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Lévy tree

Romain Abrahama,∗, Jean-François Delmasb

a Laboratoire MAPMO, CNRS, UMR 7349, Fédération Denis Poisson, FR 2964, Université d’Orléans, B.P. 6759,
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Abstract

We perform a pruning procedure on a Lévy tree and instead of throwing away the removed sub-tree, we
regraft it on a given branch (not related to the Lévy tree). We prove that the tree constructed by regrafting is
distributed as the original Lévy tree, generalizing a result of Addario-Berry, Broutin and Holmgren where
only Aldous’s tree is considered. As a consequence, we obtain that the “average pruning time” of a leaf is
distributed as the height of a leaf picked at random in the Lévy tree.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Lévy trees arise as the scaling limits of Galton–Watson trees in the same way as continuous
state branching processes (CSBPs) are the scaling limits of Galton–Watson processes (see
[16, Chapter 2]). Hence, Lévy trees can be seen as the genealogical trees of some CSBPs, [22].
One can define a random variable T in the space of real trees (see [19,18,17]) that describes the
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genealogy of a CSBP with branching mechanism ψ of the form:

ψ(λ) = αλ+ βλ2
+


(0,+∞)


e−λr

− 1 + λr

π(dr) for λ ≥ 0,

with α ≥ 0, β ≥ 0 and π a σ -finite measure on (0,+∞) such that

(0,+∞)

(r ∧r2)π(dr) < +∞.
We assume that either β > 0 or π((0, 1)) = +∞. In particular, the corresponding CSBP is (sub-)
critical as ψ ′(0) = α ≥ 0. In order to use the setting of measured real trees developed in [4], we
shall restrict ourselves to compact Lévy trees, that is with branching mechanism satisfying the
Grey condition:

+∞ dv

ψ(v)
< +∞.

This condition is equivalent to the compactness of the Lévy tree, and to the a.s. extinction in
finite time of the corresponding CSBP.

In [6], a pruning mechanism has been constructed so that the Lévy tree with branching
mechanism ψ pruned at rate q > 0 is a Lévy tree with branching mechanism ψq defined by:

ψq(λ) = ψ(λ+ q)− ψ(q) for λ ≥ 0.

This pruning is performed by throwing marks on the tree in a Poissonian manner and by cutting
the tree according to these marks, generalizing the fragmentation procedure of the Brownian tree
introduced in [8]. This pruning procedure allowed to construct a tree-valued Markov process [2]
(see also [9] for an analogous construction in a discrete setting) and to study the record process
on Aldous’s continuum random tree (CRT) [1] which is related to the number of cuts needed to
reduce a Galton–Watson tree.

This problem of cutting down a random tree arises first in [27]: consider a rooted discrete
tree with n vertices, pick an edge uniformly at random and remove it together with the sub-tree
attached to it and then iterate the procedure on the remaining tree until only the root is left. The
question is “How many cuts are needed to isolate the root by this procedure”? Asymptotics in
law for this quantity are given in [27] when the tree is a Cayley tree (see also [10,11] in this case
where the problem is generalized to the isolation of several leaves and not only the root) and
in [24] for conditioned (critical with finite variance) Galton–Watson trees. A.s. convergence has
also been obtained in the latter case for a slightly different quantity in [1] using a special pruning
procedure that we describe now.

Let T be a Lévy tree with branching mechanismψ and mT (dx) its “mass measure” supported
by the leaves of T . We denote by Pψr the distribution of the Lévy tree corresponding to the CSBP
with branching mechanism ψ starting at r and by Nψ the corresponding excursion measure also
called canonical measure (in particular, Pψr can be seen as the distribution of a “forest” of Lévy
trees given by a Poisson point measure with intensity rNψ ). The branching points of the Lévy
tree are either binary or of infinite degree (see [17, Theorem 4.6]) and to each infinite degree
branching point x , one can associate a size ∆x which measures in some sense the number of
sub-trees attached to it (see (6) in Section 2.5). We then consider a measure µT on T defined by:

µT (dy) = 2βℓT (dy)+


x∈Br∞(T )

∆xδx (dy),

where ℓT is the length measure on the skeleton of the tree, Br∞(T ) is the set of branching
points of infinite degree and δx is the Dirac measure at point x . Aldous’s CRT corresponds to the



R. Abraham, J.-F. Delmas / Stochastic Processes and their Applications 123 (2013) 3497–3517 3499

distribution of T under Nψ , with ψ(λ) =
1
2λ

2, and conditionally on mT (T ) = 1. In this case
Br∞(T ) is empty and thus µT (dy) = ℓT (dy).

Then we consider, conditionally given T , a Poisson point process M T (dθ, dy) of marks on
the tree with intensity

1[0,+∞)(θ)dθ µ
T (dy).

Parameter y indicates the location of the mark whereas θ represents the time at which it appears.
For every x ∈ T , we set

θ(x) the first time θ at which a mark appears between x and the root.

We consider Θ the average of these first cutting times over the Lévy tree:

Θ =


T
θ(x)mT (dx).

It has been proven in [1] (Theorem 6.1 and Corollary 5.3 withψ(u) = u2/2) in the framework
of Aldous’s CRT, that if we denote by Xn the number of cuts needed to isolate the root in the sub-
tree spanned by n leaves randomly chosen, then a.s. limn→+∞ Xn/Ln = Θ , with Ln ∼

√
2n

the total length of the sub-tree. Moreover, the law of Θ in that case is a Rayleigh distribution
(i.e. with density xe−x2/21{x≥0}). The distribution of Θ is also the law of the height of a leaf
picked at random in Aldous’s tree. This surprising relationship is explained by Addario-Berry,
Broutin and Holmgren in [7, Theorem 10]. The authors consider a branch with length Θ , and
when a mark appears, the tree is cut and the sub-tree which does not contain the root is removed
and grafted on this branch (the grafting position is described using some local time). Then the
new tree obtained by this grafting procedure is again distributed as Aldous’s tree.

The goal of this paper is to generalize this result to general Lévy trees. We consider a Lévy tree
T under Nψ and we perform the pruning procedure described above. When a mark appears, we
remove the sub-tree attached to this mark and keep the sub-tree containing the root. We denote
by Tq the resulting tree at time q i.e. the set of points of the initial tree T which have no marks
between them and the root at time q:

Tq = {x ∈ T ; θ(x) ≥ q}.

