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Abstract

Over the past few years quadratic Backward Stochastic Differential Equations (BSDEs) have been a
popular field of research. However there are only very few examples where explicit solutions for these
equations are known. In this paper we consider a class of quadratic BSDEs involving affine processes and
show that their solution can be reduced to solving a system of generalized Riccati ordinary differential
equations. In other words we introduce a rich and flexible class of quadratic BSDEs which are analytically
tractable, i.e. explicit up to the solution of an ODE. Our results also provide analytically tractable solutions
to the problem of utility maximization and indifference pricing in multivariate affine stochastic volatility
models. This generalizes univariate results of Kallsen and Muhle-Karbe (2010) and some results in the
multivariate setting of Leippold and Trojani (2010) by establishing the full picture in the multivariate
affine jump-diffusion setting. In particular we calculate the interesting quantity of the power utility
indifference value of change of numeraire. Explicit examples in the Heston, Barndorff-Nielsen–Shephard
and multivariate Heston setting are calculated.
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1. Introduction

Since Bismut [9] introduced linear BSDEs in the context of Pontryagin’s maximum principle,
they have been intensively studied. Their popularity stems from the fact that they can be applied
to many different areas, e.g. in the study of properties of partial differential equations (PDEs),
see Briand and Confortola [11] and N’Zi et al. [46]. BSDEs also appear in many fields of
mathematical finance, see El Karoui et al. [27] or more recently El Karoui and Hamadène [26]
for an overview. Problems such as pricing and hedging of European options (compare [27]),
stochastic recursive utility (see [24]), utility maximization problems (e.g. [34]) and risk measures
(e.g. [5,48]) have been tackled using BSDE techniques.

For linear BSDEs it is possible under certain integrability and boundedness conditions to de-
scribe the first component of a solution as conditional expectation, compare [27, Section 2]. This
is already not possible anymore in the Lipschitz case and therefore solutions and their properties
can mostly be studied numerically. In the meantime there is a huge literature on numerics for
Lipschitz BSDEs, see [7,10,28] amongst many others. The present work focuses on BSDEs with
drivers of quadratic growth which were first investigated by Kobylanski [39] in a Brownian set-
ting and later extended to a continuous martingale setting by Morlais in [43]. Imposing certain
growth and Lipschitz conditions on the generator and assuming bounded terminal conditions ex-
istence and uniqueness of quadratic growth BSDEs are guaranteed. However there exists much
less research on numerics for quadratic BSDEs (see [35,49]) and only very few examples where
an explicit solution is known.

Motivated by this lack of examples and by the most important applications of this theory we
analyze conditions under which one can find explicit solutions to a class of quadratic growth
BSDEs. Our setting is as follows. We consider a forward affine process valued in S+

d , the cone of
positive semidefinite d ×d matrices, and analyze BSDEs whose terminal condition and generator
depend on this forward process. The main question from a BSDE-point of view addressed here is:
Which structural conditions on the terminal condition and the generator are needed (e.g. linear,
affine, quadratic) to allow us to solve the BSDE explicitly?

We have chosen the forward process to be an affine process X on S+

d . As Kallsen and Muhle-
Karbe [38] in the univariate case we can relate systems with S+

d -valued forward processes to
multivariate, realistically modeled utility optimization problems. Notice that affine processes
have found a growing interest in the literature due to their analytic tractability which stems from
the affine transform formula

E

exp(−Tr(X t u))


= exp(−φ(t, u)− Tr(ψ(t, u)X0)),

for all t ∈ [0, T ] and u ∈ S+

d . The functions φ and ψ solve a system of generalized Riccati
ordinary differential equations (ODEs), which are specified via the model parameters. Affine
processes have been applied in various fields in mathematical finance such as the theory of term
structure of interest rates, option pricing in stochastic volatility models and credit risk, see e.g. [2,
16,22,23] and the references therein. Note that it is not necessary to look at matrix-valued affine
processes as we do, but we could have equally chosen Rn

+ × Rm , which was characterized by
Duffie et al. [25], or Rn

× S+

d . For the sake of presentation we chose S+

d since this state space is
complicated enough to make important pitfalls visible (e.g. no infinite divisibility, no polyhedral
property, etc., see [18]), but still allows for simple notation. We emphasize that most of our results
carry over to the general state space case.

The forward–backward system we consider consists of an affine process X on S+

d and a BSDE
whose terminal condition is an affine function of this process. Moreover the generator is allowed
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to have a more involved structure including a dependence on X and a quadratic dependence in
the control process Z . In Theorem 3.5 we carry out which analytic form the generator and the
terminal value of the BSDE need for the solution to be determined by a matrix ODE. This ODE
is a generalized Riccati ODE which may explode in finite time because of its quadratic term.
Therefore it is necessary to find conditions such that the ODE possesses a unique finite solution
on the whole time interval [0, T ].

We apply our results to the problem of maximizing expected utility of terminal wealth in
multivariate affine stochastic volatility models. This problem is typically approached either by
stochastic control methods leading to Hamilton–Jacobi–Bellman equations or martingale meth-
ods which we will use here. The martingale method has also been used in [38], where the authors
were able to solve the power utility optimization problem in several univariate affine models.
They obtain the solution using semimartingale characteristics and represent the optimal strate-
gies in terms of an opportunity process. Using a combination of martingale methods and our
results on explicit solutions of BSDEs we extend these ideas to higher dimensions. In particu-
lar we derive explicit results for power and exponential utility in multivariate extensions of the
model of Heston [32] and the model of Barndorff-Nielsen and Shephard [2]. The multivariate
results presented here are mostly new and provide a thorough extension of Fonseca et al. [19],
where the power utility case in the multivariate Heston model is treated. We also want to mention
the work of Leippold and Trojani [40] where in a multivariate setting the optimal strategy and
the value function for power utility maximization is given. Their considerations are justified in
our general affine setting. Note that Baeuerle and Li [1] solve the portfolio problem in a Wishart
process setting for power and logarithmic utility via HJB equations and their verification.

A particularly interesting application of our findings is the following: in the case of expo-
nential utility we are able to provide analytic expressions for the indifference prices of variance
swaps, which is well-known and can also be found in the literature. In the case of power utility –
due to the additive structure of indifference prices – one cannot find tractable expressions of those
prices. However, the equally interesting concept of indifference value of change of numeraire is
again analytically tractable. The indifference value of change of numeraire is the price one is
willing to pay to swap one numeraire with another one. This can have two applications: one is
the case where an institution actually bases their portfolio optimization, e.g., on fixed interest
rates, even though interest rates are floating. The indifference value of change of numeraire is
consequently the value of a swap contract particularly designed for compensating this model
misspecification. The second one is a foreign exchange situation where replacing one numeraire
by another one influences the optimal portfolio problem and therefore leads to an indifference
value. We can provide fully tractable formulas in all these cases, see Section 4.2.

In Section 2 we introduce necessary notation and collect several results by Cuchiero et al. [18]
who give a complete characterization of affine processes on S+

d . Section 3 studies explicit
solutions to BSDEs and the connection with generalized matrix-valued Riccati ODEs. The results
are then applied to expected utility maximization in Section 4.

2. Notation and characterization of affine processes

We start with the notation we use subsequently. The space Md stands for d × d matrices with
real entries and Id is the d × d-identity matrix. We denote by A⊤ the transpose of the matrix
A, by Sd the space of symmetric d × d-matrices equipped with the scalar product Tr(xy). This
inner product naturally induces a norm ∥x∥ =

√
Tr(xx). We write S+

d (or S−

d ) for the closed
cone of symmetric d × d positive (or negative) semidefinite matrices and S++

d (or S−−

d ) for the
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open cone of d × d positive (or negative) definite matrices. By ∂S+

d = S+

d \ S++

d we denote the
boundary of S+

d . The cones S+

d and S++

d induce a strict partial order relation on Sd . We write
x ≼ y if y − x ∈ S+

d and x ≺ y if y − x ∈ S++

d . For i, j = 1, . . . , d, we also introduce the

matrices ei j
∈ Md with ei j

i j = 1 and the remaining entries being 0.

The Borel σ -algebra on a space U ⊆ Sd is denoted by B(U ) and bS+

d refers to the set of
bounded real-valued measurable functions f on Sd . The vector space Rd is equipped with the
Euclidean norm | · |. We work on the finite time interval [0, T ], where T > 0 is fixed.

Let (Ω ,F ,F,P) denote a complete stochastic basis, where F = (Ft )t∈[0,T ], and let P be the
σ -field of predictable sets on [0, T ] × Ω . We consider time-homogeneous Markov processes X
with state space S+

d and semigroup (Pt )t∈[0,T ], where

Pt f (x) =


S+

d

f (ξ)pt (x, dξ),

and x ∈ S+

d , f ∈ bS+

d and pt a probability transition function. We refer to [51] for further
details. Let us now define an affine process on S+

d .

Definition 2.1. A time-homogeneous Markov process X is called affine if it satisfies the follow-
ing conditions.
(i) X is stochastically continuous.

(ii) The Laplace transform of X depends in an exponential affine way on the initial state. More
precisely, there exist functions φ : [0, T ] × S+

d → R+ and ψ : [0, T ] × S+

d → S+

d such that

Pt exp(−Tr(xu)) =


S+

d

exp(−Tr(ξu))pt (x, dξ) = exp(−φ(t, u)− Tr(ψ(t, u)x)),

for all t ∈ [0, T ] and u, x ∈ S+

d .

As we will see later, the functions φ and ψ can be expressed in terms of ODEs involving
an admissible parameter set. Note that this set is always given w.r.t. a truncation function
χ : Sd → Sd which is a continuous bounded function such that χ(ξ) = ξ for ξ in a neighborhood
of 0.

Definition 2.2. We call (α, b, β i j ,m, µ, ι, γ ) an admissible parameter set associated to a trun-
cation function χ if it satisfies the following conditions.

(i) The linear diffusion coefficient α belongs to the cone S+

d .
(ii) The constant drift term b is such that b ≽ (d − 1)α.

(iii) The constant jump term m is a Borel measure on B(S+

d \ {0}) satisfying
S+

d \{0}

(∥ξ∥ ∧ 1)m(dξ) < ∞. (2.1)

(iv) The linear jump term consists of a d × d-matrix µ = (µi j ) of finite signed measures on
B(S+

d \ {0}) such that µ(E) ∈ S+

d for all E ∈ B(S+

d \ {0}). The kernel

M(x, dξ) =
Tr(xµ(dξ))

∥ξ∥2 ∧ 1
, (2.2)

satisfies
S+

d \{0}

Tr(χ(ξ)u)M(x, dξ) < ∞, for all x, u ∈ S+

d with Tr(xu) = 0. (2.3)
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(v) The linear drift coefficient is composed of a family (β i j )i, j=1,...,d of symmetric matrices
with β i j

= β j i
∈ Sd for all i, j = 1, . . . , d , and such that the linear map B : Sd → Sd with

B(x) =

d
i, j=1

β i j xi j , (2.4)

fulfills

Tr(B(x)u)−


S+

d \{0}

Tr(χ(ξ)u)M(x, dξ) ≥ 0, (2.5)

for all x, u ∈ S+

d with Tr(xu) = 0.
(vi) The constant killing rate coefficient ι has values in R+.
(vii) The linear killing rate coefficient γ has values in S+

d .

