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Abstract

Permanental processes can be viewed as a generalization of squared centered Gaussian processes. We
analyze the connections of these processes with the local time process of general Markov processes. The
obtained results are related to the notion of infinite divisibility.
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1. Introduction

Permanental processes can be viewed as a generalization of the squared centered Gaussian
processes. Their Laplace transform is given by the power (− 1

α
) of a determinant (α > 0)

involving a kernel. Squared Gaussian processes correspond to the case of a symmetric kernel
and α = 2. The value of α is called the index of the permanental process. Permanental processes
are so called because any joint moment of a permanental process is equal to a permanent. The
problem of the existence of such processes has been solved by Vere-Jones [20]. This paper
analyzes the connections between permanental processes and the local time process of general
Markov processes.

This subject is based on the natural emergence of the permanental processes in the study of
the local times of Markov processes. In the case of a symmetric Markov process, this presence
has allowed the writing of the so-called “Isomorphism Theorems” connecting directly the law of
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the local times to the law of a squared Gaussian process. The most famous one is the identity of
Dynkin [3]. In Marcus and Rosen’s recent book, these Isomorphism Theorems are the main tool
for studying properties of the local time process of symmetric Markov processes. For example,
Marcus and Rosen have established the fact that the local time process is jointly continuous in
space and time iff the associated (squared) Gaussian process is continuous. For non-symmetric
Markov processes, a permanental process is going to replace this squared Gaussian process, and
identities similar to Dynkin’s Isomorphism Theorem can then be written. We establish here two
identities: one for the total accumulated local time of a transient Markov process, and a second
one for recurrent Markov processes stopped at inverse local times (extending an identity proven
in [10]).

The problem then is that of use of these identities. As an example of use, we show here that
the total accumulated local time process of a transient Markov process is continuous in a given
distance d almost surely if, and only if, the associated permanental process is continuous, in
that distance, almost surely. But in the general case, unlike for squared Gaussian processes,
the continuity of permanental processes is still unknown territory. We hope that the finite-
dimensional absolute continuity relation between permanental processes and squared Gaussian
processes (Proposition 2.6) will provide the key to understanding the pathwise behavior of
permanental processes.

In previous works [5,9], we have shown that the property of infinite divisibility characterizes
the squared Gaussian processes associated with symmetric Markov processes. Here we extend
this characterization to the non-symmetric case. Namely we show that a permanental process is
infinitely divisible iff it is associated with a Markov process. Further, we give its Lévy measure
in terms of the law of the local times of the associated Markov processes.

The paper is organized as follows. In Section 2 we define permanental processes and treat
some of their general properties such as existence, conditioning and absolute continuity. Section 3
deals with permanental processes associated with Markov processes. In Section 4 we establish
a characterization of the infinitely divisible permanental processes. Section 5 contains the proof
of the main results of Sections 2, 3 and 4. We end the paper by giving a translation of Shirai and
Takahashi’s conjecture on α-permanents in Section 6.

2. Existence, conditioning and absolute continuity

A permanental process with parameter set E is a positive process whose finite-dimensional
Laplace transforms are given by a negative power of a determinant. To make this precise:

Definition 2.1. A real-valued positive process (ψx , x ∈ E) is a permanental process if its
finite-dimensional Laplace transforms satisfy, for every (α1, α2, . . . , αn) in Rn

+ and every
(x1, x2, . . . , xn) in En ,

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αG|−1/β , (2.1)

where I is the n × n identity matrix, α is the diagonal matrix diag(αi )1≤i≤n , G =

(g(xi , x j ))1≤i, j≤n and β is a fixed positive number.
Such a process (ψx , x ∈ E) is called a permanental process with kernel (g(x, y), x, y ∈ E)

and index β.

Let (ηx )x∈E be a centered Gaussian process indexed by E ; then the process (η2
x )x∈E satisfies

Definition 2.1 with β = 2 and g(x, y) = E(ηxηy).



N. Eisenbaum, H. Kaspi / Stochastic Processes and their Applications 119 (2009) 1401–1415 1403

Vere-Jones has established in [19] the theorem below which gives necessary and sufficient
conditions on matrices G = (g(xi , x j ))1≤i, j≤n and β > 0 for the existence of a corresponding
permanental vector (ψxi , 1 ≤ i ≤ n). His theorem is based on the following definitions.

Definition 2.2. For any n × n matrix M

detβM =
∑
σ∈Sn

βn−ν(σ )
n∏

i=1

Mi,σ (i),

where Sn is the symmetric group of order n and ν(σ ) is the number of cycles of σ .

Note that det−1 M = |M | and det1 M = Per(M). If M is a diagonal matrix, then detβ M = |M |
for every β.