According to [6, Theorem 1.1], Tq is a Lévy tree with branching mechanism ψq . We consider
Θq the average of the records shifted by q over the Lévy tree Tq :

Θq =


Tq

(θ(x)− q)mT (dx).

Remark that a.s. Tq ⊂ T and hence Θq ≤ Θ .
We define an equivalence relation on the tree T : x ∼ y if the function θ remains constant on

the path between x and y. We consider the equivalence classes (T i , i ∈ I R) and denote for each
i ∈ I R by θi the common value of the function θ . In the pruning procedure described above, the
tree T i corresponds to the sub-tree which is removed at time θi and it is distributed according to
Nψθi . Then we consider a branch B R of length Θ rooted at some end point, say ∅. The sub-tree
T i is grafted on B R at distance Θθi from the root; see Fig. 1. Let T R denote this tree obtained
by regrafting. Our main result, see Theorem 3.1, relies on Laplace transform computations and
can be stated as follows.
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Fig. 1. Pruning of a Lévy tree (left) and tree T R obtained by regrafting on a branch (right). The marks are numbered
according to their order of appearance.

Theorem. Assume that the Grey condition holds. Under Nψ , (B R, T R) is distributed as (B, T )
where B is a branch from the root ∅ to a leaf chosen at random on T according to the mass
measure mT .

In particular, this theorem implies the following corollary.

Corollary. Under Nψ [d T ], Θ is distributed as the height H of a leaf of the Lévy tree chosen at
random according to the mass measure mT .

A probabilistic interpretation of those results for the Brownian CRT is provided in [7] using a
path transformation on Brownian bridge or in [10] using a fragmentation tree. We do not know
if such an approach is valid in the present general framework.

Using the Bismut decomposition of Lévy trees (see Fig. 2), we recover and extend to general
Lévy trees Proposition 8.2 from [2] on the asymptotics of the masses of (T i , i ∈ I R). Set
σ = mT (T ) and σ i

= mT (T i ) for i ∈ I R .

Corollary. Assume that the Grey condition holds. Nψ -a.e., we have:

lim
ε→0

1
Nψ [σ > ε]


i∈I R

1{σ i ≥ε} = Θ .

Similar results hold for the convergence of 1
Nψ [σ1{σ≤ε}]


i∈I R σ i 1{σ i ≤ε} to Θ ; see Corol-

lary 3.2.
The above theorem states that the point process with atoms (Θθi , T i ), i ∈ I R is distributed as

the point process that appears in the Bismut decomposition of a Lévy tree. This may seem quite
surprising. Indeed, if θi ≤ θ j , then T i is stochastically greater than T j (as a tree distributed
according to Nψq can be obtained from a tree distributed according to Nψq′ for q ≥ q ′ by
pruning). Consequently, the trees that are grafted on B R are in some sense smaller and smaller
whereas the trees in the Bismut decomposition have the same law. However, the intensity of the
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Fig. 2. Bismut decomposition of a Lévy tree.

grafting is not uniform in the first case (contrary to the Bismut decomposition) and depends on
the size of the trees grafted before, which gives at the end the identity in distribution.

In the present work, we ignore the marks that fall on the sub-trees once they have been
removed. However, we could use them to iterate our construction on each sub-tree (T i , i ∈ I R)

and so on, in order to generalize to general Lévy trees the result obtained for Aldous’s CRT by
Bertoin and Miermont [11].

In view of the present work, we conjecture that similar results to [24] hold for infinite variance
offspring distribution. Let Xn denote the number of cuts needed to isolate the root by pruning
at edges a Galton–Watson tree conditioned to have n vertices. We also consider the pruning at
vertices inspired by Abraham et al. [3], which is the discrete analogue of the continuous pruning:
pick an edge uniformly at random and remove the vertex from which the edge comes together with
the sub-tree attached to this vertex. Let X̃n be the number of cuts until the root is removed by this
procedure for a Galton–Watson tree conditioned to have n vertices. According to [24], the number
of cuts needed to remove the root for the pruning at vertices (that is X̃n) or to isolate the root
for the pruning at edges (that is Xn) are asymptotically equivalent for finite variance offspring
distribution. However, we expect a different behaviour in the infinite variance case. Consider a
critical Galton–Watson tree with offspring distribution in the domain of attraction of a stable law
of index γ ∈ (1, 2]. According to [15] or [25], the (contour process of the) Galton–Watson tree
conditioned to have total progeny n, properly rescaled, converges in distribution to (the contour
process of) a Lévy tree under Nψ [ · |σ = 1], with ψ(λ) = c0λ

γ for some c0 > 0.
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Conjecture. Let Ln denote the length of the rescaled Galton–Watson tree conditioned to have
total progeny n. We conjecture that:

X̃n

Ln

(d)
−−−−→
n→+∞

Z ,

for some random variable Z distributed as the height of a leaf chosen at random according to
the mass measure under Nψ [ · |σ = 1].

Set a = (γ − 1)/γ . Using the Laplace transform (see Theorem 2.1), we get that the height
H of a leaf randomly chosen in the Lévy tree is distributed under Nψ as σ a Z , with Z and σ
independent and the distribution of Z is characterized for n ∈ N by:

E

Zn

=
1

cn/γ
0 γ n

Γ (a)Γ (n + 1)
Γ (a(n + 1))

.

In the particular case of Aldous’s CRT, γ = 2 and c0 = 1/2, we recover, using the duplica-
tion formula of the gamma function, that Z (and thus H under Nψ [ · |σ = 1]) has Rayleigh
distribution.

The paper is organized as follows. We collect results on Lévy trees in Section 2, with the
Bismut decomposition in Section 2.7 and the pruning procedure in Section 2.8. The main result
is then precisely stated in Section 3 and proved in Section 4.

2. Lévy trees and the forest obtained by pruning

2.1. Notations

Let (E, d) be a metric Polish space. For x ∈ E , δx denotes the Dirac measure at point
x . For µ a Borel measure on E and f a non-negative measurable function, we set ⟨µ, f ⟩ =

f (x) µ(dx) = µ( f ).

2.2. Real trees

We refer the reader to [12,14,28] for a general presentation of R-trees and to [18] or [21] for
their applications in the field of random real trees. Informally, real trees are metric spaces without
loops, locally isometric to the real line. More precisely, a metric space (T, d) is a real tree if the
following properties are satisfied.

