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Abstract

Given a stochastic differential equation with path-dependent coefficients driven by a multidimensional
Wiener process, we show that the support of the law of the solution is given by the image of
the Cameron–Martin space under the flow of mild solutions to a system of path-dependent ordinary
differential equations. Our result extends the Stroock–Varadhan support theorem for diffusion processes
to the case of SDEs with path-dependent coefficients. The proof is based on functional Itô calculus.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Overview

1.1. Support theorems for stochastic differential equations

A stochastic process may be viewed as a random variable taking values in a space of paths.
The (topological) support of this random variable then describes the closure of the set of all
attainable paths and provides insight into the structure of sample paths of the process. The
nature of the support has been investigated for various classes of stochastic processes under
different function space topologies, with a focus on stochastic differential equations.
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For diffusion processes the support with respect to the supremum norm was first described
by Stroock and Varadhan [19,20], a result known as the ‘Stroock–Varadhan support theorem’.
An extension to unbounded coefficients was given by Gyöngy [13]. The support of more
general Wiener functionals and extensions to SDEs in Hilbert spaces are discussed in Aida
et al. [1,2]. These results were extended to the Hölder topology by Ben Arous et al. [4] and,
using different techniques, by Millet and Sanz-Solé [16]. Bally et al. [3] use similar methods to
derive a support theorem in Hölder norm for parabolic SPDEs. Support theorems in p-variation
topology are discussed by Ledoux et al. [14], using rough path techniques. Support theorems
in Hölder and p-variation topologies are discussed in [12] and Pakkanen [17] gives conditions
for a stochastic integral to have full support. In this work we extend some of these results to
stochastic differential equations with path-dependent coefficients.

Let r, T ≥ 0 with r < T and d,m ∈ N and suppose that (Ω ,F , (Ft )t∈[0,T ], P) is a
filtered probability space satisfying the usual conditions and on which there is a standard
d-dimensional (Ft )t∈[0,T ]-Brownian motion W . We consider the following path-dependent
stochastic differential equation:

d X t = b(t, X ) dt + σ (t, X ) dWt for t ∈ [r, T ] (1.1)

with initial condition Xs = x̂(s) for s ∈ [0, r ], where x̂ ∈ C([0, T ],Rm) and the coefficients
b : [r, T ] × C([0, T ],Rm) → Rm and σ : [r, T ] × C([0, T ],Rm) → Rm×d are product
measurable and non-anticipative in the sense that b(t, x) and σ (t, x) depend on the path
x ∈ C([0, T ],Rm) up to time t ∈ [r, T ] only.

Under Lipschitz continuity and affine growth conditions on b and σ , this SDE ad-
mits a unique strong solution for which a.e. sample path lies in the delayed Hölder space
Cα

r ([0, T ],Rm) for every α ∈ [0, 1/2). Our main result is a description of the support of the
solution in the Hölder topology: we show that the support of its law is given by the image of
the Cameron–Martin space under the flow associated with a system of functional differential
equations.

1.2. Statement of the main result

Denote by | · | the Euclidean norm in Rd and the Hilbert–Schmidt norms in Rd×d , Rm×d

and Rm×m . We let Id be the d × d identity matrix and for a matrix A ∈ Rm×d we denote by
A′ its transpose. For a path x : [0, T ] → Rm we let x t be the path stopped at t ∈ [0, T ]:
x t (s) = x(s ∧ t) for s ∈ [0, T ]. Throughout, C([0, T ],Rm) is the separable Banach space
of all Rm-valued continuous maps on [0, T ], endowed with the supremum norm given by
∥x∥∞ = supt∈[0,T ] |x(t)|.

For α ∈ (0, 1] we introduce the non-separable Banach space Cα
r ([0, T ],Rm) of all x ∈

C([0, T ],Rm) that are α-Hölder continuous on [r, T ], equipped with the ‘delayed α-Hölder
norm’ defined via

∥x∥α,r := ∥xr
∥∞ + sup

s,t∈[r,T ]: s ̸=t

|x(s) − x(t)|
|s − t |α

. (1.2)

We set C0
r ([0, T ],Rm) := C([0, T ],Rm) and ∥ · ∥0,r := ∥ · ∥∞, by convention, and let

H 1
r ([0, T ],Rm) be the separable Banach space of all x ∈ C([0, T ],Rm) that are absolutely

continuous on [r, T ] and whose weak derivative ẋ is square-integrable with respect to the
Lebesgue measure, endowed with the ‘delayed Cameron–Martin norm’ given by

∥x∥H,r := ∥xr
∥∞ +

(∫ T

r
|ẋ(s)|2 ds

)1/2

. (1.3)
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Then it holds that H 1
r ([0, T ],Rm) ⊊ C1/2

r ([0, T ],Rm) and ∥x∥1/2,r ≤ ∥x∥H,r for all x ∈

H 1
r ([0, T ],Rm). In the case of no delay the Cameron–Martin space is a Hilbert space. Further,

we allow infinite values and extend the definitions of ∥ · ∥∞ and ∥ · ∥α,r at (1.2) to any map
x : [0, T ] → Rm and the definition of ∥ · ∥H,r at (1.3) to any map x : [0, T ] → Rm that is
absolutely continuous on [r, T ].

We assume the diffusion coefficient σ to be of class C1,2 on [r, T ) × C([0, T ],Rm) in the
sense of horizontal and vertical differentiability [7,11], as discussed in Section 2.1, and consider
the map ρ : [r, T ] × C([0, T ],Rm) → Rm with components

ρk(t, x) :=

d∑
l=1

∂xσk,l(t, x)σ (t, x)el , (1.4)

if t < T , and ρk(t, x) := 0, otherwise. Here, {e1, . . . , ed} denotes the canonical basis of Rd

and ∂xσk,l : [r, T ) × C([0, T ],Rm) → R1×m is the vertical derivative of the (k, l)-coordinate
of σ for every k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Note that ρ = ∂xσσ for m = d = 1.
Moreover, the horizontal and the second-order vertical derivative of σ are denoted by ∂tσ and
∂xxσ , respectively.

We characterize the support of the unique strong solution to (1.1) in terms of the following
path-dependent ordinary differential equation driven by an element h ∈ H 1

r ([0, T ],Rd ):

ẋh(t) = (b − (1/2)ρ)(t, xh) + σ (t, xh) ḣ(t) for t ∈ [r, T ]. (1.5)

Based on these preliminaries, our main result may be stated as follows:

Theorem 1 (Support Theorem for Path-dependent SDEs). Let σ be of class C1,2 on [r, T ) ×

C([0, T ],Rm). Assume that σ and ∂xσ are bounded and there are c, η, λ ≥ 0 and κ ∈ [0, 1)
such that

|b(t, x)| ≤ c(1 + ∥x∥
κ
∞

), |b(t, x) − b(t, y)| ≤ λ∥x − y∥∞,

|∂tσk,l(t, x)| + |∂xxσk,l(t, x)| ≤ c(1 + ∥x∥
η
∞

) and

|σ (t, x) − σ (s, y)| + |∂xσk,l(t, x) − ∂xσk,l(s, y)| ≤ λ(|s − t |1/2 + ∥x t
− ys

∥∞)

for all s, t ∈ [r, T ), x, y ∈ C([0, T ],Rm), k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Then the
following three assertions are valid:

(i) Pathwise uniqueness holds for (1.1) and there is a unique strong solution X to (1.1)
satisfying Xs = x̂(s) for all s ∈ [0, r ] a.s. Further, E[∥X∥

p
α,r ] < ∞ for each α ∈ [0, 1/2)

and p ≥ 1.
(ii) For h ∈ H 1

r ([0, T ],Rd ) there is a unique mild solution xh to (1.5) such that xh(s) =

x̂(s) for all s ∈ [0, r ] and we have xh ∈ H 1
r ([0, T ],Rm). In addition, the map

H 1
r ([0, T ],Rd ) → H 1

r ([0, T ],Rm), h ↦→ xh is Lipschitz continuous on bounded sets.
(iii) For α ∈ [0, 1/2) the support of the image measure P ◦ X−1 in the delayed Hölder

space Cα
r ([0, T ],Rm) is the closure of the set of all mild solutions xh to (1.5), where

h ∈ H 1
r ([0, T ],Rd ). That is,

supp(P ◦ X−1) = {xh | h ∈ H 1
r ([0, T ],Rd )} in Cα

r ([0, T ],Rm). (1.6)

This theorem extends previous results [2,4,16,19] on the support of diffusion processes to
the case of path-dependent coefficients. Moreover, in the diffusion case we retrieve the results
of [4,16] under weaker regularity conditions.



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

4 R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx

Our proof uses the functional Itô calculus [5,7,8,11] to generalize the approach used by
Millet and Sanz-Solé [16] to the path-dependent case, providing the correct Girsanov changes
of measures to deduce (2.7). Based on adapted linear interpolations of Brownian motion, we
construct Hölder continuous approximations of solutions to (1.1) and (1.5) and show that these
approximations converge in Hölder norm in probability to the respective solutions. A key
ingredient is the functional Itô formula in [7,9,11], combined with interpolation error estimates
in supremum norm for stochastic processes.

Outline. The remainder of this paper is devoted to the proof of Theorem 1. Section 2
discusses the various building blocks of the proof. Section 2.1 recalls several functional calculus
concepts from [5,7,8,11] that are useful in our setting. Section 2.2 gives conditions for the
existence and uniqueness of a mild solution to the path-dependent ODE (1.5); Section 2.3
gives conditions for the existence of a unique strong solution to the path-dependent SDE (1.1).
Section 2.4 discusses the interpolation method used to characterize the support in the Hölder
topology.

Section 3.1 deals with Hölder spaces for stochastic processes and the notion of convergence
in Hölder norm in probability in more depth. Section 3.2 derives a quantitative version of the
Kolmogorov–Chentsov Theorem with an explicit estimate of the Hölder norm (Proposition 12).
Section 3.3 provides a sufficient criterion, based on a sequence of partitions, for convergence
in Hölder norm in probability (Lemma 13). While Section 3.4 discusses adapted linear inter-
polations of Brownian motion, Section 3.5 deduces interpolation error estimates for stochastic
processes and several required moment estimates, improving in particular a convergence result
from [16][Lemma 3.2].

Section 4 proves the existence and uniqueness of mild solutions to path-dependent ODEs
(Section 4.1) and strong solutions to path-dependent SDEs (Section 4.2). Finally, Section 5
combines these ingredients to give a proof of the main result.

2. Preliminaries

2.1. Non-anticipative functional calculus

Let D([0, T ],Rm) denote the Banach space of all Rm-valued càdlàg maps on [0, T ],
equipped with the supremum norm ∥ · ∥∞, and recall the following notions from [5,8]. A
functional G : [r, T ] × D([0, T ],Rm) → R is non-anticipative if

∀t ∈ [r, T ], ∀x ∈ D([0, T ],Rm), G(t, x) = G(t, x t ),

where x t
= x(t ∧ .) is the path x stopped at t . G is called boundedness-preserving if it is

bounded on bounded sets: for each n ∈ N there is cn ≥ 0 such that

∀t ∈ [r, T ], ∀x ∈ D([0, T ],Rm), ∥x∥∞ ≤ n ⇒ |G(t, x)| ≤ cn.

We notice that the following pseudometric on [r, T ] × D([0, T ],Rm) given by

d∞((t, x), (s, y)) := |t − s|1/2 + ∥x t
− ys

∥∞

is complete and if G is d∞-continuous, then it is non-anticipative. As observed in [10],
Lipschitz continuity with respect to d∞ allows for a Hölder smoothness of degree 1/2 in the
time variable.

Let us recall the definitions of the horizontal and vertical derivative from [7,11]. A non-
anticipative functional G on [r, T ) × D([0, T ],Rm) is horizontally differentiable if for each
t ∈ [r, T ) and x ∈ D([0, T ],Rm), the function

[0, T − t) → R, h ↦→ G(t + h, x t )
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is differentiable at 0. In this case, its derivative there is denoted by ∂t G(t, x). We say that G
is vertically differentiable if for all t ∈ [r, T ) and x ∈ D([0, T ],Rm), the function

Rm
→ R, h ↦→ G(t, x + h1[t,T ])

is differentiable at 0. If this is the case, then we denote its derivative there by ∂x G(t, x). G is
partially vertically differentiable if for every k ∈ {1, . . . ,m}, t ∈ [r, T ) and x ∈ D([0, T ],Rm),
the function

R → R, h ↦→ G(t, x + hek1[t,T ])

is differentiable at 0, where {e1, . . . , em} is the canonical basis of Rm . In this case, its derivative
there is denoted by ∂xk G(t, x). If G is vertically differentiable, then it is partially vertically
differentiable and ∂x G = (∂x1 G, . . . , ∂xm G).

We call G twice vertically differentiable if it is vertically differentiable and the same holds
for ∂x G. In this case, we set ∂xx G := ∂x (∂x G) and

∂xk xl G := ∂xk (∂xl G) for all k, l ∈ {1, . . . ,m}.

It follows from Schwarz’s Lemma that if G is twice vertically differentiable and ∂xx G is d∞-
continuous, then ∂xx G is symmetric: ∂xk xl G = ∂xl xk G for all k, l ∈ {1, . . . ,m}. Finally, G is
of class C1,2 if it is once horizontally and twice vertically differentiable such that G and its
derivatives ∂t G, ∂x G and ∂xx G are boundedness-preserving and d∞-continuous.

While horizontal differentiability can be readily extended to functionals that are merely
defined on [r, T ) × C([0, T ],Rm), vertical differentiability is based on càdlàg perturbations, as
it involves indicator functions. A functional F on [r, T ) × C([0, T ],Rm) is said to be of class
C1,2 if it admits an extension G : [r, T )× D([0, T ],Rm) → R that satisfies this property. Then
it follows from Theorems 5.4.1 and 5.4.2 in [5] that the definitions

∂x F := ∂x G and ∂xx F := ∂xx G on [r, T ) × C([0, T ],Rm)

are independent of the choice of the extension G. Based on this uniqueness result, we can
apply the functional Itô formula [9] to characterize the support in the proof of Proposition 31.