Definition 2.3. For β > 0, an n × n matrix M is said to be β-positive definite if for every
multi-index k = (k1, k2, . . . , kn) in Nn

detβ(M(k)) ≥ 0,

where M(k) denotes the |k| × |k| matrix (where |k| = k1 + k2 + · · · + kn) obtained from M by
setting

M(k)i, j = Mpi ,p j ,

with pi = 1 if 1 ≤ i ≤ k1, and pi = ` if k`−1 < i ≤ k` with ` ≥ 2.

Theorem A (Vere-Jones). A permanental vector (ψxi , 1 ≤ i ≤ n) corresponding to G =
(g(xi , x j ))1≤i, j≤n and index β exists if and only if:

(1) All the real, non-zero, eigenvalues of G are positive.
(2) For every r > 0, set Qr = G(I + rG)−1; then Qr is β-positive definite.

Note that (1) is equivalent to |I + rG| > 0 for every r > 0.
Here is our first result concerning these permanental processes. The proof is provided in

Section 5.

Proposition 2.4. Let (g(x, y), (x, y) ∈ E×E) be a real function on E×E such that there exists
a point a in E with g(x, a) = g(a, x) = 0 for every x in E. For a fixed δ > 0, assume that there
exists a permanental process (ψx , x ∈ E) with a kernel G + δ = (g(x, y)+ δ, (x, y) ∈ E × E)
and index β > 0. We then have

E
[

exp
{
−

t

2
ψa

}]
= (1+ δt)−1/β , (2.2)

and for every n, every (α1, α2, . . . , αn) in Rn
+, every (x1, x2, . . . , xn) in En and every r ≥ 0,

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}∣∣∣∣∣ψa = r

]
= |I + αG|−1/β exp

{
−

1
2

r1t(I + αG)−1α1
}
, (2.3)

where I is the n × n identity matrix, α is the diagonal matrix diag(αi )1≤i≤n , G =

(g(xi , x j ))1≤i, j≤n , 1 is the n-colomn vector of 1 ’s and 1t is its transpose.

The existence of ψ is equivalent to Vere-Jones conditions (1) and (2) for (G + δ), for every n
and every x1, x2, . . . , xn in E . As a consequence of Proposition 2.4, we obtain, under the same
assumptions, the following result which cannot be easily seen using just (1) and (2).
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Corollary 2.5. If there is a δ0 > 0 such that there exists a permanental process ψ with kernel
(G + δ0) and index β > 0, then for every δ ≥ 0 there exists a permanental process with kernel
(G+δ) and index β. In particular, denoting by φ a permanental process with kernel G and index
β, we obtain

(ψx , x ∈ E | ψa = 0)
(law)
= (φx , x ∈ E).

In the case when G is positive definite and β = 2, permanental processes with kernel G + δ and
index 2 exist for every δ ≥ 0 (see the remark below). Section 3 deals with a class of kernels G for
which permanental processes with kernel (G + δ) and index β exist for every δ ≥ 0 and β ≥ 0.

Remark 2.5.1. Proposition 2.4 implies the following property for ψ :

(ψx , x ∈ E |ψa = r)+ (ψ̃x , x ∈ E |ψ̃a = r ′)
(law)
= (ψx , x ∈ E |ψa = t)+ (ψ̃x , x ∈ E |ψ̃a = t ′),

where ψ̃ an independent copy ofψ , and r, r ′, t , t ′ non-negative numbers satisfying r+r ′ = t+t ′.
This property is well known for when (g(x, y), (x, y) ∈ E × E) is symmetric and β = 2.
Indeed, in that case (φx , x ∈ E) is a squared centered Gaussian process. More precisely there
exists a centered Gaussian process (ηx , x ∈ E) with covariance (g(x, y), x, y ∈ E) such that
(φx , x ∈ E) = (η2

x , x ∈ E). One can always add a point a by setting g(a, x) = g(x, a) = 0;

(ηx , x ∈ E ∪ {a}) remains a centered Gaussian process. We then have ψ
(law)
= (η + N )2 where N

is a centered Gaussian variable with a variance equal to δ, independent of η. This gives

(ψx , x ∈ E |ψa = r2)
(law)
= ((ηx + N )2, x ∈ E |N = r)

(law)
= ((ηx + r)2, x ∈ E),

and for η̃, an independent copy of η,

(η + a)2 + (η̃ + b)2
(law)
= (η + c)2 + (η̃ + d)2,

for all a, b, c and d such that a2
+ b2

= c2
+ d2.

Although the Laplace transform of a permanental process looks somewhat like that of a
squared Gaussian process, there is no result in the literature on the path behavior of these
processes. The following proposition connects some permanental processes of index 2 with
squared Gaussian processes and should provide the key to understanding their path behavior.

