, (3.20)

we find from (3.2) that as ‖ω‖ → 0+,

Sα,β(ω) ∼
1

2n−1π
n
20
( n

2

) ∫ ∞
0

tn−1

(1+ tα)β
dt =

1

2n−1π
n
20
( n

2

) 0 ( n
α

)
0
(
β − n

α

)
α0(β)

, (3.21)

([22], no. 11 of 3.251). When αβ = n, we make a change of variable on (3.2) to get

Sα,β(ω) =
1

(2π)
n
2

∫
∞

0
J n−2

2
(t)

t
n
2

(‖ω‖α + tα)β
dt.
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In view of the leading behavior of the Bessel function Jν(z) as z → 0 (3.20), we write Sα,β(ω)
as the sum of two terms S1

α,β(ω) and S2
α,β(ω) where

S1
α,β(ω) =

1

(2π)
n
2

∫ 1

0

(
J n−2

2
(t)−

t
n−2

2

2
n−2

2 0
( n

2

)
)

t
n
2

(‖ω‖α + tα)β
dt

+
1

(2π)
n
2

∫
∞

1
J n−2

2
(t)

t
n
2

(‖ω‖α + tα)β
dt,

and

S2
α,β(ω) =

1

2n−1π
n
20
( n

2

) ∫ 1

0

tn−1

(‖ω‖α + tα)β
dt.

As ‖ω‖ → 0+, (3.1) and (3.20) show that S1
α,β(ω) has a finite limit. By Lebesgue’s dominated

convergence theorem, the limit is given by S1
α,β(0). Namely

S1
α,β(ω)

‖ω‖→0+
−−−−−→ S1

α,β(0)

=
1

(2π)
n
2

∫ 1

0

(
J n−2

2
(t)−

t
n−2

2

2
n−2

2 0
( n

2

)
)

t−
n
2 dt +

1

(2π)
n
2

∫
∞

1
J n−2

2
(t)t−

n
2 dt.

This expression can be evaluated using regularization method. More precisely, using Lebesgue’s
dominated convergence theorem again, we find that

S1
α,β(0) = lim

ε→0+

{
1

(2π)
n
2

∫ 1

0

(
J n−2

2
(t)−

t
n−2

2

2
n−2

2 0
( n

2

)
)

t−
n
2+εdt

+
1

(2π)
n
2

∫
∞

1
J n−2

2
(t)t−

n
2+εdt

}

= lim
ε→0+

{
1

(2π)
n
2

∫
∞

0
J n−2

2
(t)t−

n
2+εdt −

1

2n−1π
n
20
( n

2

) ∫ 1

0
t−1+εdt

}
.

The formula no. 14 of 6.561 in [22] then gives

S1
α,β(0) = lim

ε→0+

{
2ε0

(
ε
2

)
2nπ

n
20
( n−ε

2

) − 1

2n−1π
n
20
( n

2

) 1
ε

}

= lim
ε→0+

1

2n−1π
n
20
( n

2

) 1
ε

{
(1+ ε ln 2)

(
1+

ε

2
ψ(1)

) (
1+

ε

2
ψ
(n

2

))
− 1

}
=

1

2nπ
n
20
( n

2

) {2 ln 2+ ψ(1)+ ψ
(n

2

)}
.

For the term S2
α,β(ω), we make a change of variable u = tα or equivalently t = u

β
n , to get

S2
α,β(ω) =

β

2n−1π
n
2 n0( n

2 )

∫ 1
0

uβ−1du
(‖ω‖α+u)β

.
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We split S2
α,β(ω) again into a sum of two terms S3

α,β(ω) and S4
α,β(ω), where

S3
α,β(ω) =

β

2n−1π
n
2 n0

( n
2

) ∫ 1

0

1
(‖ω‖α + u)

du

=
β

2n−1π
n
2 n0

( n
2

) ln
1+ ‖ω‖α

‖ω‖α
∼

1

2n−1π
n
20
( n

2

) ln
1
‖ω‖
+ O(‖ω‖α),

and

S4
α,β(ω) =

β

2n−1π
n
2 n0

( n
2

) ∫ 1

0

uβ−1
− (‖ω‖α + u)β−1

(‖ω‖α + u)β
du

=
β

2n−1π
n
2 n0

( n
2

) ∫ 1
‖ω‖α

0

uβ−1
− (1+ u)β−1

(1+ u)β
du.

When ‖ω‖ → 0+,

S4
α,β(ω) ∼

β

2n−1π
n
2 n0

( n
2

) ∫ ∞
0

uβ−1
− (1+ u)β−1

(1+ u)β
du.

The integral is a convergent integral with value given by ([22], 3.219 page 316)

∫
∞

0

uβ−1
− (1+ u)β−1

(1+ u)β
du = −ψ(β)− γ.

Putting everything together, we find that

S2
α,β(ω) ∼

1

2n−1π
n
20
( n

2

) {ln
1
‖ω‖
−
β

n
(ψ(β)+ γ )

}
as ‖ω‖ → 0+.

Therefore, as ‖ω‖ → 0+,

Sα,β(ω) ∼
1

2n−1π
n
20
( n

2

) {ln
1
‖ω‖
−
β

n
(ψ(β)+ γ )+ ln 2−

1
2
γ +

1
2
ψ
(n

2

)}
. (3.22)

When αβ < n, care has to be taken since (3.2) is defined only for αβ > n−1
2 . Making a change

of variable, one finds that

Sα,β(ω) =
‖ω‖αβ−n

(2π)
n
2

∫
∞

0

J n−2
2
(u)u

n
2

(‖ω‖α + uα)β
du.

It is easy to verify that for any α > 0 and β > 0, when ‖ω‖ → 0+,
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Sα,β(ω) ∼
‖ω‖αβ−n

(2π)
n
2

lim
ε→0+

lim
‖ω‖→0

∫
∞

0

J n−2
2
(u)e−εuu

n
2

(‖ω‖α + uα)β
du.