Examples 2. (i) Let α ∈ (0, 1] and ϕ : Rm
→ R+ be α-Hölder continuous. Then the running

supremum functional G : [r, T ) × D([0, T ],Rm) → R given by

G(t, x) := sup
s∈[0,t]

ϕ(x(s))

is boundedness-preserving and α-Hölder continuous with respect to d∞. To be more precise,
there exists λ ≥ 0 such that

|G(t, x) − G(s, y)| ≤ λ∥x t
− ys

∥
α
∞

for all s, t ∈ [r, T ) and x, y ∈ D([0, T ],Rm). Further, we have ∂t G = 0. However, if ϕ fails
to be differentiable at some x ∈ Rm such that ϕ(x + h) > ϕ(x) for all h ∈ Rm

\{0}, then G is
not vertically differentiable. For instance, take ϕ = | · |

α .
(ii) Let α ∈ (0, 1], ϕ : Rm

→ Rd be α-Hölder continuous and β : [r, T ) → [0, T ] be
right-continuous and satisfy β(t) < t for all t ∈ (r, T ). Then the non-anticipative delayed map
G : [r, T ) × D([0, T ],Rm) → Rd given by

G(t, x) := ϕ((x ◦ β)(t))
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is boundedness-preserving and α-Hölder continuous in x ∈ D([0, T ],Rm), uniformly in
t ∈ [r, T ). Unless ϕ is constant, G fails to be horizontally differentiable, yet it is vertically
differentiable on (r, T ) × D([0, T ],Rm) and ∂x G = 0 there.
(iii) Assume that ϕ : [0, T ) × Rm

→ Rm×d is a Borel measurable bounded map that is
Lipschitz continuous in x ∈ Rm , uniformly in t ∈ [0, T ). Then the non-anticipative integral
map G : [r, T ) × D([0, T ],Rm) → Rm×d given by

G(t, x) :=

∫ t

0
ϕ(s, x(s)) ds

is bounded and d∞-Lipschitz continuous. Moreover, if ϕ is continuous, then G is of class C1,2.
In fact, it holds that ∂t G(t, x) = ϕ(t, x(t)) for any t ∈ [r, T ) and x ∈ D([0, T ],Rm) and
∂x G = 0.

2.2. Mild solutions to path-dependent ODEs

In this section we show that the ODE (1.5) admits a unique mild solution which belongs
to the delayed Cameron–Martin space H 1

r ([0, T ],Rm). To this end, let us consider the
path-dependent ordinary differential equation:

ẋ(t) = F(t, x) for t ∈ [r, T ], (2.1)

where F : [r, T ] × C([0, T ],Rm) → Rm denotes a non-anticipative product measurable map.
Then for each h ∈ H 1

r ([0, T ],Rd ) the choice F = b − (1/2)ρ + σ ḣ yields (1.5) with the
correction term ρ given by (1.4).

In general the map [r, T ] → Rm , t ↦→ F(t, x) may fail to be continuous, so one may not
expect solutions in the classical sense. A mild solution to (2.1) is a path x ∈ C([0, T ],Rm)
satisfying∫ T

r
|F(s, x)| ds < ∞ and x(t) = x(r ) +

∫ t

r
F(s, x) ds

for all t ∈ [r, T ]. By definition, a mild solution x is absolutely continuous on [r, T ] and it
becomes a classical solution if and only if the measurable map [r, T ] → Rm , t ↦→ F(t, x) is
continuous.

Let us introduce the following regularity conditions, which are satisfied under the assump-
tions of Theorem 1 for the choice of F mentioned before.

(C.1) There is a measurable function c0 : [r, T ] → R+ satisfying
∫ T

r c0(s)2 ds < ∞ and

|F(t, x)| ≤ c0(t)
(

1 + ∥xr
∥∞ +

∫ T

r
|ẋ(s)| ds

)
for all t ∈ [r, T ] and x ∈ C([0, T ],Rm) that is absolutely continuous on [r, T ].

(C.2) For each n ∈ N there is a measurable function λn : [r, T ] → R+ such that∫ T
r λn(s)2 ds < ∞ and

|F(t, x) − F(t, y)| ≤ λn(t)∥x − y∥H,r

for every t ∈ [r, T ] and x, y ∈ H 1
r ([0, T ],Rm) with ∥x∥H,r ∨ ∥y∥H,r ≤ n.

Under the above affine growth condition and Lipschitz smoothness on bounded sets, we
obtain a unique mild solution that can be approximated by a Picard iteration in the complete
norm ∥ · ∥H,r defined in (1.3).



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx 7

Proposition 3. Let (C.1) and (C.2) hold. Then (2.1) admits a unique mild solution x satisfying

x(s) = x̂(s) for all s ∈ [0, r ].

Moreover x ∈ H 1
r ([0, T ],Rm) and the sequence (xn)n∈N0 in H 1

r ([0, T ],Rm), recursively defined
by

x0(t) := x̂(r ∧ t), xn+1(t) := x0(t) +

∫ r∨t

r
F(s, xn) ds

converges to x in the delayed Cameron–Martin norm ∥ · ∥H,r .

2.3. Strong solutions to path-dependent SDEs

We turn to the derivation of a unique strong solution to the SDE (1.1) whose paths lie in
Cα

r ([0, T ],Rm) for every α ∈ [0, 1/2). By a solution to (1.1) we mean an (Ft )t∈[0,T ]-adapted
continuous process X : [0, T ] × Ω → Rm satisfying∫ T

r
|b(s, X )| ds +

∫ T

r
|σ (s, X )|2 ds < ∞ a.s.

and X t = Xr +

∫ t

r
b(s, X ) ds +

∫ t

r
σ (s, X ) dWs

for every t ∈ [r, T ] a.s. A solution is said to be strong if it is adapted to the augmented natural
filtration of the underlying Brownian motion W .

We now state the required conditions on the coefficients b and σ , which are valid in the
setting of Theorem 1.

(C.3) There are a measurable function c0 : [r, T ] → R+ and c̃0 ≥ 0 such that
∫ T

r c0(s)2 ds <
∞,

|b(t, x)| ≤ c0(t)(1 + ∥x∥∞) and |σ (t, x)| ≤ c̃0(1 + ∥x∥∞)

for all t ∈ [r, T ] and x ∈ C([0, T ],Rm).
(C.4) There are α0 ∈ [0, 1/2), a measurable function λ0 : [r, T ] → R+ and λ̃0 ≥ 0 such that∫ T

r λ0(s)2 ds < ∞,

|b(t, x) − b(t, y)| ≤ λ0(t)∥x − y∥α0,r and |σ (t, x) − σ (t, y)| ≤ λ̃0∥x − y∥α0,r

for each t ∈ [r, T ] and x, y ∈ Cα0
r ([0, T ],Rm).

Remark 4. If (C.4) holds, then it is also true if α0 is replaced by any α ∈ (α0, 1]. Thus, it is
strongest in the case that α0 = 0, since ∥ · ∥0 = ∥ · ∥∞, by convention.

Let α ∈ [0, 1] and p ≥ 1. By Proposition 11, the space C α
r,p([0, T ],Rm) of all (Ft )t∈[0,T ]-

adapted continuous processes X : [0, T ] × Ω → Rm for which E[∥X∥
p
α,r ] is finite, equipped

with the seminorm

C α
r,p([0, T ],Rm) → R+, X ↦→

(
E

[
∥X∥

p
α,r

])1/p (2.2)

is complete. Note that if a sequence (n X )n∈N in this seminormed space converges, then it also
converges in the norm ∥ · ∥α,r in probability. We define

C∞([0, T ],Rm) :=

⋂
p≥1

C 0
r,p([0, T ],Rm) and
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C 1/2−

r,∞ ([0, T ],Rm) :=

⋂
α∈[0,1/2), p≥1

C α
r,p([0, T ],Rm),

which are completely pseudometrizable topological spaces.

Proposition 5. Let (C.3) and (C.4) hold. Then, up to indistinguishability, there is a unique
strong solution X ∈ C 1/2−

r,∞ ([0, T ],Rm) to (1.1) such that

Xs = x̂(s) for all s ∈ [0, r ] a.s.

and the sequence (n X )n∈N0 in C 1/2−

r,∞ ([0, T ],Rm), recursively given by

0 X t := x̂(r ∧ t), n+1 X t = 0 X t +

∫ r∨t

r
b(s, n X ) ds +

∫ r∨t

r
σ (s, n X ) dWs

converges to X in the norm ∥ · ∥α,r in p-th moment for p ≥ 1:

∀α ∈ [0, 1/2), ∀p ≥ 1, lim
n↑∞

E[∥n X − X∥
p
α,r ] = 0.

Remark 6. Pathwise uniqueness for (1.1) is shown in Lemma 27, requiring only the following
Lipschitz condition on bounded sets, which follows from (C.4) in the strongest case α0 = 0:

(C.5) For each n ∈ N there is a measurable function λn : [r, T ] → R+ satisfying∫ T
r λn(s)2 ds < ∞ and

|b(t, x) − b(t, y)| + |σ (t, x) − σ (t, y)| ≤ λn(t)∥x − y∥∞

for every t ∈ [r, T ] and x, y ∈ C([0, T ],Rm) with ∥x∥∞ ∨ ∥y∥∞ ≤ n.

2.4. Characterization of the support in Hölder topology

Sections 2.2 and 2.3 provide the main arguments to prove the first two assertions of
Theorem 1. Let us now describe how we will prove the characterization (1.6) of the support.
For n ∈ N let Tn be a partition of [r, T ] that we write in the form

Tn = {t0,n, . . . , tkn,n }

for some kn ∈ N and t0,n, . . . , tkn ,n ∈ [r, T ] such that r = t0,n < · · · < tkn ,n = T and we denote
its mesh by |Tn| = maxi∈{0,...,kn−1}(ti+1,n − ti,n). We assume that limn↑∞ |Tn| = 0 and that the
sequence (Tn)n∈N of partitions is balanced in the sense of [6]. That is, there is cT ≥ 1 such
that

|Tn| ≤ cT min
i∈{0,...,kn−1}

(ti+1,n − ti,n) for all n ∈ N. (2.3)

For k, n ∈ N and every path x : [0, T ] → Rk we let Ln(x) : [0, T ] → Rk denote the unique
map satisfying Ln(x)(t) = x(r ∧ t) for t ∈ [0, t1,n] and

Ln(x)(t) = x(ti−1,n) +
t − ti,n

ti+1,n − ti,n
(x(ti,n) − x(ti−1,n)) (2.4)

for i ∈ {1, . . . , kn −1} and t ∈ [ti,n, ti+1,n]. Then Ln(x) is piecewise continuously differentiable
on [r, T ] and can be regarded as delayed linear interpolation of x along Tn on this interval.
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Hence, we may define an adapted process n W : [0, T ] × Ω → Rd , whose paths belong to
H 1

r ([0, T ],Rd ), by setting

n Wt := Ln(W )(t). (2.5)

Let us for the moment suppose that the assumptions and the first two claims of Theorem 1
hold. To establish that supp(P ◦ X−1) is included in the closure of {xh | h ∈ H 1

r ([0, T ],Rd )}
in Cα

r ([0, T ],Rm) for α ∈ [0, 1/2), we will justify in Section 5.4 that it suffices to check that

lim
n↑∞

P(∥xn W − X∥α,r ≥ ε) = 0 for all ε > 0. (2.6)

We remark that, by the definition of mild solution to (2.1), for each n ∈ N the adapted process
xn W , whose paths lie in H 1

r ([0, T ],Rm), is a strong solution to the degenerate SDE

dnYt =
(
(b − (1/2)ρ)(t, nY ) + σ (t, nY )n Ẇt

)
dt for t ∈ [r, T ]

with initial condition nY r
= x̂r . Next, we will show that the converse inclusion in (1.6) follows

if for every h ∈ H 1
r ([0, T ],Rd ) we can find a sequence (Ph,n)n∈N of probability measures on

(Ω ,F ) that are absolutely continuous to P such that

lim
n↑∞

Ph,n(∥X − xh∥α,r ≥ ε) = 0 for any ε > 0. (2.7)

We emphasize that for each n ∈ N the measure Ph,n will be constructed by means of Girsanov’s
theorem such that X is a strong solution to the SDE

dnYt =
(
b(t, nY ) + σ (t, nY )(ḣ − L̇n(h,n W ))(t)

)
dt + σ (t, nY ) dh,n Wt (2.8)

for t ∈ [r, T ] under Ph,n with initial condition nY r
= x̂r , where h,n W is some standard d-

dimensional (Ft )t∈[0,T ]-Brownian motion under Ph,n . Hence, to prove (2.6) and (2.7) at the
same time, we consider the following general framework.

Assume B is an Rm-valued and BH , B and Σ are Rm×d -valued non-anticipative product
measurable maps on [r, T ] × C([0, T ],Rm). Then for each n ∈ N we introduce the SDE

dnYt =
(
B(t, nY ) + BH (t, nY )ḣ(t) + B(t, nY )n Ẇt

)
dt + Σ (t, nY ) dWt (2.9)

for t ∈ [r, T ]. Under the hypothesis that B is of class C1,2 on [r, T ) × C([0, T ],Rm), we also
consider the SDE

dYt =
(
(B + R)(t, Y ) + BH (t, Y )ḣ(t)

)
dt + (B + Σ )(t, Y ) dWt (2.10)

for t ∈ [r, T ], where the Rm-valued non-anticipative product measurable map R on [r, T ] ×

C([0, T ],Rm) is given coordinatewise by

Rk(t, x) :=

d∑
l=1

∂x Bk,l(t, x)((1/2)B + Σ )(t, x)el , (2.11)

if t < T , and Rk(t, x) := 0, otherwise. In Theorem 7 we show that whenever nY and Y are
respectively solutions to (2.9) and (2.10) such that nY r

= Y r
= x̂r a.s. for all n ∈ N, then

lim
n↑∞

P(∥nY − Y∥α,r ≥ ε) = 0 for each ε > 0. (2.12)

Then the choice B = b− (1/2)ρ, BH = 0, B = σ and Σ = 0 yields (2.6), since R = (1/2)ρ in
this case. Moreover, by choosing B = b, BH = σ , B = −σ and Σ = σ instead, (2.7) follows.
Since these are the two desired results, let us consider the following required conditions:
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(C.6) B is of class C1,2 on [r, T ) × C([0, T ],Rm) and there are c, η ≥ 0 and κ ∈ [0, 1) such
that |B(t, x)| + |BH (t, x)| ≤ c(1 + ∥x∥

κ
∞

),

|B(t, x)| +

( m∑
k=1

d∑
l=1

|∂x Bk,l(t, x)|
2
)1/2

+ |Σ (t, x)| ≤ c and

|∂t B(t, x)| +

( m∑
k=1

d∑
l=1

|∂xx Bk,l(t, x)|
2
)1/2

≤ c(1 + ∥x∥
η
∞

)

for all t ∈ [r, T ) and x ∈ C([0, T ],Rm).
(C.7) B is Lipschitz continuous in x ∈ C([0, T ],Rm), uniformly in t ∈ [r, T ), and BH , B,

∂x B and Σ are d∞-Lipschitz continuous.
(C.8) There are b0 ∈ R and a measurable function b : [r, T ] → R such that

∫ T
r |b(s)|

2
ds

< ∞ and b0 B(t, x) = b(t)Σ (t, x) for all t ∈ [r, T ) and x ∈ C([0, T ],Rm).