(1) For every s, t ∈ T , there is a unique isometric map fs,t from [0, d(s, t)] to T such that
fs,t (0) = s and fs,t (d(s, t)) = t .

(2) For every s, t ∈ T , if q is a continuous injective map from [0, 1] to T such that q(0) = s and
q(1) = t , then q([0, 1]) = fs,t ([0, d(s, t)]).

If s, t ∈ T , we will denote by [[s, t]] the range of the isometric map fs,t described above. We will
also write [[s, t]] for the set [[s, t]] \ {t}.

We say that (T, d,∅) is a rooted real tree with root ∅ if (T, d) is a real tree and ∅ ∈ T is a
distinguished vertex.

Let (T, d,∅) be a rooted real tree. If x ∈ T , the degree of x , n(x), is the number of connected
components of T \ {x}. We shall consider the set of leaves Lf(T ) = {x ∈ T \ {∅}, n(x) = 1},
the set of branching points Br(T ) = {x ∈ T, n(x) ≥ 3} and the set of infinite branching points
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Br∞(T ) = {x ∈ T, n(x) = ∞}. The skeleton of T is the set of points in the tree that are not
leaves: Sk(T ) = T \ Lf(T ). The trace of the Borel σ -field of T restricted to Sk(T ) is generated
by the sets [[s, s′

]]; s, s′
∈ Sk(T ). Hence, one defines uniquely a σ -finite Borel measure ℓT on T ,

called length measure of T , such that:

ℓT (Lf(T )) = 0 and ℓT ([[s, s′
]]) = d(s, s′).

For every x ∈ T , [[∅, x]] is interpreted as the ancestral line of vertex x in the tree. We define
a partial order on T by setting x 4 y (x is an ancestor of y) if x ∈ [[∅, y]]. If x, y ∈ T , there
exists a unique z ∈ T , called the Most Recent Common Ancestor (MRCA) of x and y, such that
[[∅, x]] ∩ [[∅, y]] = [[∅, z]]. We write z = x ∧ y.

2.3. Measured rooted real trees

We call a w-tree a weighted rooted real tree, i.e. a quadruplet (T, d,∅,m) where (T, d,∅) is
a locally compact rooted real tree and m is a locally finite measure on T . Sometimes, we will
write (T, dT ,∅T ,mT ) for (T, d,∅,m) to stress the dependence in T , or simply T when there is
no confusion. We denote by T the set of w-trees.

In order to define a tractable distance on w-trees, we need an equivalence relation between
two w-trees, i.e. we identify two w-trees (T, dT ,∅T ,mT ) and (T ′, dT ′

,∅T ′

,mT ′

) if there exists
an isometric function which maps T onto T ′, which sends ∅

T onto ∅
T ′

and which transports
measure mT on measure mT ′

. We will denote by T the set of measure-preserving and root-
preserving isometry classes of w-trees. One can define a topology on T such that T is a Polish
space; see for example [20,23,5].

Let T, T ′
∈ T be w-trees that belong to the same equivalence class. Let ϕ be a measure-

preserving–root-preserving isometry that maps T onto T ′. A T-valued function F of the form
F(T, (xi , i ∈ I )) where (xi , i ∈ I ) is a family of points of T is said to be T-compatible if
F(T ′, (ϕ(xi ), i ∈ I )) belongs to the same equivalence class as F(T, (xi , i ∈ I )).

Let T ∈ T. For x ∈ T , we set h(x) = d(∅, x) the height of x and

Hmax(T ) = sup
x∈T

h(x) (1)

the height of the tree (possibly infinite). Remark that for two w-trees in the same equivalence
class, the heights are the same; hence Hmax(T ) is well-defined for T ∈ T.

For a ≥ 0, we set:

T (a) = {x ∈ T, d(∅, x) = a} and πa(T ) = {x ∈ T, d(∅, x) ≤ a},

the restriction of the tree T at level a and the truncated tree T up to level a. We consider πa(T )
with the induced distance, the root ∅ and the mass measure mπa(T ) which is the restriction of
mT to πa(T ), to get a w-tree. Let us remark that the map πa is T-compatible. We denote by
(T i,◦, i ∈ I ) the connected components of T \ πa(T ). Let ∅i be the MRCA of all the points
of T i,◦. We consider the real tree T i

= T i,◦
∪ {∅i } rooted at point ∅i with mass measure mT i

defined as the restriction of mT to T i . We will consider the point measure on T × T:

N T
a =


i∈I

δ(∅i ,T i ).
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2.4. Grafting procedure

We will define in this section a procedure by which we add (graft) w-trees on an existing
w-tree. More precisely, let T ∈ T and let ((Ti , xi ), i ∈ I ) be a finite or countable family of
elements of T × T . We define the real tree obtained by grafting the trees Ti on T at point xi . We
set T̃ = T ⊔


i∈I Ti \ {∅

Ti }


where the symbol ⊔ means that we choose for the sets (Ti )i∈I
representatives of isometry classes in T which are disjoint subsets of some common set and that
we perform the disjoint union of all these sets. We set ∅

T̃
= ∅

T . The set T̃ is endowed with the
following metric d T̃ : if s, t ∈ T̃ ,

d T̃ (s, t) =


dT (s, t) if s, t ∈ T,
dT (s, xi )+ dTi (∅

Ti , t) if s ∈ T, t ∈ Ti \ {∅
Ti },

dTi (s, t) if s, t ∈ Ti \ {∅
Ti },

dT (xi , x j )+ dT j (∅
T j , s)+ dTi (∅

Ti , t) if i ≠ j and s ∈ T j \ {∅
T j },

t ∈ Ti \ {∅
Ti }.

We define the mass measure on T̃ by:

mT̃
= mT

+


i∈I


1Ti \{∅

Ti }m
Ti + mTi ({∅

Ti })δxi


,

where δx is the Dirac mass at point x . We will use the following notation:

(T̃ , d T̃ ,∅
T̃ ,mT̃ ) = T ~i∈I (Ti , xi ). (2)

It is clear that the metric space (T̃ , d T̃ ,∅T̃ ) is still a rooted complete real tree. Notice that it is
not always true that T̃ remains locally compact or that mT̃ defines a locally finite measure on
T̃ . For instance if we consider the grafting {∅} ~n∈N(T,∅) where T is a non-trivial tree (i.e. we
graft the same tree an infinite number of times on a single point), then the resulting tree is not
locally compact.