Now using no. 1 of 6.621 in [22], we have

lim
‖ω‖→0

∫
∞

0

J n−2
2
(u)e−εuu

n
2

(‖ω‖α + uα)β
du =

∫
∞

0
J n−2

2
(u)e−εuu

n
2−αβ

=
1

2
n−2

2

0(n − αβ)√
(ε2 + 1)n−αβ0

( n
2

) 2 F1

(
n − αβ

2
,
αβ − 1

2
;

n

2
;

1

1+ ε2

)
,

where 2 F1(a, b; c; z) is the hypergeometric function

2 F1(a, b; c; z) =
∞∑
j=0

(a) j (b) j

(c) j

z j

j !
, (x) j := x(x + 1) . . . (x + j − 1) =

0(x + j)

0(x)
.

Using the formula no. 2 of 9.131 in [22], we find that

2 F1

(
n − αβ

2
,
αβ − 1

2
;

n

2
;

1

1+ ε2

)

=

0
( n

2

)
0
(

1
2

)
0
(
αβ
2

)
0
(

n+1−αβ
2

) 2 F1

(
n − αβ

2
,
αβ − 1

2
;

1
2
;

ε2

1+ ε2

)

+

(
ε2

1+ ε2

) 1
2 0

( n
2

)
0
(
−

1
2

)
0
(

n−αβ
2

)
0
(
αβ−1

2

) 2 F1

(
αβ

2
,

n − αβ + 1
2

;
3
2
;

ε2

1+ ε2

)
.

Since

lim
z→0 2 F1(a, b; c; z) = 1,

therefore,

lim
ε→0+

lim
‖ω‖→0

∫
∞

0

J n−2
2
(u)e−εuu

n
2

(‖ω‖α + uα)β
du =

√
π

2
n−2

2

0(n − αβ)

0
(
αβ
2

)
0
(

n+1−αβ
2

) = 2
n
2−αβ

0
(

n−αβ
2

)
0
(
αβ
2

) ,

where we have used the formula 0(2z) = 22z−1π−
1
20(z)0(z+ (1/2)). This gives for 0 < αβ <

n,

Sα,β(ω) ∼
‖ω‖αβ−n

2αβπ
n
2

0
(

n−αβ
2

)
0
(
αβ
2

) as ‖ω‖ → 0+. (3.23)
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It is easy to verify that by putting α = 2 in (3.21), (3.22) and (3.23), we get back (3.17), (3.18)
and (3.19) respectively. The low frequency behaviors of Sα,β(ω) are summarized below.

Proposition 3.3. For all α ∈ (0, 2] and β > 0, the low frequency limit of the spectral density
Sα,β(ω) is given by

Sα,β(ω) ∼
‖ω‖αβ−n

2αβπ
n
2

0
(

n−αβ
2

)
0
(
αβ
2

) , if αβ < n;

Sα,β(ω) ∼ 1

2n−1π
n
2 0( n

2 )

{
ln 1
‖ω‖
−

β
n (ψ(β)+ γ )+ ln 2− 1

2γ +
1
2ψ

( n
2

)}
, if αβ = n;

Sα,β(ω) ∼ 1

2n−1π
n
2 0( n

2 )

0( n
α )0(β−

n
α )

α0(β)
, if αβ > n.

We see that if 0 < αβ ≤ n, Sα,β(ω) is divergent at the origin and if 0 < αβ < n,
Sα,β(ω) ∼ ‖ω‖αβ−n as ‖ω‖ → 0+. Note that the condition 0 < αβ ≤ n agrees with the
LRD condition. In fact, it is a basic fact that for a stationary field with positive covariance, it
is LRD if and only if its spectral density diverges at the origin. We would also like to point out
that the low frequency limit of the spectral density of the Gaussian field with powered exponent
covariance Ξα,β(t) (2.4) is finite as shown by Garoni and Frankel [16], in agreement with the
fact that Ξα,β(t) is SRD.

We remark that by considering

Sα,β(ω)− “leading order term as ‖ω‖ → 0+”,

we can find the next order term in the asymptotic expansion of Sα,β(ω) when ‖ω‖ → 0+ using
the same methods we employed above. The results depend on more complicated conditions on α
and β.

We also briefly remark that the asymptotic behavior of the spectral density at low frequency
is connected to the large time behavior of the covariance function. For the covariance function
Cα,β(τ ) which satisfies

Cα,β(τ ) ∼ L(τ )‖τ‖−αβ , ‖τ‖ → ∞, (3.24)

where L(τ ) is a slowly varying function for large ‖τ‖, i.e. L(cτ)/L(τ )→ 1 as ‖τ‖ → ∞ for all
positive constant c, Hardy–Littlewood–Karamata–Tauberian theorem (see e.g. [34,35]) implies
that the spectral density Sα,β(ω) has the following asymptotic behavior

Sα,β(ω) ∼ cn,αβ‖ω‖
αβ−n L

(
1
ω

)
, ‖ω‖ → 0+, if αβ < n,

where

cn,αβ =
1

2αβπ
n
2

0
(

n−αβ
2

)
0
(
αβ
2

) .

4. Gaussian sheet with generalized Cauchy covariance

We can also introduce another type of n-dimensional process X#
α,β(t), called Gaussian sheet

with generalized Cauchy covariance (GSGCC).
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Definition 4.1. The GSGCC is a centered Gaussian random field X#
α,β(t) indexed by two

multidimensional parameters α = (α1, . . . , αn) and β = (β1, . . . , βn), with αi ∈ (0, 2], βi > 0
for all i = 1, . . . , n, and with covariance given by

C#
α,β(τ ) =

〈
X#
α,β(t + τ)X

#
α,β(t)

〉
=

n∏
i=1

Cαi ,βi (τi ) =

n∏
i=1

(
1+ |τi |

αi
)−βi , (4.1)

where Cαi ,βi (τi ) is the covariance of one-dimensional GFGCC indexed by αi and βi .