A discussion on the conditions of the parameters can be found in Section 2.1 in [18]. The
authors of [18] also give a full characterization of affine processes on S+

d .

Theorem 2.3 ([18, Theorem 2.4]). Let X be an affine process on S+

d . Then there exists an
admissible parameter set (α, b, β i j ,m, µ, ι, γ ) w.r.t. a truncation function χ such that the
functions φ and ψ from Definition 2.1(ii) solve the generalized Riccati ODE

∂φ(t, u)

∂t
= F (ψ(t, u)), φ(0, u) = 0, (2.6)

∂ψ(t, u)

∂t
= R(ψ(t, u)), ψ(0, u) = u ∈ S+

d , (2.7)

with

F (u) = Tr(bu)+ ι−


S+

d \{0}

(e−Tr(uξ)
− 1)m(dξ),

R(u) = −2uαu + B∗(u)+ γ −


S+

d \{0}

e−Tr(uξ)
− 1 + Tr(χ(ξ)u)

∥ξ∥2 ∧ 1
µ(dξ),

where B∗

i j (u) = Tr(β i j u) for i, j = 1, . . . , d.
Conversely, let (α, b, β i j ,m, µ, ι, γ ) be an admissible parameter set associated to a

truncation function χ . Then there exists a unique affine process on S+

d and the condition
of Definition 2.1(ii) holds for all (t, u) ∈ [0, T ]×S+

d , where φ and ψ are given by (2.6) and (2.7).

Every conservative affine process on S+

d with killing rate coefficients ι = γ = 0 is a semi-
martingale.

Theorem 2.4 ([18, Theorem 2.6]). Let X be a conservative affine process on S+

d and (α, b, β i j ,

m, µ, 0, 0) the related admissible parameter set associated to a truncation function χ . Then X
is a semimartingale whose characteristics (D, A, ν) with respect to χ are given by

Dt =

 t

0


b +


S+

d \{0}

χ(ξ)m(dξ)+ B(Xs)


ds,

At,i jkl =

 t

0
Ai jkl(Xs)ds,

ν([0, t],G) =

 t

0
(m(G)+ M(Xs,G))ds,
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for i, j, k, l ∈ {1, . . . , d}, t ∈ [0, T ] and G ∈ B(S+

d \ {0}). The matrix B is given by (2.4), M
by (2.2) and Ai jkl by

Ai jkl(x) = xikα jl + xilα jk + x jkαil + x jlαik, (2.8)

for all i, j, k, l ∈ {1, . . . , d}, and x ∈ S+

d . Moreover there exists a d × d matrix of standard
Brownian motions W such that X has the following canonical representation

X t = x +

 t

0


XsdWsΣ +

 t

0
Σ⊤dW ⊤

s


Xs

+

 t

0


b + B(Xs)+


S+

d \{0}

χ(ξ)m(dξ)


ds

+

 t

0


S+

d \{0}

χ(ξ)

µX (ds, dξ)− ν(ds, dξ)



+

 t

0


S+

d \{0}

(ξ − χ(ξ)) µX (ds, dξ), (2.9)

where Σ ∈ Md satisfies ΣΣ⊤
= α and µX denotes the random measure associated with the

jumps of X.

Remark 2.5. The canonical representation (2.9) follows via the canonical semimartingale rep-
resentation (see [36, Theorem II.2.34]) and the construction of a matrix-valued Brownian mo-
tion. For the latter one has to find a matrix which coincides with the covariation of the affine
process.

Note that the constant drift term of an affine semimartingale is independent of the truncation
function χ while χ influences the linear drift coefficient B.

From now on we fix a truncation function χ , and then write “admissible parameter set” for
“admissible parameter set associated to truncation function χ”. The affine process X with ad-
missible parameter set (α, b, β i j ,m, µ, ι, γ ) is continuous if and only if m and µ vanish, i.e.
(α, b, β i j , 0, 0, ι, γ ). Since we only consider affine semimartingales we write (α, b, β i j ,m, µ)
for (α, b, β i j ,m, µ, 0, 0).

To fix ideas let us give an example of a matrix-valued affine processes, the Wishart processes.
These processes were first rigorously studied in Bru [13] extending squares of matrix Ornstein–
Uhlenbeck processes. The dynamics of a Wishart process satisfies

d X t = (b + H X t + X t H⊤)dt +


X t dWtΣ + Σ⊤dW ⊤

t


X t , (2.10)

where b, H,Σ ∈ Md and W is a d × d matrix Brownian motion. These processes have been
widely used to model stochastic covariation, see e.g. [14,20,21]. In order to obtain a well defined
matrix volatility process Bru [13] required the constant drift part b = kΣ⊤Σ for some k > d −1.
Then X has a Wishart distribution. In the above notation the admissible parameter set for the
Wishart process is (Σ⊤Σ , b, β i j , 0, 0) with B(x) = H x + x H⊤.

In contrast to affine processes on the state space Rm
+ × Rn , which were fully characterized

in [25], and where the diffusion term consists of a constant and linear part, the diffusion term of
an affine process on S+

d with admissible parameter set (α, b, β i j ,m, µ) only allows for a linear
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part of the specific form

d
i, j,k,l=1

ui j Ai jkl(x)ukl = 4 Tr(xuαu), x, u ∈ S+

d . (2.11)

Note that the necessity and sufficiency of conditions (ii) and (v) in Definition 2.2 was first shown
in [18]. In particular formula (2.4) allows for a more general form than B(x) = H x + x H⊤, x ∈

S+

d , compare also [18, Chapter 2.1.2].

3. Explicit solutions of quadratic FBSDEs

In this section we examine how the solutions for a class of quadratic BSDEs can be reduced
to solving ODEs. In contrast to many existence results in the literature, e.g. [6,39,44,47], where
the generator f is usually required to satisfy certain Lipschitz and growth conditions, we suggest
an analytic expression for f which gives the problem extra structure. Consider the following
motivating example where such a form appears naturally.

Take the one-dimensional Heston model (compare [32]) for the dynamics of an asset H . The
stochastic logarithm N of H satisfies

d Nt = ηRt dt +


Rt d Qt ,

d Rt = (b + λRt )dt + σ


Rt dWt , t ∈ [0, T ]. (3.1)

Here R is the stochastic volatility process, b, σ > 0, η, λ ∈ R are constants and Q,W are
two Brownian motions with constant correlation ρ ∈ [−1, 1]. The volatility process R satisfies
our definition of an affine process on R+ with admissible parameter set ( 1

4σ
2, b, λ, 0, 0). We

study an investor who is interested in maximizing their expected utility from terminal wealth.
The investor’s initial capital is denoted by x ∈ R and their trading strategies are deterministic
functions π of time, where π(t) describes the amount of money invested in stock H at time
t ∈ [0, T ]. The wealth process X x,π for initial endowment x and strategy π is given by

X x,π
t = x +

 t

0

π(s)

Hs
d Hs = x +

 t

0
π(s)d Ns,

for t ∈ [0, T ]. We can solve the exponential utility maximization problem

V (x) = sup
π

E

− exp


−γ X x,π

T


, x ∈ R, γ > 0,

by finding the generator f of the BSDE

Yt = 0 −

 T

t
ZsdWs +

 T

t
f (Rs, Zs)ds, (3.2)

such that the process Lπt = − exp(−γ (X x,π
t + Yt )), t ∈ [0, T ], is a supermartingale for all

strategies π and a martingale for a particular strategy πopt. The required generator can be shown
(see Lemma 4.12) to be

f (r, z) =
γ

2
(ρ2

− 1)z2
+

1

2γ 3 η
2r −

1
γ
ηρz

√
r , (r, z) ∈ R2, (3.3)

similarly to [34, Theorem 7]. Notice that the generator is quadratic in the z-component. In order
to solve this BSDE we apply the Itô formula to an affine function of R. More precisely we make
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an affine ansatz for Yt = Γ (t)Rt +w(t), t ∈ [0, T ], where Γ , w : [0, T ] → R are differentiable
functions. This leads to

Γ (t)Rt + w(t) = Γ (T )RT + w(T )−

 T

t
Γ (s)σ


RsdWs

−

 T

t


Γ (s)(b + λRs)+

dΓ (s)
ds

Rs +
dw(s)

ds


ds. (3.4)

It can be immediately read off the equation that Γ and w must satisfy

Γ (T ) = w(T ) = 0 and Zs = Γ (s)σ


Rs, s ∈ [0, T ]. (3.5)

The finite variation parts of (3.2) and (3.4) coincide if for all s ∈ [0, T ]

0 = f (Rs, Zs)+ Γ (s)(b + λRs)+
dΓ (s)

ds
Rs +

dw(s)

ds

=
γ

2
(ρ2

− 1)Γ 2(s)σ 2 Rs +
1

2γ 3 η
2 Rs −

1
γ
ηρΓ (s)σ Rs + Γ (s)(b + λRs)

+
dΓ (s)

ds
Rs +

dw(s)

ds
,

where we have used the equation for the generator f and formula (3.5) for Z . Equating
coefficients this leads to an ODE of Riccati type

−
dΓ (t)

dt
= qΓ 2(t)+ lΓ (t)+ c, Γ (T ) = 0, t ∈ [0, T ],

with constants

q =
γ

2
σ 2(ρ2

− 1), l = λ−
1
γ
σρη, c =

1

2γ 3 η
2,

and an ODE of the simpler form

−
dw(t)

dt
= Γ (t)b, w(T ) = 0, t ∈ [0, T ].

Hence the solution of (3.2) is

Yt = Γ (t)Rt +

 T

t
bΓ (s)ds

Z t = Γ (t)σ


Rt , t ∈ [0, T ].

Generally, Riccati ODEs have the property that their solution can blow up in finite time, however
our model parameter choices admit a non-explosive solution. In the one-dimensional case con-
sidered here we can even give an fully explicit solution, compare [12, Section 21.5.1.2]. More
specifically we distinguish two different cases depending on the value of

d = l2
− 4qc =


λ−

1
γ
σηρ

2

+
1

γ 2 σ
2η2(1 − ρ2) ≥ 0.

If d > 0, then

Γ (t) = −2c
e
√

d(T −t)
− 1

e
√

d(T −t)(l +
√

d)− l +
√

d
, t ∈ [0, T ].
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If d = 0, then ρ = 1, λ =
1
γ
ση and hence

Γ (t) =
1

2γ 3 η
2(T − t), t ∈ [0, T ].

In both cases the martingale property of − exp(−γ (X x,πopt
+ Y )) then gives the value function

and the optimal strategy

V (x) = − exp


−γ


x + Γ (0)R0 +

 T

0
bΓ (s)ds


,

πopt(t) =
1

γ 2 η − Γ (t)σρ,

for x ∈ R, t ∈ [0, T ].
In the previous example the ansatz Yt = Γ (t)Rt + w(t) and the method of equating

coefficients enabled us to reduce the solution of a BSDE to solving ODEs. Now that we have
seen how we exploit the affine structure in an one-dimensional example, we generalize this to
BSDEs depending on affine processes on S+

d and even an additional process which has affine
semimartingale characteristics with respect to the affine process. The question is how general we
are allowed to choose the generator and the terminal condition in order to still be able to apply
the above method.