It is easy to check that the function defined by F(T, (xi , i ∈ I )) = T ~i∈I (Ti , xi ) if
T ~i∈I (Ti , xi ) belongs to T and F(T, (xi , i ∈ I )) = T otherwise is T-compatible. That is
the grafting procedure, when the resulting tree belongs to T, is T-compatible.

2.5. Excursion measure of a Lévy tree

Let ψ be a critical or sub-critical branching mechanism defined by:

ψ(λ) = αλ+ βλ2
+


(0,+∞)


e−λr

− 1 + λr

π(dr) (3)

with α ≥ 0, β ≥ 0 and π is a σ -finite measure on (0,+∞) such that

(0,+∞)

(r∧r2)π(dr) < +∞

and ⟨π, 1⟩ = +∞ if β = 0. We also assume the Grey condition:
+∞ dλ

ψ(λ)
< +∞. (4)

The Grey condition is equivalent to the a.s. finiteness of the extinction time of the CSBP. This
assumption is used to ensure that the corresponding Lévy tree is compact. Let v be the unique
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non-negative solution of the equation:

∀a > 0,


+∞

v(a)

dλ

ψ(λ)
= a.

We gather here results from [17, Theorems 4.2, 4.3 and 4.6, 4.7]. Remarks of pages 575 and
578 of [17] state that the local time ℓa is a function of the tree (see the third property below) and
hence can be defined on T.

Using the coding of compact real trees by height functions, we can define a σ -finite measure
Nψ [d T ] on T, or excursion measure of the Lévy tree, with the following properties.

(i) Height. Recall Definition (1) of the height Hmax(T ) of a tree. For all a > 0,

Nψ [Hmax(T ) > a] = v(a).

(ii) Mass measure. The mass measure mT is supported by Lf(T ), Nψ [d T ]-a.e.
(iii) Local time. There exists a process (ℓa, a ≥ 0) with values on finite measures on T , which

is càdlàg for the weak topology on finite measures on T and such that Nψ [d T ]-a.e.:

mT (dx) =


∞

0
ℓa(dx) da, (5)

ℓ0
= 0, inf{a > 0; ℓa

= 0} = sup{a ≥ 0; ℓa
≠ 0} = Hmax(T ) and for every fixed a ≥ 0,

Nψ [d T ]-a.e.:
• The measure ℓa is supported on T (a).
• We have for every bounded continuous function φ on T :

⟨ℓa, φ⟩ = lim inf
ϵ↓0

1
v(ϵ)


φ(x)1{Hmax(T ′)≥ϵ}N T

a (dx, d T ′)

= lim inf
ϵ↓0

1
v(ϵ)


φ(x)1{Hmax(T ′)≥ϵ}N T

a−ϵ(dx, d T ′), if a > 0.

Moreover, the above lim inf are true limits Nψ [d T ]-a.s.
Under Nψ , the real valued process (⟨ℓa, 1⟩, a ≥ 0) is distributed as a CSBP with branch-

ing mechanism ψ under its canonical measure.
(iv) Branching property. For every a > 0, the conditional distribution of the point measure

N T
a (dx, d T ′) under Nψ [d T |Hmax(T ) > a], given πa(T ), is that of a Poisson point mea-

sure on T (a)× T with intensity ℓa(dx)Nψ [d T ′
].

(v) Branching points.
• Nψ [d T ]-a.e., the branching points of T are of degree 3 or +∞.
• The set of binary branching points (i.e. of degree 3) is empty Nψ a.e if β = 0 and is a

countable dense subset of T if β > 0.
• The set Br∞(T ) of infinite branching points is nonempty with Nψ -positive measure if and

only if π ≠ 0. If ⟨π, 1⟩ = +∞, the set Br∞(T ) is Nψ -a.e. a countable dense subset of T .
(vi) Mass of the nodes. The set {d(∅, x), x ∈ Br∞(T )} coincides Nψ -a.e. with the set of dis-

continuity times of the mapping a → ℓa . Moreover, Nψ -a.e., for every such discontinuity
time b, there is a unique xb ∈ Br∞(T ) ∩ T (b) and ∆b > 0, such that:

ℓb
= ℓb−

+ ∆bδxb ,

where ∆b > 0 is called the mass of the node xb. Furthermore ∆b can be obtained by the
approximation:

∆b = lim inf
ϵ→0

1
v(ϵ)

n(xb, ϵ), (6)
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where n(xb, ϵ) =


1{x=xb}1{Hmax (T ′)>ϵ}N T
b (dx, d T ′) is the number of sub-trees originat-

ing from xb with height larger than ϵ. Moreover, the above lim inf is a true limit Nψ [d T ]-a.s.

In order to stress the dependence in T , we may write ℓa,T for ℓa .
We set σT or simply σ when there is no confusion, the total mass of the mass measure on T :

σ = mT (T ). (7)

In particular, as σ is distributed as the total mass of a CSBP under its canonical measure, we have
that Nψ -a.s. σ > 0 and for q > 0 (see for instance [26, Corollary 10.9] for the first equality, the
others being obtained by differentiation):

Nψ

1 − e−ψ(q)σ


= q, Nψ


σe−ψ(q)σ


=

1
ψ ′(q)

and

Nψ

σ 2e−ψ(q)σ


=
ψ ′′(q)

ψ ′(q)3
. (8)

The last two equations hold for q = 0 if ψ ′(0) > 0.

2.6. Other measures on T

For each r > 0, we define a probability measure Pψr on T as follows. Let r > 0 and


k∈K δT k

be a Poisson point measure on T with intensity rNψ . Consider {∅} as the trivial w-tree reduced
to the root with null mass measure. Define T = {∅}~k∈K(T k,∅). Using Property (i) as well
as (8), one easily gets that for every ε > 0 there is only a finite number of trees T k with
height larger than ε. As each tree T k is compact, we deduce that T is a compact w-tree, and
hence belongs to T. We denote by Pψr its distribution. Its corresponding local time is defined by
ℓa

=


k∈K ℓ
a,T k

and its total mass is defined by σ =


k∈K σ
T k

. Under Pψr , the real valued
process (⟨ℓa, 1⟩, a ≥ 0) is distributed as a CSBP with branching mechanism ψ with initial
value r .