Heuristically, one can regard X#
α,β(t) as the product of n independent one-dimensional GFGCC

processes Xαi ,βi (ti ). However, since the product of independent normal random variables is not
a normal random variable, we shall not write X#

α,β(t) =
∏n

i=1 Xαi ,βi (ti ). Nevertheless, it is true
that for any integer m ≥ 1,

E
([

X#
α,β(t)

]m)
=

n∏
i=1

E
([

Xαi ,βi (ti )
]m)

.

The GSGCC X#
α,β(t) is an anisotropic Gaussian random field and it does not satisfy the

definition of local self-similarity given in Definition 2.2. However, we can show that it is lass and
has tangent field according to Definition 2.3. Assume that α1 = · · · = αmα < αmα+1 ≤ · · · ≤ αn .
Namely, for some mα ∈ {1, . . . , n}, α1 = α2 = · · · = αmα = minα, and for all i ≥ mα + 1,
αi 
 minα. Here minα = min{α1, . . . , αn}.

Proposition 4.2. GSGCC is lass with tangent field Tα,β(t), which is a stationary centered
Gaussian field with covariance〈

Tα,β(u)Tα,β(v)
〉
=

mα∑
i=1

βi

(
|ui |

minα
+ |vi |

minα
− |ui − vi |

minα
)
.

Proof. From definition, it is easy to see that

C#
α,β(τ ) =

n∏
i=1

{
1− βi |τi |

αi
[
1+ O|τi |

αi
]}

as |τi | → 0+, i = 1, . . . , n. (4.2)

Therefore,

C#
α,β(τ ) = 1−

mα∑
i=1

βi |τi |
minα
+ O

(
n∑

i=mα+1

|τi |
αi +

mα∑
i=1

|τi |
2 minα

)
. (4.3)

Consequently,

lim
ε→0+

〈
∆εu X#

α,β(t)

εminα/2

∆εvX#
α,β(t)

εminα/2

〉

= lim
ε→0+

1

εminα

{
C#
α,β(ε(u − v))− C#

α,β(εu)− C#
α,β(εv)+ 1

}
=

mα∑
i=1

βi

(
|ui |

minα
+ |vi |

minα
− |ui − vi |

minα
)
. �
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From this proposition we see that in general, the tangent field Tα,β(u) of the GSGCC X#
α,β(t)

defined by Definition 2.3 are uncorrelated in some of the directions of Rn . It does not fully
capture the locally self-similar property of X#

α,β(t). There is another measure of local self-
similarity, called local multiple self-similarity that better describe this kind of process. Recall
that [18] a stochastic process X (t) is called multi-self-similar (mss) of index H ∈ Rn

+ if and only
if for any c ∈ Rn

+,

X (c1t1, . . . , cn tn)=d cH1
1 . . . cHn

n X (t1, . . . , tn).

It is obvious that a H -mss field is a
[∑n

i=1 Hi
]
-ss field, but in general a self-similar field is not

multi-self-similar. The notion of lss can be generalized accordingly.

Definition 4.3. A centered stationary Gaussian field is n-ple locally self-similar of order α/2 if
its covariance function C(τ ) satisfies for ‖τ‖ → 0+,

C(τ ) =
n∏

i=1

(
Ai − Bi |τi |

αi
[
1+ O

(
|τi |

δi
)])
,

for some Ai , Bi , δi > 0, 1 ≤ i ≤ n.

In view of (4.2), it is easy to see that X#
α,β(t) is n-ple locally self-similar with Ai = 1, Bi = βi

and δi = αi . We also note that the local multi-self-similarity is equivalent to

X#
α,β(t + cτi ei )− X#

α,β(t)=d cαi
[

X#
α,β(t + τi ei )− X#

α,β(t)
]

as τi → 0+, (4.4)

for any c ∈ R+. Here ei is the unit vector in the ti direction. This can also be rephrased as n-ple
lass.

Proposition 4.4. X#
α,β(t) is n-ple lass. More precisely, for every i = 1, . . . , n,

lim
ε→0+

{
X#
α,β(t + εui ei )− X#

α,β(t)

ε
αi /2
i

}
ui∈R
=
√

2βBαi /2(ui ), (4.5)

where Bα/2(u) is the one dimensional fractional Brownian motion of index α/2.

The proof is the same as Proposition 2.4.
One should observe that the n-ple lass here is different from the lass defined in Definition 2.3.

We take the limit process in each of the ti -direction separately and the limit process can be
regarded as the partial derivative process of X#

α,β(t) in the ti -direction. A disadvantage of
this definition is that the limit process of an n-dimensional field is a one-dimensional process.
Therefore, we will define another limit process that will better reflect local multi-self-similarity,
as were considered in [23,5]. Given a stochastic process X (t), t ∈ Rn , we define its total
increment by u ∈ Rn at the point t ∈ Rn as

�u X (t) =
∑

δ∈{0,1}n
(−1)

n−
n∑

i=1
δi

X

(
t +

n∑
i=1

δi ui ei

)
.
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When n = 1, this is the same as the increment, i.e. �u X (t) = ∆u X (t). When n = 2, we have

�(u1,u2)X (t1, t2) = X (t1 + u1, t2 + u2)− X (t1 + u1, t2)− X (t1, t2 + u2)+ X (t1, t2),

which is also known as the rectangular increment. For general n, given t, u ∈ Rn , the set of
points{

t +
n∑

i=1

δi ui ei

}
δ∈{0,1}n

are the vertices of the hyperrectangle with t and t + u as one of the main diagonals. By giving
the vertex t + u a weight +1, the other vertices of the hyperrectangle can be given a weight +1
and−1 alternatingly so that adjacent vertices has different weights. �u X (t) is then the weighted
sum of the field X (t) at the vertices of the hyperrectangle.

