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Abstract

For one-dimensional diffusion processes, we find an explicit necessary and sufficient condition for the
large deviation principle of the occupation measures in the total variation and of local times in L1.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let {Ω ,F , (X t )t≥0,Pν} be a one-dimensional diffusion process taking values in an open
interval I = (x0, y0) (−∞ ≤ x0 < y0 ≤ +∞), which is the weak solution of the stochastic
differential equation (SDE in short):

dX t = σ(X t )dBt + b(X t )dt (1.1)

with initial distribution ν, where (Bt ) is a standard Brownian motion, and
(H1) σ(·) > 0, b(·) : I → R are locally bounded, measurable and σ−1(·) is locally bounded

(the so-called ellipticity).

Under (H1) and the non-explosion assumption, the SDE (1.1) has a unique weak solution (X t )

which is a Markov process with generator L given by

L :=
1
2
σ 2(x)

d2

dx2 + b(x)
d

dx
.
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We are interested in the large deviation principle (LDP in short) of occupation (or empirical)
measures of (X t ),

L t (da) :=
1
t

∫ t

0
δXs (da)ds

in the topology of total variation ‖ · ‖T V .
Usually large deviations for occupation measures of Markov processes are studied in the

weak convergence topology or the τ -topology, see Donsker–Varadhan [1], Deuschel–Stroock [2],
Dembo–Zeitouni [3], Wu [4] etc. In general, the LDP for occupation measures of Markov
processes does not hold with respect to (w.r.t. in short) the total variation topology. For instance,
for any sequence of i.i.d.r.v. (Xn) valued in E of common law µ, the well known Sanov theorem
says that the occupation measure Ln = (1/n)

∑n
k=1 δXk satisfies the LDP w.r.t. the weak

convergence or the τ -topology. On the other hand, the corresponding LDP w.r.t. the topology of
total variation does not remain true once µ is diffuse, for the reason that ‖Ln − µ‖T V = 2, a.s.
This observation means that the question raised above is new in the theory of large deviations for
Markov processes, and is pertinent only in the case where ‖L t − µ‖T V → 0 in probability. Two
such situations are: either the state space of the Markov process is countable where the LDP w.r.t.
‖·‖T V is equivalent to that w.r.t. the weak convergence topology (in this discrete case if µn → µ

weakly, then ‖µn − µ‖T V → 0, i.e., the weak convergence topology and the ‖ · ‖T V -topology
on the space M1(E) of probability measures on the countable space E are the same), or it is
one-dimensional: which is exactly the case studied in this paper.

Let la
t denote the local time for the diffusion process (X t ) at a ∈ I until time t , which is given

by the Tanaka formula [5]

la
t := |X t − a| − |X0 − a| −

∫ t

0
sgn(Xs − a)dXs (1.2)

where sgn(x) = 1x>0 − 1x≤0. Since
∫ t

0 f (Xs)d[X ]s =
∫
R f (a)la

t da, ∀t > 0, where f is any
bounded Borel function and [X ]t =

∫ t
0 σ

2(Xs)ds is the quadratic variational process of the
continuous semimartingale (X t ), we have

L t (da) =
la
t da

tσ 2(a)
. (1.3)

Thus the LDP of L t in the topology of total variation is equivalent to the LDP of the local time
(la

t )a∈I in L1(I, σ−2(a)da). The study of large deviations of local times of the Brownian motion
was initiated by Donsker–Varadhan [1,6]. The subject has been recently thoroughly studied by
Bass and Chen [7] and Bass, Chen and Rosen [8] (and the references therein). On the other hand,
a necessary and sufficient condition for the central limit theorem of functional type for empirical
processes of one-dimensional diffusions was established by van der Vaart and van Zanten [9].

