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Abstract

For one-dimensional diffusion processes, we find an explicit necessary and sufficient condition for the
large deviation principle of the occupation measures in the total variation and of local times in L.
© 2008 Elsevier B.V. All rights reserved.

MSC: 60F10; 60J55; 60J60

Keywords: Large deviations; Local times; Uniformly integrable

1. Introduction

Let {2, F, (X;)i>0, P,} be a one-dimensional diffusion process taking values in an open
interval I = (xg, yo) (—00 < xo < yo < +00), which is the weak solution of the stochastic
differential equation (SDE in short):

dX, = o(X,)dB, + b(X,)dt (1.1)

with initial distribution v, where (B;) is a standard Brownian motion, and

(H1) o(:) > 0, b(-) : I — R are locally bounded, measurable and o () is locally bounded
(the so-called ellipticity).

Under (H1) and the non-explosion assumption, the SDE (1.1) has a unique weak solution (X;)
which is a Markov process with generator £ given by

2
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We are interested in the large deviation principle (LDP in short) of occupation (or empirical)
measures of (X;),

1 t
L;(da) = ;/ dx, (da)ds
0

in the topology of total variation || - ||7y.

Usually large deviations for occupation measures of Markov processes are studied in the
weak convergence topology or the T-topology, see Donsker—Varadhan [1], Deuschel-Stroock [2],
Dembo—Zeitouni [3], Wu [4] etc. In general, the LDP for occupation measures of Markov
processes does not hold with respect to (w.r.t. in short) the total variation topology. For instance,
for any sequence of i.i.d.r.v. (X},) valued in E of common law p, the well known Sanov theorem
says that the occupation measure L, = (1/n) ) ;_, 8x, satisfies the LDP w.r.t. the weak
convergence or the t-topology. On the other hand, the corresponding LDP w.r.t. the topology of
total variation does not remain true once yu is diffuse, for the reason that ||L,, — |7y = 2, a.s.
This observation means that the question raised above is new in the theory of large deviations for
Markov processes, and is pertinent only in the case where ||L; — w7y — 0 in probability. Two
such situations are: either the state space of the Markov process is countable where the LDP w.r.t.
|l - ll7v is equivalent to that w.r.t. the weak convergence topology (in this discrete case if u,, — w
weakly, then ||u,, — ullry — 0, i.e., the weak convergence topology and the | - |7y -topology
on the space M(E) of probability measures on the countable space E are the same), or it is
one-dimensional: which is exactly the case studied in this paper.

Let [{ denote the local time for the diffusion process (X;) at a € [ until time ¢, which is given
by the Tanaka formula [5]

t
If:=1X; —al — |Xo —al —/0 sgn(X; — a)dX; (1.2)

where sgn(x) = ly~0 — ly<o. Since fé f(X)A[X]s = [g f(@)fda, Vi > 0, where f is any
bounded Borel function and [X], = fé o2(X,)ds is the quadratic variational process of the
continuous semimartingale (X,), we have

[#da
to2(a)’

Li(da) = (1.3)
Thus the LDP of L, in the topology of total variation is equivalent to the LDP of the local time
(H)aerin L L(1,672(a)da). The study of large deviations of local times of the Brownian motion
was initiated by Donsker—Varadhan [1,6]. The subject has been recently thoroughly studied by
Bass and Chen [7] and Bass, Chen and Rosen [8] (and the references therein). On the other hand,
a necessary and sufficient condition for the central limit theorem of functional type for empirical
processes of one-dimensional diffusions was established by van der Vaart and van Zanten [9].