Recall that the fractional Brownian sheet B#
α/2(t), t ∈ Rn of index α/2 ∈ (0, 1)n is a centered

Gaussian process with covariance〈
B#
α/2(t)B

#
α/2(s)

〉
=

1
2n

n∏
i=1

(
|ti |

αi + |si |
αi − |ti − si |

αi
)
.

It is well known that B#
α/2(t) is a self-similar field of order

∑n
i=1 αi/2, and multi-self-similar

of order α/2. However, unlike the Lévy fractional Brownian field (2.6), the fractional Brownian
sheet is not a process with stationary increment. Nevertheless, it is a process with stationary total
increment, i.e.,{

�u B#
α/2(t), u ∈ Rn

}
=d

{
�u B#

α/2(s), u ∈ Rn
}
, ∀ t, s ∈ Rn .

Now returning to the local asymptotic multi-self-similarity of GSGCC, we can show the
following:

Proposition 4.5.

lim
ε→0+

〈
�ε.u X#

α,β(t)
n∏

i=1
ε
αi /2
i

〉
u∈Rn

=d

[
n∏

i=1

√
2βi

]
B#
α/2(u).

Here ε.u =
∑n

i=1 εi ui ei .

Proof. If we heuristically write X#
α,β(t) as

∏n
i=1 Xαi ,βi (ti ), then heuristically the total increment

�u X#
α,β(t) can be written as the product of increments

∏n
i=1 ∆ui Xαi ,βi (ti ), and the result follows

from Proposition 2.4.
For a more rigorous proof, notice that

〈
�ε.u X#

α,β(t)�ε.vX#
α,β(t)

〉
=

∑
δ∈{0,1}n

∑
η∈{0,1}n

(−1)

n∑
i=1

δi+
n∑

i=1
ηi

C#
α,β

(
n∑

i=1

εi [δi ui − ηivi ] ei

)

=

∑
δ∈{0,1}n

∑
η∈{0,1}n

(−1)

n∑
i=1

δi+
n∑

i=1
ηi

n∏
i=1

Cαi ,βi (εi [δi ui − ηivi ])
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=

n∏
i=1

{
Cαi ,βi (0)− Cαi ,βi (εi ui )− Cαi ,βi (εivi )+ Cαi ,βi (εi [ui − vi ])

}
=

n∏
i=1

〈
∆εi ui Xαi ,βi (ti )∆εivi Xαi ,βi (ti )

〉
.

The result follows. �

From this proposition, we see that the total increment process can capture the locally multi-self-
similar property of the GSGCC better. It also shows that locally, GSGCC behaves similarly as
the fractional Brownian sheet. One would tend to use Propositions 4.2 and 2.6 to conclude that
the Hausdorff dimension of the graph of GSGCC over a hyperrectangle is

dn,α := n + 1−
1
2

min{α1, . . . , αn}.

However, Proposition 2.6 cannot be applied here since Proposition 4.2 does not imply that the
fractal index of GSGCC is minα. For the fractional Brownian sheet B#

α/2, Kamont [26] showed
that the Hausdorff dimension of its graph is bounded above by dn,α . In [4], Ayache used wavelet
method to show that the Hausdorff dimension of the graph of the fractional Brownian sheet B#

α/2
is indeed equal to dn,α . This fact was proved again by Ayache and Xiao [6] as a special case of a
more general result on Hausdorff dimension of fractional Brownian sheets from Rn to Rd , using
a different method. Therefore, it is natural for us to conjecture that the Hausdorff dimension of
the graph of GSGCC is also dn,α . In fact, (4.3) implies that

σ 2
X#
α,β

(τ ) =

〈[
X#
α,β(t + τ)− X#

α,β(t)
]2
〉
= O

(
‖τ‖minα

)
as ‖τ‖ → 0+.

By a well-known theorem (see e.g. [1]), this implies that the Hausdorff dimension of the graph
of GSGCC is bounded above by dn,α . On the other hand, it is easy to show that

Lemma 4.6. Let C =
∏n

i=1[ai , bi ] be a hyperrectangle in Rn . There exist constants c1 and c2
such that

c1

n∑
i=1

|ti − si |
αi ≤

〈[
X#
α,β(t)− X#

α,β(s)
]2
〉
≤ c2

n∑
i=1

|ti − si |
αi , (4.6)

for all t, s ∈ C.

Then by adapting the proof in [51] for the lower bound on the Hausdorff dimension of general
anisotropic Gaussian fields with stationary increments, it can be verified that the graph of GSGCC
over a hyperrectangle has Hausdorff dimension equal to dn,α .

The condition for LRD can be generalized to random sheet and it becomes∫
Rn
+

∣∣∣C#
α,β(τ )

∣∣∣ dnτ = ∞. (4.7)

Since

C#
α,β(τ ) =

n∏
i=1

Cαi ,βi (τi ),
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and Proposition 2.8 for n = 1 gives∫
R+

∣∣Cαi ,βi (τi )
∣∣ dτi = ∞⇐⇒ 0 < αiβi ≤ 1,

we have

Proposition 4.7. GSGCC is LRD if and only if for some 1 ≤ i ≤ n, 0 < αiβi ≤ 1; it is SRD if
and only if αiβi > 1 for all 1 ≤ i ≤ n.

In order to determine the asymptotic behavior for the spectral density of the generalized
Cauchy sheet, we observe that the spectral density of GSGCC, which we denote by S#

α,β(ω) can
be expressed as products of spectral densities of one-dimensional isotropic GFGCC considered
in Section 3. Namely,

S#
α,β(ω) =

n∏
i=1

Sαi ,βi (ωi ). (4.8)

Therefore, the high frequency and low frequency behaviors of the spectral density S#
α,β(ω) can

be obtained from Propositions 3.2 and 3.3 respectively.