The main purpose of this short paper is to present a necessary and sufficient condition for the
LDP of L t in the total variation topology. It is organized as follows. The main result is stated in
the next section. In the preparatory Section 3 we explain where our condition (2.9) comes from,
by means of Wu’s uniform integrability criterion, Muckenhoupt’s generalized Hardy inequality
and Chen’s criterion for the compactness of transition kernel Pt of (X t ), and we present a key
tool: Lemma 3.5, on the exponential tightness of la

t /t in L1(I, σ−2(a)da). Finally we prove the
main result in Section 4.
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2. Main results

Introduce at first

s′(x) := exp
(
−

∫ x

c

2b(y)

σ 2(y)
dy

)
(2.1)

and

m′(x) :=
2

σ 2(x)
exp

(∫ x

c

2b(y)

σ 2(y)
dy

)
, (2.2)

the derivatives of the scale function and the speed function of Feller, respectively. Here c ∈ I is
some fixed point.

We assume that (X t ) is non-explosive, which, by Feller’s criterion (see [10]), is equivalent to∫ y0

c
s′(x)dx

∫ x

0
m′(y)dy = +∞,∫ c

x0

s′(x)dx
∫ 0

x
m′(y)dy = +∞,

(2.3)

and furthermore it is positive recurrent or equivalently (under (2.3))

Z :=
∫

I
m′(x)dx < +∞. (2.4)

In that case, the probability measure

µ(dx) :=
1
Z

m′(x)dx =
1
Z

2

σ 2(x)
exp

(∫ x

c

2b(y)

σ 2(y)
dy

)
· dx

is the unique invariant measure of (X t ) and is symmetric, i.e., ((X t ),Pµ) is reversible.
Throughout this paper, we suppose (H1), (2.3) and (2.4).
Let:

• L2(µ) := L2(I, µ),
• M1(I ): the space of all probability measures on I ,
• ν( f ) :=

∫
f dν,

• Aµ,p(L) := {ν ∈ M1(I ); ν � µ, ‖ dν
dµ‖L p(µ) ≤ L}.

Define the Dirichlet form

D(E) =
{

f ∈ AC(x0, y0)
⋂

L2(µ);

∫ y0

x0

σ 2(x)( f ′(x))2dµ < +∞
}
,

E( f, f ) =
1
2

∫ y0

x0

σ 2(x)( f ′(x))2dµ, ∀ f ∈ D(E),
(2.5)

where AC(x0, y0) is the space of real absolutely continuous functions on (x0, y0). By the
L1(µ)-uniqueness in [11] or [12], the space C∞0 (I ) of infinitely differentiable functions with
compact support on I is a form core for (E,D(E)), and (E,D(E)) is associated with (X t ). More
precisely, let (L,D2(L)) be the generator of the transition semigroup (Pt ) of (X t ) on L2(µ), then
D(E) = D2(

√
−L) and E( f, f ) = 〈

√
−L f,

√
−L〉µ.
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In the symmetric case, the rate function governing the large deviations of L t in the τ -topology
is given by (see [1] under some absolute continuity and Feller assumption, and [13, Corollary
B.11] in full generality)

JE (ν) :=

{
E(
√

f ,
√

f ), if ν = f µ,
√

f ∈ D(E)
+∞ otherwise.

(2.6)

Once ν = f µ with f > 0 and
√

f ∈ D(E), then

JE (ν) =
1
8

∫
E
σ 2(x)

( f ′(x))2

f (x)
dµ(x)

which is, up to a factor 1/8, the Fisher information of ν w.r.t. µ.
The main result of this paper is:

Theorem 2.1. The following properties are equivalent:

(a) The occupation measure L t (·) satisfies the LDP in (M1(I ), ‖ · ‖T V ), uniformly over initial
measures ν ∈ Aµ,p(L) for any L ≥ 1 and p > 1, with the rate function JE given in (2.6).
More precisely, JE is inf-compact on (M1(I ), ‖ · ‖T V ) (i.e. the level-sets [JE ≤ a], a ≥ 0 are
compact in (M1(I ), ‖ · ‖T V )) and for any measurable subset A ⊂ M1(I ),

− inf
β∈Ao

JE (β) ≤ lim inf
t→∞

1
t

log inf
ν∈Aµ,p(L)

Pν(L t (·) ∈ A)

≤ lim sup
t→∞

1
t

log sup
ν∈Aµ,p(L)

Pν(L t (·) ∈ A) ≤ − inf
β∈ Ā

JE (β), (2.7)

where Ao, Ā denote respectively the interior and the closure of A w.r.t. the total variation
norm ‖ · ‖T V .