Theorem 7. Let (C.6)–(C.8) be satisfied and h ∈ H 1
r ([0, T ],Rd ) and(xn)n∈N be a bounded

sequence in C([0, T ],Rm). Then the following assertions hold:

(i) For any n ∈ N there is a unique strong solution nY to (2.9) such that nY r
= xr

n a.s.
Moreover, supn∈N E[∥nY∥

p
α,r ] < ∞ for all α ∈ [0, 1/2) and p ≥ 1.

(ii) There is a unique strong solution Y to (2.10) such that Y r
= x̂r a.s. and we have

E[∥Y∥
p
α,r ] < ∞ for every α ∈ [0, 1/2) and p ≥ 1.

(iii) Let α ∈ [0, 1/2) satisfy limn→∞ |Tn|
−2α

∥xr
n − x̂r

∥
2
∞

= 0. Then

lim
n→∞

|Tn|
−2αE

[
max

j∈{0,...,kn}

|nYt j,n − Yt j,n |
2]

= 0. (2.13)

In particular, (2.12) holds: (nY )n∈N converges in the norm ∥ · ∥α,r in probability to Y .

Remark 8. Condition (C.8) allows us to perform a change of measure and obtain a unique
strong solution to (2.9). However, when deriving (2.13) in Sections 5.1–5.3 we merely assume
(C.6) and (C.7).

3. Convergence in Hölder norm in probability

3.1. Hölder spaces for stochastic processes

For α ∈ [0, 1] we let C α
r ([0, T ],Rm) denote the linear space of all adapted continuous

processes X : [0, T ] × Ω → Rm satisfying X ∈ Cα
r ([0, T ],Rm) a.s., endowed with the

pseudometric

C α
r ([0, T ],Rm) × C α

r ([0, T ],Rm) → R+,

(X, Y ) ↦→ E[∥X − Y∥α,r ∧ 1].
(3.1)

Then a sequence (n X )n∈N in this space converges to some X ∈ C α
r ([0, T ],Rm) if and only if it

converges in the norm ∥ · ∥α,r in probability to this process. Put differently, (∥n X − X∥α,r )n∈N
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converges in probability to zero. Further, (n X )n∈N is Cauchy if and only if

lim
k↑∞

sup
n∈N: n≥k

P(∥n X − k X∥α,r ≥ ε) = 0 for all ε > 0.

To abbreviate notation, we set C ([0, T ],Rm) := C 0
r ([0, T ],Rm), which represents the linear

space of all Rm-valued adapted continuous processes. The fact that C ([0, T ],Rm) is complete
can be extended, as the following result shows.

Lemma 9. The linear space C α
r ([0, T ],Rm) endowed with the pseudometric (3.1) is complete.

Proof. Let (n X )n∈N be a Cauchy sequence in C α
r ([0, T ],Rm). By Lemma 4.3.3 in [20] for

instance, there is X ∈ C ([0, T ],Rm) to which (n X )n∈N converges uniformly in probability. For
given ε, η > 0 there is n0 ∈ N such that

P
(

sup
s,t∈[r,T ]: s ̸=t

|(n Xs − k Xs) − (n X t − k X t )|
|s − t |α

≥
ε

2

)
<
η

2

for all k, n ∈ N with k ∧ n ≥ n0. We fix l ∈ N and set δl := (T − r )/ l, then there exists kl ∈ N
such that kl ≥ n0 and P(∥kl X − X∥∞ ≥ (ε/4)δαl ) < η/2. Hence,

P
(

sup
s,t∈[r,T ]: |s−t |≥δl

|(n Xs − Xs) − (n X t − X t )|
|s − t |α

> ε

)
< η

for each n ∈ N with n ≥ n0. By the continuity of measures, (∥n X − X∥α,r )n∈N converges in
probability to zero. In particular, ∥X∥α,r < ∞ a.s. □

For p ≥ 1 we recall the linear space C α
r,p([0, T ],Rm) of all X ∈ C α

r ([0, T ],Rm) for which
E[∥X∥

p
α,r ] is finite, endowed with the seminorm (2.2). We say that a sequence (n X )n∈N in this

space is p-fold uniformly integrable if (∥n X∥α,r )n∈N satisfies this property in the usual sense.

Lemma 10. Any Cauchy sequence (n X )n∈N in C α
r,p([0, T ],Rm) with respect to the semi-

norm (2.2) is p-fold uniformly integrable.

Proof. Let ε > 0, then there is n0 ∈ N such that E[∥n X − k X∥
p
α,r ] < ε/2p for all k, n ∈ N

with k ∧ n ≥ n0. As the random variable Y := maxn∈{1,...,n0} ∥n X∥α,r is p-fold integrable, we
obtain that

sup
n∈N

(
E

[
1A∥n X∥

p
α,r

])1/p
≤ (E[1AY p])1/p

+ ε1/p/2

for each A ∈ F . First, by choosing A = Ω , this gives supn∈N E[∥n X∥
p
α,r ] < ∞. Secondly,

by setting δ := ε/2p, it follows that supn∈N E[1A∥n X∥
p
α,r ] < ε for every A ∈ F with

E[1AY p] < δ. □

We conclude with the following convergence characterization.

Proposition 11. A sequence (n X )n∈N in C α
r,p([0, T ],Rm) converges with respect to the

seminorm (2.2) if and only if it is p-fold uniformly integrable and there is X ∈ C α
r ([0, T ],Rm)

such that

lim
n↑∞

P(∥n X − X∥α,r ≥ ε) = 0 for all ε > 0.

In the latter case, E[∥X∥
p
α,r ] < ∞ and limn↑∞ E[∥n X−X∥

p
α,r ] = 0. Moreover, C α

r,p([0, T ],Rm)
equipped with (2.2) is complete.
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Proof. By Lemmas 9 and 10, it suffices to show the if-direction of the first claim. We let (νn)n∈N
be a strictly increasing sequence in N such that (∥νn X − X∥α,r )n∈N converges almost-surely to
zero, then

E
[
∥X∥

p
α,r

]
≤ lim inf

n↑∞

E
[
∥νn X∥

p
α,r

]
≤ sup

n∈N
E

[
∥n X∥

p
α,r

]
< ∞,

by Fatou’s Lemma. For ε > 0 there are δ > 0 and n0 ∈ N such that E[1A∥n X∥
p
α,r ] < (ε/3)p

and P(∥n X − X∥α,r ≥ ε/3) < δ for every A ∈ F and n ∈ N with P(A) < δ and n ≥ n0.
Thus, (

E
[
∥n X − X∥

p
α,r

])1/p
≤

(
E

[
1{∥n X−X∥α,r ≥ε/3}∥n X − X∥

p
α,r

])1/p
+ ε/3 < ε

for any such n ∈ N, because similar reasoning as before gives us that E[1A∥X∥
p
α,r ] ≤

supn∈N E[1A∥n X∥
p
α,r ] < ∞ for all A ∈ F . This completes the proof. □

3.2. A general kolmogorov–chentsov estimate

We revisit the proof of the Kolmogorov–Chentsov Theorem (see e.g. Theorem 2.1 in [18])
to obtain a quantitative estimate of the Hölder norm. Let

kα,p,q := 2p+q (2q/p−α
− 1)−p (3.2)

for p ≥ 1, q > 0 and α ∈ [0, q/p) and note that the function [0, q/p) → (2p,∞), α ↦→ kα,p,q
is strictly increasing with limα↑q/p kα,p,q = ∞. Then the following result holds, in which the
process in question and not necessarily a modification appears.

Proposition 12. Assume that X is an Rm-valued right-continuous process for which there are
c0 ≥ 0, p ≥ 1 and q > 0 such that

E[|Xs − X t |
p] ≤ c0|s − t |1+q (3.3)

for all s, t ∈ [r, T ]. Then for each α ∈ [0, q/p) it holds that

E
[

sup
s,t∈[r,T ]: s ̸=t

|Xs − X t |
p

|s − t |αp

]
≤ kα,p,qc0(T − r )1+q−αp.

In particular if q ≤ p, then the sample paths of X are a.s. α-Hölder continuous on [r, T ] for
all α ∈ [0, q/p).

Proof. For given n ∈ N0 let Dn be the nth dyadic partition of [r, T ] whose points are
di,n := r + i2−n(T − r ), where i ∈ {0, . . . , 2n

}. We define

∆n := {(s, t) ∈ Dn × Dn | |s − t | ≤ 2−n(T − r )},

then it is readily seen that there are 2n tuples (s, t) ∈ ∆n satisfying s < t . For Yn :=

sup(s,t)∈∆n |Xs − X t | condition (3.3) gives

E[Y p
n ] ≤

∑
(s,t)∈∆n : s<t

E[|Xs − X t |
p] ≤ 2−nqc0(T − r )1+q . (3.4)

We set D :=
⋃

n∈N0
Dn and let s, t ∈ D satisfy 0 < t − s < 2−n(T − r ) for some n ∈ N0.

Then for each k ∈ N0 there are unique ik, jk ∈ {1, . . . , 2k
} such that dik−1,k ≤ s < dik ,k , and

d jk−1,k ≤ t < d jk ,k, if t < T , and d jk ,k = T, otherwise.
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As (dik ,k)k∈N0 and (d jk ,k)k∈N0 are two decreasing sequences converging to s and t , respectively,
two telescoping sums yield that

Xs − X t = Xdin ,n
− Xd jn ,n

+

∞∑
k=n

(
Xdik+1,k+1 − Xdik ,k

)
+

∞∑
k=n

(
Xd jk+1,k+1 − Xd jk ,k

)
.

We notice that either in = jn or instead n ≥ 1, jn ≥ 2 and in = jn−1, since 0 < t−s < 2−n(T −

r ). In both cases, we have (din ,n, d jn ,n) ∈ ∆n . Moreover, (dik ,k, dik+1,k+1), (d jk ,k, d jk+1,k+1) ∈

∆k+1 for all k ∈ N0, by construction. So,

|Xs − X t | ≤ 2
∞∑

k=n

Yk .

Clearly, for each s, t ∈ D with 0 < t − s < T − r there is a unique n ∈ N0 satisfying
2−n−1(T − r ) ≤ t − s < 2−n(T − r ). This entails that

sup
s,t∈[r,T ]: s ̸=t

|Xs − X t |

|s − t |α
≤ 21+α(T − r )−α

∞∑
k=0

2αkYk, (3.5)

as D is a countable dense set in [r, T ] containing T and X is right-continuous. Hence, (3.5),
the triangle inequality, monotone convergence and (3.4) yield that(

E
[

sup
s,t∈[r,T ]: s ̸=t

|Xs − X t |
p

|s − t |αp

])1/p

≤ 21+αc1/p
0 (T − r )(1+q)/p−α

∞∑
k=0

2(α−q/p)k .

Since the power series on the right-hand side converges absolutely to the inverse of 1−2α−q/p,
the proposition follows. □

3.3. Convergence along a sequence of partitions

We state a sufficient criterion for a sequence of processes to converge in the norm ∥ · ∥α,r

in probability, where α ∈ [0, 1]. For this purpose, condition (2.3) on the sequence of partitions
is crucial.

Lemma 13. Let (n X )n∈N be a sequence of Rm-valued right-continuous processes for which
there are p, q > 0 with q ≤ p such that for each β ∈ (0, q/p) there is cβ ≥ 0 satisfying

P
(

max
j∈{0,...,kn−1}

sup
s,t∈[t j,n ,t j+1,n ]: s ̸=t

|n Xs − n X t |

|s − t |β
≥ λ

)
≤ cβλ−p (3.6)

for every n ∈ N and λ > 0. If (∥n X r
∥∞)n∈N and (max j∈{1...,kn} |n X t j,n |/|Tn|

α)n∈N converge in
probability to zero, then so does (∥n X∥α,r )n∈N for any α ∈ [0, q/p).

Proof. Let β ∈ (α, q/p) and n ∈ N. First, a case distinction shows that

sup
s,t∈[r,T ]: s ̸=t

|n Xs − n X t |

|s − t |α
≤ 2 max

j∈{0,...,kn−1}

sup
s,t∈[t j,n ,t j+1,n ]: s ̸=t

|n Xs − n X t |

|s − t |α

+ max
i, j∈{1,...,kn}: i ̸= j

|n X ti,n − n X t j,n |

|ti,n − t j,n|
α
.
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By using the facts that |s − t |β−α
≤ |Tn|

β−α and |ti,n − t j,n| ≥ |Tn|/cT for all i, j ∈ {0, . . . , kn}

with i ̸= j and s, t ∈ [t j,n, t j+1,n], we see that

P
(

sup
s,t∈[r,T ]: s ̸=t

|n Xs − n X t |

|s − t |α
≥ ε

)
≤ cβ(4/ε)p

|Tn|
(β−α)p

+ P
(

max
j∈{1,...,kn}

|n X t j,n |/|Tn|
α > (ε/4)c−α

T

)
for any ε > 0. As the terms on the right-hand side converge to zero as n ↑ ∞, the assertion is
shown. □

Remark 14. Let p ≥ 1 and c0 ≥ 0 be such that E[|n Xs − n X t |
p] ≤ c0|s − t |1+q for all n ∈ N,

j ∈ {0, . . . , kn − 1} and s, t ∈ [t j,n, t j+1,n]. Then Chebyshev’s inequality in combination with
Proposition 12 ensures that condition (3.6) is satisfied.