We consider the following measure on T:

Nψ [d T ] = 2βNψ [d T ] +


+∞

0
rπ(dr)Pψr (d T ) (9)

which appears as the grafting intensity in the tree-valued Markov process of [4]. From (8) and
(9), elementary computations yield for q > 0:

Nψ

1 − e−ψ(q)σ


= ψ ′(q)− ψ ′(0), (10)

as well as

Nψ

σe−ψ(q)σ


=
ψ ′′(q)

ψ ′(q)
and Nψ


σ 2e−ψ(q)σ


=

1
ψ ′(q)

∂q


−ψ ′′(q)

ψ ′(q)


. (11)

The last two equalities also hold for q = 0 if ψ ′(0) > 0.

2.7. Bismut decomposition of a Lévy tree

We first present a decomposition of T ∈ T according to a given vertex x ∈ T . We denote by
(T j,◦, j ∈ Jx ) the connected components of T \[[∅, x]]. For every j ∈ Jx , let x j be the MRCA of
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T j,◦ and consider T j
= T j,◦

∪ {x j } as an element of T with mass measure the mass measure of
T restricted to T j,◦. In order to graft together all the sub-trees with the same MRCA, we consider
the following equivalence relation on Jx :

j ∼ j ′ ⇐⇒ x j = x j ′ .

Let I B
x be the set of equivalence classes. For [i] ∈ I B

x , we set x[i] for the common value of x j
with j ∈ [i]. We consider {x[i]} as an element of T with 0 mass measure. For [i] ∈ I B

x , we
consider the following element of T defined by:

T B,[i]
= {x[i]} ~ j∈[i](T

j , x[i]).

Let h[i] = d(∅, x[i]). We consider the random point measure MT
x on R+ × T defined by:

MT
x =


[i]∈I B

x

δ(h[i],T B,[i]).

Under Nψ , conditionally on T , let U be a T -valued random variable, with distribution
σ−1 mT . In other words, conditionally on T , U represents a leaf chosen “uniformly” at random
according to the mass measure mT . We define under Nψ a non-negative random variable and a
random point measure on R+ × T as follows:

H = d T (∅T ,U ) and Z B
= MT

U . (12)

Let us remark that the distribution of (H,Z B) does not depend on the choice of the representative
in the equivalence class and thus this random variable is well defined under Nψ .

By construction, for every non-negative measurable function Φ on R+ × T and for every
λ ≥ 0, ρ ≥ 0, we have:

Nψ

σe−λσ−ρH−⟨Z B ,Φ⟩


= Nψ


T

mT (dx) e−λσ−ρh(x)−⟨MT
x ,Φ⟩


.

As a direct consequence of Theorem 4.5 of [17], we get the following result.

Theorem 2.1. For every non-negative measurable function Φ on R+ × T and for every λ ≥ 0,
ρ ≥ 0, we have:

Nψ

σe−λσ−ρH−⟨Z B ,Φ⟩


=


+∞

0
dae−ρa exp


−

 a

0
g(λ, u)du


,

where

g(λ, u) = ψ ′(0)+ Nψ

1 − e−λσ−Φ(u,T )


. (13)

In other words, under Nψ [σ, d T ], if we choose a leaf U uniformly (i.e. according to the
normalized mass measure mT ), the height H of this leaf is distributed according to the density
dae−ψ ′(0)a and, conditionally on H , the point measure Z B is a Poisson point process on [0, H ]

with intensity Nψ [d T ].

2.8. Pruning a Lévy tree

A general pruning of a Lévy tree has been defined in [6]. We use a special case of this pruning
depending on a one-dimensional parameter θ used first in [29] to define a fragmentation process
of the tree.
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More precisely, under Nψ [d T ], we consider a mark process M T (dθ, dy) on the tree which is
a Poisson point measure on R+ × T with intensity:

1[0,+∞)(θ)dθ

2βℓT (dy)+


x∈Br∞(T )

∆xδx (dy)

 .
The atoms (θi , yi )i∈I of this measure can be seen as marks that arrive on the tree, yi being the
location of the mark and θi the “time” at which it appears. There are two kinds of marks: some
are “uniformly” distributed on the skeleton of the tree (they correspond to the term 2βℓT in the
intensity) whereas the others are located on the infinite branching points of the tree, an infinite
branching point y being first marked after an exponential time with parameter ∆y .

For every x ∈ T , we set:

θ(x) = inf{θ > 0,M T ([0, θ] × [[∅, x]]) > 0}.

The process (θ(x), x ∈ T ) is called the record process on the tree T as defined in [1]. This
corresponds to the first time at which a mark arrives on [[∅, x]]. Using this record process, we
define the pruned tree at time q as:

Tq = {x ∈ T , θ(x) ≥ q}

with the induced metric, root ∅ and mass measure the restriction of the mass measure mT . If one
cuts the tree T at time θi at point yi , then Tq is the sub-tree of T containing the root at time q .
Here again, the definition of Tq is T-compatible.

Proposition 2.2 ([6, Theorem 1.1]). For q > 0 fixed, the distribution of Tq under Nψ is Nψq

with the branching mechanism ψq defined for λ ≥ 0 by:

ψq(λ) = ψ(λ+ q)− ψ(q). (14)

Furthermore, the measure Nψq is absolutely continuous with respect to Nψ , see [2, Lemma
6.2]: for every q ≥ 0 and every non-negative measurable function F on T, we have

Nψq [F(T )] = Nψ


F(T )e−ψ(q)σ

. (15)

We shall refer to this equation as the Girsanov transformation for Lévy trees as it corresponds
to the Girsanov transformation of the height process (which is Brownian) in the quadratic
case π(dr) = 0. This transformation corresponds also to the Esscher transformation for the
underlying Lévy process used in [16] to define the height process in the general case. We deduce
from definition (9) of Nψ , that for any measurable non-negative functionals F and q ≥ 0:

Nψq [F(T )] = Nψ


F(T )e−ψ(q)σ

. (16)

Making q vary allows us to define a tree-valued process (Tq , q ≥ 0) which is a Markov
process under Nψ ; see [2, Lemma 5.3] stated for the family of exploration processes which codes
for the corresponding Lévy trees. The process (Tq , q ≥ 0) is a non-increasing process (for the
inclusion of trees), and is càdlàg. Its one-dimensional marginals are described in Proposition 2.2
whereas its transition probabilities are given by the so-called special Markov property (see
[6, Theorem 4.2] or [2, Theorem 5.6]). The time-reversed process is also a Markov process and
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its infinitesimal transitions are described in [4] using a point process whose definition we recall
now. We set:

{θi , i ∈ I R
}

the set of jumping times of the process (Tθ , θ ≥ 0). For every i ∈ I R , we set T i,◦
= Tθi − \ Tθi

and denote by xi the MRCA of T i,◦. For i ∈ I R , we set:

T i
= T i,◦

∪ {xi }

which is a real tree with distance the induced distance, root xi and mass measure the restriction
of mT to T i . Finally, we define, conditionally on T0, the following random point measure on
T0 × T × R+:

N =


i∈I R

δ(xi ,T i ,θi )
.