The main purpose of this short paper is to present a necessary and sufficient condition for the
LDP of L; in the total variation topology. It is organized as follows. The main result is stated in
the next section. In the preparatory Section 3 we explain where our condition (2.9) comes from,
by means of Wu’s uniform integrability criterion, Muckenhoupt’s generalized Hardy inequality
and Chen’s criterion for the compactness of transition kernel P; of (X;), and we present a key
tool: Lemma 3.5, on the exponential tightness of /¢ /¢ in L'(1,07%(a)da). Finally we prove the
main result in Section 4.
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2. Main results

Introduce at first

*2b
s’ (x) == exp (—f 0283dy> 2.1

2 *2b
m'(x) = poree exp (/C Uz—gidy) , 2.2)

the derivatives of the scale function and the speed function of Feller, respectively. Here ¢ € [ is
some fixed point.
We assume that (X;) is non-explosive, which, by Feller’s criterion (see [10]), is equivalent to

and

/yo s’ (x)dx /X m’(y)dy = 400,
c 0

B 0 2.3)
/ s/(x)dx/ m'(y)dy = 400,

0

and furthermore it is positive recurrent or equivalently (under (2.3))

7 = /m’(x)dx < 400. 2.4)
I

In that case, the probability measure

1 1 2 *2b
w(dx) = =m/(x)dx = = ———exp / ﬁdy -dx
Z Z o2(x) ¢ 9%y
is the unique invariant measure of (X;) and is symmetric, i.e., ((X;), IP,,) is reversible.

Throughout this paper, we suppose (H1), (2.3) and (2.4).
Let:

L2 () = L*(I, p),

M (I): the space of all probability measures on /,
v(f) = [ fdv,

A p(L) = {v e Mi(1); v < p, |5 lr oy < L)

Define the Dirichlet form

Yo
D) = {f € AC(xo, yo) [ | L (w); f o> () (f'(0))du < +oo} :
L o (2.5)
h=5 [ @ @i vreDe.

X0
where AC(xg, yo) is the space of real absolutely continuous functions on (xp, yg). By the
L! (m)-uniqueness in [11] or [12], the space Cgo (I) of infinitely differentiable functions with
compact support on [ is a form core for (£, D(£)), and (£, D(E)) is associated with (X;). More
precisely, let (£, D2 (L)) be the generator of the transition semigroup (P;) of (X;) on Lz(/J,), then
D) =Da(v/—L) and E(f, ) = (V=L f. VL)
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In the symmetric case, the rate function governing the large deviations of L; in the t-topology
is given by (see [1] under some absolute continuity and Feller assumption, and [13, Corollary
B.11] in full generality)

Jg(v)_{é’(f FND. ifv=fu. T eDE) 2.6)

otherwise.

Once v = fu with f > 0and /f € D(), then

L, (fm))?
Je(v) = §/EU (X)Wdli(x)

which is, up to a factor 1/8, the Fisher information of v w.r.t. w.
The main result of this paper is:

Theorem 2.1. The following properties are equivalent:

(a) The occupation measure L;(-) satisfies the LDP in (M1(1), || - |lrv), uniformly over initial
measures v € Ay, (L) forany L > 1 and p > 1, with the rate function Jg given in (2.6).
More precisely, Jg is inf-compact on (M1(1), || - ||Tv) (i.e. the level-sets [Je¢ < a],a > 0 are
compactin (M1(I), || - lTv)) and for any measurable subset A C M1 (1),

1
— inf Jg(B) < liminf -1 inf  Py(L;() €A
At Je(p) = iminf—log i " v(Li() € A)

Ve I, p
1
< limsup—-log sup P,(L;(:) € A) < — inf Jeg(B), 2.7
t—oo I Tyed, (L) peA

where A°, A denote respectively the interior and the closure of A w.rt. the total variation
norm || - 7.

(b) The local time I, = (a — [f) satisfies the LDP in LY(I, 07 %(a)da), uniformly over
initial measures v € A, ,(L) for any L > 1 and p > 1, with the rate function
I(-lpw) : LY(I, 0~%(a)da) — [0, +00] given by

. f
I(flp) = g(\/}/a,\/?/g), szzo, o2(a )da_lf/aED(g) 2.8)

+o00, othe rwise.

()

y
lim sup sup u[y, yo) | s'(z)dz =0,

X—=>yo y=xX X
X

lim sup sup u(xo, y] | s'(z)dz = 0.