Proposition 2.6. Let (ψx , x ∈ E) be a permanental process with kernel (g(x, y), (x, y) ∈
E × E) and index 2. Assume that ( 1

2 (g(x, y) + g(y, x)), (x, y) ∈ E × E) defines a positive
definite kernel. Let (ηx , x ∈ E) be a centered Gaussian process with this covariance. Let η̃ be
an independent copy of η and ψ̃ an independent copy of ψ . For x1, x2, . . . , xn in E, we set
G = (g(xk, x j ))1≤k, j≤n , and let Λ be the complex vector (ηxk + i η̃xk , 1 ≤ k ≤ n). Then for any
functional F on Rn ,

E[F(ψxk + ψ̃xk , 1 ≤ k ≤ n)] =
E[exp{ 12 〈AΛ,Λ〉}F(η2

xk
+ η̃2

xk
, 1 ≤ k ≤ n)]

E[exp{ 12 〈AΛ,Λ〉}]
, (2.4)

where the matrix A is defined by Ai j = ((
1
2 (G + G t))−1

− G−1)i j .

Note that when the kernel G is symmetric, then the law of η2 is equal to that of ψ and A = 0.
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3. Permanental processes associated with Markov processes

We work with a transient Markov process (X t )t≥0 with a state space E . Denote by (Lx
t , x ∈

E, t ≥ 0) its local time process and by (g(x, y), (x, y) ∈ E × E) its potential density. We shall
normalize the local time so that it satisfies g(x, y) = Ex (L

y
∞). Let a be a point in E for which

g(a, a) > 0. We define the probability P̃a by

P̃a |Ft =
g(X t , a)

g(a, a)
Pa |Ft ,

where Ft is the σ -field generated by (Xs, 0 ≤ s ≤ t), augmented as usual, and Pa the probability
under which X starts at a. Under P̃a , the process X starts at a and is killed at its last visit to a.
The expectation with respect to P̃a is denoted by Ẽa .

Theorem 3.1. For every β > 0, there exists a positive process (ψx , x ∈ E) such that for every
(α1, α2, . . . , αn) in Rn

+ and every (x1, x2, . . . , xn) in En ,

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αG|−1/β , (3.1)

where I is the n × n identity matrix, α is the diagonal matrix diag(αi )1≤i≤n and G =

(g(xi , x j ))1≤i, j≤n .

In the case β = 2, we note that for every fixed x ∈ E , ψ(x) has the law of a squared centered
Normal variable with variance equal to g(x, x). If moreover the potential density is symmetric,
ψ is the square of a centered Gaussian process with covariance equal to (g(x, y), x, y ∈ E). This
has been already noted and exploited by many authors (Dynkin [3,4], Marcus and Rosen [15],
Eisenbaum [5], Eisenbaum et al. [10], . . . ). This Gaussian process is named the “Gaussian
process associated with X”.

The process ψ defined in Theorem 3.1 will be called the permanental process with index β,
associated with X .

We will see in Section 4 that even when the potential density g is not symmetric, it might
happen that the associated permanental process ψ with index 2 is the square of a centered
Gaussian process.

From now on (ψx , x ∈ E) will denote the permanental process with index 2 associated with
the Markov process X . We assume thatψ is independent of X ; this is always possible by defining
ψ on a probability space unrelated to that of X . On this probability space, the expectation will
be denoted by 〈 ; 〉. The existence of an associated permanental process with index β for every
β > 0 implies immediately the infinite divisibility of ψ . Lemma 3.1 of [7] characterizes the
property of infinite divisibility of positive processes as follows: for every a ∈ E such that
g(a, a) > 0, there exists a process (l(a)x , x ∈ E) independent of ψ such that

ψ (a)
(law)
= ψ + l(a), (3.2)

where (ψ (a)x , x ∈ E) denotes the process (ψx , x ∈ E) under the probability 1
〈ψa〉
〈ψa, .〉.

The theorem below shows that for every a, l(a)
(law)
= L∞ under P̃a . It provides the connection

between the law of ψ , the permanental process with index β = 2 associated with X , and the law
of (Lx

∞, x ∈ E).
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Theorem 3.2. For every a ∈ E such that g(a, a) > 0, for every functional F on the space of
measurable functions from E into R, we have

P̃a

〈
F

(
Lx
∞ +

1
2
ψx ; x ∈ E

)〉
=

〈
ψa

g(a, a)
F

(
1
2
ψx ; x ∈ E

)〉
. (3.3)

We mention that a paper by Le Jan [14] posted on ArXiv refers to this identity.
The following corollary gives the Lévy measure of ψ .

Corollary 3.3. The process ψ is an infinitely divisible process with a Lévy measure ν

characterized by the following marginals:

ν(ψ(a)/2,ψ(x2)/2,...ψ(xn)/2)(dy1, dy2, . . . , dyn)

=
g(a, a)

2y1
P̃a(L

a
∞ ∈ dy1, Lxi

∞ ∈ dyi , 2 ≤ i ≤ n).