Theorem 2.3 ([4, Theorem 3.2 and Lemma 3.3]). Under Nψ , the predictable compensator of the
backward point process defined on R+ by:

θ → 1{θ≤q ′}N (dx, d T , dq ′)

with respect to the backward left-continuous filtration F = (Fθ , θ ≥ 0) defined by:

Fθ = σ((xi , T i , θi ), i ∈ I R, θi ≥ θ) = σ(Tq−, q ≥ θ)

is given by:

µ(dx, d T , dq) = mTq (dx)Nψq [d T ]1{q≥0}dq.

And for any non-negative predictable process φ with respect to the backward filtration F , we
have:

Nψ


N (dx, d T , dq)φ(q, Tq , Tq−)


= Nψ


µ(dx, dT, dq)φ(q, Tq , Tq ~ (T, x))


.

3. Statement of the main result

We keep the notations of the previous section. First notice that for i ∈ I R , θ(x) = θi for
every x ∈ T i . We set σ i

= mT (T i ) = σθi − − σθi and σq = mT (Tq) the total mass of Tq . By
construction, we have for every q ≥ 0:

σq =


i∈I R

1{θi ≥q}σ
i .

We set:

Θq =


Tq

(θ(x)− q)mT (dx).

The quantity Θ := Θ0 appears in [1] as the limit of the number of cuts on Aldous’s CRT to
isolate the root. Since θ(x) is constant on T i , we get:

Θq =


i∈I R

1{θi ≥q} (θi − q)σ i
=


+∞

q
σr dr.

For simplicity, we write Θ for Θ0 and σ for σ0.
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We consider the random point measure Z R on R+ × T defined by:

Z R
=


i∈I R

δ(Θθi ,T i ). (17)

Recall the definition of H and Z B of Section 2.7.
The main result of the paper is the next theorem that identifies the law of the pair (H,Z B)

and the pair (Θ,Z).

Theorem 3.1. Assume that the Grey condition holds. For every non-negative measurable func-
tion Φ on R+ × T, and every λ > 0, ρ ≥ 0, we have:

Nψ

σe−λσ−ρH−⟨Z B ,Φ⟩


= Nψ


σe−λσ−ρΘ−⟨Z R ,Φ⟩


.

In particular Θ is distributed as the height H of a leaf chosen according to the normalized
mass measure on the Lévy tree.

Recall that limε→0 Nψ [σ > ε] = +∞ and limε→0 Nψ [σ1{σ≤ε}] = 0, as well as:

lim
ε→0

1
ε

Nψ [σ1{σ≤ε}] = +∞

thanks to Lemma 4.1 from [13] (which is stated for β = 0 but which also holds for β > 0).
The next corollary is a direct consequence of Theorem 3.1 and the properties of Poisson point
measures for the Bismut decomposition (see Proposition 4.2 in [13] for a proof of similar results).

Corollary 3.2. Assume that the Grey condition holds. Nψ -a.e., we have:

lim
ε→0

1
Nψ [σ > ε]


i∈I R

1{σ i ≥ε} = Θ .

Nψ -a.e., for any positive sequence (εn, n ≥ 0) converging to 0, there exists a subsequence
(εnk , k ≥ 0) such that:

lim
k→+∞

1
Nψ [σ1{σ≤εnk }]


i∈I R

σ i 1{σ i ≤εnk } = Θ .

When ψ is regularly varying at infinity with index γ ∈ (1, 2], the previous convergence holds
Nψ -a.e.

4. Proof of the main result

4.1. Preliminary results

We first state a basic lemma.

Lemma 4.1. Let N1 =


j∈J1
δr j ,x j be a point measure on [0,+∞). If


j∈J1

x j < +∞, then
for every r ≥ 0, we have:

1 − exp


−


j∈J1

1{r j ≥r}x j


=


j∈J1

1{r j ≥r}(1 − e−x j ) exp


−


ℓ∈J1

1{rℓ>r j }xℓ


. (18)
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Proof. The result is obvious for J1 finite. For the infinite case, for ε > 0 consider the finite set:

J1,ε = { j ∈ J1, x j ≥ ε}.

Apply Formula (18) with J1 replaced by J1,ε and then conclude by letting ε tend to 0 thanks to
monotone convergence and dominated convergence. �

Since Tq is distributed according to Nψq , we deduce from (8) together with (16) that for q > 0:

Nψ [σq ] = Nψq [σ ] =
1

ψ ′(q)
, Nψ [σ 2

q ] = Nψq [σ 2
] =

ψ ′′(q)

ψ ′(q)3
. (19)

4.2. Laplace transform of (σ,Θ,Z R)

Proposition 4.2. Let Φ be a non-negative measurable function on R+ × T. Assume that
⟨Z R,Φ⟩ < +∞ Nψ -a.e. and for all λ > 0, supu≥0 g(λ, u) < +∞ with g defined by (13).
Then, for all λ > 0 and ρ ≥ 0, we have:

Nψ

σ (ρ + g(λ,Θ)) e−λσ−ρΘ−⟨Z R ,Φ⟩


= 1. (20)

Proof. For every ε > 0, q ≥ 0, we set:

σ εq =


i∈I R

1{θi ≥q}1{σ i ≥ε}σ
i , Θε

q =


i∈I R

1{θi ≥q}1{σ i ≥ε}σ
i (θi − q),

and

Z εq =


i∈I R

1{θi ≥q}1{σ i ≥ε}Φ(Θθi , T i ), Zq =


i∈I R

1{θi ≥q}Φ(Θθi , T i ),

so that Z0 = ⟨Z R,Φ⟩. For every ε > 0, q > 0, we set:

ϕεq(λ, ρ) = Nψ

1 − exp(−λσ εq − ρΘε

q − Z εq)

.