X—>Xxp y=<x y

(2.9)

Condition (2.9) comes from Muckenhoupt’s generalized Hardy inequality and Chen’s
characterization of empty essential spectrum for £ in L2(I, ), see Lemma 3.2. Intuitively it says
that the diffusion comes back to a compact sub-interval J of I with an exponential rate which
grows to infinity when J increases to the whole interval I (see Section 3 about the Dirichlet
eigenvalue which is just the exponential rate).

For example, when I = R, o(x) = 1 and b(x) = —sgn(x)a|x|*"! (@ > 0), the invariant
measure is given by p = e~ 2I"dx, condition (2.9) is satisfied iff a > 1.
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We now present two applications of this theorem.
Let G be any non-empty family of bounded and measurable functions on [ such that

supsup |g(x)| < C < +o0 (2.10)
geG xel

and [°°(G) the space of bounded functions F : G — R on G equipped with the uniform norm
|F = SUPgeg |F(g)|. For any v € M(E), w9 g — v(g) is an element of [°°(G). The
mapping v — vY is continuous from (M (E), |IllTv) to I*°(G), |- lg)- Then by the contraction
principle we obtain the LDP for the empirical process L,g = (g = Li(8))geg:

Corollary 2.2. Assume (2.9). Then for any non-empty family G of bounded and measurable
functions on I satisfying (2.10), P, (L? € ) satisfies the LDP on (I°°(G), || - llg) uniformly
overv e A, p(L) (for any p, L > 1) with the rate function given by

J(F) = inf{Jg(v); v e M{(I), 9 = F}, F el®G)
(inf@ := +00).

Recall that the central limit theorem for L? in (I*°(G), |-llg) was known under a much weaker
condition than (2.9) but with some extra condition on G, see van der Vaart and van Zanten [9].

Another application is about the kernel density estimator f (x) of du(a)/da = m'(a)/Z
given by

1 "
fn*,g(x) = _/ Ye(x — Xs)ds = / Ye(x — y)L,(dy)
nJo R

where 1 is some fixed probability density function on R, and ¥ (x) = (1/e)¥(x/e). Here
& = &, — 0 is the bandwidth. This is a typical statistical problem when the sample path
(Xt)o<t<n 1s observed but a(x), b(x) are unknown.

Assume (2.9). Since the mapping F; : g — ¥, * g from L! (R, da) to LY(R, da) converges,
as ¢ — 0+, to the identity operator /d uniformly over any compact subsets of L! (R, da),

Ln(da)>
da

fr:k,g = F€ (ll(a)

and 1;(a)L,(da)/da satisfies the LDP on LY(R, da) (by Theorem 2.1) and then it is
exponentially tight, thus we have for any § > 0 fixed and ¢ = ¢, — 0,

1 L,
lim —log sup P, (f n(da)
n—oon veA, »(L) R

da
Consequently by the approximation lemma [3, Theorem 4.2.13], we get:

fae(@) —11(a)

da >8> = —00.

Corollary 2.3. Assume (2.9). When the bandwidth ¢ = &, — 0, then P\, (f,, € -) satisfies the
LDP on L'(R, da) uniformly over v € Ay p(L) (for any p, L > 1), with the rate function

E(Ve. Vo), iff= 0,/Rfda =1, flp\ =0, /8 =V Zf/m" € D)

+00, otherwise.

J(f) =
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This is completely different from the discrete time case: even for the R-valued i.i.d. sample
sequence, a necessary and sufficient condition for the consistency of the kernel density estimator
f,jg is that e,n — oo (due to Devroye [14]), i.e., &, > 1/n. Under the last condition on
the bandwidth, we have obtained the weak LDP of fn"j e 1N L! (R, da) for discrete time Markov
chains which are either uniformly ergodic [15] or p-symmetric with transition kernel uniformly
integrable on L?() [16], but the LDP of £, in L' (R, da) is false in general even for the i.i.d.
sequence [17]! In the point of view of the consistency of f,*,, this type of difference between
discrete time and continuous time samples was already observed by Bosq et al. [18].