Proposition 4.8. The high frequency limit of the spectral density S#
α,β(ω) is given by

S#
α,β(ω) ∼

n∏
i=1

Hi (αi , βi ;ωi ), ‖ω‖ → ∞,

where

Hi (αi , βi ;ωi ) =
βi

π
0 (αi + 1) sin

παi

2
|ωi |
−αi−1, if αi ∈ (0, 2);

and

Hi (αi , βi ;ωi ) =
|ωi |

βi−1

2βi0(βi )
e−|ωi |, if αi = 2.

Proposition 4.9. The low frequency limit of the spectral density S#
α,β(ω) is given by

S#
α,β(ω) ∼

n∏
i=1

Li (αi , βi ;ωi ), ‖ω‖ → 0+,

where

Li (αi , βi ;ωi ) =
0(1− αiβi )

π
sin

παiβi

2
|ω|αiβi−1, if αiβ1 < 1;

Li (αi , βi ;ωi ) =
1
π

{
ln

1
|ωi |
− βi (ψ(βi )+ γ )− γ

}
, if αiβi = 1;

Li (αi , βi ;ωi ) =
1
π

0
(

1
αi

)
0
(
βi −

1
αi

)
αi0(βi )

, if αiβi > 1.

Here we have used the fact that 0(2z) = 22z−1π−
1
20(z)0

(
z + 1

2

)
([22], no. 1 of 8.335),

0(z)0(1− z) = π/ sin(π z) and ψ(1/2) = −γ − 2 ln 2 ([22], no. 2 of 8.366).



S.C. Lim, L.P. Teo / Stochastic Processes and their Applications 119 (2009) 1325–1356 1347

5. Lamperti transformation of GFGCC and GSGCC

In his seminal paper [32], Lamperti introduced a transformation which provides a one to one
correspondence between a self-similar process and a stationary process. For a stationary process
X (t), t ∈ R, we let

Y (t) = t H X (ln t), (5.1)

for t ∈ R+, H > 0, and Y (0) = 0 be its H -Lamperti transfrom. Then Y (t) is an H -self-similar
(H -ss) process. Conversely, if {Y (t), t ≥ 0} is H -ss with zero mean, then the inverse Lamperti
transformation of Y (t) defined by

X (t) = e−Ht Y (et ), t ∈ R, (5.2)

is a stationary process.
There are two ways to define extensions of Lamperti transformation to Rn linking stationary

random field to a self-similar random field. Given a stationary random field X (t), t ∈ Rn , the
first way to define its Lamperti transformation is, given H ∈ R+, defined by

Y (t) = ‖t‖H X (ln t1, . . . , ln tn), (5.3)

for t ∈ Rn
+. It is easy to show that

Proposition 5.1. Let Y (t), t ∈ Rn
+ be the H-Lamperti transform of a stationary field X (t), t ∈

Rn defined by (5.3). Then Y (t) is a H-ss field.

Proof. For any c ∈ R+, we have

Y (ct) =d ‖ct‖H X (ln[ct1], . . . , ln[ctn])

=d cH
‖t‖H X (ln t1 + ln c, . . . , ln tn + ln c)

=d cH
‖t‖H X (ln t1, . . . , ln tn)

=d cH Y (t),

i.e. Y (t) is H -ss. �

The inverse to this Lamperti transformation transforms a random field Y (t) to

X (t) = (e2t1 + · · · + e2tn )−H/2Y (et1 , . . . , etn ) (5.4)

for t ∈ Rn . For a field X (t), t ∈ Rn to be stationary, it must satisfy X (t + u)=d X (t) for all
u ∈ Rn . This is an n-parameter family of conditions. However, in proving that Y (t) is H -ss,
we only use one parameter family of these conditions, i.e. we only look at those u of the form
u1 = · · · = un . Therefore we cannot expect that the inverse Lamperti transform (5.4) of a H -ss
field is a stationary field. As an example, consider the Lévy fractional Brownian field with index
H , BH (t), which is a H -ss field. Define its inverse H -Lamperti transform Z(t) by (5.4). We find
that its covariance is

〈Z(t + τ)Z(t)〉 =
1
2

(
e2(t1+τ1) + · · · + e2(tn+τn)

)−H/2 (
e2t1 + · · · + e2tn

)−H/2
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×

{(
e2(t1+τ1) + · · · + e2(tn+τn)

)H
+

(
e2t1 + · · · + e2tn

)H

−

(
[et1+τ1 − et1 ]2 + · · · + [etn+τn − etn ]2

)H
}
.

It is easy to verify that for n ≥ 2, this expression is not independent of t ∈ Rn . Therefore, Z(t)
is not a stationary process.

To make full use of the n-parameter families of symmetry in a stationary process, there is
another definition of Lamperti transformation introduced by [18]. Given a stationary process
X (t), t ∈ Rn , and a multi-index H ∈ Rn

+, the second H -Lamperti transform of X (t), denoted by
Y(t), is defined as

Y(t) = t H1
1 . . . t Hn

n X (ln t1, . . . , ln tn) (5.5)

for t ∈ Rn
+. It was shown in [18] that

Proposition 5.2. Let Y(t), t ∈ Rn
+ be the H-Lamperti transform of a stationary field X (t), t ∈

Rn defined by (5.5). Then Y(t) is a H-mss field.

The inverse of this second Lamperti transformation transform a field Y(t), t ∈ Rn
+ to X (t), t ∈

Rn , where

X (t) = e
−

n∑
i=1

ti Hi
Y(et1 , . . . , etn ). (5.6)

It has a nice property, namely, as was shown in [18]:

Proposition 5.3. Let X (t), t ∈ Rn be the inverse second H-Lamperti transform of a H-mss field
Y(t), t ∈ Rn

+ defined by (5.6). Then X (t) is a stationary field.