We associate the affine process X with admissible parameter set (α, b, β i j ,m, µ) to a BSDE.
To allow for a more flexible financial modeling, especially in view of pricing of variance swaps,
the BSDE will moreover depend on the matrix-valued process

d Ot = σ(t)


X t d Q̂t + (o1(t)+ o2(t)X t ) dt, t ∈ [0, T ], (3.6)

where o1, o2 : [0, T ] → Md and σ : [0, T ] → Md are continuous functions. Here the process Q̂
denotes a d × d matrix-valued Brownian motion which is independent of the Brownian motion
W . This process will enable us to calculate indifference prices and delta hedges for variance
swaps, see e.g. Section 4.2.2.

Our (nonstandard) real-valued BSDE will have the following form

Yt = F(XT , OT )−

 T

t
Tr(Z⊤

s dWs)−

 T

t
Tr(Ẑ⊤

s d Q̂s)

−

 t

0


S+

d \{0}

Ks(ξ)

µX (ds, dξ)− ν(ds, dξ)


+

 T

t
f (s, Xs, Ys, Zs, Ẑs, Ks)ds, (3.7)

for t ∈ [0, T ], where the terminal condition F is allowed to depend on the affine process X and on
the process O . Recall that W is the Brownian motion of the underlying affine process X and the
generator is a deterministic Borel measurable function f : [0, T ]×S+

d ×R×Md ×Md ×R → R.

Definition 3.1. A solution to BSDE (3.7) is a family of adapted processes (Y, Z , Ẑ , K ) with
values in R × Md × Md × R such that:

(i) The equation (3.7) is a.s. satisfied.
(ii) The processes Z and Ẑ are predictable processes such that

 T
0 |Z⊤

s |
2ds < ∞ and

respectively
 T

0 |Ẑ⊤
s |

2ds < ∞.
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(iii) The integrability condition
 T

0 | f (s, Xs, Ys, Zs, Ẑs, Ks)|ds < ∞ holds true.
(iv) The mapping t → Yt is càdlàg.
(v) The process K is predictable and satisfies

 T
0


S+

d \{0}
|Kt (ξ)|

2(m(dξ)+M(X t , dξ))dt < ∞.

For a certain class of generators and terminal conditions we can give the solution to the above
BSDE in terms of matrix ODEs. Suppose the terminal condition F : S+

d × Md → R is affine,
more precisely

F(x, o) = Tr(ux)+ Tr(ao)+ v, x ∈ S+

d , o ∈ Md , (3.8)

where u ∈ Sd , a ∈ Md and v ∈ R. Let us define the set L0 as the space which contains all
functions k : S+

d → R. The class of generators f is more involved, more precisely the generator
f : [0, T ] × S+

d × R × Md × Md × L0
→ R is allowed to have the following form

f (t, x, y, z, ẑ, k) = Tr(zczz(t)z
⊤)+ Tr(zcz

√
x (t)

√
x)+ Tr(cx (t)x)+ cy(t)y + ct (t)

+ Tr(ẑcẑ ẑ(t)ẑ
⊤)+ Tr(ẑcẑz(t)z

⊤)+ Tr(ẑcẑ
√

x (t)
√

x)

+


S+

d \{0}

gM (t, k(ξ))M(x, dξ)+


S+

d \{0}


Tr(zgz

√
x (t, k(ξ))

√
x)

+ Tr(xgx (t, k(ξ)))+ gt (t, k(ξ))+ ygy(t, k(ξ))


m(dξ)

+


S+

d \{0}


Tr(ẑgẑ ẑ(t, k(ξ))ẑ⊤)+ Tr(ẑgẑz(t, k(ξ))z⊤)

+ Tr(ẑgẑ
√

x (t, k(ξ))
√

x)


m(dξ), (3.9)

for all (t, x, y, z, ẑ, k) ∈ [0, T ] × S+

d × R × Md × Md × L0. In the above,

czz, cz
√

x , cx , cẑ ẑ, cẑz, cẑ
√

x : [0, T ] → Md ,

ct , cy : [0, T ] → R,

are continuous functions and gM : [0, T ]× L0
→ R is an M(x, dξ)-integrable function, x ∈ S+

d ,
which is continuous in time. Finally

gz
√

x , gx , gẑ ẑ, gẑz, gẑ
√

x : [0, T ] × L0
→ Md ,

gt , gy : [0, T ] × L0
→ R,

are m(dξ)-integrable functions which are also assumed continuous in time.

Remark 3.2. As we have seen in the introductory example an affine ansatz for the solution pro-
cess Y leads to an explicit form of Z in terms of ODEs and the forward process X . The affine
form for Y and the application of Itô’s formula then implies the affine form of the terminal con-
dition F and already determines the processes Z , Ẑ and K in terms of X and up to the solvability
of a matrix ODE. The form of the generators f looks more complicated but is governed by the
affine ansatz for Y and Itô’s formula as well. The finite variation part of Itô’s formula applied to
an affine function necessarily needs to coincide with the generator of the BSDE. Additionally,
the generator written exclusively in terms of X (instead of Z , Ẑ and K ) needs to be affine so that
we can use the method of equating coefficients. This leads to the described class of generators.
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Remark 3.3. We restrict ourselves to the case where f does not depend explicitly on O since
the structure of f is already quite involved. If this were not the case we would derive further
coupled ODEs. However the terminal value F depends affine on O . We could allow for jumps in
O provided those jumps have affine characteristics in X , but do not for reasons of brevity. It is
possible to only consider functional forms of time σ(·) rather than σ(·)

√
X in (3.6).

Remark 3.4. With applications in utility maximization in mind, we have chosen to examine a
class of quadratic BSDEs with an affine terminal condition. However the approach can be trans-
ferred to (exponentially) affine or polynomial terminal conditions. For illustration consider a
quadratic BSDE without jumps and with a terminal condition depending quadratically on the
affine process R from (3.1) with parameters 2b > σ 2. Then a quadratic ansatz for the solu-
tion process Y , i.e. Yt = Ξ (t)R2

t + Γ (t)Rt + w(t) with differentiable functions of time Ξ ,Γ
and w, leads to Z t = (2Ξ (t)Rt + Γ (t))σ

√
Rt . The BSDE (Y, Z) is solvable if its generator

f (r, z) = f (r, (2Ξ r + Γ )σ
√

r) is quadratic in r and the system of 3 ODEs is solvable. This is
the case for example for the BSDE with quadratic generator f (r, z) = z2/r + z

√
r , because the

corresponding ODE for Ξ turns out to be a Riccati ODE, Γ is a linear ODE depending on the
solution of Ξ and w can be found as an integral involving the solution of Γ .

We can now give the main theorem which describes the explicit form of the solution processes
(Y, Z , Ẑ , K ) in terms of the solution to a system of generalized Riccati equations.

Theorem 3.5. Let X be an affine semimartingale on S+

d associated to the admissible parameter
set (α, b, β i j ,m, µ) such that

S+

d \{0}

(ξ − χ(ξ))(m(dξ)+ M(x, dξ)) < ∞, x ∈ S+

d . (3.10)

Furthermore suppose that there exists a unique solution Γ (·, u) : [0, T ] → Sd to the generalized
Riccati ODE

−
∂Γ (t, u)

∂t
= θ(t,Γ (t, u)), Γ (T, u) = u, (3.11)

with

θ(t, u) = 4uΣ⊤czz(t)Σu + L (t)u + uL ⊤(t)+ B∗(u)+ C (t)

+


S+

d \{0}

Tr (u(ξ − χ(ξ)))+ gM (t,Tr(uξ))

∥ξ∥2 ∧ 1
µ(dξ)

+


S+

d \{0}


uΣ⊤gz

√
x (t,Tr(uξ))+ g⊤

z
√

x (t,Tr(uξ))Σu + ugy(t,Tr(uξ))

+ gx (t,Tr(uξ))+ σ⊤(t)agẑ ẑ(t,Tr(uξ))a⊤σ(t)+ σ⊤(t)agẑz(t,Tr(uξ))Σu

+ uΣ⊤g⊤

ẑz(t,Tr(uξ))a⊤σ(t)+ σ⊤(t)agẑ
√

x (t,Tr(uξ))


m(dξ), (3.12)

for (t, u) ∈ [0, T ] × Sd . The functions L (t) and C (t) are given by

L (t) =
1
2

cy(t)+ c⊤

z
√

x (t)Σ + σ(t)⊤acẑz(t)Σ

C (t) = cx (t)+ σ(t)⊤acẑ ẑ(t)a
⊤σ(t)+ σ⊤(t)acẑ

√
x (t)+ ao2(t),
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for all t ∈ [0, T ]. Let w(·, u, v) : [0, T ] → R be the solution of

−
∂w(t, u, v)

∂t
= ϖ(t,Γ (t, u), w(t, u, v)), w(T, u, v) = v, (3.13)

with

ϖ(t, u, v) = cy(t)v + ct (t)+ Tr(ao1(t))+ Tr(ub)

+


S+

d \{0}


Tr(uξ)+ gy(t,Tr(uξ))v + gt (t,Tr(uξ))


m(dξ),

for (t, u, v) ∈ [0, T ] × Sd × R. Then the above BSDE has the unique solution
Yt = Tr(Γ (t, u)X t )+ Tr(aOt )+ w(t, u, v),

Z t = 2


X tΓ (t, u)Σ⊤,

Ẑ t =


X tσ

⊤(t)a,

Kt (ξ) = Tr(Γ (t, u)ξ),

(3.14)

for all ξ ∈ S+

d , t ∈ [0, T ].

Proof. Let Γ and w be the unique solutions of (3.11) and (3.13). We apply Itô’s formula for
semimartingales to the function [0, T ] × S+

d × Md ∋ (t, x, o) → Tr(Γ (t, u)x) + Tr(ao) +

w(t, u, v). Using representation (2.9) and (3.6) this gives

Tr(Γ (t, u)X t )+ Tr(aOt )+ w(t, u, v)

= Tr(Γ (T, u)XT )+ w(T, u, v)+ Tr(aOT )−

 T

t
2 Tr


ΣΓ (s, u)


XsdWs


−

 T

t


Tr(Γ (s, u)b)+ Tr(Γ (s, u)B(Xs))+ Tr


Γ (s, u)


S+

d \{0}

χ(ξ)m(dξ)


ds

−

 T

t


S+

d \{0}

Tr(Γ (s, u)χ(ξ))(µX (ds, dξ)− ν(ds, dξ))

−

 T

t


S+

d \{0}

Tr(Γ (s, u)(ξ − χ(ξ)))µX (ds, dξ)

−

 T

t


Tr

∂Γ (s, u)

∂s
Xs


+
∂w(s, u, v)

∂s


ds

−

 T

t
Tr


aσ(s)


Xsd Q̂s


−

 T

t
Tr (a(o1(s)+ o2(s)Xs)) ds,

where we have used basic properties of the trace to derive

Tr

Γ (t, u)(


X t dWtΣ + Σ⊤dW ⊤

t


X t )


= 2 Tr

ΣΓ (t, u)


X t dWt


.

The integral T

t


S+

d \{0}

Tr(Γ (s, u)ξ)(µX (ds, dξ)− ν(ds, dξ)), t ∈ [0, T ],
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is well defined. Indeed, recall the form of the compensator ν from Theorem 2.4 and the admissi-
bility conditions(2.1) and (2.3). This yields T

t


S+

d \{0}

Tr(Γ (s, u)χ(ξ))(µX (ds, dξ)− ν(ds, dξ)) < ∞, t ∈ [0, T ],

and with the integrability condition (3.10) on the measures m and M , we ensure T

t


S+

d \{0}

Tr(Γ (s, u)(ξ − χ(ξ)))(µX (ds, dξ)− ν(ds, dξ)) < ∞, t ∈ [0, T ].