3. Several lemmas
3.1. Discussions around the necessary and sufficient condition (2.9)

We begin with Wu’s uniform integrability criterion for the LDP of L, in the t-topology (for
general reversible and ergodic Markov process (X;)). A bounded operator P on Lz(,u) is said
to be uniformly integrable if {(Pf Yl flla < 1} is w-uniformly integrable. The t-topology on
M (1) is the weakest topology in which v — v(f) is continuous for all real Borel measurable
and bounded functions f (written as f € bB3).

Lemma 3.1 ([4, Corollary 5.5]). The following conditions are equivalent:

(1) Py(L; € -) satisfies the LDP w.r.t. the t-topology o (M(I), bB) on M (1), uniformly over
Ay p(L) foreach L, p > 1.
(i) {f% w(f? +E(f, f) < 1} is pw-uniformly integrable.
(iii) P; (t > 0) is uniformly integrable on L*(w).
(iv) P; is compact on L*(w) for eacht > 0.

Here the equivalence between (i), (ii) and (iii) holds without the absolute continuity, and their
equivalence with (iv) holds since for r > 0, P;(x, dy) < dy ~ u(dy) by our ellipticity condition
in (H1).

Next let us see where condition (2.9) comes from. For every interval Iy C (xg, yo) = I,
consider the smallest Dirichlet eigenvalue on I,

Ap(lo) = inf{E(S, f): f € D(E): f(x) =0, Vx & lo}, (3.1

and set Ap(x+) := Ap([x,y9)) and Ap(x—) := Ap((xp, x]) for every x € E. Consider the
Muckenhoupt constants

Yo y
B(x+) = sup/ m/(y)dy/ s'(2)dz,
y x

y=x

X X (32)
B(x—) = sup/ m’(y)dy/ s’ (z)dz.
y=xJxg y
Muckenhoupt’s lemma [19] says that
B(x*) < <4B(x%). 3.3
(X)_)LD(xi)_ (x+) (3.3)

Thus our condition (2.9) means that lim,, y; B(x+) = limy_, , B(x—) = 0 or equivalently

lim Ap(x+) = lim Ap(x—) = +o0. (3.4)
X—Y0 xX— X0
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This last property turns out to be equivalent to the compactness of the resolvent (1 — £)~! or of
P,,t > 0in L?(u), as given in Chen [20]:

Lemma 3.2 (/20]). The following properties are equivalent:

@iv) P; is compact on Lz(,u) foreacht > 0or (1 — £)~Vis compact in LZ(,u).
(V) limxﬁ)yo )LD(X‘i‘) = limx%xo )LD(X_) = +o0.
(vi) limy_,y, B(x+) = limy_ y;, B(x—) =0, i.e, (2.9).

3.2. Exponential tightness in L' (I, v)

Hence under (2.9), L, satisfies the LDP in M (E) w.r.t. the t-topology. For the passage from
the LDP in the t-topology to that in the || - |7y topology, we shall require a general observation
from large deviations.

Lemma 3.3. Let (E,d) be a complete separable metric space and o a regular Hausdorff
topology weaker than d, and (j,)n>1 a family of probability measures on E. Assume that
as n — 0o, (Un) satisfies the LDP on E w.rt. the o-topology with the rate function I.
If (u,) is exponentially tight on (E,d), i.e., for any L > 0 there is some compact subset
K =K C (E,d),

1 )
lim sup - log s (K€) < —L

n—o0

then () satisfies the LDP with the rate function I on (E, d).