Since ⟨Z R,Φ⟩ is finite by assumption, we get that Z εq is finite. We use Lemma 4.1 to get:

ϕεq(λ, ρ) = Nψ


i∈I R

1{θi ≥q}1{σ i ≥ε}


1 − exp


− (λ+ ρ(θi − q)) σ i

− Φ(Θθi , T i )


× exp


−


ℓ∈I R

1{θℓ>θi }1{σ ℓ≥ε}


(λ+ ρ(θℓ − q)) σ ℓ + Φ(Θθℓ , T ℓ)


.

Then, if we use Theorem 2.3 (recall that σq = mTq (Tq)), we get:

ϕεq(λ, ρ) = Nψ


+∞

q
dr σr Gε

r (λ+ ρ(r − q),Θr )

× exp

− (λ+ ρ(r − q)) σ εr − ρΘε

r − Z εr
 
,

with

Gε
r (κ, t) = Nψr


1{σ≥ε}


1 − e−κσ−Φ(t,T )


.
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Thanks to (11) and (16), we get:

0 ≤ Gε
r (κ, t) ≤ Nψr


1{σ≥ε}


≤

1
ε

Nψr [σ ] =
1
ε

ψ ′′(r)

ψ ′(r)
. (21)

Since ψ ′′ is non-increasing and ψ ′ is non-decreasing, we get that for fixed q > 0, the map

r → ∂r


−ψ ′′(r)
ψ ′(r)


is non-negative and bounded for r > q . We deduce from (11) and (16) that:

Nψr

1{σ≥ε}σe−κσ−Φ(t,T )


≤

1
ε

Nψr

σ 2


=
1
ε

1
ψ ′(r)

∂r


−ψ ′′(r)

ψ ′(r)


.

We deduce that the map κ → Gε
r (κ, t) is C 1 and:

0 ≤ ∂κGε
r (κ, t) = Nψr


1{σ≥ε}σe−κσ−Φ(t,T )


≤

1
ε

1
ψ ′(r)

∂r


−ψ ′′(r)

ψ ′(r)


. (22)

We set:

H ε
r,λ(q) = Nψ


σr Gε

r (λ+ ρ(r − q),Θr ) exp

− (λ+ ρ(r − q)) σ εr − ρΘε

r − Z εr

,

so that:

ϕεq(λ, ρ) =


+∞

q
H ε

r,λ(q) dr.

Thanks to (21) and (19), we get 0 ≤ H ε
r,λ(q) ≤ ε−1ψ ′′(r)/ψ ′(r)2. This implies in turn that

ϕεq(λ, ρ) ≤ ε−1/ψ ′(q).
For r > 0, κ > 0, we set:

hεr (κ) = Nψ

σr

∂κGε

r (κ,Θr )+ σ εr Gε
r (κ,Θr )


e−κσ εr −ρΘε

r −Zεr

.

Since σ εr ≤ σr , we have, using (19):

0 ≤ hεr (κ) ≤
1
ε

Nψ

σr

1
ψ ′(r)

∂r


−ψ ′′(r)

ψ ′(r)


+ σ 2

r
ψ ′′(r)

ψ ′(r)


≤

1
ε


1

ψ ′(r)2
∂r


−ψ ′′(r)

ψ ′(r)


+
ψ ′′(r)2

ψ ′(r)4


.

By monotonicity, we get:
[q,+∞)2

duds 1{u<s}h
ε
s (λ+ ρ(s − u))

≤


[q,+∞)2

duds 1{u<s}
1
ε


1

ψ ′(s)2
∂s


−ψ ′′(s)

ψ ′(s)


+
ψ ′′(s)2

ψ ′(s)4


≤


[q,+∞)2

duds
1
ε

1{u<s}


1

ψ ′(u)2
∂s


−ψ ′′(s)

ψ ′(s)


+
ψ ′′(u)

ψ ′(u)2
ψ ′′(s)

ψ ′(s)2


=

2
ε


[q,+∞)

du
ψ ′′(u)

ψ ′(u)3

=
1
ε

1

ψ ′(q)2
.
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We deduce that the maps u → H ε
s,λ(u) and λ → H ε

s,λ(u) are C 1 for λ ≥ 0, s ≥ u ≥ q , with:

∂u H ε
s,λ(u) = −ρ∂λH ε

s,λ(u) and
∂λH ε

s,λ(u)
 ≤ hεs (λ+ ρ(s − u)).

Thus we have

[q,+∞)2

duds 1{u<s}

∂u H ε
s,λ(u)

 ≤ ρ/εψ ′(q)2. Then, elementary computation

yields:

ϕεq(λ, ρ) =


+∞

q
H ε

r,λ(q) dr =


+∞

q
du


H ε

u,λ(u)−


+∞

u
ds ∂u H ε

s,λ(u)


.

We deduce that the maps q → ϕεq(λ, ρ) and λ → ϕεq(λ, ρ) are C 1 and:

∂qϕ
ε
q(λ, ρ) = −H ε

q,λ(q)+


+∞

q
ds ∂u H ε

s,λ(q) = −H ε
q,λ(q)− ρ∂λ


+∞

q
ds H ε

s,λ(q).

With H ε
q,λ(q) = Nψ


σq Gε

q(λ,Θq) exp

−λσ εq − ρΘε

q − Z εq


, we deduce that:

∂qϕ
ε
q(λ, ρ) = −Nψ


σq Gε

q(λ,Θq) exp

−λσ εq − ρΘε

q − Z εq


− ρ∂λϕ
ε
q(λ, ρ). (23)

We also have:

∂λϕ
ε
q(λ, ρ) = Nψ


σ εq exp(−λσ εq − ρΘε

q − Z εq)

. (24)

Moreover, thanks to Girsanov formula (15), we have:

ϕεq(λ, ρ) = Nψ


1 − exp(−λσ ε0 − ρΘε
0 − Z ε0)


e−ψ(q)σ


.

We deduce that:

∂qϕ
ε
q(λ, ρ) = −ψ ′(q)Nψ


σ

1 − exp(−λσ ε0 − ρΘε

0 − Z ε0)


e−ψ(q)σ


= −1 + ψ ′(q)Nψ

σq exp(−λσ εq − ρΘε

q − Z εq)

.

We deduce from (23) and (24) that:

Nψ

σq(ψ

′(q)+ Gε
q(λ,Θq))+ ρσ εq


exp


−λσ εq − ρΘε

q − Z εq


= 1. (25)

Using Girsanov formulae (16) and (10), we get:

Gε
q(λ, t) ≤ G0

q(λ, t) = g(λ+ ψ(q), t)− ψ ′(0)− Nψ

1 − e−ψ(q)σ


= g(λ+ ψ(q), t)− ψ ′(q).