Hence we may write the above equation in the following form

Tr(Γ (t, u)X t )+ Tr(aOt )+ w(t, u, v)

= Tr(Γ (T, u)XT )+ w(T, u, v)+ Tr(aOT )−

 T

t
2 Tr


ΣΓ (s, u)


XsdWs


−

 T

t


Tr(Γ (s, u)b)+ Tr(Γ (s, u)B(Xs))+ Tr


Γ (s, u)


S+

d \{0}

χ(ξ)m(dξ)


ds

−

 T

t


S+

d \{0}

Tr(Γ (s, u)ξ)(µX (ds, dξ)− ν(ds, dξ))

−

 T

t


S+

d \{0}

Tr(Γ (s, u)(ξ − χ(ξ))ν(ds, dξ))

−

 T

t


Tr

∂Γ (s, u)

∂s
Xs


+
∂w(s, u, v)

∂s


ds

−

 T

t
Tr


aσ(s)


Xsd Q̂


−

 T

t
Tr (a(o1(s)+ o2(s)Xs)) ds. (3.15)

Hence the BSDE (3.7) is solved by (3.14) provided the finite variation parts of (3.15) and the
BSDE coincide, i.e. if

f (t, X t , Yt , Z t , Ẑ , Kt )

= −Tr(Γ (t, u)b)− Tr(Γ (t, u)B(X t ))− Tr


Γ (t, u)


S+

d \{0}

χ(ξ)m(dξ)



−


S+

d \{0}

Tr (Γ (t, u)(ξ − χ(ξ))) (m(dξ)+ M(X t , dξ))

− Tr

∂Γ (t, u)

∂t
X t


−
∂w(t, u, v)

∂t
− Tr (ao1(t))− Tr (ao2(t)X t ) ,

for t ∈ [0, T ]. Using the special form (3.9) of the generator f and formulas (3.14) we calculate

f (t, X t , Yt , Z t , Ẑ t , Kt )

= 4 Tr(


X tΓ (t, u)Σ⊤czz(t)ΣΓ (t, u)


X t )+ 2 Tr(


X tΓ (t, u)Σ⊤cz
√

x (t)


X t )

+ Tr(cx (t)X t )+ cy(t)Tr(Γ (t, u)X t )+ cy(t)w(t, u, v)+ ct (t)

+ Tr(


X tσ
⊤(t)acẑ ẑ(t)a

⊤σ(t)


X t )+ Tr(


X tσ
⊤(t)acẑz(t)2ΣΓ (t, u)


X t )
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+ Tr(


X tσ
⊤(t)acẑ

√
x (t)


X t )+


S+

d \{0}

gM (t,Tr(Γ (t, u)ξ))M(X t , dξ)

+


S+

d \{0}

(Tr(2X tΓ (t, u)Σ⊤gz
√

x (t,Tr(Γ (t, u)ξ)))+ Tr(gx (t,Tr(Γ (t, u)ξ))X t )

+ Tr(gy(t,Tr(Γ (t, u)ξ))Γ (t, u)X t )+ gy(t,Tr(Γ (t, u)ξ))w(t, u, v)

+ gt (t)+ Tr(


X tσ
⊤(t)agẑ ẑ(t,Tr(Γ (t, u)ξ))a⊤σ(t)


X t )

+ Tr(


X tσ
⊤(t)agẑz(t,Tr(Γ (t, u)ξ))2ΣΓ (t, u)


X t )

+ Tr(


X tσ
⊤(t)agẑ

√
x (t,Tr(Γ (t, u)ξ))


X t ))m(dξ)

= −Tr(Γ (t, u)b)− Tr(Γ (t, u)B(X t ))−


S+

d \{0}

Tr (Γ (t, u)χ(ξ))m(dξ)

−


S+

d \{0}

Tr (Γ (t, u)(ξ − χ(ξ))) (m(dξ)+ M(X t , dξ))

− Tr

∂Γ (t, u)

∂t
X t


−
∂w(t, u, v)

∂t
− Tr(ao1(t))− Tr(ao2(t)X t ),

where the last equality is obtained from (3.11) and (3.13), the definition of the adjoint operator
B∗ and basic properties of the trace. �

Obviously our results also apply to ‘standard’ FBSDEs, where the BSDE is only allowed to
depend the affine process X itself. For more details and a study on the existence and uniqueness
of solutions to the generalized matrix Riccati ODE (3.11) we refer the reader to [50, Chapter 8].

4. Application in multivariate affine stochastic volatility models

In this chapter we apply the results of the previous chapter to the classical problem of utility
maximization in a multivariate stochastic volatility setting. Stochastic volatility models are an
extension of the Black–Scholes model, where the previously constant assumed volatility is now
modeled as a stochastic process. The key feature of affine stochastic volatility models is that
their joint Fourier–Laplace transform has an exponentially affine form. For a multivariate model
consider the d-dimensional logarithmic price process N whose stochastic volatility is given by
an affine process R on S+

d , then the following formula holds

E

eTr(u Rt )+v

⊤ Nt


= eTr(Ψ (t,u,v)R0)+v
⊤ N0+Φ(t,u,v),

for suitable arguments t ∈ [0, T ], u ∈ Sd + i Sd and v ∈ Cd . The functions Φ and Ψ solve a
system of generalized Riccati ODEs which are specified by the model parameters. This formula
is the main reason for the analytic tractability of affine stochastic volatility models. In the
multivariate stochastic volatility models mainly used in the literature, the dynamics of R follow

d Rt = (b + B̂ Rt + Rt B̂⊤)dt +


Rt dWtΣ + Σ⊤dW ⊤


Rt + d Jt ,

R0 = r ∈ S+

d ,

where W is a matrix-valued Brownian motion possibly correlated with the Brownian motion
driving N . Moreover b is a suitably chosen matrix in S+

d ,Σ , B̂ are some invertible matrices and
J is a pure jump process with a compensator that is affine in R. Without jumps this process
is a Wishart-process (see also (2.10) and thereafter). They were introduced by [13] and have
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been applied to many different fields such as term structure modeling and derivative pricing in
[20,21,30,31]. The authors of [3,4] consider multivariate stochastic volatility models for a class of
matrix-valued Ornstein–Uhlenbeck processes driven by a Lévy process of finite variation. Closer
to our subject is the work of [19]. There the authors investigate the power utility maximization
problem in a multivariate Heston model where the covariation process follows a Wishart process.
They obtain the optimal portfolio and utility via a duality approach.

We start with the martingale property of the stochastic exponential of some process which
will allow us to prove optimality in the utility maximization problem. More precisely we want
to maximize expected utility of terminal wealth. The wealth process X x,π is composed of the
initial capital x ∈ R and gains from trading with strategy π in the market. We want to solve the
problem in presence of random revenues F which are paid at terminal time T , i.e.

V (x) = sup
π∈A

E

U (X x,π

T + F)

, x ∈ R,

where U is an exponential utility function. Once a notion of admissibility is fixed we call any
π ∈ A an admissible (trading) strategy. Our aim is to explicitly describe the value function V
and the corresponding optimal strategy πopt. Similarly we examine the problem

Ṽ (x) = sup
π∈A

E

U (X x,π

T exp(F))

, x ∈ R,

where U is now a power utility function. It is known that the logarithmic utility maximization
problem with F = 0 can be solved explicitly for almost all semimartingale models, see e.g. [29]
and the references therein. This is why we do not consider logarithmic utility in this work.

4.1. The martingale property

In the following sections it will play an important role under which conditions the stochastic
exponential of a process involving an affine process becomes a true martingale. This problem
has applications in fields including absolute continuity of distributions of stochastic processes
(see [15]) and the verification of optimality in utility maximization as we use it here. On the
state space Rn

+ ×Rm and in a time-homogeneous setting the problem has been addressed already
in [37,42], which has then been extended to the state space S+

d × Rd in [17].
Suppose R is an affine process with admissible parameter set (α, b, β i j ,m, 0) associated with

truncation function χ R . Let for all s ∈ [0, T ]
{|Tr(σµ(s)ξ)|>1}

eTr(σµ(s)ξ)m(dξ) < ∞, (4.1)

and consider the process

Pt =

 t

0
σ⊤

Q (s)


Rsd Qs +

 t

0
Tr

σW (s)


RsdWs


+

 t

0
Tr

σQ̂(s)


Rsd Q̂s


+

 t

0


S+

d \{0}


eTr(σµ(s)ξ) − 1


d(µR(ds, dξ)− m(dξ)ds), t ∈ [0, T ], (4.2)

where σQ : [0, T ] → Rd and σW , σQ̂, σµ : [0, T ] → Md are continuous functions of time. The
d-dimensional Brownian motion Q is correlated to the matrix Brownian motion W by

d Qt = dWtρ +


1 − ρ⊤ρd Dt .
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Here D is a d-dimensional Brownian motion independent of W and ρ a d-dimensional vector
with entries ρi ∈ [−1, 1], i = 1, . . . , d, satisfying ρ⊤ρ ≤ 1. The process Q̂ is another
independent d × d-matrix Brownian motion. Finally µR denotes the random measure associated
to the jumps of R. It will be crucial that the conditional Fourier–Laplace transform of (R, P̂)
with

P̂ = ln (E(P)) ,

is exponentially affine which is made precise in Lemma 4.1. From this one can determine when
the stochastic exponential of P is a true martingale. The proofs of the following lemma and the
proposition rely on the careful application of Itô’s formula and σ -martingales and can be found
in [50, Chapter 9].

Lemma 4.1. The conditional Fourier–Laplace transform of (R, P̂) has an exponentially affine
form. More precisely, there exist functions (s, t, u, v) → Ψ(s, t, u, v) and (s, t, u, v) →

Φ(s, t, u, v) such that

E

exp(Tr (u Rt )+ v P̂t )|(Rs, P̂s)


= exp


Tr (Ψ(s, t, u, v)Rs)+ v P̂s + Φ(s, t, u, v)


,

for all (s, t, u, v) ∈ I , where

I =


(s, t, u, v) ∈ [0, T ] × [0, T ] × Sd

+ iSd × C : s ≤ t,E

eTr(u Rt )+v P̂t |(Rs, P̂s)


< ∞


.

The functions Φ and Ψ have the following form

−
∂Φ(s, t, u, v)

∂s
= F (s,Ψ(s, t, u, v), v), Φ(t, t, u, v) = 0,

−
∂Ψ(s, t, u, v)

∂s
= R(s,Ψ(s, t, u, v), v), Ψ(t, t, u, v) = u,

where

F (s, u, v) = Tr(bu)+


S+

d \{0}


eTr(uξ)−vTr(σµ(s)ξ) − veTr(σµ(s)ξ)

+ v − 1 − Tr(uξ))m(dξ),

R(s, u, v) = 2uαu + B∗(u)+
1
2
v(v − 1)


2σQ(s)ρ

⊤σW (s)

+ σ⊤

W (s)σW (s)+ σ⊤

Q̂
(s)σQ̂(s)

+ σQ(s)σ
⊤

Q (s)

+ vu(σQ(s)ρ

⊤
+ σ⊤

W (s))Σ + vΣ⊤(σW (s)+ ρσ⊤

Q (s))u,

for all (s, t, u, v) ∈ I .