3.4. Adapted linear interpolations of brownian motion

We study the sequence (n W )n∈N of adapted linear interpolations of W that are given by (2.5)
and whose paths lie in H 1

r ([0, T ],Rd ). To this end, we introduce the following notation. For
given n ∈ N and t ∈ [r, T ), let i ∈ {0, . . . , kn − 1} be such that t ∈ [ti,n, ti+1,n), then we set

tn := t(i−1)∨0,n, tn := ti,n and tn := ti+1,n.

That is, tn is the predecessor of tn with respect to Tn , unless i = 0, and tn is the successor
of tn . We also set T n := tkn−1,n , Tn := T and T n := T . In addition, we use the following
abbreviations:

∆ti,n := ti,n − t(i−1)∨0,n and ∆Wti,n := Wti,n − Wt(i−1)∨0,n

for each i ∈ {0, . . . , kn}. After these preparations, let us begin with a general integral
representation.

Lemma 15. Let n ∈ N and s, t ∈ [r, T ] be such that s < t . Then each Rm×d -valued
progressively measurable process X satisfies∫ t

s
Xun dn Wu =

t − s
∆ti+1,n

∫ ti,n

ti−1,n

Xun dWu a.s.,

whenever i ∈ {1, . . . , kn − 1} is such that s, t ∈ [ti,n, ti+1,n], and∫ t

s
Xun dn Wu =

ti+1,n − s
∆ti+1,n

∫ ti,n

ti−1,n

Xun dWu +

∫ t j−1,n

ti,n
Xun dWu

+
t − t j,n

∆t j+1,n

∫ t j,n

t j−1,n

Xun dWu a.s.,

if i, j ∈ {1, . . . , kn − 1} are such that i < j , s ∈ [ti,n, ti+1,n] and t ∈ [t j,n, t j+1,n].

Proof. The first identity follows immediately from the definition of n W . To obtain the second,
we simply use the decomposition∫ t

s
Xun dn Wu =

∫ ti+1,n

s
Xun dn Wu +

j−1∑
k=i+1

∫ tk+1,n

tk,n
Xun dn Wu +

∫ t

t j,n

Xun dn Wu

together with the first identity. □
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Let us recall an explicit moment estimate for stochastic integrals driven by W from [15]
[Theorem 7.2]. For p ≥ 2 we set wp := ((p3/2)/(p − 1))p/2, then for any Rm×d -valued
progressively measurable process X with

∫ T
r E[|Xu |

p] du < ∞,

E
[

sup
v∈[s,t]

⏐⏐⏐⏐ ∫ v

s
Xu dWu

⏐⏐⏐⏐p]
≤ wp(t − s)p/2−1

∫ t

s
E[|Xu |

p] du (3.7)

for all s, t ∈ [r, T ] with s ≤ t . We derive a corresponding result for the sequence (n W )n∈N of
adapted linear interpolations of W .

Proposition 16. For each p ≥ 2 there is ŵp > 0 such that each Rm×d -valued progressively
measurable process X satisfies

E
[

max
v∈[s,t]

⏐⏐⏐⏐ ∫ v

s
Xun dn Wu

⏐⏐⏐⏐p]
≤ ŵp(t − s)p/2 max

j∈{0,...,kn}: t j,n∈[sn ,tn ]
E[|X t j,n |

p]

for each n ∈ N and s, t ∈ [r, T ] with s ≤ t .

Proof. We assume that E[|X t j,n |
p] < ∞ for all j ∈ {0, . . . , kn} with t j,n ∈ [sn, tn], as otherwise

there is nothing to show. First, if t ≤ t1,n , then
∫ v

s Xun dn Wu = 0 for each v ∈ [s, t]. For s < t1,n
and t ≥ t1,n we have∫ v

s
Xun dn Wu =

∫ v

t1,n

Xun dn Wu for all v ∈ [t1,n, t].

Thus, let us use Lemma 15 and assume at first that s, t ∈ [ti,n, ti+1,n] for some i ∈ {1, . . . , kn −

1}. Then (3.7) yields that

E
[

max
v∈[s,t]

⏐⏐⏐⏐ ∫ v

s
Xun dn Wu

⏐⏐⏐⏐p]
≤ wpcp/2

T (t − s)p/2 E
[
|X ti−1,n |

p],
where cT is the constant appearing in (2.3). Let now i, j ∈ {1, . . . , kn − 1} be such that i < j ,
s ∈ [ti,n, ti+1,n] and t ∈ [t j,n, t j+1,n], then

max
v∈[s,t]

⏐⏐⏐⏐ ∫ v

s
Xun dn Wu

⏐⏐⏐⏐ ≤
ti+1,n − s
∆ti+1,n

⏐⏐⏐⏐ ∫ ti,n

ti−1,n

Xun dWu

⏐⏐⏐⏐
+ max

k∈{i,..., j−1}

⏐⏐⏐⏐ ∫ tk,n

ti,n
Xun dWu

⏐⏐⏐⏐ +
t − t j,n

∆t j+1,n

⏐⏐⏐⏐ ∫ t j,n

t j−1,n

Xun dWu

⏐⏐⏐⏐ a.s.

This is due to Lemma 15, which asserts that the adapted process [s, t] × Ω → Rm , (v, ω) ↦→∫ v
s Xun (ω) dn Wu(ω) is piecewise linear. Hence, from (3.7) we obtain that

E
[

max
v∈[s,t]

⏐⏐⏐⏐ ∫ v

s
Xun dn Wu

⏐⏐⏐⏐p]
≤ ŵp(t − s)p/2 max

k∈{i−1,..., j−1}

E
[
|X tk,n |

p]
for ŵp := 3pwpcp/2

T , which yields the claim. □

Finally, we derive an explicit integral moment estimate for (n W )n∈N.

Lemma 17. For each p, q ≥ 1 there exists ŵp,q > 0 satisfying

E
[(∫ t

s
|n Ẇu |

q
du

)
p
]

≤ ŵp,q |Tn|
−pq/2(t − s)p (3.8)

for all n ∈ N and s, t ∈ [r, T ] with s ≤ t .
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Proof. Since n W is constant on [r, t1,n], we let at first s, t ∈ [ti,n, ti+1,n] for some i ∈

{1, . . . , kn − 1} and Z be an Rd -valued random vector such that Z ∼ N (0, Id ). Then

E
[(∫ t

s
|n Ẇu |

q
du

)p]
= E

[
|Z |

pq] (∆ti,n)pq/2

(∆ti+1,n)pq
(t − s)p

≤ ŵp,q |Tn|
−pq/2(t − s)p

for ŵp,q := E[|Z |
pq ]cpq

T , where cT is the constant in (2.3). Next, assume instead i, j ∈

{1, . . . , kn − 1} are such that i < j , s ∈ [ti,n, ti+1,n] and t ∈ [t j,n, t j+1,n]. In this case,(
E

[(∫ t

s
|n Ẇu |

q
du

)p])1/p

≤ ŵ1/p
p,q |Tn|

−q/2(t − s),

by the triangle inequality. Therefore, the assertion holds. □

3.5. Auxiliary convergence results

In this section we provide interpolation error estimates in the supremum norm for stochastic
processes and several moment estimates, required to prove (2.13).

Lemma 18. Let n ∈ N and x : [0, T ] → Rm . Then the map Ln(x) : [0, T ] → Rm given
at (2.4) satisfies ∥Ln(x)t

∥∞ ≤ ∥xr
∥∞ ∨ max j∈{1,...,kn−1}: t j,n<t |x(t j,n)| and

∥Ln(x)t
− x t

∥∞ ≤ max
j∈{0,...,kn−1}: t j,n≤t

sup
s∈[t j,n ,t j+1,n ]

|x(t( j−1)∨0,n) − x t (s)| ∨ |x(t j,n) − x t (s)|

for each t ∈ [t1,n, T ].

Proof. Fix s ∈ [t1,n, t] and let i ∈ {1, . . . , kn − 1} be such that s ∈ [ti,n, ti+1,n], then |Ln(x)(s)|
≤ |x(ti−1,n)| ∨ |x(ti,n)|, since Ln(x) is linear on [ti,n, ti+1,n]. In addition,

|Ln(x)(s) − x(s)| ≤
ti+1,n − s
∆ti+1,n

|x(ti−1,n) − x(s)| +
s − ti,n
∆ti+1,n

|x(ti,n) − x(s)|

≤ sup
u∈[ti,n ,ti+1,n ]

|x(ti−1,n) − x t (u)| ∨ |x(ti,n) − x t (u)|,

which is readily seen, and the assertions follow. □

In combination with Proposition 12, this directly gives the following result.

Lemma 19. Let (n X )n∈N be a sequence of Rm-valued right-continuous processes for which
there are c0 ≥ 0, p ≥ 1 and q > 0 such that

E
[
|n Xs − n X t |

p]
≤ c0|s − t |1+q

for all n ∈ N, j ∈ {0, . . . , kn − 1} and s, t ∈ [t j,n, t j+1,n]. Then there is cp,q > 0 such that

E[∥Ln(n X ) − n X∥
p
∞

] ≤ cp,qc0|Tn|
q for any n ∈ N.

Proof. For α ∈ [0, 1] Lemma 18 entails that

∥Ln(n X ) − n X∥∞ ≤ |Tn|
α max

j∈{0,...,kn−1}

sup
s,t∈[t j,n ,t j+1,n ]: s ̸=t

|n Xs − n X t |

|s − t |α

+ max
j∈{1,...,kn−1}

|n X t j,n − n X t j−1,n |.
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Let additionally α < q/p. Since we have
∑kn−1

j=0 (t j+1,n − t j,n) = T − r , it follows by virtue of
Proposition 12 that

E
[

max
j∈{0,...,kn−1}

sup
s,t∈[t j,n ,t j+1,n ]: s ̸=t

|n Xs − n X t |
p

|s − t |αp

]
≤ kα,p,qc0(T − r )|Tn|

q−αp,

where the constant kα,p,q is given by (3.2). Moreover,

E
[

max
j∈{1,...,kn−1}

|n X t j,n − n X t j−1,n |
p]

≤ c0(T − r )|Tn|
q .

As the function [0, q/p) → (2p,∞), β ↦→ kβ,p,q is strictly increasing, we choose α = 0 and
set cp,q := 2p−1(1 + k0,p,q )(T − r ), which completes the proof. □

A consequence of Lemma 17 is the following moment bound.

Lemma 20. Let (n X )n∈N be a sequence of R+-valued measurable processes for which there
are p > 2 and cp > 0 such that E[n X p

s ] ≤ cp|Tn|
p for each s ∈ [r, T ) and n ∈ N. Then there

is c2 > 0 satisfying

E
[(∫ T

r
n Xs |n Ẇs | ds

)2]
≤ c2|Tn| for all n ∈ N.

Proof. Let q > 1 satisfy 2/p + 1/q = 1, then it follows from the inequalities of
Cauchy–Schwarz and Hölder that

E
[(∫ T

r
n Xs |n Ẇs | ds

)2]
≤

(
E

[(∫ T

r
n X2

s ds
)p/2])2/p

c2,1|Tn|
−1

≤ c2|Tn|,

where we have set c2,1 := ŵ
1/q
q,2 (T − r ) and c2 := c2/p

p (T − r )c2,1, by using the constant ŵq,2

constructed in Lemma 17. □

To shorten the notation for the next and several other estimates in Section 5, we introduce
for each n ∈ N the function γn : [r, T ] → [0, cT] defined via

γn(s) :=
∆sn

∆sn
. (3.9)

So, γn vanishes on [r, t1,n) and agrees with the constant ∆ti,n/∆ti+1,n on [ti,n, ti+1,n) for each
i ∈ {1, . . . , kn − 1} and we have γn(T ) = 1.

Lemma 21. Let F : [r, T ]×C([0, T ],Rm) → Rm be d∞-Lipschitz continuous and (nY )n∈N be
a sequence in C ([0, T ],Rm) for which there are c0, c2,0 ≥ 0 such that |F(t, x)| ≤ c0(1+∥x∥∞)
and

E
[
∥nY∥

2
∞

]
+ E

[
∥nY s

− nY t
∥

2
∞

]
/|s − t | ≤ c2,0

(
1 + E

[
∥nY r

∥
2
∞

])
for all n ∈ N, s, t ∈ [r, T ] with s ̸= t and x ∈ C([0, T ],Rm). Then there is c2 > 0 satisfying

E
[

max
j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r
F(sn, nY )(γn(s) − 1) ds

⏐⏐⏐⏐2]
≤ c2|Tn|

(
1 + E

[
∥nY r

∥
2
∞

])
for each n ∈ N.
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Proof. We may assume that E[∥nY r
∥

2
∞

] < ∞ and, by decomposing the integral, we can
rewrite that∫ t j,n

r
F(sn, nY )γn(s) ds =

∫ t j−1,n

r
F(sn, nY ) ds

for each j ∈ {1, . . . , kn}. Thus, let λ0 ≥ 0 be a Lipschitz constant for F , then

E
[

max
j∈{1,...,kn}

⏐⏐⏐⏐ ∫ t j−1,n

r
F(sn, nY ) − F(sn, nY ) ds

⏐⏐⏐⏐2]
≤ c2,1|Tn|

(
1 + E

[
∥nY r

∥
2
∞

])
with c2,1 := 2(T − r )2λ2

0(1 + c2,0). In addition, we estimate that

E
[

max
j∈{1,...,kn}

⏐⏐⏐⏐ ∫ t j,n

t j−1,n

F(sn, nY ) ds
⏐⏐⏐⏐2]

≤ c2,2|Tn|
2(1 + E

[
∥nY r

∥
2
∞

])
,

where c2,2 := 2c2
0(1 + c2,0). So, the constant c2 := 2(c2,1 + (T − r )c2,2) yields the claim. □

The last moment estimate involves integrals with respect to n W and W , where n ∈ N, and
it extends Lemma 3.2 in [16]:

Proposition 22. Let F : [r, T ] × C([0, T ],Rm) → Rm×d be d∞-Lipschitz continuous and
(nY )n∈N be a sequence in C ([0, T ],Rm). Suppose there are c0 ≥ 0, p ≥ 2 and cp,0 ≥ 0 such
that |F(t, x)| ≤ c0(1 + ∥x∥∞) and

E[∥nY∥
p
∞

] + E
[
∥nY s

− nY t
∥

p
∞

]
/|s − t |p/2

≤ cp,0
(
1 + E[∥nY r

∥
p
∞

]
)

for each n ∈ N, s, t ∈ [r, T ] with s ̸= t and x ∈ C([0, T ],Rm). Then there is cp > 0 such that

E
[

max
j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r
F(sn, nY ) d(n Ws − Ws)

⏐⏐⏐⏐p]
≤ cp|Tn|

p/2−1(1 + E[∥nY r
∥

p
∞

]
)

for any n ∈ N.