As a side remark, it can be shown that (5.5) is essentially the unique (up to some multiplicative
constants) transformation that takes a stationary process to a H -mss. However, if for c ∈ Rn

+, β ∈

R+, fc,β(t), t ∈ Rn
+ is a function of the form

fc,β(t) =
n∑

i=1

ci t
β
i ,

then if c[1], . . . , c[m] ∈ Rn
+, β1, . . . , βm ∈ R+ and γ1, . . . , γm ∈ R+ are such that

β1γ1 + · · · + βmγm = H , it is easy to verify that the transform

X (t) 7→
m∏

i=1

fc[i],βi (t)
γi X (ln t1, . . . , ln tn)

takes a stationary process to a H -ss process, but its inverse in general does not take a H -ss
process to a stationary process. The first Lamperti transformation (5.3) corresponds to m = 1,
c[1]1 = · · · = c[1]n = 1, β1 = 2 and γ1 = H/2.



S.C. Lim, L.P. Teo / Stochastic Processes and their Applications 119 (2009) 1325–1356 1349

Returning to the GFGCC Xα,β(t) and the GSGCC X#
α,β(t), Proposition 5.1 shows that their

first Lamperti transforms, Yα,β(t) and Y #
α,β(t), are H -ss fields with covariances〈

Yα,β(t)Yα,β(s)
〉
= ‖t‖H

‖s‖H 〈Xα,β(ln t1, . . . , ln tn)Xα,β(ln s1, . . . , ln sn)
〉

= ‖t‖H
‖s‖H

1+

(
n∑

i=1

(ln ti − ln si )
2

)α/2−β ,
and 〈

Y #
α,β(t)Y

#
α,β(s)

〉
= ‖t‖H

‖s‖H
n∏

i=1

[
1+ (ln ti − ln si )

αi
]−βi

respectively. On the other hand, Proposition 5.2 shows that their second Lamperti transforms,
Yα,β(t) and Y#

α,β(t), are H -mss fields with covariances

〈
Yα,β(t)Yα,β(s)

〉
=

n∏
i=1

t Hi
i

n∏
i=1

s Hi
i

1+

(
n∑

i=1

(ln ti − ln si )
2

)α/2−β ,
and 〈

Y#
α,β(t)Y

#
α,β(s)

〉
=

n∏
i=1

t Hi
i s Hi

i

[
1+ (ln ti − ln si )

αi
]−βi

respectively.
Next we consider whether the LRD property of GFGCC and GSGCC is preserved under the

Lamperti transformations. First we note that the LRD condition (2.9) can be extended to non-
stationary field in the following way.

Definition 5.4. Let

RX (t, t + τ) =
C(t, t + τ)

√
C(t + τ, t + τ)C(t, t)

(5.7)

be the correlation function of a non-stationary Gaussian field X (t). Then the condition of LRD
for the non-stationary Gaussian field X (t) is given by∫

Rn
+

|RX (t, t + τ)| dnτ = ∞. (5.8)

Proposition 5.5. A. The H-ss Gaussian field Yα,β(t) is LRD for all α ∈ (0, 2] and β > 0.
B. The H-ss Gaussian field Y #

α,β(t) is LRD for all α, β ∈ Rn
+ satisfying αi ∈ (0, 2] and βi > 0,

1 ≤ i ≤ n.
C. The H-mss Gaussian field Yα,β(t) is LRD for all α ∈ (0, 2] and β > 0.
D. The H-mss Gaussian field Y#

α,β(t) is LRD for all α, β ∈ Rn
+ satisfying αi ∈ (0, 2] and

βi > 0, 1 ≤ i ≤ n.

Proof. It is easy to verify that both the processes Yα,β(t) and Yα,β(t) have the same correlation
function
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RYα,β (t + τ, t) = RYα,β (t + τ, t)

=

1+

(
n∑

i=1

(
ln
[

1+
τi

ti

])2
)α/2−β , τ ∈ Rn

+, (5.9)

which is independent of H . In order to show that these processes are LRD, we have by condition
(5.8), ∫

Rn
+

∣∣RYα,β (t + τ, t)
∣∣ dnτ =

∫
Rn
+

1+

(
n∑

i=1

(
ln
[

1+
τi

ti

])2
)α/2−β dnτ

=

[
n∏

i=1

ti

]∫
Rn
+

1+

(
n∑

i=1

(ln [1+ ui ])2
)α/2−β dnu

=

[
n∏

i=1

ti

]∫
Rn
+

1+

(
n∑

i=1

v2
i

)α/2−β [ n∏
i=1

evi

]
dnv,

where we have used the substitutions ui = τi/ti and vi = ln(1+ ui ). Clearly, when ‖v‖ → ∞,
the integrand also approaches∞. Therefore, the last integral diverges for all α, β, which is the
condition for Yα,β(t) and Yα,β(t) to be LRD. The statements for Y #

α,β(t) and Y#
α,β(t) are proved

analogously. �

Note that the LRD property of GFGCC and GSGCC is preserved under the Lamperti
transformations, but the SRD property is not preserved. Here we have an example that the
application of Lamperti transformation to a LRD stationary process (in this case the GFGCC and
GSGCC) gives a (multi)-self-similar process with LRD. Examples of Lamperti transformation
encountered so far relate either two short memory processes (for example, Ornstein-Uhlenbeck
process and Brownian motion), or between a SRD process and a LRD process (in the case
of fBm and its inverse Lamperti transformed process). For examples, one can show that the
inverse Lamperti transformation of fractional Brownian sheet with LRD property gives rise to a
stationary random sheet with short range dependence, and the stationary field associated with the
Lévy fractional Brownian field is a stationary field with SRD.

Recall that Lévy fractional Brownian field is essentially the only self-similar Gaussian field
with stationary increments [46]. Similarly, one can show that fractional Brownian sheet is
essentially the only multi-self-similar Gaussian random field that has stationary total increments.
Hence Yα,β(t), Y #

α,β(t), Yα,β(t) and Y#
α,β(t), the self-similar and multi-self-similar fields

associated with GFGCC and GSGCC, do not have stationary increments or total increments.
There exists a weaker stationary property known as asymptotically locally stationarity, which
requires the field to be stationary in the limit ‖τ‖ → 0+.