Proof. At first, we prove the lower bound, which means that for any non-empty open O of
(E, d), we have to prove that

1
[(0) = liminf — log u, (O) > —infI.
n—-oo n o0
We may assume that infp I < +00. Let L > infp I and K = K, be the compact set in (E, d)
specified by the exponential tightness condition. As K is also o-compact, K¢ is o-open, then
—i]r(lfl <Il(K° < —L.
Since for every F C K, if F is d-closed, it is o -compact then o -closed, then every G C K,

open in (K, d~) is also open in (K, o). Thus O (] K is open in (K, o), i.e., there exists a o-open
O such that O (K = O () K. Consequently by the lower bound in the o-topology,

— inf I <—infl <I(0) < max {l (oﬂK) , —L} < max{/(0), —L}.
0Nk 0
Since infge I > L > infg I, we have info n g I = info I, so we get
—irolfl < max{l(0), —L},
where the desired result follows by letting L — +0c0.

Having the lower bound in the d-topology and the upper bound of large deviation for compacts
of (E, d), the desired LDP follows from the exponential tightness. O

In other words the key to Theorem 2.1 (c) == (a) is to prove the exponential tightness of
P,(,/t € -)in L'(I, 0 ~%(a)da). We begin with a lemma of independent interest:
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Lemma 3.4. Let (u,) be a sequence of probability measures on the complete separable metric
space (E, d). If for any L, § > O, there exists some compact K = K, 5 such that

1
llmsup log u, (B(K, 8)°) < —L,

n—>oo
where B(K, §) .= {y € E;d(y, K) .= infycg d(y, x) < 8}, then (i) is exponentially tight.

Proof. Let L > 0 be fixed. For any integer m > 1, let K,;, = K, 1,1/ be the compact given in
the lemma. Thus there exists some N,, > 1 such that for all n > N (m),

pn(B(Kpm, 1/m)°) < e™™E.

S~ince (1n, 1 <n < Np,) is tight, we can find compact Izm O K, so that the relation above with
K, in place of K, holds for all n > 1. Let
K = ﬂ B(Kp, 1/m).
m>1
It is closed and totally bounded, then compact in (E, d). Also for any n > 1,
efnL
1 —ent’

00
Mn(KC) < Z e—nmL —

m=1
where the desired exponential tightness follows.  [J

Let 1 be a C* even probability density function on R with support contained in [—1, 1] and

Ye(x) = %I/I(x/e). Define

Me f(x) = /Rf(y)%(x —y)dy = ¥ x f(x). (3.5

Note that 17, M : L'([l — &, r + €], dx) — L'([l, r], dx) is a compact operator: this follows
from

sup |(M,f) (x)| = Sup [Wi % f(x)] < Supllﬁ ()] - /Ifldx
xe(l,r] x€ll,r]
and the Arzela—Ascoli theorem.

Lemma 3.5. Let h > 0 be locally bounded and measurable on I such that 1/h is locally
bounded on 1. Let (i1,,) be a sequence of probability measures on L' (I, hda). Assume

®

1

lim limsup — log i, (f; / | flhda > N) =—

N—00 p—soo N I
@ii) forany § > 0

1
lim llmsup log (f;/ | flhda > 5) = —00.

I=>x0+,r=>y0— n—o00 [L,r]e

(iii) for any § > 0 and compact interval (1, r] C (x0, Y0),

lim limsupilogun (f; /lr Mg f(a) — f(a)|da > 8) = —00

e—>0 p—soo
where M, f(a),a € [l, r] is given in (3.5).
Then () is exponentially tight in LY(1, hda).
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Proof. For any fixed L > 0 and any § > 0, we use condition (i) to find some natural number N
such that

1

lim sup — log ., (B(0, N)°) < —L, B(0, N) := {f € Ll(I, hda); / | flhda < N} ;
n—oo N 1

using condition (ii) we choose [/, 7] C I such that

1
limsup — log j1, (A) < =L, A= {f e L'(1, hda);

n—oo N

| flhda < 5/2} ;
[t.r1°

and finally using condition (iii) we can take ¢ > O such that [/ — &,r 4+ ¢] C I and

1 .
lim sup - log 4, (C¢) < —L,

n—o0

where C := {f e L1, hda); /}r Mg f(a) — f(a)lda < m} . Consider

K := the closure of {1y M f: f € B0, N)}in L'(I, hda).