Proposition 4.2. Assume (4.1), then the process E(P) is a martingale.

4.2. Solution in a continuous multivariate affine stochastic volatility model

In this section we introduce a continuous affine stochastic volatility model which is a natural
multivariate extension of the Heston model. We then formulate the utility maximization problem
in this model and solve it for power and exponential utility. This allows to describe the optimal
strategy and maximal expected utility in terms of the model parameters and a Riccati ODE.
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Assume that there exists a financial market with one riskless bond with zero interest rate
and d risky assets H = (H1, . . . , Hd). The process H is modeled as stochastic exponential
H = H0 E(N ), where N = (N1, . . . , Nd) is given by

d Nt = Rtηdt +


Rt d Qt , t ∈ [0, T ],

with Q being a vector Brownian motion with values in Rd and η ∈ Rd being a constant vector.
The stochastic volatility process is continuous and affine with admissible parameter set (α, b,
β i j , 0, 0), i.e. it satisfies the SDE

d Rt = (b + B(Rt ))dt +


Rt dWtΣ + Σ⊤dW ⊤

t


Rt ,

R0 = r ∈ S+

d , t ∈ [0, T ],
(4.3)

where W is a d × d matrix-valued Brownian motion. The Brownian motion Q driving the
assets returns and the Brownian motion W of the stochastic covariation matrix are allowed to
be correlated in a certain way. Let ρ = (ρ1, . . . , ρd)

⊤ be a vector with entries ρi ∈ [−1, 1], i =

1, . . . , d, and such that ρ⊤ρ ≤ 1. With a d-dimensional Brownian motion D independent of W
we can write

d Qt = dWtρ +


1 − ρ⊤ρd Dt .

Hence the correlation between the scalar Brownian motions Qi and W mn is given by ρn if i = m
and else it is 0. The structure of the correlation between Q and W has been chosen in this way in
order to ensure the model to be affine:

Proposition 4.3. The pair of processes (R, N ) is a multivariate stochastic volatility model with
functions Φ and Ψ solving

∂Φ(t, u, v)

∂t
= bΨ(t, u, v),

Φ(0, u, v) = 0,

∂Ψ(t, u, v)

∂t
= 2Ψ(t, u, v)αΨ(t, u, v)+ B∗(Ψ(t, u, v))+ (v − η) ρ⊤ΣΨ(t, u, v)

+Ψ(t, u, v)Σ⊤ρ (v − η)⊤ +
1
2
vv⊤, (4.4)

Ψ(0, u, v) = u,

for all (t, u, v) ∈ Q.

The proof has been omitted here and can be found in [50, Chapter 9].

Remark 4.4. We have chosen to model the asset price process H as stochastic exponential of
N . It is also possible to model H as ordinary exponential, i.e. H = H0eN . In this case we have
H = H0 E(Ñ ) with d Ñt =

√
Rt d Qt + Rt (η+

1
2 )dt, t ∈ [0, T ]. Hence we are back in the setting

considered above.

4.2.1. Power utility
We set F = 0 and assume that the investor’s preferences are described by the power utility

function

U (x) =
1
γ

xγ , x ≥ 0, γ ∈ (0, 1).
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Let A be the set of all d-dimensional predictable processes π that satisfy
 T

0 π⊤
s πsds < ∞ a.s.

Note that πi denotes the fraction of the wealth invested in stock i , where i = 1, . . . , d . Any
process π ∈ A is called an admissible (trading) strategy. Under these assumptions the wealth
process evolves as follows

X x,π
t = x +

 t

0
X x,π

s π⊤
s d Ns = x +

 t

0
X x,π

s π⊤
s Rsη ds +

 t

0
X x,π

s π⊤
s


Rsd Qs,

for t ∈ [0, T ]. It can also be written as stochastic exponential

X x,π
t = x E

 t

0
π⊤

s Rsηds +

 t

0
π⊤

s


Rsd Qs


, t ∈ [0, T ].

As described earlier the investor wants to maximize their expected utility of terminal wealth. In
order to model interest and exchange rates later, we want to take the function

F(OT ) = Tr(aOT ),

into account, where a is a d × d-matrix and OT the final value of the process

Ot =

 t

0
σ


Rsd Q̂s +

 t

0
(o1 + o2 Rs)ds, t ∈ [0, T ]. (4.5)

Here o1, o2, σ ∈ Md and Q̂ is a d × d-dimensional Brownian motion independent of the Brown-
ian motions W and Q. From now on we will write Fa,σ,o1,o2 for F(OT ) with OT given by (4.5)
to depict the structure of F in more detail. We want to solve the maximization problem

V a,σ,o1,o2(x) = sup
π∈A

E


1
γ


X x,π

T exp(Fa,σ,o1,o2)
γ 

, x ≥ 0.

Our main result describes the value function and the optimal strategy explicitly in terms of the
model parameters.

Theorem 4.5. Let the linear diffusion term α belong to S++

d and suppose the linear drift term
B in (4.3) is of the form B(r) = r B̂ + B̂⊤r, r ∈ S+

d , with B̂ ∈ Md . Define the matrix-valued
functions A : [0, T ] → M2d and Ai j : [0, T ] → Md , i, j = 1, . . . , d, by

A(t) =


A11(t) A12(t)
A21(t) A22(t)



= exp

(T − t)


γ

1 − γ
Σ⊤ρη⊤

+ B̂⊤
−2α −

2γ
1 − γ

Σ⊤ρρ⊤Σ

1
2
σ⊤aa⊤σ +

γ

2(1 − γ )
ηη⊤

+ ao2 −
γ

1 − γ
ηρ⊤Σ − B̂


 .
(4.6)

Then the value function and the corresponding optimal strategy are given by

V a,σ,o1,o2(x) =
1
γ

xγ exp


Tr(A−1
22 (0)A21(0)r)+

 T

0
Tr


A−1
22 (s)A21(s)b + ao1


ds


,

π
opt
t =

1
1 − γ


η + 2A−1

22 (t)A21(t)Σ⊤ρ

, x ≥ 0, t ∈ [0, T ].
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In contrast to the classical Merton problem in the Black–Scholes setting, the strategy is
now not a constant proportion of wealth anymore but is a deterministic function of time.
Note that the strategy consists of the Merton ratio η/(1 − γ ) and a hedging component
1/(1 − γ )2A−1

22 (t)A21(t)Σ⊤ρ, the impact of which is discussed in a numerical example in
[1, Chapter 7].

Before we prove the above theorem we motivate the present approach which can also be found
in [34]. Note that in contrast to [34] the coefficients in the evolution of N are not bounded. We
solve this problem by using the martingale optimality principle, in particular we aim to construct
processes Lπ as well as a strategy πopt such that

• LπT = U (X x,π
T exp(Fa,σ,o1,o2)) for all π ∈ A,

• Lπ is a supermartingale for all π ∈ A and there is a particular strategy πopt
∈ A such that

Lπ
opt

is a martingale.

Note that our assumptions on the filtration then imply that Lπ0 = C for all π ∈ A and a constant
C > 0. Applying the utility function to X x,π

T exp(Fa,σ,o1,o2) we get

1
γ


X x,π

T exp(Fa,σ,o1,o2)
γ

=
1
γ

xγ exp

 T

0
γπ⊤

s Rsηds +

 T

0
γπ⊤

s


Rsd Qs

−
1
2

 T

0
γπ⊤

s Rsπsds + γ Fa,σ,o1,o2


.

This suggests the following choice of Lπ

Lπt = xγ exp
 t

0
γπ⊤

s Rsηds +

 t

0
γπ⊤

s


Rsd Qs −

1
2

 t

0
γπ⊤

s Rsπsds + Yt


,

where Y is the first component of the solution of a BSDE with terminal condition γ Fa,σ,o1,o2 .
More precisely we want to find a generator f for the BSDE

Yt = γ Fa,σ,o1,o2 −

 T

t
Tr(Z⊤

s dWs)−

 T

t
Tr(Ẑ⊤

s d Q̂s)

+

 T

t
f (Rs, Zs, Ẑs)ds, t ∈ [0, T ], (4.7)

such that its solution (Y, Z , Ẑ) implies that Lπ meets the above requirements.

Lemma 4.6. Let α ∈ S++

d , B(r) = r B̂ + B̂⊤r with B̂ ∈ Md and recall (4.6). If the generator
f : S+

d × Md → R is of the form

f (r, z, ẑ) =
1
2

Tr(zz⊤)+
1
2

Tr(ẑ ẑ⊤)+
γ

2(1 − γ )
|
√

rη + zρ|
2,

(r, z, ẑ) ∈ S+

d × Md × Md , (4.8)

then (4.7) is solved by

Yt = Tr(A−1
22 (t)A21(t)Rt )+ Tr(aOt )+

 T

t
Tr


A−1
22 (s)A21(s)b + ao1


ds, (4.9)

Z t = 2


Rt A−1
22 (t)A21(t)Σ⊤,

Ẑ t =


Rtσ

⊤a, t ∈ [0, T ].



A. Richter / Stochastic Processes and their Applications 124 (2014) 3578–3611 3597

Moreover Lπ is a supermartingale for every strategy π ∈ A and for

π
opt
t =

1
1 − γ


η + 2A−1

22 (t)A21(t)Σ⊤ρ

, t ∈ [0, T ], (4.10)

the process Lπ
opt

is a martingale.

Proof. Let us define the constants

czz =
1
2

Id +
γ

2(1 − γ )
ρρ⊤, cẑ ẑ =

1
2

Id ,

cz
√

x =
γ

2(1 − γ )
ρη⊤, cx =

γ

2(1 − γ )
ηη⊤.

Note that czz is positive definite. By [50, Proposition 8.4] we know that the ODE

−
dΓ (t)

dt
= Γ (t)Σ⊤czzΣΓ (t)+ B∗(Γ (t))+ 2Γ (t)Σ⊤cz

√
x + 2c⊤

z
√

xΣΓ (t)

+
1
2
σ⊤aa⊤σ + cx + ao2, Γ (T ) = 0,

has the solution Γ (t) = A−1
22 (t)A21(t), t ∈ [0, T ]. We then obtain from Theorem 3.5 that the

BSDE (4.7) with generator (4.8) is solved by (4.9).
We show the local (super)martingale property for Lπ . With Itô’s formula applied to Lπ we

have for all π ∈ A

d Lπt = Lπt

γπ⊤

t


Rt d Qt + Tr(Z⊤

t dWt )+ Tr(Ẑ⊤
t d Q̂t )


+ Lπt


γπ⊤

t Rtη −
1
2
γπ⊤

t Rtπt − f (Rt , Z t , Ẑ t )


dt

+
1
2

Lπt

γRtπtρ
⊤

+ Z t

2 +

γ1 − ρ⊤ρπ⊤
t


Rt

2 + Tr(Ẑ t Ẑ⊤
t )


dt,

where we have used d Qt = dWtρ +


1 − ρ⊤ρd Dt . If the finite variation part satisfies dt ⊗

P-a.e.