(b) The local time l ·t = (a → la
t ) satisfies the LDP in L1(I, σ−2(a)da), uniformly over

initial measures ν ∈ Aµ,p(L) for any L ≥ 1 and p > 1, with the rate function
I (·|µ) : L1(I, σ−2(a)da)→ [0,+∞] given by

I ( f |µ) :=

E
(√

f /σ,
√

f /σ
)
, if f ≥ 0,

∫
I

f

σ 2(a)
da = 1,

√
f /σ ∈ D(E)

+∞, otherwise.
(2.8)

(c)

lim sup
x→y0

sup
y≥x

µ[y, y0)

∫ y

x
s′(z)dz = 0,

lim sup
x→x0

sup
y≤x

µ(x0, y]
∫ x

y
s′(z)dz = 0.

(2.9)

Condition (2.9) comes from Muckenhoupt’s generalized Hardy inequality and Chen’s
characterization of empty essential spectrum for L in L2(I, µ), see Lemma 3.2. Intuitively it says
that the diffusion comes back to a compact sub-interval J of I with an exponential rate which
grows to infinity when J increases to the whole interval I (see Section 3 about the Dirichlet
eigenvalue which is just the exponential rate).

For example, when I = R, σ (x) = 1 and b(x) = −sgn(x)a|x |a−1 (a > 0), the invariant
measure is given by µ = e−2|x |a dx , condition (2.9) is satisfied iff a > 1.
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We now present two applications of this theorem.
Let G be any non-empty family of bounded and measurable functions on I such that

sup
g∈G

sup
x∈I
|g(x)| ≤ C < +∞ (2.10)

and l∞(G) the space of bounded functions F : G → R on G equipped with the uniform norm
‖F‖ := supg∈G |F(g)|. For any ν ∈ M1(E), νG

: g → ν(g) is an element of l∞(G). The

mapping ν → νG is continuous from (M1(E), ‖·‖T V ) to (l∞(G), ‖·‖G). Then by the contraction
principle we obtain the LDP for the empirical process L G

t = (g→ L t (g))g∈G :

Corollary 2.2. Assume (2.9). Then for any non-empty family G of bounded and measurable

functions on I satisfying (2.10), Pν
(

L G
t ∈ ·

)
satisfies the LDP on (l∞(G), ‖ · ‖G) uniformly

over ν ∈ Aµ,p(L) (for any p, L > 1) with the rate function given by

J (F) = inf{JE (ν); ν ∈ M1(I ), ν
G
= F}, F ∈ l∞(G)

(inf∅ := +∞).

Recall that the central limit theorem for L G
t in (l∞(G), ‖·‖G)was known under a much weaker

condition than (2.9) but with some extra condition on G, see van der Vaart and van Zanten [9].
Another application is about the kernel density estimator f ∗n,ε(x) of dµ(a)/da = m′(a)/Z

given by

f ∗n,ε(x) :=
1
n

∫ n

0
ψε(x − Xs)ds =

∫
R
ψε(x − y)Ln(dy)

where ψ is some fixed probability density function on R, and ψε(x) := (1/ε)ψ(x/ε). Here
ε = εn → 0 is the bandwidth. This is a typical statistical problem when the sample path
(X t )0≤t≤n is observed but a(x), b(x) are unknown.

Assume (2.9). Since the mapping Fε : g → ψε ∗ g from L1(R, da) to L1(R, da) converges,
as ε→ 0+, to the identity operator I d uniformly over any compact subsets of L1(R, da),

f ∗n,ε = Fε

(
1I (a)

Ln(da)

da

)
and 1I (a)Ln(da)/da satisfies the LDP on L1(R, da) (by Theorem 2.1) and then it is
exponentially tight, thus we have for any δ > 0 fixed and ε = εn → 0,

lim
n→∞

1
n

log sup
ν∈Aµ,p(L)

Pν
(∫
R

∣∣∣∣ f ∗n,ε(a)− 1I (a)
Ln(da)

da

∣∣∣∣ da > δ

)
= −∞.