Definition 5.6. A centered Gaussian random field X (t) is said to have asymptotically locally
stationary increment if and only if as ‖τ‖ → 0+, the variance of its increment σ 2

t (τ ) =〈
[∆τ X (t)]2〉 is independent of t . More precisely,

σ 2
t (τ ) = f (τ )+ g(t, τ ), (5.10)

where f (τ ) is independent of t , and for any fixed t , g(t, τ ) = o( f (τ )) as functions of
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τ . Similarly, a centered Gaussian random field X (t) is said to have asymptotically locally
stationary total increment if and only if as ‖τ‖ → 0+, the variance of its total increment
σ̂ 2

t (τ ) =
〈
[�τ X (t)]2〉 is independent of t .

For the random field Yα,β(t), we have〈[
∆τYα,β(t)

]2〉
=

〈[
Yα,β(t + τ)

]2〉
+

〈[
Yα,β(t)

]2〉
− 2

〈
Yα,β(t + τ)Yα,β(t)

〉
= ‖t + τ‖2H

+ ‖t‖2H
− 2‖t + τ‖H

‖t‖H

1+

(
n∑

i=1

(
ln
[

1+
τi

ti

])2
)α/2−β .

Using

‖t + τ‖ =
√
(t1 + τ1)2 + · · · + (tn + τn)2 = ‖t‖

1+

2
n∑

i=1
tiτi

‖t‖2
+ O(‖τ‖2)


1/2

= ‖t‖

1+

n∑
i=1

tiτi

‖t‖2
+ O(‖τ‖2)


and 1+

(
n∑

i=1

(
ln
[

1+
τi

ti

])2
)α/2−β =

1+

(
n∑

i=1

(
τi

ti
+ O(τ 2

i )

)2
)α/2−β

=

1+

(
n∑

i=1

[
τi

ti

]2

+ O(‖τ‖3)

)α/2−β

=

1+

(
n∑

i=1

[
τi

ti

]2
)α/2
+ O(‖τ‖α+1)

−β

= 1− β

(
n∑

i=1

[
τi

ti

]2
)α/2
+ O

(
‖τ‖min{2α,α+1}

)
,

we find that as ‖τ‖ → 0+,

〈[
∆τYα,β(t)

]2〉
= ‖t‖2H

1+ 2H

n∑
i=1

tiτi

‖t‖2

+ ‖t‖2H

− 2‖t‖2H

1+ H

n∑
i=1

tiτi

‖t‖2


1− β

(
n∑

i=1

[
τi

ti

]2
)α/2
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+O
(
‖τ‖min{2,2α,α+1}

)
= 2β‖t‖2H

(
n∑

i=1

[
τi

ti

]2
)α/2
+ O

(
‖τ‖min{2,2α,α+1}

)
. (5.11)

It is obvious that the leading term is not independent of t for any H and α, unless when n = 1
and α = 2H . Therefore for n ≥ 2, Yα,β(t) does not have asymptotically locally stationary
increments. Similarly, for the fields Yα,β(t), Y #

α,β(t) and Y#
α,β(t), one can show similarly that as

‖τ‖ → 0+,

〈[
∆τYα,β(t)

]2〉
= 2βt2H1

1 . . . t2Hn
n

(
n∑

i=1

[
τi
ti

]2
)α/2
+ O

(
‖τ‖min{2,2α,α+1}

)
, (5.12)〈[

∆τY #
α,β(t)

]2
〉
= 2‖t‖2H

n∑
i=1

βi

∣∣∣ τi
ti

∣∣∣αi
+ O

(
‖τ‖min{2,2αi ,αi+1}

)
, (5.13)〈[

∆τY#
α,β(t)

]2
〉
= 2t2H1

1 . . . t2Hn
n

n∑
i=1

βi

∣∣∣ τi
ti

∣∣∣αi
+ O

(
‖τ‖min{2,2αi ,αi+1}

)
. (5.14)

Therefore for n ≥ 2, none of the fields Yα,β(t), Y #
α,β(t) and Y#

α,β(t) have asymptotically locally

stationary increments. When n = 1, all the fields Yα,β(t), Yα,β(t), Y #
α,β(t) and Y#

α,β(t) are
actually the same, and they have asymptotically locally stationary increment if and only if
α = 2H , in which case the variance of the increment σ 2

t (τ ) behaves like

σ 2
t (τ ) ∼ 2β|τ |α |τ | → 0.

Next we consider the total increments. Since increment is the same as total increment when
n = 1, we only need to consider n ≥ 2. Using similar computations as given above, one can
verify that for n ≥ 2, the fields Yα,β(t), Yα,β(t) and Y #

α,β(t) do not have asymptotically locally

stationary increments, but Y#
α,β(t) have if α = 2H . We show the computation of the latter case

here. By definition,

〈[
�τY#

α,β(t)
]2
〉
=

∑
δ∈{0,1}n

∑
η∈{0,1}n

(−1)

n∑
i=1

δi+
n∑

i=1
ηi

×

〈
Y#
α,β

(
t +

n∑
i=1

δiτi ei

)
Y#
α,β

(
t +

n∑
i=1

ηiτi ei

)〉

=

n∏
i=1

∑
(δi ,ηi )∈{0,1}2

(−1)δi+ηi (ti + δiτi )
Hi (ti + ηiτi )

Hi Cαi ,βi (ln[ti + δiτi ], ln[ti + ηiτi ])

=

n∏
i=1

{
t2Hi
i − 2(ti + τi )

Hi t Hi
i

(
1+

∣∣∣∣ln [1+
τi

ti

]∣∣∣∣αi
)−βi

+ (ti + τi )
2Hi

}
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=

n∏
i=1

{
2βi t

2Hi
i

∣∣∣∣τi

ti

∣∣∣∣αi

+ O
(
|τi |

min{2,2αi ,αi+1}
)}

= 2n
n∏

i=1

{
βi t

2Hi
i

∣∣∣∣τi

ti

∣∣∣∣αi
}
+ O

‖τ‖ n∑
i=1

αi+δ

 ,
where δ = min{2− αi , αi , 1}ni=1. If α = 2H , then as ‖τ‖ → 0+,〈[

�τY#
α,β(t)

]2
〉
∼ 2n

n∏
i=1

[βi |τi |
αi ].