Lπt


γπ⊤

t Rtη −
1
2
γπ⊤

t Rtπt − f (Rt , Z t , Ẑ t )+
1
2

γRtπtρ
⊤

+ Z t

2
+

1
2

γ1 − ρ⊤ρπ⊤
t


Rt

2 +
1
2
|Ẑ t |

2


≤ 0,

then we know that Lπ is a local supermartingale. Indeed, since Lπt > 0 for all t ∈ [0, T ] we only
need to check whether

− f (Rt , Z t , Ẑ t ) ≤ −γπ⊤
t Rtη +

1
2
γπ⊤

t Rtπt −
1
2

γRtπtρ
⊤

+ Z t

2
−

1
2

γ1 − ρ⊤ρπ⊤
t


Rt

2 −
1
2
|Ẑ t |

2.

This is equivalent to

− f (Rt , Z t , Ẑ t ) ≤ −γπ⊤
t Rtη +

1
2
γπ⊤

t Rtπt −
1
2

|Z t |
2
− γ Tr(


Rtπtρ

⊤Z⊤
t )

−
1
2
γ 2π⊤

t Rtπt −
1
2
|Ẑ t |

2
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=
1
2
γ (1 − γ )

Rtπt −
1

1 − γ
(


Rtη + Z tρ)

2
−

γ

2(1 − γ )

Rtη + Z tρ

2 −
1
2
|Z t |

2
−

1
2
|Ẑ t |

2.

If we use (4.8), we see that this inequality is true for every π ∈ A. For πopt from (4.10) and
applying the particular form of Z , the above inequality turns out to be an equality and hence the
process Lπ

opt
is a local martingale. Note that πopt

∈ A.
We proceed showing that Lπ is a true supermartingale for all π ∈ A. By definition there exists

a sequence of stopping times (τn)n∈N converging to T such that Lπ·∧τn
is a supermartingale. Since

Lπ is bounded below by zero we may use Fatou’s lemma to pass to the limit:

E

Lπt |Fs


= E


lim

n→∞
Lπt∧τn

|Fs


≤ lim

n→∞
E

Lπt∧τn

|Fs


≤ lim
n→∞

Lπs∧τn
= Lπs ,

s ≤ t ∈ [0, T ].

Note that from (4.9) and (4.10) we have

Lπ
opt

t = xγ E

γ

 t

0
(πopt)⊤s


Rsd Qs +

 t

0
Tr


2Σ (A−1
22 (s)A21(s))

⊤


RsdWs


+

 t

0
Tr


a⊤σ


Rsd Q̂s


.

By choosing σQ(s) = γπ
opt
s , σW (s) = 2Σ (A−1

22 (s)A21(s))⊤, σQ̂(s) ≡ a⊤σ and σµ ≡ 0, s ∈

[0, T ], we derive from Proposition 4.2 that Lπ
opt

is a true martingale. �

Proof of Theorem 4.5. Note that we derive from Lemma 4.6 for all π ∈ A

E

U (X x,π

T exp(Fa,σ,o1,o2))


= E


1
γ

LπT


≤ E


1
γ

Lπ0


=

1
γ

xγ exp(Y0).

The strategy πopt is indeed optimal since we have that Lπ
opt

is a martingale and hence

E

U (X x,πopt

T exp(Fa,σ,o1,o2))


= E


1
γ

Lπ
opt

0


.

This immediately gives the value function. �

Remark 4.7. In dimension d = 1, for the case F(OT ) = 0 and with a slightly different choice
of parameters, this result was derived by the authors of [38]. They represent the optimal strategy
in terms of an opportunity process and use semimartingale characteristics. In our setting the
opportunity process is eY , see also [45] and in particular [33] for a survey on the relationship
between BSDEs and duality methods in utility maximization. On a heuristic level the result for
d = 1 and F(OT ) = 0 appears in [41]. Also using duality methods [19] derive a result similar
to Theorem 4.5.

Finally we are able to give the indifference value of change of numeraire in two examples. Let
us first look at the special situation where

F−Id ,0,o3,0 = −Tr(o3)T or F−Id ,0,o1,o2 = −

 T

0
Tr(o1 + o2 Rs)ds,

o1, . . . , o3 ∈ Md ,
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and understand this as the possibly stochastic discounting of the investors terminal wealth. The
indifference value p of changing between those two numeraires is then defined by

V −Id ,0,o1,o2(x − p(x)) = V −Id ,0,o3,0(x).

Proposition 4.8. The indifference value of changing from a fixed interest rate F−Id ,0,o3,0 to the
floating one F−Id ,0,o1,o2 is

p(x) = x − x exp


1
γ


Tr(B−1

22 (0)B21(0)r)+

 T

0
Tr


B−1
22 (s)B21(s)b − o3


ds

− Tr(A−1
22 (0)A21(0)r)−

 T

0
Tr


A−1
22 (s)A21(s)b − o1


ds


,

with 
A11(t) A12(t)
A21(t) A22(t)



= exp

(T − t)


γ

1 − γ
Σ⊤ρη⊤

+ B̂⊤
−2α −

2γ
1 − γ

Σ⊤ρρ⊤Σ

γ

2(1 − γ )
ηη⊤

− o2 −
γ

1 − γ
ηρ⊤Σ − B̂





B11(t) B12(t)
B21(t) B22(t)



= exp

(T − t)


γ

1 − γ
Σ⊤ρη⊤

+ B̂⊤
−2α −

2γ
1 − γ

Σ⊤ρρ⊤Σ

γ

2(1 − γ )
ηη⊤

−
γ

1 − γ
ηρ⊤Σ − B̂


 .

Proof. By Theorem 4.5 we have that

V −Id ,0,o1,o2(x − p(x)) =
1
γ
(x − p(x))γ exp


Tr(A−1

22 (0)A21(0)r)

+

 T

0
Tr


A−1
22 (s)A21(s)b − o1


ds



V −Id ,0,o3,0(x) =
1
γ

xγ exp


Tr(B−1
22 (0)B21(0)r)+

 T

0
Tr


B−1
22 (s)B21(s)b − o3


ds


,

which gives the result. �

In a similar way we can describe the indifference value of change of numeraire from a fixed
exchange rate

F Id ,0,o3,0 = Tr(o3)T,

with o3 ∈ Md to a random valued exchange rate

Fa,σ,o1,o2 = Tr(aOT ),

with a ∈ Md and OT from (4.5).
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Proposition 4.9. The indifference value of changing from a fixed exchange rate F−Id ,0,o3,0 to
the floating one Fa,σ,o1,o2 is

p(x) = x − x exp


1
γ


Tr(B−1

22 (0)B21(0)r)+

 T

0
Tr


B−1
22 (s)B21(s)b + o3


ds

− Tr(A−1
22 (0)A21(0)r)−

 T

0
Tr


A−1
22 (s)A21(s)b + ao1


ds


,

with 
A11(t) A12(t)
A21(t) A22(t)



= exp

(T − t)


γ

1 − γ
Σ⊤ρη⊤

+ B̂⊤
−2α −

2γ
1 − γ

Σ⊤ρρ⊤Σ

1
2
σ⊤aa⊤σ +

γ

2(1 − γ )
ηη⊤

+ ao2 −
γ

1 − γ
ηρ⊤Σ − B̂





B11(t) B12(t)
B21(t) B22(t)



= exp

(T − t)


γ

1 − γ
Σ⊤ρη⊤

+ B̂⊤
−2α −

2γ
1 − γ

Σ⊤ρρ⊤Σ

γ

2(1 − γ )
ηη⊤

−
γ

1 − γ
ηρ⊤Σ − B̂


 .

Since the proof is very similar to the proof of Proposition 4.8 we omit it here.

4.2.2. Exponential utility
In this section we want to solve the utility maximization problem for the exponential utility

function

U (x) = − exp(−γ x), x ∈ R,

where γ > 0 denotes the risk aversion. Note that we have already discussed this problem in the
one-dimensional case in the beginning of Section 3 and now study it in a multivariate setting in
detail. We are also interested in pricing variance swaps which depend on the realized variance
via utility indifference pricing. We consider the case where the variance swaps are not available
in the market and the initial capital x is invested in the (incomplete) financial market H . For
i = 1, . . . , d , a variance swap on the i th asset of maturity T is a contract which pays

1
T

 T

0
(Ri i )sds

at terminal time T in exchange for a previously fixed amount Ki . That is to say the payoff of a
variance swap on Hi is a function of OT =

 T
0 Rsds, more precisely

F i (OT ) = Tr(ai i OT )− Ki ,

where ai i
=

1
T ei i . If we are only interested in the utility maximization problem without a random

endowment, i.e. F i
= 0, we define ai i

= 0, Ki = 0 for i = 0.
In this section we also need a notion of admissibility. For Rm

+ × Rn-valued affine stochastic
volatility models Vierthauer [52] shows in Theorem 3.17 that the optimal strategy in the
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exponential utility maximization problem is a deterministic function of time. Motivated by this
we introduce the set A of admissible trading strategies as the set of d-dimensional deterministic
functions of time π = (π(t))t∈[0,T ]. This time, the trading strategy π describes the amount of
money invested in the stocks H so that the number of shares is π j/H j for j = 1, . . . , d. The
wealth process X x,π corresponding to strategy π and initial capital x is then given by

X x,π
t = x +

d
i=1

 t

0

πi (s)

Hi,s
d Hi,s = x +

 t

0
π⊤(s)Rsηds +

 t

0
π⊤(s)


Rsd Qs .

Remark 4.10. Note that we measure the trading strategies π in different units than in the power
utility case. This then leads to a similar exponential structure in the process L . This was also
deployed in [34] for example.

In the following theorem we characterize the maximal expected utility from trading in the
financial market in presence of a variance swap on the i th asset

V F i
(x) = sup

π∈A
E

− exp


−γ


X x,π

T + F i (OT )


, x ∈ R, (4.11)

and the optimal strategy π F i
for i = 0, 1, . . . , d.

Theorem 4.11. For i ∈ {0, 1, . . . , d} let Γ i be the solution of the ODE

−
∂Γ i (t)

∂t
= Γ i (t)


−2γα + 2γΣ⊤ρρ⊤Σ


Γ i (t)+ B∗(Γ i (t))

−
1
γ

Γ i (t)Σ⊤ρη⊤
−

1
γ
ηρ⊤ΣΓ i (t)+

1

2γ 3 ηη
⊤

+ ai i , (4.12)

Γ i (T ) = 0,

for all t ∈ [0, T ]. Then the value function has the form

V F i
(x) = − exp


−γ


x − Ki + Tr(Γ i (0)r)+

 T

0
Tr(Γ i (s)b)ds


, x ∈ R,

and the optimal strategy π F i
is given by

π F i
(t) =

1

γ 2 η − 2Γ i (t)Σ⊤ρ, (4.13)

for all t ∈ [0, T ].

Note that the optimal strategy is only then a constant cash amount (equivalent to the classical
Merton problem) if the Brownian motions driving the risky assets and the covariation process are
uncorrelated. As before we want to use the martingale optimality principle in order to establish
this theorem. Therefore we dynamize the problem. For all i = 0, 1, . . . , d, we define

Lπ,it = − exp(−γ (X x,π
t + Y i

t )), t ∈ [0, T ], π ∈ A,

where (Y i , Z i ) is the solution to

Y i
t = F i (OT )−

 T

t
Tr((Z i

s)
⊤dWs)+

 T

t
f (Rs, Z i

s)ds, t ∈ [0, T ]. (4.14)
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The generator f needs to be selected in a way such that Lπ,i possesses the desired properties.
This is done in the following lemma.