Proof. We let E[∥nY r
∥

p
∞] < ∞ and apply Lemma 15 to get that∫ t j,n

r
F(sn, nY ) dn Ws =

∫ t j−1,n

r
F(sn, nY ) dWs a.s.

for all j ∈ {1, . . . , kn}. Let λ0 ≥ 0 denote a Lipschitz constant for F , then

E
[

max
j∈{1,...,kn}

⏐⏐⏐⏐ ∫ t j−1,n

r
F(sn, nY ) − F(sn, nY ) dWs

⏐⏐⏐⏐p]
≤ cp,1|Tn|

p/2(1 + E[∥nY r
∥

p
∞

]
)

with cp,1 := 2p−1wp(T − r )p/2λ
p
0 (1 + cp,0), where wp satisfies (3.7). Moreover,

E
[

max
j∈{1,...,kn}

⏐⏐⏐⏐ ∫ t j,n

t j−1,n

F(sn, nY ) dWs

⏐⏐⏐⏐p]
≤

kn∑
j=1

E
[⏐⏐⏐⏐ ∫ t j,n

t j−1,n

F(sn, nY ) dWs

⏐⏐⏐⏐p]
≤ cp,2|Tn|

p/2−1(1 + E
[
∥nY r

∥
p
∞

])
for cp,2 := 2p−1wp(T − r )cp

0 (1 + cp,0). So, we set cp := 2p−1((T − r )cp,1 + cp,2) and obtain
the asserted estimate. □
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4. Path-dependent ODEs and SDEs: proofs

We give existence and uniqueness proofs for mild solutions to path-dependent ODEs in
Section 2.2 and strong solutions to path-dependent SDEs in Section 2.3.

4.1. Proof of Proposition 3

Let us first derive a global estimate for mild solutions to the ODE (2.1).

Lemma 23. Under (C.1), any mild solution x to (2.1) satisfies

∥x t
∥

2
H,r ≤ cH ecH

∫ t
r c0(s)2 ds

(
∥xr

∥
2
∞

+

∫ t

r
c0(s)2 ds

)
(4.1)

for each t ∈ [r, T ] with cH := 22 max{1, T − r}.

Proof. We readily estimate that

∥x t
∥

2
H,r ≤ 2∥xr

∥
2
∞

+ 2
∫ t

r
c0(s)2

(
1 + ∥xr

∥∞ +

∫ s

r
|ẋ(u)| du

)2

ds

for all t ∈ [r, T ], which shows that ∥x∥H,r is finite. Hence, the claim follows from Gronwall’s
inequality. □

Now we check the uniqueness of mild solutions, which implies uniqueness for classical
solutions.

Lemma 24. Assume that (C.1) and (C.2) hold. Then any two mild solutions x and x̃ to (2.1)
that satisfy xr

= x̃r must coincide.

Proof. By Lemma 23, there is n ∈ N such that ∥x∥H,r ∨ ∥x̃∥H,r ≤ n. Thus,

∥x t
− x̃ t

∥
2
H,r ≤

∫ t

r
λ2

n(s)∥x s
− x̃ s

∥
2
H,r ds

for every t ∈ [r, T ] and Gronwall’s inequality implies that x = x̃ . □

Proof of Proposition 3. Since uniqueness follows from Lemma 24, we directly turn to the
existence assertion and define H to be the (bounded) set of all x ∈ H 1

r ([0, T ],Rm) satisfying
xr

= x̂r and the estimate (4.1).
According to Lemma 23, a path x ∈ C([0, T ],Rm) is a mild solution to (2.1) such that

xr
= x̂r if and only if x ∈ H and it is a fixed-point of the operator ψ : H → H 1

r ([0, T ],Rm)
given by

ψ(y)(t) := x0(t) +

∫ r∨t

r
F(s, y) ds.

We remark that ψ maps H into itself. Indeed, this follows by inserting (4.1) into the inequality
∥ψ(x)t

∥
2
H,r ≤ cH∥x0∥

2
∞

+ cH
∫ t

r c0(s)2(1 + ∥x s
∥

2
H,r ) ds, valid for every x ∈ H and t ∈ [r, T ].

Because xn = ψ(xn−1) for each n ∈ N, we now know that (xn)n∈N0 is a sequence in H .
Next, let us choose l ∈ N such that ∥x∥H,r ≤ l for all x ∈ H . Then we get that

∥ψ(x)t
− ψ(x̃)t

∥
2
H,r ≤

∫ t
r λl(s)2

∥x s
− x̃ s

∥
2
H,r ds for any x, x̃ ∈ H and t ∈ [r, T ], which
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shows that ψ is ∥ · ∥H,r -Lipschitz continuous. It follows inductively that

∥x t
n+1 − x t

n∥
2
H,r ≤

δ2

n!

(∫ t

r
λl(s)2 ds

)n

for every n ∈ N0 and t ∈ [r, T ], where we have set δ := ∥ψ(x0) − x0∥H,r . Hence, the triangle
inequality gives us that

∥xn − xk∥H,r ≤ δ

n−1∑
i=k

(
1
i !

)1/2(∫ T

r
λl(s)2 ds

)i/2

for all k, n ∈ N0 with k < n. The ratio test yields that the series
∑

∞

i=0(1/ i !)1/2ui/2 converges
absolutely for all u ≥ 0. So, limk↑∞ supn∈N: n≥k ∥xn − xk∥H,r = 0.

Since H is closed with respect to the complete norm ∥·∥H,r , there is a unique x ∈ H such
that limn↑∞ ∥xn −x∥H,r = 0. Lipschitz continuity of ψ implies that limn↑∞ ∥xn+1−ψ(x)∥H,r =

0. For this reason, x = ψ(x) and the proposition is established. □

4.2. Proof of Proposition 5

At first, let us deduce a global estimate for any solution to the SDE (1.1). For this purpose,
whenever p > 4 and (C.3) holds, we set cp := (

∫ T
r c0(s)2 ds)p/2

+ c̃p
0wp, where wp is the

constant appearing in (3.7).

Lemma 25. Let (C.3) be valid. Then for each p > 4 and α ∈ [0, 1/2 − 2/p), any solution
X to (1.1) satisfies

E[∥X t
∥

p
α,r ] ≤ cα,pecα,pcp(t−r )(E[∥X r

∥
p
∞

] + cp(t − r )
)

(4.2)

for all t ∈ [r, T ] with cα,p := 8p−1 max{1, T − r}
p/2−1kα,p,p/2−2, where kα,p,p/2−2 is given

by (3.2) for the choice q = p/2 − 2.

Proof. We assume that E[∥X r
∥

p
∞] < ∞ and let n ∈ N. Then the stopping time τn := inf{t ∈

[0, T ] | |X t | ≥ n} ∨ r satisfies ∥X τn ∥∞ ≤ ∥X r
∥∞ ∨ n and we get that

E[|X τn
u − X τn

v |
p] ≤ 4p−1cp(v − u)p/2−1

∫ t

r
1 + E[∥X s∧τn ∥p

∞
] ds

for every t ∈ [r, T ] and u, v ∈ [r, t] with u ≤ v, by the inequalities of Jensen and
Cauchy–Schwarz and (3.7). Therefore, it follows from Proposition 12 that

E[∥X t∧τn ∥p
α,r ] ≤ 2p−1 E[∥X r

∥
p
∞

]

+ 8p−1kα,p,p/2−2cp(t − r )p(1/2−α)−1
∫ t

r
1 + E[∥X s∧τn ∥p

∞
] ds,

showing in particular that E[∥X τn ∥
p
α,r ] is finite. Thus, Gronwall’s inequality and Fatou’s lemma

lead to the claimed estimate. □

Remark 26. If instead α ∈ [0, 1/2) and p ≥ 1 satisfy α ≥ 1/2 − 2/p, then we still have that
E[∥X∥

p
α,r ] ≤ (E[∥X∥

q
α,r ])p/q < ∞ for any q > max{p, 4} with α < 1/2 − 2/q , by Hölder’s

inequality.

Lemma 27. Under (C.5), pathwise uniqueness holds for (1.1).
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Proof. Let X and X̃ be two weak solutions to (1.1) defined on a common filtered probability
space (Ω̃ , F̃ , (F̃t )t∈[0,T ], P̃) that satisfies the usual conditions and on which there is a standard
d-dimensional (F̃t )t∈[0,T ]-Brownian motion W̃ such that X r

= X̃ r a.s.
For fixed n ∈ N we set τn := inf{t ∈ [0, T ] | |X t | ≥ n or |X̃ t | ≥ n} ∨ r , ensuring that

∥X τn ∥∞ ∨ ∥X̃ τn ∥∞ ≤ ∥X r
∥∞ ∨ n and ∥X τn − X̃ τn ∥∞ ≤ 2n a.s. Then with c2 := 2(T − r +w2)

we obtain that

Ẽ
[
∥X t∧τn − X̃ t∧τn ∥2

∞

]
≤ c2

∫ t

r
λn(s)2 Ẽ

[
∥X s∧τn − X̃ s∧τn ∥2

∞

]
ds

for any t ∈ [r, T ]. So, X τn = X̃ τn a.s., by Gronwall’s inequality. As τn ≤ τn+1 for all n ∈ N
and supn∈N τn = ∞, we get that X t = limn↑∞ X τn

t = limn↑∞ X̃ τn
t = X̃ t a.s. for all t ∈ [r, T ].

Right-continuity of paths implies that X = X̃ a.s. □

Proof of Proposition 5. Let us define H to be the closed and bounded set of all X ∈

C ([0, T ],Rm) satisfying X r
= x̂r a.s. and the estimate (4.2) for any p > 4 and α ∈

[0, 1/2 − 2/p). Then Remark 26 entails that H ⊂ C 1/2−

r,∞ ([0, T ],Rm).
By Lemma 25, a process X ∈ C ([0, T ],Rm) is a solution to (1.1) satisfying X r

= x̂r a.s. if
and only if X ∈ H and it is an a.s. fixed-point of the operator Ψ : H → C 1/2−

r,∞ ([0, T ],Rm)
specified by requiring that

Ψ (Y )t = 0 X t +

∫ r∨t

r
b(s, Y ) ds +

∫ r∨t

r
σ (s, Y ) dWs

for all t ∈ [0, T ] a.s. We stress the fact that, due to Proposition 12, for every X ∈ H , p > 4
and α ∈ [0, 1/2 − 2/p) it follows that

E[∥Ψ (X )t
∥

p
α,r ] ≤ cα,p E[∥0 X∥

p
∞

] + cα,pcp

∫ t

r
1 + E[∥X s

∥
p
α,r ] ds

for each t ∈ [r, T ]. Thus, Ψ (H ) ⊂ H follows from plugging (4.2) into the above inequality.
Since n X = Ψ (n−1 X ) a.s. for all n ∈ N, we have shown that (n X )n∈N0 is a sequence in H .

Next, we choose α ∈ [0, 1/2) and p > 4 such that α0 ≤ α < 1/2 − 2/p, where α0 is the
constant in (C.4). We set cp := (

∫ T
r λ0(s)2 ds)p/2

+ λ̃
p
0wp, then it follows from Proposition 12

that any X, X̃ ∈ H satisfy

E[∥Ψ (X )t
− Ψ (X̃ )t

∥
p
α,r ] ≤ cα,pcp

∫ t

r
E[∥X s

− X̃ s
∥

p
α,r ] ds

for all t ∈ [r, T ], since we can use that ∥x∥α0,r ≤ max{1, T − r}
α−α0∥x∥α,r for every

x ∈ Cα
r ([0, T ],Rm). Hence, Gronwall’s inequality entails that there is at most a unique solution

X to (1.1) such that X r
= ξ r a.s.

We infer from the above inequality that Ψ is Lipschitz continuous with respect to the
seminorm (2.2). In addition,

E[∥n+1 X t
− n X t

∥
p
α,r ] ≤

δ p

n!
(cα,pcp)n(t − r )n

for each n ∈ N0 and t ∈ [r, T ], by induction with δ := (E[∥Ψ (0 X ) − 0 X∥
p
α,r ])1/p. Hence, the

triangle inequality gives

(
E

[
∥n X − k X∥

p
α,r

])1/p
≤ δ

n−1∑
i=k

(
1
i !

)1/p

(cα,pcp)i/p(T − r )i/p
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for all k, n ∈ N0 with k < n. The ratio test shows that the series
∑

∞

i=0(1/ i !)1/pui/p converges
absolutely for any u ≥ 0. So, limk↑∞ supn∈N: n≥k E[∥n X − k X∥

p
α,r ] = 0.

Due to Proposition 11, there exists, up to indistinguishability, a unique process X ∈ H
such that

lim
n↑∞

E[∥n X − X∥
p
α,r ] = 0. (4.3)

Lipschitz continuity of Ψ implies that limn↑∞ E[∥n+1 X − Ψ (X )∥p
α,r ] = 0. For this reason,

X = Ψ (X ) a.s. As α and p have been arbitrarily chosen, (4.3) must hold for any α ∈ [0, 1/2)
and p > 4 such that α0 ≤ α < 1/2 − 2/p.

Finally, if α ∈ [0, 1/2) and p ≥ 1 are such that α0 ≤ α < 1/2 − 2/p fails, then (4.3) is
still true. Indeed, when proving this fact, we may, if necessary, replace α by α0 to ensure that
α0 ≤ α is valid, since we have

∥x∥α,r ≤ max{1, T − r}
α0−α

∥x∥α0,r for all x ∈ Cα0
r ([0, T ],Rm)

whenever α0 > α. Next, if α0 ≤ α but α ≥ 1/2 − 2/p, we take q > max{p, 4} with
α < 1/2 − 2/q and use that E[∥n X − X∥

p
α,r ] ≤ (E[∥n X − X∥

q
α,r ])p/q for all n ∈ N to infer the

desired result, which completes the proof. □

5. Proof of the main result

5.1. Decomposition into remainder terms

Let us deduce a moment estimate for any solution to (2.9) that is independent of n ∈ N,
which generalizes Proposition 3.1 in [16].