Consequently by the approximation lemma [3, Theorem 4.2.13], we get:

Corollary 2.3. Assume (2.9). When the bandwidth ε = εn → 0, then Pν( f ∗n,ε ∈ ·) satisfies the
LDP on L1(R, da) uniformly over ν ∈ Aµ,p(L) (for any p, L > 1), with the rate function

J ( f ) =

E(
√

g,
√

g), if f ≥ 0,
∫
R

f da = 1, f 1R\I = 0,
√

g :=
√

Z f/m′ ∈ D(E)

+∞, otherwise.
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This is completely different from the discrete time case: even for the R-valued i.i.d. sample
sequence, a necessary and sufficient condition for the consistency of the kernel density estimator
f ∗n,ε is that εnn → +∞ (due to Devroye [14]), i.e., εn � 1/n. Under the last condition on
the bandwidth, we have obtained the weak LDP of f ∗n,ε in L1(R, da) for discrete time Markov
chains which are either uniformly ergodic [15] or µ-symmetric with transition kernel uniformly
integrable on L2(µ) [16], but the LDP of f ∗n,ε in L1(R, da) is false in general even for the i.i.d.
sequence [17]! In the point of view of the consistency of f ∗n,ε, this type of difference between
discrete time and continuous time samples was already observed by Bosq et al. [18].

3. Several lemmas

3.1. Discussions around the necessary and sufficient condition (2.9)

We begin with Wu’s uniform integrability criterion for the LDP of L t in the τ -topology (for
general reversible and ergodic Markov process (X t )). A bounded operator P on L2(µ) is said
to be uniformly integrable if {(P f )2; ‖ f ‖2 ≤ 1} is µ-uniformly integrable. The τ -topology on
M1(I ) is the weakest topology in which ν → ν( f ) is continuous for all real Borel measurable
and bounded functions f (written as f ∈ bB).

Lemma 3.1 ([4, Corollary 5.5]). The following conditions are equivalent:

(i) Pν(L t ∈ ·) satisfies the LDP w.r.t. the τ -topology σ(M1(I ), bB) on M1(I ), uniformly over
Aµ,p(L) for each L , p > 1.

(ii) { f 2
; µ( f 2)+ E( f, f ) ≤ 1} is µ-uniformly integrable.

(iii) Pt (t > 0) is uniformly integrable on L2(µ).
(iv) Pt is compact on L2(µ) for each t > 0.

Here the equivalence between (i), (ii) and (iii) holds without the absolute continuity, and their
equivalence with (iv) holds since for t > 0, Pt (x, dy)� dy ∼ µ(dy) by our ellipticity condition
in (H1).

Next let us see where condition (2.9) comes from. For every interval I0 ⊂ (x0, y0) = I ,
consider the smallest Dirichlet eigenvalue on I0,

λD(I0) = inf{E( f, f ); f ∈ D(E); f (x) = 0, ∀x 6∈ I0}, (3.1)

and set λD(x+) := λD([x, y0)) and λD(x−) := λD((x0, x]) for every x ∈ E . Consider the
Muckenhoupt constants

B(x+) := sup
y≥x

∫ y0

y
m′(y)dy

∫ y

x
s′(z)dz,

B(x−) := sup
y≤x

∫ x

x0

m′(y)dy
∫ x

y
s′(z)dz.

(3.2)

Muckenhoupt’s lemma [19] says that

B(x±) ≤
1

λD(x±)
≤ 4B(x±). (3.3)

Thus our condition (2.9) means that limx→y0 B(x+) = limx→x0 B(x−) = 0 or equivalently

lim
x→y0

λD(x+) = lim
x→x0

λD(x−) = +∞. (3.4)
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This last property turns out to be equivalent to the compactness of the resolvent (1− L)−1 or of
Pt , t > 0 in L2(µ), as given in Chen [20]:

Lemma 3.2 ([20]). The following properties are equivalent:

(iv) Pt is compact on L2(µ) for each t > 0 or (1− L)−1 is compact in L2(µ).
(v) limx→y0 λD(x+) = limx→x0 λD(x−) = +∞.