Equivalently the Lévy measure of ψ/2 is equal to the law of (Lx
∞, x ∈ E) under g(a,a)

2La
∞

P̃a for
every a ∈ E with g(a, a) > 0.

Theorem 3.2 and Corollary 3.3 provide interesting connections between the path properties of
the process (ψx , x ∈ E) and the path properties of the local time process. To state some of them,
assume that (E, d) is a locally compact metric space. We see immediately, thanks to (3.3), that
if (ψx , x ∈ E) is d-continuous then (Lx

∞, x ∈ E) is d-continuous.
The next theorem follows directly from this last remark and from Corollary 3.3.

Theorem 3.4. The local time process (Lx
∞, x ∈ E) is d-continuous iff (ψx , x ∈ E) is d-

continuous.

When the Markov process X is symmetric, Theorem 3.4 implies that the associated Gaussian
process is continuous, a result which has already been established by Marcus and Rosen [15].
Their proof is based on the Isomorphism Theorems but does not make use of the infinite
divisibility of ψ .

We end this section by giving a version in the non-symmetric case of a theorem established
in [10]. Assume that X is a recurrent Markov process with state space E and having a local time
at each x ∈ E . For a ∈ E , define Ta = inf{t ≥ 0 : X t = a} and τr = inf{t ≥ 0 : La

t > r}.
Let Sθ be an exponential time with parameter θ , independent of X . Then X killed at Ta and
X killed at τSθ are both transient Markov processes. We denote by φ and ψ their respective
associated permanental processes with index 2. We have the following identity for the process
(Lx
τr
, x ∈ E).

Corollary 3.5. Let X be a recurrent Markov process. For a ∈ E and every functional F on the
space of measurable functions from E into R,

Pa

〈
F

(
Lx
τr
+

1
2
φx ; x ∈ E

)〉
=

〈
F

(
1
2
ψx ; x ∈ E

)
|ψa = r

〉
. (3.4)

Further, ((ψx ; x ∈ E)|ψa = 0)
(law)
= (φx ; x ∈ E).
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4. Characterization of the infinitely divisible permanental processes

Similarly to what has been done in the symmetric case (see [9]), one might ask whether the
property of infinite divisibility characterizes the associated permanental processes. The answer
is affirmative. A permanental process is infinitely divisible if, and only if, it is associated with a
Markov process. In particular, a squared Gaussian process is infinitely divisible if and only if it
is a permanental process associated with a Markov process. This does not imply necessarily that
the Gaussian process itself is associated with a Markov process; indeed, we have proved in [6]
that this is a stronger property.

If a permanental process with index β > 0 is infinitely divisible then the permanental process
with the same kernel and index 2 is infinitely divisible too. Hence from now on in this section
we will take β = 2.

Towards proving the above result for the non-symmetric case, we need to extend the main
tool, namely Bapat’s criterion, to that case. This is the content of Lemma 4.2.

Definition 4.1. An n × n matrix A is an M-matrix if:
(i) Ai j ≤ 0 for i 6= j ;
(ii) A is non-singular and A−1

≥ 0 (i.e. A−1
i j ≥ 0 for every i, j).

Lemma 4.2. Let (Gi, j , 1 ≤ i, j ≤ n) be a real non-singular n×n matrix. There exists a positive
infinitely divisible random vector (ψ1, ψ2, . . . , ψn) such that for every (α1, α2, . . . , αn) ∈ Rn

+,

E

[
exp

{
−

1
2

n∑
i=1

αiψi

}]
= |I + αG|−1/2 (4.1)

if, and only if, there exists a signature matrix S such that SG−1S is an M-matrix.

It follows from Lemma 4.2 that the real eigenvalues of a matrix G satisfying (4.1) must be
positive.

Theorem 4.3. Let (Gi, j , 1 ≤ i, j ≤ n) be a real non-singular n × n matrix. There exists a
positive infinitely divisible random vector (ψ1, ψ2, . . . , ψn) such that (4.1) holds if, and only if,
for every (i, j),

G(i, j) = d(i)g(i, j)d( j), (4.2)

where d is a function on {1, 2, . . . , n} and g the potential density of a Markov process.

Remark 4.3.1. As has been noticed in [9], the property (4.2) is equivalent to the following
property:

G(i, j) = D−1(i)g̃(i, j)D( j) (4.3)

where D is a positive function and g̃ the potential density of a Markov process. But then
|I +αG| = |I +αg̃|, which means precisely that the vector ψ is a permanental vector associated
with the Markov process with potential density g̃.

Under an assumption of continuity, the following theorem extends Theorem 4.3 from vectors
to processes.
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Theorem 4.4. Let (k(x, y), x, y ∈ E) be a jointly continuous function on E × E such that
k(x, x) > 0 for every x ∈ E. There exists a positive infinitely divisible process (ψx , x ∈ E) such
that for every (α1, α2, . . . , αn) in Rn

+ and every (x1, x2, . . . , xn) in En ,

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αK |−1/2,

where K = (k(xi , x j ))1≤i, j≤n , if, and only if,

k(x, y) = d(x)g(x, y)d(y), (4.4)

where d is a positive function and g the potential density of a Markov process.