Lemma 4.12. For i ∈ {0, 1, . . . , d}, let the generator f : S+

d × Md → R have the form

f (r, zi ) = −
γ

2
Tr(zi (zi )⊤)+

1
2γ

 1
γ

√
rη − γ ziρ

2. (4.15)

Then the solution to (4.14) is given by

Y i
t = Tr(Γ i (t)Rt )+ Tr(ai i Ot )− Ki +

 T

t
Tr(Γ i (t)b)ds, (4.16)

Z i
t = 2


RtΓ i (t)Σ⊤,

where Γ i
∈ S+

d is the solution to (4.12) and Ot =
 t

0 Rsds. Furthermore Lπ,i is a
supermartingale for every strategy π ∈ A and for

π F i
(t) =

1

γ 2 η − 2Γ i (t)Σ⊤ρ, (4.17)

the process Lπ
Fi
,i is a martingale.

Proof. Fix i ∈ {0, 1, . . . , d} and define

czz =
γ

2
(ρρ⊤

− Id), cz
√

x = −
1

2γ
ρη⊤, cx =

1

2γ 3 ηη
⊤

+ ai i .

Note that czz is negative definite. Indeed, if ρ = 0, we have czz = −
γ
2 Id ∈ S−−

d . If ρ ≠ 0,
we know that Id − ρρ⊤ is the inverse of the positive definite matrix Id +

1
1−ρ⊤ρ

ρρ⊤ and hence

is itself positive definite. The conclusion is that czz ∈ S−−

d . Then by [50, Proposition 8.6] there
exists a unique solution Γ i

∈ S+

d . This allows us to find solution (4.16) via Theorem 3.5.
Fix π ∈ A. By Itô’s formula we see that Lπ,i can be described by the product of the local

martingale

Mπ,i
t = −Lπ,i0 E


−γ

 t

0
π⊤(s)


Rsd Qs −

 t

0
Tr((Z i

s)
⊤dWs)


,

and the bounded variation process

Aπ,it = − exp
 t

0


−γπ⊤(s)Rsη + γ f (Rs, Z i

s)+
1
2
γ 2

|


Rsπ(s)ρ

⊤
+ (Z i

s)
⊤
|
2

+
1
2
γ 2

|


1 − ρ⊤ρπ⊤(s)


Rs |

2


ds


.

Proposition 4.2 implies that Mπ,i is a true martingale. The process Aπ,i is non-increasing, if

−γπ⊤(s)Rsη + γ f (Rs, Z i
s)+

1
2
γ 2

|


Rsπ(s)ρ

⊤
+ (Z i

s)
⊤
|
2

+
1
2
γ 2

|


1 − ρ⊤ρπ⊤(s)


Rs |

2
≥ 0
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for all s ∈ [0, T ]. This is equivalent to

− f (Rt , Z i
t ) ≤

γ

2
Tr(Z i

t (Z
i
t )

⊤)+ γ Tr(


Rtπ(t)ρ
⊤(Z i

t )
⊤)

−
1
γ
π(t)⊤ Rtη +

γ

2
|π⊤


Rt |

2

=
γ

2

Rtπ(t)−


1

γ 2


Rtη − Z i

tρ

2 −
1

2γ


1
γ


Rtη − γ Z i

tρ

2

+
γ

2
Tr(Z i

t (Z
i
t )

⊤), (4.18)

which holds true by formula (4.15). Hence Aπ,i is non-increasing and Lπ,i = Mπ,i Aπ,i is

a supermartingale. From (4.18) we see in particular that Aπ
Fi
,i

= −1 is constant and thus

Lπ
Fi
,i

= −Mπ Fi
,i is a true martingale. �

Proof of Theorem 4.11. Follows the same reasoning as Theorem 4.5. �

For all i ∈ {1, . . . , d}, the indifference price of the variance swap

F i (OT ) = Tr


ai i OT


− Ki

on the i th asset is defined as the value pi for which the investor is indifferent between buying F i

for the amount pi and receiving a random income F i at terminal time T or not having it, i.e.

V F i
(x − pi ) = V 0(x),

for all x ∈ R. The optimal strategy π F i
which attains the maximal expected utility in the presence

of F i can be decomposed into a sum of a pure investment part π0 and a hedging component ∆i ,
i.e.

π F i
(t) = π0(t)+ ∆i (t), t ∈ [0, T ]. (4.19)

We therefore call ∆i the optimal hedge.

Proposition 4.13. For i ∈ {1, . . . , d} the indifference price pi and the optimal hedge ∆i of
F i (OT ) are explicitly given by

pi
= −Ki + Tr((Γ i (0)− Γ 0(0))r)+

 T

0
Tr((Γ i (s)− Γ 0(s))b)ds,

∆i (t) = 2(Γ i (t)− Γ 0(t))Σ⊤ρ, t ∈ [0, T ],

where Γ i and Γ 0 are the solutions of (4.12).

Proof. Fix i ∈ {1, . . . , d} and recall the value functions

V F i
(x − pi ) = − exp


−γ


x − pi

− Ki + Tr(Γ i (0)r)+

 T

0
Tr(Γ i (s)b)ds


,

V 0(x) = − exp


−γ


x + Tr(Γ 0(t)r)+

 T

0
Tr(Γ 0(s)b)ds


,

from Theorem 4.11. Equating them immediately gives the first part of the result. The second part
then follows from (4.13) and (4.19). �
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4.3. Solution in a multivariate affine stochastic volatility model with jumps

We now consider a model with jumps which is a natural multivariate extension of the model
of [2] and has been applied e.g. in optimal portfolio selection, see [8] and the references
therein. As before the asset price process H is modeled as stochastic exponential H = H0 E(N )
with

d Nt = Rtηdt +


Rt d Qt , t ∈ [0, T ], (4.20)

where Q is a d-dimensional vector Brownian motion and η a constant parameter. By R we denote
the Ornstein–Uhlenbeck-type stochastic process with dynamics

d Rt = (λ+ Λ(Rt ))dt + d Jt , (4.21)

and a starting value R0 = r . Here λ ∈ S+

d and Λ : Sd → Sd is the linear map Λ(r) =


i, j β
i jri j

with β i j
= β j i

∈ Sd and such that Tr(Λ(r)x) ≥ 0 for all r, x ∈ S+

d with Tr(r x) = 0. We
denote its adjoint operator by Λ∗. The process J is an independent affine process with admissible
parameter set (0, bJ , 0,m J , 0), starting at 0. Our goal is again to maximize the expected terminal
wealth from trading in the market.

Proposition 4.14. The process (R, N ) is a multivariate stochastic volatility model with functions
Φ and Ψ solving

∂Φ(t, u, v)

∂t
= (λ+ bJ )Ψ(t, u, v)−


S+

d \{0}

(eTr(ξΨ (t,u,v))
− 1)m J (dξ),

Φ(0, u, v) = 0,

(4.22)

∂Ψ(t, u, v)

∂t
= Λ∗(Ψ(t, u, v))+

1
2
vv⊤, Ψ(0, u, v) = u,

for all (t, u, v) ∈ Q.

For brevity reasons the proof is omitted.

4.3.1. Power utility
The investor wants to maximize their expected utility of terminal wealth, i.e. we search for

the value function

V (x) = sup
π∈A

E


1
γ
(X x,π

T )γ

, x ≥ 0, γ ∈ (0, 1).

Here the strategies π and the wealth process X x,π are defined as in Section 4.3.1. We describe
the value function and the optimal strategy of the maximization problem in terms of an ODE.

Theorem 4.15. Suppose the jump measure m J satisfies
|Tr(Γ (t)ξ)|>1

e−Tr(Γ (t)ξ)m J (dξ) < ∞, t ∈ [0, T ],

where Γ is the solution of the ODE

−
dΓ (t)

dt
= Λ∗(Γ (t))−

γ

2(1 − γ )
ηη⊤, Γ (T ) = 0. (4.23)
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Then the value function is given by

V (x) =
1
γ

xγ exp


−Tr(Γ (0)r)−

 T

0
Tr(Γ (s)(bJ

+ λ))ds

−

 T

0


S+

d \{0}

(e−Tr(Γ (s)ξ)
− 1)m J (dξ)ds


,

for x ≥ 0, and the optimal strategy πopt is

π
opt
t ≡

1
1 − γ

η, t ∈ [0, T ].

As we have chosen a stochastic covariation process without a diffusion part, the obtained
optimal strategy becomes a constant just as in the classical Merton problem. Note that the jumps
in R influence the maximal utility but not the strategy leading to this utility.

We choose the process Lπ as we did in Section 4.3.1, only that this time the involved BSDE
is the following

Yt = 0 −

 T

t


S+

d \{0}

Ks(ξ)(µ
J (ds, dξ)− m J (dξ)ds)+

 T

t
f (Rs, Ks)ds, (4.24)

t ∈ [0, T ].

Lemma 4.16. Let the jump measure m J satisfy
|Tr(Γ (t)ξ)|>1

e−Tr(Γ (t)ξ)m J (dξ) < ∞, t ∈ [0, T ], (4.25)

where Γ is the solution of (4.23). Suppose the generator in (4.7) is of the following form

f (r, k) = −
γ

2(1 − γ )
η⊤rη −


S+

d \{0}


e−k(ξ)

− 1 + k(ξ)


m J (dξ), (4.26)

for all r ∈ S+

d and k : S+

d → R. Then BSDE (4.24) is solved by

Yt = Tr(Γ (t)Rt )+

 T

t
Tr(Γ (s)(bJ

+ λ))ds +

 T

t


S+

d \{0}

(1 − e−Tr(Γ (s)ξ))m J (dξ)ds

Kt (ξ) = Tr(Γ (t)ξ), t ∈ [0, T ], ξ ∈ S+

d .

Moreover Lπ is a supermartingale for every strategy π ∈ A and if πopt satisfies

π
opt
t =

1
1 − γ

η, t ∈ [0, T ], (4.27)

then Lπ
opt

is a martingale.

Proof. For all y ∈ R we define

cx = −
γ

2(1 − γ )
ηη⊤, gt (y) = −e−y

+ 1 − y.

Then we can see that by [50, Corollary 8.7] there exists a unique solution Γ with values in S−

d to
(4.23). As a result we find the above solution of (4.24) with Theorem 3.5.
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We apply Itô’s formula which gives that for all π ∈ A

d Lπt = Lπt

γπ⊤

t


Rt d Qt


+ Lπt


γπt Rtη −

1
2
γπ⊤

t Rtπt + f (Rt , Kt )+
1
2
γ 2π⊤

t Rtπt


dt

+ Lπt


S+

d \{0}

(e−Kt (ξ) − 1)

µJ (dt, dξ)− m J (dξ)dt


+ Lπt


S+

d \{0}


e−Kt (ξ) − 1 + Kt (ξ)


m J (dξ)dt,

where we have used integrability condition (4.25). This means that Lπ is a local supermartingale
for all π ∈ A, if the finite variation part dt ⊗ P-a.e. satisfies

Lπt


γπ⊤

t Rtη −
1
2
γπ⊤

t Rtπt + f (Rt , Kt )+
1
2
γ 2π⊤

t Rtπt

+


S+

d \{0}


e−Kt (ξ) − 1 + Kt (ξ)


m J (dξ)


≤ 0.