Since the linear mapping 1 1M, : LYl — &, r+e¢l,da) — L([I,r],da) is compact, using
the local boundedness of & and h~!, we see that K is compact in L! ([, r], da), and hence in
L'(I, hda). Forevery f € B(O, N)(NANC, 1y M. f € K, and

IA

[ et = finda /U I lhda + | Mer@ = r@ih@ua

IA

)
S gl =8
2 AT

Thus B(0, N)(VA()C C B(K, ), and therefore

1 1
lim sup — log u, (B(K, §)€) < limsup - log [un(B(O, N)E) + (A€ + ,un(CC)] < —L.
n— oo

n—oo N

This implies the desired exponential tightness by Lemma 3.4. O
4. Proof of Theorem 2.1

(a) <= (b). This has been already noticed in the Introduction; it follows at once by (1.3).
(a) = (c). As (a) is stronger than the LDP of L; in the t-topology in Lemma 3.1(i), this
implication follows from Lemmas 3.1 and 3.2.

We now turn to the crucial part (c) = (a). The proof is divided into three steps.

Step 1. By Lemmas 3.1 and 3.2, under condition (2.9), the LDP of L, in the t-topology as
stated in Lemma 3.1(i) holds true. Since the uniform LDP in (a) is equivalent to saying that
Py, (L, € -) satisfies the LDP on (M(I), || - |I7v) for any sequence (v,) C Ay p(L) (here
the passage from continuous time ¢ to discrete time ¢+ = n exists because ||L; — Lisllry <
™'+ (1 —[t]/t) = Oast — o0), by Lemma 3.3, it is enough to show that P, (L, € )
is exponentially tight in (M;(I), || - lrv) or equivalently P, ([, /n € -) is exponentially tight
in L'(1, 0 7*(a)da) by (1.3). Since [,(¢/t)o>(a)da = L,(I) = 1 and 02, o~ are locally
bounded, by Lemma 3.5, it is enough to establish

1
lim limsup—- sup logP, (/ lt“cr_z(a)da > 5) =—-00, V§>0 (4.1
[L,r]¢

I—=>x0,r—=>y0 t—00 tUEAM_p(L)
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and forany xo </ < r < yp,

,

lim lim supllog sup P, <l/ [IF — Mgl (x)|dx > 8) =—-00, V§>0, 42
e—>0 t5o00 I veA, (L) tJ;

where M, is the operator defined in (3.5).

Step 2. In this step we show (4.1). For any sequence of compact sub-intervals [x,, y,]
increasing to I = (xo, o), let F,5 = {v € M1(E); v(I \ (x4, yn)) > 8}, which is closed
in M1 (E) w.r.t. the weak convergence topology (weaker than the 7-topology). By the LDP of L;
in the weak convergence topology (a consequence of Lemma 3.1(i)) and (1.3) we have

1
limsup— sup logP, (/ 190~ (a)da > 5)
[x, ]

t—oo T yed, (L)
1
<limsup— sup logP, (L, € F,,’g)
t—oo I yed, (L)

< — inf Jg(v).

veF, n,s

Since F, s decreases to the empty set as n goes to infinity, by the inf-compactness of Jg in the
weak convergence topology (since it is so in the t-topology by Lemma 3.1(1)),

lim inf Jeg(v) =400

n—oo VGFH,S

where (4.1) follows.
Step 3. It remains to show (4.2). For any z € (—¢,¢) where 0 < ¢ < g9, [ — €0,7 + &0] C
(x0, yo0) and x € [l, r], by the Tanaka formula we have,

t
IIF — ML (x)| = ‘(|X, — x| —|Xo—x|— / sgn(X; — x)dX; > /%(Z)

X (IXz —(x+2)|—1Xo— (x+2)| —/ sgn(Xy —x _Z)dXs> dz
0

IA

t
28—|—2' I/fg(Z)dZ/ 1y <x,<x+z+dXs
0

IA

t
2e + 2' ws(z)dz/ 1y - <x,<x+z+0 (X5)dB;
0

4.3)