Similarly to the case of vectors, Remark 4.3.1 leads to the following corollary.

Corollary 4.5. Let (k(x, y), x, y ∈ E) be a jointly continuous function on E × E such that
k(x, x) > 0 for every x ∈ E. Let (ψx , x ∈ E) be a process such that for every (α1, α2, . . . , αn)

in Rn
+ and every (x1, x2, . . . , xn) in En ,

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αK |−1/2,

where K = (k(xi , x j ))1≤i, j≤n .
Then (ψx , x ∈ E) is infinitely divisible if, and only if, it is associated with a Markov process.

5. Proofs of Sections 2, 3 and 4

Proof of Proposition 2.4. We note first that for any α = Diag(αi , 1 ≤ i ≤ n),

(I + α(G + δ)) = (I + αG)(I + δ(I + αG)−1α1)

where 1 denotes the n × n matrix with all its entries equal to 1. Hence

|I + α(G + δ)| = |I + αG||I + D1|

where D is the diagonal matrix such that Di i =
∑n

j=1(δ(I + αG)−1α)i j . Now note that
|I+D1| = 1+Tr(D) = 1+1t D1, where 1t is the vector (1, 1, . . . 1) of Rn (see for example [20]
identity (4) in Section 2). Consequently

|I + α(G + δ)| = |I + αG|(1+ δ1t(I + αG)−1α1). (5.1)

By assumption the term |I +α(G+ δ)| is positive for every α. Consider now the terms |I +αG|
and (1 + δ1t(I + αG)−1α1); they are both continuous in α and for inf1≤i≤n|αi | small enough
they are both positive. Thanks to (5.1), their product is always positive. Consequently they are
both always positive. It follows that

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αG|−1/β(1+ δ1t(I + αG)−1α1)−1/β . (5.2)

Let N be a centered Gaussian variable with variance δ. The variable N 2 is always infinitely
divisible; hence there exists a positive random variable Z with the Laplace transform given by

E(e−
t
2 Z ) = (1+ δt)−1/β for every t ≥ 0. (5.3)
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Actually (5.3) extends to negative t such that (1 + δt) > 0. In particular, since (1 + δ1t(I +
αG)−1α1) is positive, we have

E
[

exp
{
−

1
2
(1t(I + αG)−1α1)Z

}]
= (1+ δ1t(I + αG)−1α1)−1/β .

Hence (5.2) can be rewritten as follows:

E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}]
= |I + αG|−1/βE

[
exp

{
−

1
2
(1t(I + αG)−1α1)Z

}]
.

Since this identity is true for every n, we can write it for n + 1 with xn+1 = a. Set
G̃ = (G(xi , x j ))1≤i, j≤n+1 and α̃ = diag(αi )1≤i≤n+1. We then have 1t(I + α̃G̃)−1α̃1 =
αn+1 + 1t(I + αG)−1α1, where 1t and 1 denote without ambiguity vectors of Rn+1 on the
left hand side and of Rn on the right hand side. Hence we obtain

E

[
exp

{
−

1
2

n+1∑
i=1

αiψxi

}]

= |I + αG|−1/βE
[

exp
{
−

1
2
(1t(I + αG)−1α1+ αn+1)Z

}]
. (5.4)

Note that E[exp{− 1
2αn+1ψa}] = E[exp{− 1

2αn+1 Z}]. Developing then both sides of (5.4), we
obtain∫

+∞

0
P(ψa ∈ dr)e−

1
2αn+1r E

[
exp

{
−

1
2

n∑
i=1

αiψxi

}
|ψa = r

]

= |I + αG|−1/β
∫
+∞

0
P(ψa ∈ dr)e−

1
2αn+1r exp

{
−

r

2
(1t(I + αG)−1α1)

}
,

which leads to (2.3) dr a.e. We now choose to define the conditional Laplace transform of
(ψx1 , . . . , ψxn ) given ψa = r for every r ≥ 0 by the right hand side of (2.3). �

Proof of Proposition 2.6. First note that by assumption G̃ = 1
2 (G + G t) is positive definite and

hence G is invertible. We have for any diagonal matrix α with non-negative entries

|I + (α − A)G̃| = |G̃||G̃−1
− A + α|

= |G̃||G̃−1
− A||I + α(G̃−1

− A)−1
|,

which leads to

|I + (α − A)G̃| = |G̃||G|−1
|I + αG|. (5.5)