Since Lπ > 0, the generator f needs to fulfill

f (Rt , Kt ) ≤ −γπ⊤
t Rtη +

1
2
γ (1 − γ )π⊤

t Rtπt −


S+

d \{0}


e−Kt (ξ) − 1 + Kt (ξ)


m J (dξ),

which is equivalent to

f (Rt , Kt ) ≤
1
2
γ (1 − γ )

Rtπt −
1

1 − γ


Rtη

2 −
γ

2(1 − γ )
|


Rtη|

2

−


S+

d \{0}


e−Kt (ξ) − 1 + Kt (ξ)


m J (dξ).

With (4.26) this inequality is true for all π ∈ A and hence Lπ a local supermartingale. Obviously
the inequality is an equality for πopt, for which Lπ

opt
is then a local martingale.

Since Lπ is bounded below by 0, the fact that Lπ is a supermartingale for all π ∈ A follows
as in the proof of Lemma 4.6 by Fatou’s lemma. Note that the process Lπ

opt
is given by

Lπ
opt

t = xγ E
 t

0
γ (π

opt
s )⊤


Rsd Qs

+

 t

0


S+

d \{0}

(e−Ks (ξ) − 1)(µJ (ds, dξ)− m J (dξ)ds)


,

and hence, setting σQ(s) ≡
γ

1−γ
η, σW (s) ≡ 0 and σµ(s) = −Γ (s), s ∈ [0, T ], we obtain the

martingale property of Lπ
opt

by Proposition 4.2. �

Proof of Theorem 4.15. It is omitted since it follows the same idea as the proof of Theo-
rem 4.5. �
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4.3.2. Exponential utility
Using the same notation as in Section 4.2.2, we will compute the utility indifference prices

for variance swaps. This means that we need to solve the problem

V F i
(x) = sup

π∈A
E

U


X x,π
t + F i


, x ≥ 0,

for i ∈ {0, 1, . . . , d}, which is done in the following theorem.

Theorem 4.17. Let i ∈ {0, 1, . . . , d},
|γ Tr(Γ i (s)ξ)|>1

eγ Tr(Γ i (s)ξ)m J (dξ) < ∞, s ∈ [0, T ],

where Γ i is the solution of the ODE

−
dΓ i (t)

dt
= Λ∗(Γ i (t))+

1
2γ
ηη⊤

+ ai i , Γ i (T ) = 0. (4.28)

Then the value function satisfies

V F i
(x) = − exp


−γ


x − Ki + Tr(Γ i (0)r)+

 T

0
Tr(Γ i (s)(bJ

+ λ))ds

−
1
γ

 T

0


S+

d \{0}


eγ Tr(Γ i (s)ξ)

− 1


m J (dξ)ds


,

and the optimal strategy π F i
is given by

π F i
(t) ≡

1
γ
η, t ∈ [0, T ].

We will use the martingale optimality principle again and construct for every i ∈ {0, 1, . . . , d},
a process

Lπ,it = − exp(−γ (X x,π
t + Y i

t )), t ∈ [0, T ], π ∈ A,

where (Y i , K i ) is the solution of

Y i
t = F i

−

 T

t


S+

d \{0}

K i
s (ξ)(µ

J (ds, dξ)− m J (dξ)ds)+

 T

t
f (Rs, K i

s )ds. (4.29)

The generator of BSDE (4.29) needs to be chosen in the following way.

Lemma 4.18. Let i ∈ {0, 1, . . . , d},
|γ Tr(Γ i (t))|>1

eγ Tr(Γ i (t)ξ)m J (dξ) < ∞,

for all t ∈ [0, T ] and with Γ i being the solution of (4.28). Let the generator f in (4.29) have the
form

f (r, ki ) =
1

2γ
η⊤rη −

1
γ


S+

d \{0}


eγ ki (ξ)

− 1 + γ ki (ξ)


m J (dξ), (4.30)
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for all r ∈ S+

d and ki
: S+

d → R. Then the solution of BSDE (4.29) is given by

Y i
t = Tr(Γ i (t)Rt )+ Tr


ai i
 t

0
Rsds


− Ki +

 T

t
Tr(Γ i (s)(bJ

+ λ))ds

−
1
γ

 T

t


S+

d \{0}


eγ Tr(Γ i (s)ξ)

− 1


m J (dξ)ds, (4.31)

K i
t (ξ) = Tr(Γ i (t)ξ), t ∈ [0, T ], ξ ∈ S+

d .

Moreover for all π ∈ A the process Lπ,i is a supermartingale and Lπ
Fi
,i is a martingale.

Proof. Fix i ∈ {0, 1, . . . , d} and define for all y ∈ R

gx =
1

2γ
ηη⊤

+ ai i , gt (y) = −
1
γ


eγ y

− 1 + γ y

.

Using [50, Proposition 8.6] we see that there exists a unique solution Γ i
∈ S+

d of (4.28). This
implies (4.31) by Theorem 3.5.

Fix π ∈ A. Note that Lπ,i can be written as a product Mπ,i V π,i of the two processes

Mπ,i
t = −Lπ,i0 E


−γ

 t

0
π⊤(s)


Rsd Qs

+

 t

0


S+

d \{0}


eγ K i

s (ξ) − 1

(µR(ds, dξ)− m J (dξ)ds)


,

V π,i
t = − exp

 t

0


−γπ⊤(s)Rsη + γ f (Rs, K i

s )+
1
2
γ 2π⊤(s)Rsπs

+


S+

d \{0}


eγ K i

s (ξ) − 1 + γ K i
s (ξ)


m J (dξ)


ds


.

Setting σQ(s) = −γπs, σW (s) ≡ 0 and σmu(s) = γΓ (s), we have from Proposition 4.2 that
Mπ,i is a true martingale. In order for V π,i to be decreasing, it needs to be ensured that

−γπ⊤(s)Rsη + γ f (Rs, K i
s )+

1
2
γ 2π⊤(s)Rsπs

+


S+

d \{0}


eγ K i

s (ξ) − 1 + γ K i
s (ξ)


m J (dξ) ≥ 0, (4.32)

ds ⊗ P-a.e. Taking formulas (4.30) and (4.31) into account this is indeed true, since (4.32) is
equivalent to

− f (Rt , K i
t ) ≤

1
2
γ

π(t)⊤Rt −
1
γ
η⊤


Rt

2 −
1

2γ
η⊤ Rtη

+


S+

d \{0}

1
γ


eγ K i

t (ξ) − 1 + γ K i
t (ξ)


m J (dξ).

Since Mπ,i is a martingale and V π,i is non-increasing, Lπ,i = Mπ,i V π,i is a supermartingale.

It is straightforward that V π Fi
,i

s = −1 for s ∈ [0, T ] and thus Lπ
Fi
,i

= −MπF i
,i is a true

martingale. �
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Proof of Theorem 4.17. The proof now follows the same reasoning as the proof of Theo-
rem 4.5. �

Recall that for i ∈ {1, . . . , d} the indifference price of the variance swap F i on the i th asset
is the value pi such that for all x ∈ R the value V F i

(x − pi ) equals V 0(x).

Proposition 4.19. For i ∈ {1, . . . , d} the indifference price pi is explicitly given by

pi
= −Ki + Tr((Γ i (0)− Γ 0(0))r)+

 T

0
Tr((Γ i (s)− Γ 0(s))(bJ

+ λ))ds

−
1
γ

 T

0


S+

d \{0}


eγ Tr(Γ i (s)ξ)

− eγ Tr(Γ 0(s)ξ)


m J (dξ),

where Γ i and Γ 0 are the respective solutions of

∂Γ i (t)

∂t
= Λ∗(Γ i (t))+

1
2γ
ηη⊤

+ ai i , Γ i (T ) = 0,

∂Γ 0(t)

∂t
= Λ∗(Γ 0(t))+

1
2γ
ηη⊤, Γ 0(T ) = 0.

Proof. For i ∈ {0, 1, . . . , d} it follows from Theorem 4.17 that the value functions have the form

V F i
(x − pi ) = − exp


−γ


x − pi

− Ki + Tr(Γ i (0)r)+

 T

0
Tr(Γ i (s)(bJ

+ λ))ds

−
1
γ

 T

0


S+

d \{0}


eγ Tr(Γ i (s)ξ)

− 1


m J (dξ)


.

Equating V F i
(x − pi ) and V 0(x) for i = 1, . . . , d , immediately gives the result. �

Acknowledgments

The author thanks Josef Teichmann and Peter Imkeller for their helpful comments. The main
part of this research can also be found in the author’s Ph.D. thesis.

References

[1] N. Baeuerle, Z. Li, Optimal portfolios for financial markets with Wishart volatility, J. Appl. Probab. 50 (4) (2013)
1025–1043.

[2] O.E. Barndorff-Nielsen, N. Shephard, Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in
financial economics, J. Roy. Statist. Soc. 63 (2001) 167–241.

[3] O.E. Barndorff-Nielsen, R. Stelzer, Positive-definite matrix processes of finite variation, Probab. Math. Statist. 27
(1) (2007) 3–43.

[4] O.E. Barndorff-Nielsen, R. Stelzer, The multivariate supOU stochastic volatility model, Math. Finance 23 (2) (2013)
275–296.

[5] P. Barrieu, N. El-Karoui, Hedging and optimally designing derivatives via minimization of risk measures, 2005.
Preprint.

[6] D. Becherer, Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging,
Ann. Appl. Probab. 16 (4) (2006) 2027–2054.

[7] C. Bender, R. Denk, A forward simulation of backward SDEs, Stochastic Process. Appl. 117 (12) (2007)
1793–1812.

http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref1
http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref2
http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref3
http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref4
http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref6
http://refhub.elsevier.com/S0304-4149(14)00114-8/sbref7


3610 A. Richter / Stochastic Processes and their Applications 124 (2014) 3578–3611

[8] F. Benth, K. Karlsen, K. Reikvam, Merton’s portfolio optimization problem in a Black and Scholes market with
non-Gaussian stochastic volatility of Ornstein–Uhlenbeck type, Math. Finance 13 (2003) 215–244.

[9] J.M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl. 44 (1973) 384–404.
[10] B. Bouchard, N. Touzi, Discrete-time approximation and Monte–Carlo simulation of backward stochastic

differential equations, Stochastic Process. Appl. 111 (2) (2004) 175–206.
[11] P. Briand, F. Confortola, BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces,

Stochastic Process. Appl. 118 (5) (2008) 818–838.
[12] I. Bronstein, K. Semendjajew, G. Musiol, M. Mühlig, Taschenbuch der Mathematik, expanded ed., Harri Deutsch,

Thun, 2001.
[13] M.-F. Bru, Wishart processes, J. Theoret. Probab. 4 (1991) 725–751.
[14] A. Buraschi, P. Pochia, F. Trojani, Correlation risk and optimal portfolio choice, J. Finance 65 (1) (2010) 393–420.
[15] P. Cheridito, D. Filipovic, M. Yor, Equivalent and absolutely continuous measure changes for jump-diffussion

processes, Ann. Appl. Probab. 15 (2005) 1713–1732.
[16] J.C. Cox, J.E. Ingersoll, S.A. Ross, A theory on the term structure of interest rate models, Econometrica 53 (2)

(1985) 385–407.
[17] C. Cuchiero, Affine and polynomial processes (Ph.D. thesis), ETH Zürich, 2011.
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