(vi) limx→y0 B(x+) = limx→x0 B(x−) = 0, i.e., (2.9).

3.2. Exponential tightness in L1(I, ν)

Hence under (2.9), L t satisfies the LDP in M1(E) w.r.t. the τ -topology. For the passage from
the LDP in the τ -topology to that in the ‖ · ‖T V topology, we shall require a general observation
from large deviations.

Lemma 3.3. Let (E, d) be a complete separable metric space and σ a regular Hausdorff
topology weaker than d, and (µn)n≥1 a family of probability measures on E. Assume that
as n → ∞, (µn) satisfies the LDP on E w.r.t. the σ -topology with the rate function I .
If (µn) is exponentially tight on (E, d), i.e., for any L > 0 there is some compact subset
K = KL ⊂ (E, d),

lim sup
n→∞

1
n

logµn
(
K c) < −L

then (µn) satisfies the LDP with the rate function I on (E, d).

Proof. At first, we prove the lower bound, which means that for any non-empty open O of
(E, d), we have to prove that

l(O) := lim inf
n→∞

1
n

logµn (O) ≥ − inf
O

I.

We may assume that infO I < +∞. Let L > infO I and K = KL be the compact set in (E, d)
specified by the exponential tightness condition. As K is also σ -compact, K c is σ -open, then

− inf
K c

I ≤ l(K c) < −L .

Since for every F ⊂ K , if F is d-closed, it is σ -compact then σ -closed, then every G ⊂ K ,
open in (K , d) is also open in (K , σ ). Thus O

⋂
K is open in (K , σ ), i.e., there exists a σ -open

Õ such that Õ
⋂

K = O
⋂

K . Consequently by the lower bound in the σ -topology,

− inf
O
⋂

K
I ≤ − inf

Õ
I ≤ l(Õ) ≤ max

{
l
(

O
⋂

K
)
,−L

}
≤ max{l(O),−L}.

Since infK c I > L > infO I , we have infO
⋂

K I = infO I , so we get

− inf
O

I ≤ max{l(O),−L},

where the desired result follows by letting L →+∞.
Having the lower bound in the d-topology and the upper bound of large deviation for compacts

of (E, d), the desired LDP follows from the exponential tightness. �

In other words the key to Theorem 2.1 (c) H⇒ (a) is to prove the exponential tightness of
Pν(l ·t/t ∈ ·) in L1(I, σ−2(a)da). We begin with a lemma of independent interest:
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Lemma 3.4. Let (µn) be a sequence of probability measures on the complete separable metric
space (E, d). If for any L , δ > 0, there exists some compact K = KL ,δ such that

lim sup
n→∞

1
n

logµn(B(K , δ)
c) < −L ,

where B(K , δ) := {y ∈ E; d(y, K ) := infx∈E d(y, x) ≤ δ}, then (µn) is exponentially tight.

Proof. Let L > 0 be fixed. For any integer m ≥ 1, let Km = KmL ,1/m be the compact given in
the lemma. Thus there exists some Nm ≥ 1 such that for all n ≥ N (m),

µn(B(Km, 1/m)c) ≤ e−nmL .

Since (µn, 1 ≤ n ≤ Nm) is tight, we can find compact K̃m ⊃ Km so that the relation above with
K̃m in place of Km holds for all n ≥ 1. Let

K =
⋂
m≥1

B(K̃m, 1/m).

It is closed and totally bounded, then compact in (E, d). Also for any n ≥ 1,

µn(K
c) ≤

∞∑
m=1

e−nmL
=

e−nL

1− e−nL ,

where the desired exponential tightness follows. �

Let ψ be a C∞ even probability density function on R with support contained in [−1, 1] and
ψε(x) := 1

ε
ψ(x/ε). Define

Mε f (x) :=
∫
R

f (y)ψε(x − y)dy = ψε ∗ f (x). (3.5)

Note that 1[l,r ]Mε : L1([l − ε, r + ε], dx)→ L1([l, r ], dx) is a compact operator: this follows
from

sup
x∈[l,r ]

|(Mε f )′(x)| = sup
x∈[l,r ]

|ψ ′ε ∗ f (x)| ≤ sup
x∈R
|ψ ′ε(x)| ·

∫
| f |dx

and the Arzelà–Ascoli theorem.