Now since G̃ is positive definite one checks that (I − G̃1/2( A+At

2 )G̃1/2) is also positive definite.
Hence with standard arguments we obtain

E
[

exp
{
−

1
2
〈(α − A)Λ,Λ〉

}]
= |I + (α − A)G̃|−1,

and in particular for α = 0 : E[exp{ 12 〈AΛ,Λ〉}] = |G|
|G̃|

. Identity (2.4) now follows from (5.5).
Note that for the Gaussian vector η = (ηx j )1≤ j≤n , we have

E
[

exp
{
−

1
2
〈(α − A)η, η〉

}]
= |I +

(
α −

1
2
(A + At)

)
G̃|−1/2,
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and hence (2.4), which connects ψ + ψ̃ to the norm of (η, η̃), cannot be reduced to a one-
dimensional identity that would connect ψ to η2. �

Proof of Theorem 3.1. We use Theorem A of Vere-Jones recalled in Section 2. First note that,
as in the symmetric case, G−1 is an M-matrix (see Definition 4.1 and [8]). By Assertion (D16)

in Chap. 6, p. 135 of Berman and Plemmons’s book [2], all the real eigenvalues of G−1 are
hence positive. This implies that the real eigenvalues of G are positive. Then, since the resolvent
matrices Qσ = σG(I + σG)−1, σ > 0, have only non-negative entries, they are all β-positive
definite for every β > 0. Hence ψ is well defined. �

Proof of Theorem 3.2. Thanks to Theorem 3.1, we have for (x1, x2, . . . , xn) ∈ En〈
exp

{
−

1
2

n∑
i=1

αiψxi

}〉
= |I + αG|−1/2. (5.6)

Differentiating (5.6) with respect to α1 and setting x1 = a, we obtain〈
ψa exp

{
−

1
2

n∑
i=1

αiψxi

}〉
=

∂

∂α1
(|I + αG|)|I + αG|−3/2. (5.7)

Developing |I + αG| with respect to its first column gives

|I + αG| = (1+ α1g(a, a))(I + αG)11
− α1g(x2, a)(I + αG)21

+α1g(x3, a)(I + αG)31
+ · · · + (−1)n+1g(xn, a)α1(I + αG)n1

and hence

∂

∂α1
(|I + αG|) = g(a, a)(I + αG)11

− g(x2, a)(I + αG)21

+ g(x3, a)(I + αG)31
+ · · · + (−1)n+1g(xn, a)(I + αG)n1

= |V |,

where the matrix V = (Vi j )1≤i, j≤n is defined by Vi j = (I + αG)i j if i 6= 1 and V1 j = g(x j , a).
Consequently (5.7) becomes〈

ψa exp

{
−

1
2

n∑
i=1

αiψxi

}〉
= |V ||I + αG|−3/2. (5.8)

But as is well known (see for example Marcus and Rosen [16] Lemma 2.6.2)

P̃a

(
exp

{
−

n∑
i=1

αi Lxi
∞

})
=

|V |

g(a, a)|I + αG|
,

which, together with (5.6) and (5.8), gives Theorem 3.2. �

Proof of Corollary 3.3. Set µ = ν(ψ(a)/2,ψ(x2)/2,...ψ(xn)/2); then〈
exp

{
−

1
2

n∑
i=1

αiψxi

}〉
= exp

−
∫
Rn

1− e
−

n∑
i=1

αi yi

µ(dy)

 .
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For x1 = a we obtain, after taking the derivative with respect to α1,〈
ψ(a) exp

{
−

1
2

n∑
i=1

αiψxi

}〉
=

〈
exp

{
−

1
2

n∑
i=1

αiψxi

}〉∫
Rn

2y1e
−

n∑
i=1

αi yi

µ(dy).

Consequently, by Theorem 3.2,

g(a, a)P̃a

(
exp

{
−

n∑
i=1

αi Lxi
∞

})
=

∫
Rn

2y1e
−

1
2

n∑
i=1

αi yi

µ(dy),

which leads to

ν(ψ(a)/2,ψ(x2)/2,...,ψ(xn)/2)(dy1, dy2, . . . , dyn)

=
g(a, a)

2y1
P̃a(L

a
∞ ∈ dy1, Lxi

∞ ∈ dyi , 2 ≤ i ≤ n). �

Proof of Corollary 3.5. We denote by gτSθ
the potential densities of X killed at τSθ , and by

gTa the Green function of X killed at Ta . It has been proved in [8] that for every x, y ∈ E ,
gτSθ

(x, a) = gτSθ
(a, x) = 1/θ and gτSθ

(x, y) = gTa (x, y)+ 1/θ . Hence for the process X killed

at τSθ : P̃a = Pa , and by Theorem 3.2,

Pa

〈
F

(
Lx
τSθ
+

1
2
ψx ; x ∈ E

)〉
=

〈
ψa

gτSθ
(a, a)

F

(
1
2
ψx ; x ∈ E

)〉
, (5.9)

with 〈exp{− 1
2

∑n
i=1 αiψxi }〉 = |I + αGτSθ

|
−1/2 where GτSθ

= (gTa (xi , x j ) + 1/θ)1≤i, j≤n . We
set GTa = (gTa (xi , x j ))1≤i, j≤n .