Proposition 28. Let (C.6) be valid, h ∈ H 1
r ([0, T ],Rd ) and B be d∞-Lipschitz continuous.

Then for each p ≥ 2 there is cp > 0 such that any n ∈ N and each solution nY to (2.9) satisfy

E[∥nY∥
p
∞

] + E[∥nY s
− nY t

∥
p
∞

]/|s − t |p/2
≤ cp

(
1 + E[∥nY r

∥
p
∞

]
)

(5.1)

for all s, t ∈ [r, T ] with s ̸= t .

Proof. We may assume that E[∥nY r
∥

p
∞] is finite and the constant κ appearing in (C.6) is

positive. For l ∈ N the stopping time τl,n := inf{t ∈ [0, T ] | |nYt | ≥ l} ∨ r satisfies
∥nY τl,n ∥∞ ≤ ∥nY r

∥∞ ∨ l and for s, t ∈ [r, T ] with s ≤ t we have(
E[∥ nY s∧τl,n −nY t∧τl,n ∥

p
∞

]
) 1/p

≤

(
cp(t − s)p/2−1

∫ t

s
1 + E

[
∥nY u∧τl,n ∥

κp
∞

]
du

)1/p

+

(
E

[
sup
v∈[s,t]

⏐⏐⏐⏐ ∫ v∧τl,n

s
B(u, nY ) dn Wu

⏐⏐⏐⏐p])1/p

,

(5.2)

where cp := 6p−1((T − r )p/2
+ ∥h∥

p
H,r + wp)cp and wp is the constant in (3.7). Lemma 17

provides the constant ŵp/κ,1 such that (3.8) holds when p and q are replaced by p/κ and 1,



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx 23

respectively. So,(
E

[(∫ u∧τl,n

un

|B(v, nY )n Ẇv| dv
)p/κ])κ

≤ cp,1(u − un)p/2

for any given u ∈ [s, T ] and cp,1 := 2p/2ŵκp/κ,1cp. By virtue of (5.2), we may define cp/κ just
as cp above when p is replaced by p/κ and obtain that(

E
[
∥nY u∧τl,n − nY un∧τl,n ∥

p/κ
∞

])κ
≤ cp,2(u − un)p/2(1 + E

[
∥nY u∧τl,n ∥

p
∞

])κ
with cp,2 := 2p−1(cκp/κ + cp,1). Consequently, by letting λ ≥ 0 denote a Lipschitz constant for
B and using Hölder’s inequality, we can estimate that

E
[(∫ t∧τl,n

s

⏐⏐(B(u, nY ) − B(un, nY )
)

n Ẇu
⏐⏐ du

)p]

≤ (t − s)p/2−1
∫ t

s
E

[
|B(u, nY τl,n ) − B(un, nY τl,n )|

p
(∫ t

s
|n Ẇv|

2
dv

)p/2]
du

≤ cp,3(t − s)p/2−1
∫ t

s

(
1 + E[∥nY u∧τl,n ∥

p
∞

]
)κ du

for cp,3 := 23p/2−1ŵ1−κ
(p/2)/(1−κ),2(T −r )p/2λp(1+cp,2). In addition, Proposition 16 directly yields

that

E
[

sup
v∈[s,t]

⏐⏐⏐⏐ ∫ v∧τl,n

s
B(un, nY ) dn Wu

⏐⏐⏐⏐p]
≤ ŵpcp(t − s)p/2.

Hence, we set cp,4 := 3p−1(2cp + cp,3 + ŵpcp), then from (5.2) we in total obtain that

E[∥nY s∧τl,n − nY t∧τl,n ∥p
∞

] ≤ cp,4(t − s)p/2−1
∫ t

s
1 + E[∥nY u∧τl,n ∥

p
∞

] du. (5.3)

Now Gronwall’s inequality and Fatou’s lemma entail that

E[∥nY t
∥

p
∞

] ≤ lim inf
l↑∞

E[∥nY t∧τl,n ∥p
∞

] ≤ cp,5
(
1 + E[∥nY r

∥
p
∞

]
)
,

where cp,5 := 2p−1 max{1, T − r}
p/2 max{1, cp,4}e2p−1(T −r )p/2cp,4 . Thus, if we set cp :=

(1 + cp,4)(1 + cp,5), the claim follows from (5.3) and an application of Fatou’s lemma. □

Corollary 29. Let (C.6) hold and h ∈ H 1
r ([0, T ],Rd ). Then for each p ≥ 2 there is cp > 0

such that any solution Y to (2.10) satisfies

E[∥Y∥
p
∞

] + E[∥Y s
− Y t

∥
p
∞

]/|s − t |p/2
≤ cp

(
1 + E[∥Y r

∥
p
∞

]
)

(5.4)

for every s, t ∈ [r, T ] with s ̸= t .

Proof. Since the map R defined via (2.11) is bounded, we may apply Proposition 28 in the
case that B is replaced by B + R, B is replaced by 0 and Σ is replaced by B +Σ . From this
the claim follows immediately. □

With the derived moment estimates we deduce a crucial decomposition estimate that involves
the linear operator Ln and the function γn defined in (2.4) and (3.9), respectively.
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Proposition 30. Let (C.6) and (C.7) be satisfied and h ∈ H 1
r ([0, T ],Rd ). Then there is c2 > 0

such that for each n ∈ N and any solutions nY and Y to (2.9) and (2.10), respectively,

E
[

max
j∈{0,...,kn}

|nYt j,n − Yt j,n |
2]/c2 ≤ |Tn|

(
1 + E

[
∥nY r

∥
2
∞

+ ∥Y r
∥

2
∞

])
+ E

[
∥nY r

− Y r
∥

2
∞

+ ∥Ln(nY ) − nY∥
2
∞

+ ∥Ln(Y ) − Y∥
2
∞

]
+ E

[
max

j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r
R(sn, nY )(γn(s) − 1) ds

⏐⏐⏐⏐2]
+ E

[
max

j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r
B(sn, nY ) d(n Ws − Ws)

⏐⏐⏐⏐2]
+ E

[
max

j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r

(
B(s, nY ) − B(sn, nY )

)
n Ẇs − R(sn, nY )γn(s) ds

⏐⏐⏐⏐2]
.

Proof. Let E[∥nY r
∥

2
∞

] and E[∥Y r
∥

2
∞

] be finite. We define an increasing function ϕn : [r, T ] →

R+ by

ϕn(t) := E
[

max
j∈{0,...,kn}: t j,n≤t

|nYt j,n − Yt j,n |
2]

and seek to apply Gronwall’s inequality. For this purpose, we write the difference of nY and
Y in the form

nYt − Yt = nYr − Yr +

∫ t

r
B(s, nY ) − B(s, Y ) +

(
BH (s, nY ) − BH (s, Y )

)
ḣ(s) ds

+ n∆t +

∫ t

r
Σ (s, nY ) − Σ (s, Y ) dWs

for all t ∈ [r, T ] a.s., where the process n∆ ∈ C ([0, T ],Rm) is chosen such that

n∆t =

∫ t

r
B(s, nY )n Ẇs − R(s, Y ) ds −

∫ t

r
B(s, Y ) dWs

for each t ∈ [r, T ] a.s. Hence, let λ ≥ 0 denote a Lipschitz constant for B(s, ·), BH , B, R and
Σ for any s ∈ [r, T ), then we obtain that

ϕn(t)1/2
≤ δ

1/2
n,1 + δn(t)1/2

+

(
c2,1

∫ tn

r
δn,1 + δn,2(s) + εn(s) + ϕn(s) ds

)1/2

(5.5)

for every t ∈ [r, T ], where we have set c2,1 := 15(T − r + ∥h∥
2
H,r + w2)λ2 and δn,1 :=

E[∥nY r
− Y r

∥
2
∞

] and the functions δn, δn,2, εn : [r, T ] → R+, which are readily seen to be
measurable, are defined via

δn(t) := E
[

max
j∈{0,...,kn}: t j,n≤t

|n∆t j,n |
2],

δn,2(s) := E
[
∥Ln(nY )sn − nY sn ∥

2
∞

+ ∥Ln(Y )sn − Y sn ∥
2
∞

]
and

εn(s) := E
[
∥nY s

− nY sn ∥
2
∞

+ ∥Y s
− Y sn ∥

2
∞

]
.

In deriving (5.5), we used that E[∥Ln(nY )sn − Ln(Y )sn ∥
2
∞

] ≤ δn,1 + ϕn(s) for all s ∈ [r, T ],
which follows from Lemma 18, since Ln is linear.
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To estimate the function δn we introduce three processes n,3∆, n,4∆, n,5∆ ∈ C ([0, T ],Rm)
by setting n,3∆t :=

∫ t
r R(sn, nY )(γn(s) − 1) ds and

n,5∆t :=

∫ t

r

(
B(s, nY ) − B(sn, nY )

)
n Ẇs − R(sn, nY )γn(s) ds

and requiring that n,4∆t =
∫ t

r B(sn, nY ) d(n Ws − Ws) for each t ∈ [r, T ] a.s. Then n∆ can be
rewritten in the following way:

n∆t = n,3∆t + n,4∆t + n,5∆t +

∫ t

r
R(sn, nY ) − R(s, Y ) ds

+

∫ t

r
B(sn, nY ) − B(s, Y ) dWs

for all t ∈ [r, T ] a.s. Thus, we set c2,2 := 10(T − r + w2)λ2, then it follows readily that

δn(t)1/2
≤ δn,3(t)1/2

+ δn,4(t)1/2
+ δn,5(t)1/2

+

(
c2,2

∫ tn

r
δn,1 + (s − sn) + δn,2(s) + εn(s) + ϕn(s) ds

)1/2 (5.6)

for each t ∈ [r, T ], where the increasing function δn,i : [r, T ] → R+ is given by

δn,i (t) := E
[

max
j∈{0,...,kn}: t j,n≤t

|n,i∆t j,n |
2], for all i ∈ {3, 4, 5}.

Proposition 28 and Corollary 29 give two constants c2, c2 > 0 satisfying (5.1) and (5.4) for
p = 2 when cp is replaced by c2 and c2, respectively. Thus, putting (5.5) and (5.6) together,
we find that

ϕn(t) ≤ c2,4|Tn|
(
1 + E

[
∥nY r

∥
2
∞

+ ∥Y r
∥

2
∞

])
+ (5 + c2,3(T − r ))δn,1

+ 5
(
δn,3(t) + δn,4(t) + δn,5(t)

)
+ c2,3

∫ tn

r
δn,2(s) + ϕn(s) ds

for given t ∈ [r, T ], where we have at first set c2,3 := 10(c2,1 + c2,2) and then c2,4 :=

2(T − r )(1 + c2 + c2)c2,3. Consequently,

ϕn(t)/c2 ≤ |Tn|
(
1 + E

[
∥nY r

∥
2
∞

+ ∥Y r
∥

2
∞

])
+ δn,1 +

5∑
i=2

δn,i (t)

with c2 := e(T −r )c2,3 (5 + c2,4), by Gronwall’s inequality. This yields the claim. □

Thanks to Lemmas 19 and 21 and Proposition 22, only the last remainder in the estimation
of Proposition 30 requires further analysis, before we can prove (2.13). For this reason, we
define a map Φh,n : [r, T ] × C([0, T ],Rm) × C([0, T ],Rd ) → Rm by

Φh,n(s, y, w) := BH (sn, y)(h(s) − h(sn)) + B(sn, y)
(
Ln(w)(s) − Ln(w)(sn)

)
+ Σ (sn, y)(w(s) − w(sn))

for given h ∈ H 1
r ([0, T ],Rd ) and n ∈ N. If now nY is a solution to (2.9), then the following

decomposition can be used to deal with the remainder in question:(
B(s, nY ) − B(sn, nY )

)
n Ẇs − R(sn, nY )γn(s)

=
(
B(s, nY ) − B(sn, nY ) − ∂x B(sn, nY )(nYs − nYsn )

)
n Ẇs

+ ∂x B(sn, nY )(nYs − nYsn − Φh,n(s, nY,W ))n Ẇs

+ ∂x B(sn, nY )Φh,n(s, nY,W )n Ẇs − R(sn, nY )γn(s)

(5.7)
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for any s ∈ [r, T ). In fact, in the next two sections we will consider each of these three terms
to ensure that (2.13) follows.

5.2. Convergence of the first two remainders

To handle the first remainder term in (5.7), we will use the following estimation in
combination with Lemma 20.

Proposition 31. Let (C.6) be satisfied, h ∈ H 1
r ([0, T ],Rd ) and F be a functional on

[r, T ) × C([0, T ],Rm) of class C1,2. Assume that B and ∂x F are d∞-Lipschitz continuous
and there are c0, η ≥ 0 such that

|∂t F(t, x)| + |∂xx F(t, x)| ≤ c0(1 + ∥x∥
η
∞

)

for all t ∈ [r, T ) and x ∈ C([0, T ],Rm). Then for each p ≥ 2 there exists cp > 0 such that
for each n ∈ N and any solution nY to (2.9) it holds that

sup
s∈[r,T )

E
[⏐⏐F(s, nY ) − F(sn, nY )−∂x F(sn, nY )(nYs − nYsn )

⏐⏐p]
≤ cp|Tn|

p(1 + E
[
∥nY r

∥
(η∨2)p
∞

])
.

Proof. Let n∆ : [sn, s] × Ω → R1×m be defined by n∆u := ∂x F(u, nY ) − ∂x F(sn, nY ) for
s ∈ [r, T ). Then the functional Itô formula in [9] yields

F(s, nY ) − F(sn, nY ) − ∂x F(sn, nY )(nYs − nYsn )

=

∫ s

sn

∂u F(u, nY ) + n∆u
(
B(u, nY ) + BH (u, nY )ḣ(u) + B(u, nY )n Ẇu

)
du

+

∫ s

sn

n∆uΣ (u, nY ) dWu +
1
2

∫ s

sn

tr(∂xx F(u, nY )(ΣΣ ′)(u, nY )) du a.s.