Therefore, we have verified the following:

Proposition 5.7. The total increments of Y#
α,β(t) are asymptotically locally stationary if α =

2H.

Next we consider the tangent fields (Definition 2.3) of the Lamperti transforms of GFGCC
Yα,β(t) and Yα,β(t). We have

Proposition 5.8. A. The field Yα,β(t) is lass of order α/2, with tangent field at t ∈ Rn
+ being√

2β‖t‖H Bα/2

(
u1

t1
, . . . ,

un

tn

)
.

B. The field Yα,β(t) is lass of order α/2, with tangent field at t ∈ Rn
+ being

√
2β

[
n∏

i=1

t Hi
i

]
Bα/2

(
u1

t1
, . . . ,

un

tn

)
.

Proof. Using the formula〈
∆εuYα,β(t)∆εvYα,β(t)

〉
=

1
2

{〈[
∆εuYα,β(t)

]2〉
+

〈[
∆εvYα,β(t)

]2〉
−

〈[
∆ε(u−v)Yα,β(t + εv)

]2〉}
,

we obtain immediately from (5.11) that as ε→ 0,〈
∆εuYα,β(t)

εα/2

∆εvYα,β(t)

εα/2

〉

∼ β‖t‖2H


(

n∑
i=1

[
ui

ti

]2
)α/2
+

(
n∑

i=1

[
vi

ti

]2
)α/2
−

(
n∑

i=1

[
ui − vi

ti

]2
)α/2 .

Notice that this is up to the factor 2β‖t‖2H , the covariance of the scaled Lévy Brownian field{
Bα/2

(
u1

t1
, . . . ,

un

tn

)
: u ∈ Rn

}
.

The statement for Yα,β(t) is proved similarly. �
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In fact, one can also deduce from (5.11) and (5.12) that the local fractal index of the fields
Yα,β(t) and Yα,β(t) are both equal to α/2, and the Hausdorff dimension of their graphs over a
hyperrectangle is n + 1− α/2.

For the tangent fields of the Lamperti transforms of GSGCC Y #
α,β(t) and Y#

α,β(t), we recall
that given α ∈ (0, 2]n , minα = min{αi }

n
i=1, and we assume WLOG that minα = α1 = · · · =

αmα < αmα+1 ≤ · · · ≤ αn for some 1 ≤ mα ≤ n. Then as in Proposition 5.8, we can use (5.13)
and (5.14) to show that

Proposition 5.9. A. The field Y #
α,β(t) is lass of order minα/2, with tangent field at t ∈ Rn

+

being

‖t‖H Tα,β

(
u1

t1
, . . . ,

un

tn

)
,

where the field Tα,β(u), u ∈ Rn is defined in Proposition 4.2.
B. The field Y#

α,β(t) is lass of order minα/2, with tangent field at t ∈ Rn
+ being[

n∏
i=1

t Hi
i

]
Tα,β

(
u1

t1
, . . . ,

un

tn

)
.

From Propositions 2.4, 5.8, 4.2 and 5.9, we find that the tangent fields of GFGCC and GSGCC are
related to the tangent fields of their Lamperti transforms by some change of variable formulas.
Namely, if X (t) has tangent field T (u) at t ∈ Rn , then its first Lamperti transform Y (s) has
tangent field

‖s‖H T

(
u1

s1
, . . . ,

un

sn

)
at s ∈ Rn

+, and its second Lamperti transform Y(s) has tangent field[
n∏

i=1

s Hi
i

]
T

(
u1

s1
, . . . ,

un

sn

)
at s ∈ Rn

+. We also notice that the order of self-similarity of the fields Yα,β(t) and Y #
α,β(t), H , is

in general different from their order of local asymptotic self-similarity, being α/2 and minα/2
respectively.

Since the stochastic process Y#
α,β(t) resembles the GSGCC X#

α,β(t) in the sense that both
their covariances can be written as products of covariance of one-dimensional processes, we can
consider the limit of the total increments of Y#

α,β(t). It is easy to obtain as in Proposition 4.5,
using the n = 1 case of Proposition 5.8 that

Proposition 5.10.

lim
ε→0+

〈
�ε.uY#

α,β(t)
n∏

i=1
ε
αi /2
i

〉
u∈Rn

=d

[
n∏

i=1

√
2βi t

Hi−(αi /2)
i

]
B#
α/2(u).

Here ε.u =
∑n

i=1 εi ui ei .
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6. Concluding remarks

We have studied some of the basic properties of GFGCC and GSGCC, and their associated
Lamperti transforms. The asymptotic properties of the spectral densities of GFGCC and GSGCC
are considered. We expect the separate characterization of fractal dimension and long range
dependence for GFGCC and GSGCC will provide more flexibility in their applications to
modeling various surfaces and images. In the one-dimensional case, GFGCC has been applied
to model the Havriliak–Negami relaxation law [37]. The estimations of parameters for stationary
Gaussian processes have been widely studied. Some of these estimations can be adapted for
GFGCC and GSGCC, and they are crucial to the applications. Further applications in spatial-
temporal processes are possible if GFGCC is extended and modified to a space-time field to
include non-stationarity and anisotropy [40,31,9,19,47,20,12]. We hope to apply results obtained
in this paper to model various physical systems such as thin film surfaces in semiconductors [42,
45], surface ocean waves [8], geological morphology [12], etc, in a future work.
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