By the proof of Proposition 2.4 we can define a measurable function f on Rn
+× En such that

for any α and any x = (x1, x2, . . . , xn) ∈ En ,

|I + αGτSθ
|
−1/2
= |I + αGTa |

−1/2
(

1+
1
θ

f (α, x)

)−1/2

. (5.10)

Assuming that x1 = a and taking derivatives with respect to α1, we obtain then

−1/2

〈
ψa exp

{
−

1
2

n∑
i=1

αiψxi

}〉
=

∂

∂α1

(
|I + αGTa |

−1/2
(

1+
1
θ

f (α, x)

)−1/2
)

= −
1

2θ
|I + αGTa |

−1/2 ∂ f (α, x)

∂α1

(
1+

1
θ

f (α, x)

)−3/2

,

where we have used the fact that |I + αGTa | does not depend on α1. Since under Pa the process
(L .τr , r > 0) is a Lévy process (with values in function space), there exists a measurable function
h on Rn

+ × En such that for every (α, x)

Pa

(
exp

{
−

1
2

n∑
i=1

αi Lxi
τr

})
= e−h(α,x)r .

Hence (5.9) can be expressed as
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E
(

e−h(α,x)Sθ
)
|I + αGTa |

−1/2
(

1+
1
θ

f (α, x)

)−1/2

= |I + αGTa |
−1/2 ∂ f (α, x)

∂α1

(
1+

1
θ

f (α, x)

)−3/2

,

which is equivalent to(
1+

1
θ

h(α, x)

)−1

=
∂ f (α, x)

∂α1

(
1+

1
θ

f (α, x)

)−1

.

Consequently, for every θ > 0, we have ∂ f (α,x)
∂α1

=
θ+ f (α,x)
θ+h(α,x) . Letting θ tend to ∞, we finally

obtain ∂ f (α,x)
∂α1

= 1 and f (α, x) = h(α, x). We can now rewrite (5.10) as follows:〈
exp

{
−

1
2

n∑
i=1

αiψxi

}〉
= Pa

〈
exp

{
−

n∑
i=1

αi

(
Lxi
τSθ
+

1
2
φxi

)}〉
.

Conditioning on both sides with the respective value at a of the processes, and recalling that, by
its definition, φa = 0, we obtain〈

exp

{
−

1
2

n∑
i=1

αiψxi

}∣∣∣∣∣ψa = r

〉
= Pa

〈
exp

{
−

n∑
i=1

αi

(
Lxi
τSθ
+

1
2
φxi

)}∣∣∣∣∣ La
τSθ
= r

〉
,

which is equivalent to〈
exp

{
−

1
2

n∑
i=1

αiψxi

}∣∣∣∣∣ψa = r

〉
= Pa

〈
exp

{
−

n∑
i=1

αi

(
Lxi
τr
+

1
2
φxi

)}〉
. �

Proof of Lemma 4.2. First assume (4.1). For a > 0, let Qa = aG(I + aG)−1 and for
U = diag(ui )1≤i≤n with |ui | ≤ 1, 1 ≤ i ≤ n, define Pa(U ) = |I − Qa ||I −U Qa |

−1.
For α = diag(α1, α2, . . . , αn), we set F(α) = |I + αG|−1.
If the function F(α) is the Laplace transform of an infinitely divisible vector (φ1, φ2, . . . , φn),

then for every a > 0, the function Pa(U ) is the probability generating function of an infinitely
divisible vector. This has been used in the symmetric case by Griffiths [11] and Griffiths and
Milne [12], but it is still true without the assumption of symmetry. Indeed, we have Pa(U ) =
F(a(I −U )), which can be rewritten as

Pa(U ) = E

[
n∏

i=1

uNi
i

]
,

where conditionally on (φ1, φ2, . . . , φn), N1, N2, . . . , Nn are n independent Poisson variables
with respective parameters aφ1, aφ2, . . . , aφn .

Towards proving the necessity we use the following criterion that is due to Griffiths and
Milne [12].

Theorem B. Let Q be a n × n real matrix. The function |I − Q||I − QU |−1 is an infinitely
divisible probability generating function if and only if:

(i) the eigenvalues of Q are strictly bounded in modulus by 1;
(ii) Qi i ≥ 0 and Qi j Q j i ≥ 0, i 6= j, i, j ∈ {1, 2, . . . , n};
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(iii) for every k ≤ n, for every subset {i1, i2, . . . , ik} of k distinct indices from {1, 2, . . . , n},

Ti1,i2 Ti2,i3 Tik−1,ik Tik ,i1 ≥ 0,

where T = Q + Qt (Qt denotes the transpose of Q).