(5.8)

By Proposition 28, for η := η ∨ 2 there is a constant cηp > 0 such that (5.1) holds when cp

and p are replaced by cηp and ηp, respectively. So,

E
[⏐⏐⏐⏐ ∫ s

sn

∂u F(u, nY ) du
⏐⏐⏐⏐p]

≤ cp,1|Tn|
p(1 + E

[
∥nY r

∥
ηp
∞

])η/η
with cp,1 := 22pcp

0 (1 + cηp)η/η. Next, let λ0 ≥ 0 denote a Lipschitz constant for ∂x F , then we
obtain that(

E
[
|n∆u |

2p])1/2
≤ cp|Tn|

p/2(1 + E
[
∥nY r

∥
ηp
∞

])1/η

for all u ∈ [sn, s] with cp := 23p/2λ
p
0 (1 + cηp)1/η. Hence, for the second term in (5.8) the

Cauchy–Schwarz inequality gives

E
[⏐⏐⏐⏐ ∫ s

sn

n∆u B(u, nY ) du
⏐⏐⏐⏐p]

≤ cp,2|Tn|
p(s − sn)p/2(1 + E

[
∥nY r

∥
ηp
∞

])2/η

with cp,2 := 23p/2cp(1 + cηp)1/ηcp. Similarly, it follows that

E
[⏐⏐⏐⏐ ∫ s

sn

n∆u BH (u, nY ) dh(u)
⏐⏐⏐⏐p]

≤ cp,3|Tn|
p(1 + E

[
∥nY r

∥
ηp
∞

])2/η
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for cp,3 := 23p/2
∥h∥

p
H,r cp(1 + cηp)1/ηcp. Lemma 17 yields the constant ŵp,2 such that (3.8) is

valid when q is replaced by 2. Then

E
[⏐⏐⏐⏐ ∫ s

sn

n∆u B(u, nY ) dn Wu

⏐⏐⏐⏐p]

≤ cp(s − sn)p−1
∫ s

sn

(
E

[
|n∆u |

2p])1/2
(

E
[(∫ s

sn

|n Ẇv|
2

dv
)p])1/2

du

≤ cp,4|Tn|
p(1 + E

[
∥nY r

∥
ηp
∞

])1/η
,

by the Cauchy–Schwarz inequality, where cp,4 := 2pŵ
1/2
p,2cpcp. Next, as Σ cannot exceed the

constant c, we directly get that

E
[⏐⏐⏐⏐ ∫ s

sn

n∆uΣ (u, nY ) dWu

⏐⏐⏐⏐p]
≤ cp,5|Tn|

p(1 + E
[
∥nY r

∥
ηp
∞

])1/η

for cp,5 := 2p/2wpcpcp, where wp satisfies (3.7). For the last term in (5.8) we define
cp,6 := 22pc2pcp

0 (1 + cηp)η/η and readily compute that

E
[⏐⏐⏐⏐ ∫ s

sn

tr(∂xx F(u, nY )(ΣΣ ′)(u, nY )) du
⏐⏐⏐⏐p]

≤ cp,6|Tn|
p(1 + E

[
∥nY r

∥
ηp
∞

])η/η
.

Thus, by setting cp := 6p−1(cp,1 + (T − r )p/2cp,2 + cp,3 + cp,4 + cp,5 + 2−pcp,6), we obtain the
asserted estimate. □

We come to the second remainder term arising in (5.7). As before, we derive an estimation
that is necessary to apply Lemma 20.

Lemma 32. Let (C.6) and (C.7) hold and h ∈ H 1
r ([0, T ],Rd ). Then for each p ≥ 2 there is

cp > 0 such that for any n ∈ N and every solution nY to (2.9) we have

sup
s∈[r,T ]

[
|nYs − nYsn − Φh,n(s, nY,W )|p]

≤ cp|Tn|
p(1 + E

[
∥nY r

∥
2p
∞

])1/2
.

Proof. We apply Proposition 28 to get a constant c2p > 0 such that (5.1) is satisfied when cp

and p are replaced by c2p and 2p, respectively. Then

E
[⏐⏐⏐⏐ ∫ s

sn

B(u, nY ) du
⏐⏐⏐⏐p]

≤ cp,1|Tn|
p(1 + E

[
∥nY r

∥
2p
∞

])1/2

for given s ∈ [r, T ] and cp,1 := 22pcp(1 + c2p)1/2. Let λ ≥ 0 denote a Lipschitz constant for
BH , B and Σ , then the Cauchy–Schwarz inequality allows us to estimate that

E
[⏐⏐⏐⏐ ∫ s

sn

BH (u, nY ) − BH (sn, nY ) dh(u)
⏐⏐⏐⏐p]

≤ cp,2|Tn|
p(1 + E

[
∥nY r

∥
2p
∞

])1/2



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

28 R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx

with cp,2 := 22p
∥h∥

p
H,rλ

p(1 + c2p)1/2. We recall the constant ŵp,2 constructed in Lemma 17
such that (3.8) holds when q is replaced by 2 and compute that

E
[⏐⏐⏐⏐ ∫ s

sn

B(u, nY ) − B(sn, nY ) dn Wu

⏐⏐⏐⏐p]

≤ λp(s − sn)p/2 E
[(

(s − sn)1/2
+ ∥nY s

− nY sn ∥∞

)p
(∫ s

sn

|n Ẇv|
2

dv
)p/2]

≤ cp,3|Tn|
p(1 + E

[
∥nY r

∥
2p
∞

])1/2
,

by the Cauchy–Schwarz inequality, where cp,3 := 25p/2ŵ
1/2
p,2λ

p(1 + c2p)1/2. Finally, let us also
recall the constant wp in (3.7), then

E
[⏐⏐⏐⏐ ∫ s

sn

Σ (u, nY ) − Σ (sn, nY ) dWu

⏐⏐⏐⏐p]
≤ cp,4|Tn|

p(1 + E
[
∥nY r

∥
2p
∞

])1/2

for cp,4 := 22pwpλ
p(1 + c2p)1/2. So, the definition cp := 4p−1(cp,1 + · · · + cp,4) concludes the

proof. □

5.3. Convergence of the third remainder

As preparation, we infer an estimate from Doob’s L2-maximal inequality. To this end, let
for the moment d̃ ∈ N and T be a partition of [r, T ] that is of the form T = {t0, . . . , tk} with
k ∈ N and t0, . . . , tk ∈ [r, T ] such that r = t0 < · · · < tk = T .

Lemma 33. For every l ∈ {1, . . . , d̃} let (lUi )i∈{1,...,k} and (l Vi )i∈{1,...,k} be two sequences of
R1×d -valued and Rd -valued random vectors, respectively, such that lUi is Fti−1 -measurable,
l Vi is Fti -measurable,

E
[
|lUi |

4
+ |l Vi |

4] < ∞ and E[l Vi |Fti−1 ] = 0 a.s.

for all i ∈ {1, . . . , k}. Then

E
[

max
j∈{i0,...,k}

⏐⏐⏐⏐ j−i0∑
i=1

d̃∑
l=1

lUi l Vi

⏐⏐⏐⏐2]
≤ 4

k−i0∑
i=1

d̃∑
l1,l2=1

E
[

l1Ui l1 Vi l2 V ′

i l2U ′

i

]
for every i0 ∈ {0, . . . , k − 1}.

Proof. We set Yi :=
∑d̃

l=1 lUi l Vi for each i ∈ {1, . . . , k − i0}, then the sequence (S j ) j∈{i0,...,k}

of random variables given by S j :=
∑ j−i0

i=1 Yi is a square-integrable martingale with respect to
(Ft j−i0

) j∈{i0,...,k}. So,

E
[

max
j∈{i0,...,k}

⏐⏐⏐⏐ j−i0∑
i=1

d̃∑
l=1

lUi l Vi

⏐⏐⏐⏐2]
= E

[
max

j∈{i0,...,k}

S2
j

]
≤ 4E

[
S2

k

]
,

by Doob’s L2-maximal inequality. Moreover, let i, j ∈ {1, . . . , k − i0} be such that i ≤ j , then

E[Yi Y j ] = 1{i}( j)
d̃∑

l1,l2=1

E[l1Ui E[l1 Vi l2 V ′

j |Ft j−1 ] l2U ′

j ].
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In particular, Yi and Y j are uncorrelated for i < j . By Bienaymé’s identity, E[S2
k ] =∑k−i0

i=1 E[Y 2
i ], which yields the claim. □

Proposition 34. Let (C.6) and (C.7) hold and h ∈ H 1
r ([0, T ],Rd ). Then there is c2 > 0 such

that for each n ∈ N and any solution nY to (2.9),

E
[

max
j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r
∂x B(sn, nY )Φh,n(s, nY,W )n Ẇs − R(sn, nY )γn(s) ds

⏐⏐⏐⏐2]
≤ c2|Tn|

(
1 + E

[
∥nY r

∥
2
∞

])
.

Proof. First, let us recall the definition of R in (2.11) to write the kth coordinate of
∂x B(sn, nY )Φh,n(s, nY,W ) n Ẇs − R(sn, nY )γn(s) in the form

d∑
l=1

∂x Bk,l(sn, nY )
(
Φh,n(s, nY,W )n Ẇ (l)

s − ((1/2)B + Σ )(sn, nY )γn(s)el
)

for all k ∈ {1, . . . ,m} and s ∈ [r, T ), where the lth coordinate of any Rd -valued stochastic
process X is denoted by X (l) for every l ∈ {1, . . . , d}. Moreover, we decompose that

Φh,n(s, nY,W )n Ẇ (l)
s − ((1/2)B + Σ )(sn, nY )γn(s)el

= BH (sn, nY )(h(sn) − h(sn))n Ẇ (l)
s + B(sn, nY )(n Wsn − n Wsn )n Ẇ (l)

s

+ Σ (sn, nY )
(
∆Wsn n Ẇ (l)

s − γn(s)el
)
+ BH (sn, nY )(h(s) − h(sn))n Ẇ (l)

s

+ B(sn, nY )
(
(n Ws − n Wsn )n Ẇ (l)

s − (1/2)γn(s)el
)

+ Σ (sn, nY )(Ws − Wsn )n Ẇ (l)
s

(5.9)

for any l ∈ {1, . . . , d}. We begin with the first term in this decomposition and use Lemma 15
to obtain that∫ t j,n

r
(∂x Bk,l BH )(sn, nY )(h(sn) − h(sn))n Ẇ (l)

s ds

=

∫ t j−1,n

r
(∂x Bk,l BH )(sn, nY )(h(sn) − h(sn)) dW (l)

s a.s.

for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Proposition 28 provides c2 > 0
such that (5.1) is satisfied for p = 2 when the appearing constant cp is replaced by c2. Hence,
condition (C.6) gives

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,l BH )(sn, nY )(h(sn) − h(sn))n Ẇ (l)
s ds

⏐⏐⏐⏐2]
≤ 2w2c4

∫ T

r

(
1 + E

[
∥nY sn ∥

2κ
∞

])
|h(sn) − h(sn)|2 ds

≤ c2,1|Tn|
(
1 + E

[
∥nY r

∥
2
∞

])
,

where c2,1 := 22w2(T − r )∥h∥
2
H,r c4(1 + c2) and w2 satisfies (3.7) for p = 2. Similarly, another

application of Lemma 15 gives us that∫ t j,n

r
(∂x Bk,l B)(sn, nY )(n Wsn − n Wsn )n Ẇ (l)

s ds

=

∫ t j−1,n

r
(∂x Bk,l B)(sn, nY )∆Wsn dW (l)

s a.s.
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for all j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Thus, with the constant c2,2 :=

w2(T − r )dc4 we can estimate that

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,l B)(sn, nY )(n Wsn − n Wsn )n Ẇ (l)
s ds

⏐⏐⏐⏐2]
≤ w2c4

∫ T

r
E

[
|∆Wsn |

2] ds ≤ c2,2|Tn|.

Let us move on to the third expression in (5.9). First we define an Rd -valued Fti,n -
measurable random vector by

l,n Vi := ∆Wti,n∆W (l)
ti,n − ∆ti,nel (5.10)

for every i ∈ {1, . . . , kn} and l ∈ {1, . . . , d}, then l,n Vi is independent of Fti−1,n and satisfies
E[|l,n Vi |

4] < ∞ and E[l,n Vi ] = 0. Moreover, a case distinction shows that

E[l1,n Vi l2,n V ′

i ] = 1{l2}(l1)(∆ti,n)2(Id + Il2,l1

)
(5.11)

for each i ∈ {1, . . . , kn} and l1, l2 ∈ {1, . . . , d}, where Il2,l1 ∈ Rd×d denotes the matrix whose
(l2, l1)-entry is 1 and whose all other entries are zero. We compute that∫ t j,n

r
(∂x Bk,lΣ )(sn, nY )

(
∆Wsn n Ẇ (l)

s − γn(s)el
)

ds

=

j−1∑
i=1

(∂x Bk,lΣ )(ti−1,n, nY )l,n Vi

for all j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, since γn(s) = 0 for each s ∈ [r, t1,n).
Consequently, Lemma 33 and the representation (5.11) imply that

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,lΣ )(sn, nY )
(
∆Wsn n Ẇ (l)

s − γn(s)el
)

ds
⏐⏐⏐⏐2]

≤ 23
kn−1∑
i=1

(∆ti,n)2
m∑

k=1

d∑
l=1

E[|(∂x Bk,lΣ )(ti−1,n, nY )|
2
] ≤ c2,3|Tn|

for c2,3 := 23(T − r )c4, since we can use that x tIl2,l1 y ≤ (1/2)(x2
l2

+ y2
l1

) for all l1, l2 ∈

{1, . . . , d} and x, y ∈ Rd , by Young’s inequality. To deal with the fourth term in (5.9), let us
note that∫ t j,n

r
(∂x Bk,l BH )(sn, nY )(h(s) − h(sn))n Ẇ (l)

s ds

=

j−1∑
i=1

(∂x Bk,l BH )(ti−1,n, nY )
∆W (l)

ti,n

∆ti+1,n

∫ ti+1,n

ti,n
h(s) − h(ti,n) ds

=

∫ t j,n

r
(∂x Bk,l BH )(sn, nY )∆W (l)

sn

(sn − s)
∆sn

dh(s)

(5.12)



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx 31

for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, as integration by parts yields that∫ ti+1,n
ti,n

h(s) − h(ti,n) ds =
∫ ti+1,n

ti,n
ti+1,n − s dh(s) for all i ∈ {0, . . . , kn − 1}. So,

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,l BH )(sn, nY )(h(s) − h(sn))n Ẇ (l)
s ds

⏐⏐⏐⏐2]

≤ ∥h∥
2
H,r

m∑
k=1

∫ T

r
E

[⏐⏐⏐⏐ d∑
l=1

(∂x Bk,l BH )(sn, nY )∆W (l)
sn

⏐⏐⏐⏐
2]

ds

≤ c2,4|Tn|
(
1 + E

[
∥nY r

∥
2
∞

])
with c2,4 := 22(T − r )∥h∥

2
H,r c4(1 + c2), by the Cauchy–Schwarz inequality and the fact that

∆W (1)
sn
, . . . ,∆W (d)

sn
are pairwise independent and independent from Fsn for all s ∈ [r, T ].