Lemma 3.5. Let h > 0 be locally bounded and measurable on I such that 1/h is locally
bounded on I . Let (µn) be a sequence of probability measures on L1(I, hda). Assume

(i)

lim
N→∞

lim sup
n→∞

1
n

logµn

(
f ;
∫

I
| f |hda > N

)
= −∞.

(ii) for any δ > 0

lim
l→x0+,r→y0−

lim sup
n→∞

1
n

logµn

(
f ;
∫
[l,r ]c
| f |hda > δ

)
= −∞.

(iii) for any δ > 0 and compact interval [l, r ] ⊂ (x0, y0),

lim
ε→0

lim sup
n→∞

1
n

logµn

(
f ;
∫ r

l
|Mε f (a)− f (a)|da > δ

)
= −∞

where Mε f (a), a ∈ [l, r ] is given in (3.5).

Then (µn) is exponentially tight in L1(I, hda).
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Proof. For any fixed L > 0 and any δ > 0, we use condition (i) to find some natural number N
such that

lim sup
n→∞

1
n

logµn(B(0, N )c) < −L , B(0, N ) :=

{
f ∈ L1(I, hda);

∫
I
| f |hda ≤ N

}
;

using condition (ii) we choose [l, r ] ⊂ I such that

lim sup
n→∞

1
n

logµn(A
c) < −L , A =

{
f ∈ L1(I, hda);

∫
[l,r ]c
| f |hda ≤ δ/2

}
;

and finally using condition (iii) we can take ε > 0 such that [l − ε, r + ε] ⊂ I and

lim sup
n→∞

1
n

logµn(C
c) < −L ,

where C :=
{

f ∈ L1(I, hda);
∫ r

l |Mε f (a)− f (a)|da ≤ δ
2‖h1[l,r ]‖∞

}
. Consider

K := the closure of {1[l,r ]Mε f ; f ∈ B(0, N )} in L1(I, hda).

Since the linear mapping 1[l,r ]Mε : L1([l − ε, r + ε], da) → L1([l, r ], da) is compact, using
the local boundedness of h and h−1, we see that K is compact in L1([l, r ], da), and hence in
L1(I, hda). For every f ∈ B(0, N )

⋂
A
⋂

C , 1[l,r ]Mε f ∈ K , and∫
I
|1[l,r ]Mε f − f |hda ≤

∫
[l,r ]c
| f |hda +

∫ r

l
|Mε f (a)− f (a)|h(a)da

≤
δ

2
+ ‖h1[l,r ]‖∞

δ

2‖h1[l,r ]‖∞
= δ.

Thus B(0, N )
⋂

A
⋂

C ⊂ B(K , δ), and therefore

lim sup
n→∞

1
n

logµn(B(K , δ)
c) ≤ lim sup

n→∞

1
n

log
[
µn(B(0, N )c)+ µn(A

c)+ µn(C
c)
]
< −L .

This implies the desired exponential tightness by Lemma 3.4. �

4. Proof of Theorem 2.1

(a) ⇐⇒ (b). This has been already noticed in the Introduction; it follows at once by (1.3).
(a) H⇒ (c). As (a) is stronger than the LDP of L t in the τ -topology in Lemma 3.1(i), this
implication follows from Lemmas 3.1 and 3.2.