We note that Pa(U ) = |I − Qa ||I −U Qa |
−1
= |I − Qt

a ||I − Qt
aU |−1. We are going to use

Theorem B for the matrix Qt
a . We have

I − Qa =
1
a
(a−1 I + G)−1. (5.11)

We can choose a large enough in order that for every (i, j), if G−1
i j 6= 0, then G−1

i j and

(a−1 I + G)−1
i j have the same sign; if G−1

i j 6= 0 and G−1
j i = 0, then (G−1

i j + G−1
j i ) and

(a−1 I + G)−1
i j + (a

−1 I + G t)−1
j i have the same sign.

Now thanks to Theorem B(ii), and (5.11),

G−1
i j G−1

j i ≥ 0. (5.12)

Making use of the argument of Bapat to prove Theorem 1 [1], which does not use symmetry, we
know that there exists a signature matrix S such that the off-diagonal terms of the matrix S(−T )S
are all negative. Now

2I − T =
1
a
{(a−1 I + G)−1

+ (a−1 I + G t)−1
}. (5.13)

With S as above, we have (S(2I − T )S)i j ≤ 0 for i 6= j which, by (5.13), leads to

S(i)S( j){(a−1 I + G)−1
i j + (a

−1 I + G)−1
j i } ≤ 0.

If G−1
i j G−1

j i 6= 0, then S(i)S( j)(G−1
i j + G−1

j i ) ≤ 0 and hence by (5.12), we obtain

S(i)S( j)G−1
i j ≤ 0. If G−1

i j 6= 0 and G−1
j i = 0, then it follows that S(i)S( j)G−1

i j ≤ 0.

Consequently for every (i, j), S(i)S( j)G−1
i j ≤ 0. By (N38) of Berman and Plimmons in [2],

p.137, chap. 6, we finally obtain that SG−1S is an M-matrix.

Conversely, assume that there exists a signature matrix S such that SG−1S is an M-matrix.
We can then reproduce the proof of Theorem 3.2 [9] to show that

S(i)G(i, j)S( j) = d(i)g(i, j)d( j),

where d is a non-negative deterministic function on {1, 2, . . . , n} and g is the potential density
of a transient Markov process with a state space equal to {1, 2, . . . , n}.

Using then Theorem 3.1 and Corollary 3.3, we conclude that (4.1) is satisfied. �

Proof of Theorem 4.3. By Theorem 3.1 and Corollary 3.3, the sufficiency of this condition is
immediate. The necessity follows from the argument developed in [9] to establish Theorem 3.2.
This argument is based on Bapat’s criterion, which is valid for the non-symmetric case as
well. �

Proof of Theorem 4.4. The sufficiency of condition (4.4) follows from Theorem 3.1 and
Corollary 3.3. To prove the necessity, we can, thanks to Lemma 4.2, make use of the proof
of Theorem 3.4 [9] which works similarly, since there was no use of symmetry in the proof. �
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6. A conjecture on α-permanents

Here is Shirai and Takahashi’s conjecture:
Let α be in [0, 2]. Then detα A is non-negative for every non-negative definite square matrix A.
Shirai and Takahashi have made substantial progress in the direction of proving the conjecture.

We send the interested reader to the last section of their paper [17]. Shirai has communicated to
us his last paper [18] on this conjecture, where he goes a little further. We also mention that in
[13], the authors give an example of a 3 × 3 positive definite matrix K such that detα(K ) < 0
for α > 4.

Actually we have checked that the conjecture is true for 3 × 3 positive definite matrices. We
would like just to point out the fact that in view of the results of Vere-Jones, this conjecture has
the following form, more appealing for probabilists:

For every centered Gaussian vector (η1, η2, . . . , ηn) and for every δ ≥ 1,(
E

[
exp

{
−

n∑
i=1

ziη
2
i

}])δ
is a Laplace transform in (z1, z2, . . . , zn).

References

[1] R.B. Bapat, Infinite divisibility of multivariate gamma distribution and M-matrices, Sankhya 51 (1989) 73–78.
[2] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, Inc., New York,

1979.
[3] E.B. Dynkin, Local times and quantum fields, in: Seminar on Stochastic Processes, Birkhauser, 1983, pp. 64–84.
[4] E.B. Dynkin, Gaussian and non-Gaussian random fields associated with Markov processes, J. Funct. Anal. 55

(1984) 344–376.
[5] N. Eisenbaum, On the infinite divisibility of squared Gaussian processes, Probab. Theory Related Fields 125 (2003)

381–392.
[6] N. Eisenbaum, A connection between Gaussian processes and Markov processes, Electron. J. Probab. 10 (6) (2005)

202–215.
[7] N. Eisenbaum, A Cox process involved in the Bose–Einstein condensation, Ann. Henri Poincaré Theoret. Math.
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