We deduce that:

σq(ψ
′(q)+ Gε

q(λ,Θq))+ ρσ εq ≤ σq


sup
t≥0

g(λ+ ψ(q), t)+ ρ


.

By dominated convergence, letting ε decrease to 0 in (25), we deduce that:

Nψ

σq (g(λ+ ψ(q),Θ)+ ρ) exp


−λσq − ρΘq − Zq


= 1.
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Using Girsanov formula (15) once again, we get:

Nψ

σ (g(λ+ ψ(q),Θ)+ ρ) exp


−(λ+ ψ(q))σ − ρΘ − ⟨Z R,Φ⟩


= 1.

Since λ > 0 and q > 0 are arbitrary, we deduce that (20) holds. �

We deduce the following corollary which states that the pair H and the projection of Z B on
T have the same distribution as Θ and the projection of Z R on T.

Let γ be a non-negative measurable function defined on T. For a measure Z on R+ × T, we
shall abuse notation and write:

⟨Z, γ ⟩ =


γ (T )Z(dt, dT ).

Corollary 4.3. For every non-negative measurable function γ on T such that γ (T ) = 0
if mT (T ) = 0, and every λ ≥ 0, ρ ≥ 0, we have:

Nψ

σe−λσ−ρH−⟨Z B ,γ ⟩


= Nψ


σe−λσ−ρΘ−⟨Z R ,γ ⟩


. (26)

Proof. Let λ > 0. Recall σ = mT (T ). First assume that γ (T ) ≤ cσ for some finite constant
c. Taking Φ(t, T ) = γ (T ) in Theorem 2.1 and using that g(λ, u) does not depend on u, we
get:

Nψ

σe−λσ−ρH−⟨Z B ,γ ⟩


=

1
ρ + g(λ, 0)

.

Notice that ⟨Z R,Φ⟩ ≤ cσ and thus hypotheses from Proposition 4.2 are in force. We deduce
from Proposition 4.2 that:

Nψ

σ exp


−λσ − ρΘ − ⟨Z R, γ ⟩


=

1
ρ + g(λ, 0)

.

Thus equality (26) holds. Use monotone convergence to remove hypotheses λ > 0 and γ (T ) ≤

cσ for some finite constant c. �

4.3. Proof of Theorem 3.1

Let Φ be a measurable non-negative function defined on the space R+ × T. Let us assume
that for every T ∈ T, t → Φ(t, T ) is continuous, ⟨Z R,Φ⟩ is finite Nψ -a.s. and that the function
g defined by (13) is bounded for any λ > 0 as a function of u. We set:

Γ R(r, h) = Nψ

e−⟨Z R ,Φ⟩

 σ = r,Θ = h

.

We deduce from Proposition 4.2 and Corollary 4.3 that for every λ > 0, ρ ≥ 0, we have:

1 = Nψ

σ (ρ + g(λ,Θ)) e−λσ−ρΘ−⟨Z R ,Φ⟩


= Nψ


σ (ρ + g(λ,Θ)) e−λσ−ρΘΓ R(σ,Θ)


= Nψ


σ (ρ + g(λ, H)) e−λσ−ρHΓ R(σ, H)


. (27)
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Let


i∈I δ(hi ,Ti ) be a Poisson measure with intensity dh Nψ [d T ] under some probability
measure P . For every i ∈ I , we set σi = mTi (Ti ). Then for every h > 0, we set:

σ(h) =


i∈I

1{hi ≤h}σi .

Eq. (27) and Theorem 2.1 imply that:
+∞

0
dh e−(ρ+ψ ′(0))he−G(h)(ρ + g(λ, h)) = 1,

with:

G(h) = − log


E

e−λσ(h)Γ R(σ (h), h)


.

We deduce that:
+∞

0
dh e−ρh


1 − e−ψ ′(0)h−G(h)


=


+∞

0

1
ρ

e−ρh d A(h) =


+∞

0
dh e−ρh A(h),

with:

A(h) =

 h

0
du e−ψ ′(0)u−G(u)g(λ, u).

Since this holds for every ρ ≥ 0, uniqueness of the Laplace transform implies that:

A(h) = 1 − e−ψ ′(0)h−G(h) a.e. (28)

Since A is continuous, there exists a continuous function G̃ such that a.e. G̃ = G. Since,
t → Φ(t, T ) is continuous, we get that, for every λ ≥ 0, u → g(λ, u) is continuous. Then
A is of class C 1 and so is G̃. Moreover, by differentiating (28), we get:

ψ ′(0)+ G̃ ′(h) = g(λ, h).

Since A(0) = 0, we get G̃(0) = 0, and thus ψ ′(0)h + G̃(h) =
 h

0 g(λ, u)du. This implies that: h

0
g(λ, u)du = G(h)+ ψ ′(0)h a.e. (29)

We have:

Nψ

σe−λσ−ρH−⟨Z B ,Φ⟩


=


+∞

0
dh e−ρh−

 h
0 g(λ,u)du

=


+∞

0
dh e−(ρ+ψ ′(0))h−G(h)

=


+∞

0
dh e−(ρ+ψ ′(0))h E


e−λσ(h)Γ R(σ (h), h)


= Nψ


σe−λσ−ρHΓ R(σ, H)


= Nψ


σe−λσ−ρΘΓ R(σ,Θ)


= Nψ


σe−λσ−ρΘ−⟨Z R ,Φ⟩


,
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where we used Theorem 2.1 for the first and fourth equalities, (29) for the second, the definition
of G for the third, Corollary 4.3 (which states that (σ, H) and (σ,Θ) have the same distribution
under Nψ ) for the fifth, and the definition of Γ R for the last.

As Nψ

σe−λσ


is finite, we can remove using dominated convergence the hypothesis ⟨Z R,Φ⟩

finite. The function g defined by (13), with Φ(t, T ) replaced by Φ(t, T )1{σ≤1/n}, is bounded for
any λ > 0 as a function of u. Thus, using again dominated convergence, we can remove the
hypothesis on Φ such that function g defined by (13) is bounded for any λ > 0 as a function of u.
Then use monotone class theorem to remove the continuity hypothesis on Φ and end the proof.
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