We now turn to the crucial part (c) H⇒ (a). The proof is divided into three steps.
Step 1. By Lemmas 3.1 and 3.2, under condition (2.9), the LDP of L t in the τ -topology as

stated in Lemma 3.1(i) holds true. Since the uniform LDP in (a) is equivalent to saying that
Pνn (Ln ∈ ·) satisfies the LDP on (M1(I ), ‖ · ‖T V ) for any sequence (νn) ⊂ Aµ,p(L) (here
the passage from continuous time t to discrete time t = n exists because ‖L t − L [t]‖T V ≤

t−1
+ (1 − [t]/t) → 0 as t → ∞), by Lemma 3.3, it is enough to show that Pνn (Ln ∈ ·)

is exponentially tight in (M1(I ), ‖ · ‖T V ) or equivalently Pn(l ·n/n ∈ ·) is exponentially tight
in L1(I, σ−2(a)da) by (1.3). Since

∫
I (l

a
t /t)σ−2(a)da = L t (I ) = 1 and σ 2, σ−2 are locally

bounded, by Lemma 3.5, it is enough to establish

lim
l→x0,r→y0

lim sup
t→∞

1
t

sup
ν∈Aµ,p(L)

log Pν
(∫
[l,r ]c

la
t σ
−2(a)da > δ

)
= −∞, ∀δ > 0 (4.1)
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and for any x0 < l < r < y0,

lim
ε→0

lim sup
t→∞

1
t

log sup
ν∈Aµ,p(L)

Pν
(

1
t

∫ r

l
|lx

t −Mεl
·
t (x)|dx > δ

)
= −∞, ∀δ > 0, (4.2)

where Mε is the operator defined in (3.5).
Step 2. In this step we show (4.1). For any sequence of compact sub-intervals [xn, yn]

increasing to I = (x0, y0), let Fn,δ = {ν ∈ M1(E); ν(I \ (xn, yn)) ≥ δ}, which is closed
in M1(E) w.r.t. the weak convergence topology (weaker than the τ -topology). By the LDP of L t
in the weak convergence topology (a consequence of Lemma 3.1(i)) and (1.3) we have

lim sup
t→∞

1
t

sup
ν∈Aµ,p(L)

log Pν
(∫
[x,y]c

la
t σ
−2(a)da > δ

)
≤ lim sup

t→∞

1
t

sup
ν∈Aµ,p(L)

log Pν
(
L t ∈ Fn,δ

)
≤ − inf

ν∈Fn,δ
JE (ν).

Since Fn,δ decreases to the empty set as n goes to infinity, by the inf-compactness of JE in the
weak convergence topology (since it is so in the τ -topology by Lemma 3.1(i)),

lim
n→∞

inf
ν∈Fn,δ

JE (ν) = +∞,

where (4.1) follows.
Step 3. It remains to show (4.2). For any z ∈ (−ε, ε) where 0 < ε < ε0, [l − ε0, r + ε0] ⊂

(x0, y0) and x ∈ [l, r ], by the Tanaka formula we have,

|lx
t −Mεl

·
t (x)| =

∣∣∣∣(|X t − x | − |X0 − x | −
∫ t

0
sgn(Xs − x)dXs

)
−

∫
ψε(z)

×

(
|X t − (x + z)| − |X0 − (x + z)| −

∫ t

0
sgn(Xs − x − z)dXs

)
dz

∣∣∣∣
≤ 2ε + 2

∣∣∣∣∫ ψε(z)dz
∫ t

0
1x−z−≤Xs≤x+z+dXs

∣∣∣∣
≤ 2ε + 2

∣∣∣∣∫ ψε(z)dz
∫ t

0
1x−z−≤Xs≤x+z+σ(Xs)dBs

∣∣∣∣
+ 2

∣∣∣∣∫ ψε(z)dz
∫ t

0
1x−z−≤Xs≤x+z+b(Xs)ds

∣∣∣∣ . (4.3)

For the last term, since for |z| < ε, we have

1
t

∫ r

l
dx

∣∣∣∣∫ t

0
1x−z−≤Xs≤x+z+b(Xs)ds

∣∣∣∣
≤

1
t

∫ t

0
|b(Xs)|1l−ε≤Xs≤r+εds

∫ r

l
1Xs−z+≤x≤Xs+z−dx

≤
ε

t

∫ t

0
|b(Xs)|1l−ε≤Xs≤r+εds

≤ ε sup
x∈[l−ε0,r+ε0]

|b(x)|,
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then for (4.2) it is enough to show (by (4.3)) that for all δ > 0,

lim
ε→0

lim sup
t→∞

1
t

log sup
ν∈Aµ,p(L)

Pν
(

1
t

∫ r

l
dx
∫
ψε(z)|Mt (x, z)|dz > δ

)
= −∞, (4.4)

where

Mt (x, z) :=
∫ t

0
1x−z−≤Xs≤x+z+σ(Xs)dBs .