'
+2‘ ‘/fa(Z)dZ/ Ly <x,<x++b(X5)ds| .
0

For the last term, since for |z| < &, we have

1 r
—/ dx
tJi

1 t r
= ; |b(Xs)|ll—8§X,-§r+st/ 1Xs—z+§x§XS+z*dx
0 1

t
/ lx—z’SXsSx-ﬁ-z*b(Xs)dS
0

e [!
=< ;/ [b(X)1j—e<x,<r+eds
0

e sup  [b(x)],
x€[l—eg,r+eo]
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then for (4.2) it is enough to show (by (4.3)) that for all § > 0,

1 |
lim limsup—log sup P, <—/ dx / Ve (2)| My (x, z)|dz > 8> = —00, “4.4)
e—0 1500 ue,A,“,(L) tJ;
where

t
M;(x,z) 1=/ Ly = <x,<xtz+0 (X5)dBs.
0
Set
1 r
ki) = [ ar [ ool
i
By Cheybechev’s inequality, for all § > 0, » > 0,

Py (K, (¢) > 8) < e M E" exp(AtK; (¢))

thus,
1 1 ;
;logPU(K,(a) >48) < A5+ ?logIE exp(AtK;(¢g)).

For the control of the last term, using the convexity of log EeX in X and el < e* +e7¥, we
have,

1 1 A r
?logE” exp (MK ()} = ?logE” exp {—l/ dx/%(z)(r —l)|M,(x,z)|dZ}
r—_LJ;
1
r—1
1
r—1

IA

/r dx [ Ye(z)dz (; log EY exp {A(r — ) |M,(x, z)|}>
i

/-r i / we(z)dz (% log]E” (e(r—l))LM,(x,z) + e—(r—l))»MKX,Z))) . 4.5)
l

Noting that for any continuous local martingale (M;), exp(2M; — 2[M];) is a local martingale
then a supermartingale, then by Cauchy—Schwartz,

IA

FEeM < \/Ee2M,72[M], \/Ee2[M], < \/Ee2[M], < REe?Ml,

t
(M(x,2)]i =/ Limz <X, 2otz 0 (X)ds < (162 1—ey rtegilloot
0

we have for all |z]| < & < &g,

EY (e(Fz)xM,(x,z) + ef(rfl))LM,(x,z)>

t
< 2" exp <2(r — D22 / e o< XX<X+662(XS)ds)
0

< 2exp (20 = D210 e rtegt ot ) -
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Substituting it into (4.5) we obtain by dominated convergence that for all §, A > 0,

1 1 r
limsup —log sup P, (K;(¢) >8) < —A8+ _l/ dx A(Vy e),
r— 1

t—oo [ veA, p(L)

where Vy ¢ (y) = 2(r — )*A%0%(y) lx—e<y<x+e and

1 t
A(Vye) :=limsup —log sup E"exp </ Vx,g(Xs)ds> .
t—>00 ved, p(L) 0

Since A(Vy.e) < 2(r —1D)2A%||621[1—gy.r+£0] ]l 00> by dominated convergence, for (4.4) we only
have to show that for any x € [, r] fixed and for any A > 0,

lim A(Vy,) =0. (4.6)
e—0
By the Laplace principle and the LDP in the t-topology in Lemma 3.1,
A(Vye) = su v(Vie) —Je(v)) = — inf ),
X,€ veMRE) ( X,e & ) e My (E) Je

where f.(v) = Je(v) — v(Vy¢). Since fe(v) 1 Jg(v) as € decreases to zero and f; is inf-
compact on (M;(I), ), we have by an elementary analytic lemma

lim inf f;(v)= inf lim f;(v) = inf Jg(v) =0
e—>0veM(E) vEM(E) e—0 veEM|(E)

(for Jg () = 0) which yields the desired (4.6).
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