Set

Kt (ε) =
1
t

∫ r

l
dx
∫
ψε(z)|Mt (x, z)|dz.

By Cheybechev’s inequality, for all δ > 0, λ > 0,

Pν(Kt (ε) > δ) ≤ e−λtδEν exp(λt Kt (ε))

thus,

1
t

log Pν(Kt (ε) > δ) ≤ −λδ +
1
t

log Eν exp(λt Kt (ε)).

For the control of the last term, using the convexity of log EeX in X and e|x | ≤ ex
+ e−x , we

have,

1
t

log Eν exp {λt Kt (ε)} =
1
t

log Eν exp
{

λ

r − l

∫ r

l
dx
∫
ψε(z)(r − l)|Mt (x, z)|dz

}
≤

1
r − l

∫ r

l
dx
∫
ψε(z)dz

(
1
t

log Eν exp {λ(r − l) |Mt (x, z)|}
)

≤
1

r − l

∫ r

l
dx
∫
ψε(z)dz

(
1
t

log Eν
(

e(r−l)λMt (x,z) + e−(r−l)λMt (x,z)
))
. (4.5)

Noting that for any continuous local martingale (Mt ), exp(2Mt − 2[M]t ) is a local martingale
then a supermartingale, then by Cauchy–Schwartz,

EeMt ≤

√
Ee2Mt−2[M]t

√
Ee2[M]t ≤

√
Ee2[M]t ≤ Ee2[M]t .

As

[M(x, z)]t =
∫ t

0
1x−z−≤Xs≤x+z+σ

2(Xs)ds ≤ ‖σ 21[l−ε0,r+ε0]‖∞t,

we have for all |z| < ε < ε0,

Eν
(

e(r−l)λMt (x,z) + e−(r−l)λMt (x,z)
)

≤ 2Eν exp
(

2(r − l)2λ2
∫ t

0
1x−ε≤Xs≤x+εσ

2(Xs)ds

)
≤ 2 exp

(
2(r − l)2λ2

‖σ 21[l−ε0,r+ε0]‖∞t
)
.
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Substituting it into (4.5) we obtain by dominated convergence that for all δ, λ > 0,

lim sup
t→∞

1
t

log sup
ν∈Aµ,p(L)

Pν(Kt (ε) > δ) ≤ −λδ +
1

r − l

∫ r

l
dxΛ(Vx,ε),

where Vx,ε(y) = 2(r − l)2λ2σ 2(y)1x−ε≤y≤x+ε and

Λ(Vx,ε) := lim sup
t→∞

1
t

log sup
ν∈Aµ,p(L)

Eν exp
(∫ t

0
Vx,ε(Xs)ds

)
.

Since Λ(Vx,ε) ≤ 2(r − l)2λ2
‖σ 21[l−ε0,r+ε0]‖∞, by dominated convergence, for (4.4) we only

have to show that for any x ∈ [l, r ] fixed and for any λ > 0,

lim
ε→0

Λ(Vx,ε) = 0. (4.6)

By the Laplace principle and the LDP in the τ -topology in Lemma 3.1,

Λ(Vx,ε) = sup
ν∈M1(E)

(
ν(Vx,ε)− JE (ν)

)
= − inf

ν∈M1(E)
fε(ν),

where fε(ν) := JE (ν) − ν(Vx,ε). Since fε(ν) ↑ JE (ν) as ε decreases to zero and fε is inf-
compact on (M1(I ), τ ), we have by an elementary analytic lemma

lim
ε→0

inf
ν∈M1(E)

fε(ν) = inf
ν∈M1(E)

lim
ε→0

fε(ν) = inf
ν∈M1(E)

JE (ν) = 0

(for JE (µ) = 0) which yields the desired (4.6).
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