To handle the fifth expression in (5.9), we define l,nUs := (n Ws − n Wsn )n Ẇ (l)
s − (1/2)γn(s)el

for all s ∈ [r, T ] and note that∫ t j,n

r
(∂x Bk,l B)(sn, nY )l,nUs ds =

1
2

j−1∑
i=1

(∂x Bk,l B)(ti−1,n, nY )l,n Vi

for every j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, where l,n Vi is given by (5.10)
and we have used the fact that

∫ ti+1,n
ti,n

s − ti,n ds = (1/2)(∆ti+1,n)2 for each i ∈ {0, . . . , kn − 1}.
Consequently,

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,l B)(sn, nY )l,nUs ds
⏐⏐⏐⏐2]

≤ 2
kn−1∑
i=1

(∆ti,n)2
m∑

k=1

d∑
l=1

E[|(∂x Bk,l B)(ti−1,n, nY )|
2
] ≤ c2,5|Tn|

for c2,5 := 2(T −r )c4. We turn to the last term in (5.9) and proceed just as in (5.12) to get that∫ t j,n

r
(∂x Bk,lΣ )(sn, nY )(Ws − Wsn )n Ẇ (l)

s ds

=

∫ t j,n

r
(∂x Bk,lΣ )(sn, nY )∆W (l)

sn

(sn − s)
∆sn

dWs a.s.

for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, as Itô’s formula gives∫ ti+1,n
ti,n

Ws − Wti,n ds =
∫ ti+1,n

ti,n
ti+1,n − s dWs a.s. for all i ∈ {0, . . . , kn − 1}. Therefore,

E
[

max
j∈{0,...,kn}

m∑
k=1

⏐⏐⏐⏐ ∫ t j,n

r

d∑
l=1

(∂x Bk,lΣ )(sn, nY )(Ws − Wsn )n Ẇ (l)
s ds

⏐⏐⏐⏐2]

≤ w2

m∑
k=1

∫ T

r
E

[⏐⏐⏐⏐ d∑
l=1

(∂x Bk,lΣ )(sn, nY )∆W (l)
sn

⏐⏐⏐⏐2]
ds ≤ c2,6|Tn|

with c2,6 := w2(T −r )c4. As before, we used that ∆W (1)
sn
, . . . ,∆W (d)

sn
are pairwise independent

and independent of Fsn for every s ∈ [r, T ]. Therefore, by setting c2 := 6(c2,1 + · · · + c2,6),
the assertion follows. □
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5.4. Proofs of Theorems 7 and 1

At first, we consider a sufficient condition for a Doléans-Dade exponential to be a true
martingale and let for the moment T be a partition of [r, T ] of the form T = {t0, . . . , tk} with
k ∈ N and t0, . . . , tk ∈ [r, T ] satisfying r = t0 < · · · < tk = T .

Lemma 35. Let f : [r, T ] → Rm×d be measurable such that
∫ T

r | f (s)|2 ds < ∞ and
(Yi )i∈{0,...,k−1} be an (Fti )i∈{0,...,k−1}-adapted sequence of Rm×d -valued random matrices. Define
the process X : [r, T ] × Ω → R1×d coordinatewise via

X (l)
t :=

k−1∑
i=0

m∑
j=1

f j,l(t)Y
( j,l)
i 1[ti ,ti+1)(t),

then the continuous local martingale Z ∈ C ([0, T ],R) given by Z r
= 1 and

Z t = exp
(∫ t

r
Xs dWs −

1
2

∫ t

r
|Xs |

2 ds
)

for all t ∈ [r, T ] a.s. is a martingale.

Proof. Since Z is a positive supermartingale, it suffices to show that E[ZT ] = 1. This in turn
follows inductively if we can verify that E[Z ti+1 |Fti ] = Z ti a.s. for each i ∈ {0, . . . , k − 1}.

In this regard, note that
∫ ti+1

ti
Xs dWs =

∑d
l=1

∑m
j=1 Y ( j,l)

i

∫ ti+1
ti

f j,l(s) dW (l)
s a.s. Because∫ ti+1

ti
f j,1(s) dW (1)

s , . . . ,
∫ ti+1

ti
f j,d (s) dW (d)

s are independent of Fti for any j ∈ {1, . . . ,m}, we
have

E
[

exp
(∫ ti+1

ti
Xs dWs −

1
2

∫ ti+1

ti
|Xs |

2 ds
)⏐⏐⏐⏐Fti

]
= ψ(Yi ) a.s.,

where the Borel measurable function ψ : Rm×d
→ R is given by

ψ(A) := E
[ d∏

l=1

exp
(∫ ti+1

ti

m∑
j=1

A j,l f j,l(s) dW (l)
s −

1
2

∫ ti+1

ti

⏐⏐⏐⏐ m∑
j=1

A j,l f j,l(s)
⏐⏐⏐⏐2

ds
)]
.

Moreover, as
∫ ti+1

ti

∑m
j=1 A j,l f j,l(s) dW (l)

s is normally distributed with zero mean and variance
given by

∫ ti+1
ti

|
∑m

j=1 A j,l f j,l(s)|2 ds for any A ∈ Rm×d and l ∈ {1, . . . , d}, independence of
the coordinates of W entails that ψ = 1, as desired. □

Proof of Theorem 7. (i) If in condition (C.8) we have b0 = 0, then existence and uniqueness
can be inferred from Proposition 3. Otherwise, we may let b0 = 1 and, by using Lemma 35,
define a martingale n Z ∈ C ([0, T ],R) via n Z

r
= 1 and

n Z t = exp
(

−

∫ t

r
b(s)n Ẇ ′

s dWs −
1
2

∫ t

r
|b(s)n Ẇs |

2
ds

)
for all t ∈ [r, T ] a.s. Due to Girsanov’s theorem, the process n W ∈ C ([0, T ],Rd ) given
by n W t := Wt +

∫ r∨t
r b(s) dn Ws is a d-dimensional (Ft )t∈[0,T ]-Brownian motion under the

probability measure Pn on (Ω ,F ) defined by Pn(A) := E[1A n Z T ].
As this yields an equivalent probability measure, a process Y ∈ C ([0, T ],Rm) solves (2.9)

under P if and only if it is a solution to the SDE

dYt =
(
B(t, Y ) + BH (t, Y )ḣ(t)

)
dt + Σ (t, Y ) dn W t for t ∈ [r, T ]
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under Pn . For this reason, existence and uniqueness follow from Proposition 5 when b =

B + BH ḣ and σ = Σ . Further, independently of this case distinction, Propositions 28 and 12
imply the second claim.

(ii) This assertion is an immediate application of Proposition 5 in the case that b =

B + R + BH ḣ and σ = B + Σ .
(iii) By Propositions 30, 28 and 22 and Lemmas 19 and 21, to establish (2.13), it suffices

to show that there is c2 > 0 such that

E
[

max
j∈{0,...,kn}

⏐⏐⏐⏐ ∫ t j,n

r

(
B(s, nY ) − B(sn, nY )

)
n Ẇs − R(sn, nY )γn(s) ds

⏐⏐⏐⏐2]
≤ c2|Tn|

for each n ∈ N. As ∂x B is bounded, the existence of such a constant c2 follows immediately
from the decomposition (5.7), a combination of Proposition 31 and Lemma 32 with Lemma 20
and an application of Proposition 34. Moreover, since supn∈N E[∥nY∥

p
β,r ] + E[∥Y∥

p
β,r ] < ∞

for all β ∈ [0, 1/2) and p ≥ 1, the second assertion can now be inferred from Lemma 13. □

To prove Theorem 1 we require the following basic result on the support of image probability
measures.

Lemma 36. Let (Ω̃ , F̃ , P̃) be a probability space, (S, ν) be a metric space, D ⊂ S and
Y : Ω̃ → S be measurable such that P̃ ◦ Y −1 is inner regular.

(i) Let (Yn)n∈N be a sequence of S-valued measurable maps on Ω̃ that converges in
probability to Y . If Yn ∈ D a.s. for all n ∈ N, then supp(P̃ ◦ Y −1) ⊂ D.

(ii) Suppose that for each y ∈ D there exists a sequence (P̃y,n)n∈N of probability measures
on (Ω̃ , F̃ ) such that P̃y,n ≪ P̃ for all n ∈ N and

inf
n∈N

P̃y,n(ν(Y, y) ≥ ε) < 1 (5.13)

for each ε > 0. Then D ⊂ supp(P̃ ◦ Y −1).

Proof. (i) Let y ∈ supp(P̃ ◦ Y −1) and k ∈ N, then there exists nk ∈ N such that P̃(ν(Yn, Y ) >
1/(2k)) < P̃(ν(Y, y) < 1/(2k)) for all n ∈ N with n ≥ nk . By the triangle inequality,

P̃(ν(Yn, y) ≥ 1/k) ≤ P̃(ν(Yn, Y ) > 1/(2k)) + P̃(ν(Y, y) ≥ 1/(2k)) < 1

for any such n ∈ N. So, there is ω̃k ∈ Ω̃ such that yk := Ynk (ω̃k) ∈ D and ν(yk, y) < 1/k. As
k ∈ N has been arbitrarily chosen, the resulting sequence (yk)k∈N converges to y, which gives
the claim.

(ii) By way of contradiction, assume that there are y ∈ D and ε > 0 such that P̃(ν(Y, y) ≥

ε) = 1. Let (yn)n∈N be a sequence in D that converges to y and choose nε ∈ N such that
ν(ynε , y) < ε/2. Then from

P̃(ν(Y, y) ≥ ε) ≤ P̃(ν(Y, ynε ) > ε/2) + P̃(ν(ynε , y) ≥ ε/2)

and P̃ynε ,n ≪ P̃ it follows that P̃ynε ,n(ν(Y, ynε ) ≥ ε/2) = 1 for each n ∈ N. This, however, is
a contradiction to (5.13). □

Proof of Theorem 1. (i) Pathwise uniqueness follows from Lemma 27 and the other two
assertions are direct consequences of Proposition 5.



Please cite this article as: R. Cont and A. Kalinin, On the support of solutions to stochastic differential equations with path-dependent coefficients,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.07.015.

34 R. Cont and A. Kalinin / Stochastic Processes and their Applications xxx (xxxx) xxx

(ii) For h ∈ H 1
r ([0, T ],Rd ) we set Fh := b − (1/2)ρ + σ ḣ and first check that Fh

satisfies conditions (C.1) and (C.2). Since σ and ∂xσ are bounded, there is c0 ≥ 0 such that
|σ | ∨ |ρ| ≤ c0. Then

|Fh(t, x)| ≤ c1(1 + |ḣ(t)|)(1 + ∥x∥∞)

for all t ∈ [r, T ) and x ∈ C([0, T ],Rm) with c1 := 3 max{c, c0}. Moreover, since σ and ∂xσ

are d∞-Lipschitz continuous, so is the map ρ. Let λ0 ≥ 0 be a Lipschitz constant for ρ, then

|Fh(t, x) − Fh(t, y)| ≤ λ1(1 + |ḣ(t)|)∥x − y∥∞

for all t ∈ [r, T ) and x, y ∈ C([0, T ],Rm) with λ1 := 2 max{λ, λ0}. Hence, an application of
Proposition 3 yields the first assertion.

Regarding the second claim, let us also choose g ∈ H 1
r ([0, T ],Rd ) and define c2 :=

22 max{c2
0, λ

2
1} max{1, T − r}. Then the above estimation shows that

∥x t
g − x t

h∥
2
H,r ≤ c2

∫ t

r
|ġ(s) − ḣ(s)|

2
+ (1 + |ḣ(s)|

2
)∥x s

g − x s
h∥

2
H,r ds

for given t ∈ [r, T ]. By Gronwall’s inequality, ∥xg − xh∥
2
H,r ≤ c3ec3∥h∥

2
H,r ∥g − h∥

2
H,r with

c3 := c2 exp((T − r )c2), and the verification is complete.
(iii) Let Nα be the P-null set of all ω ∈ Ω such that X (ω) /∈ Cα

r ([0, T ],Rm), then
(N c

α,F ∩ N c
α, P|F∩N c

α
) is a probability space and the probability measure

B(Cα
r ([0, T ],Rm)) → [0, 1], B ↦→ P({X ∈ B} ∩ N c

α) (5.14)

is inner regular and its support agrees with the support of P ◦ X−1 in Cα
r ([0, T ],Rm). We note

that the inner regularity can be inferred by using that X belongs a.s. to the separable closed
linear subspace of all x ∈ Cα

r ([0, T ],Rm) such that

lim
δ↓0

sup
s,t∈[r,T ]: 0<|s−t |≤δ

|x(s) − x(t)|
|s − t |α

= 0.

Since (2.6) follows from Theorem 7 by the choice B = b − (1/2)ρ, BH = 0, B = σ

and Σ = 0, Lemma 36 entails that the support of (5.14) is included in the closure of
{xh | h ∈ H 1

r ([0, T ],Rd )} with respect to ∥ · ∥α,r .
Next, let h ∈ H 1

r ([0, T ],Rd ) and for any n ∈ N we note that the non-anticipative product
measurable map [r, T ] × C([0, T ],Rd ) → Rd , (t, x) ↦→ L̇n(x)(t) satisfies |L̇n(x)(t)| ≤

2cT|Tn|
−1

∥x∥∞ for all t ∈ [r, T ]\Tn and x ∈ C([0, T ],Rd ) and the map C([0, T ],Rd ) → Rd ,
x ↦→ L̇n(x)(t) is linear for each t ∈ [r, T ]\Tn .

From these facts it follows that for every x ∈ C([0, T ],Rd ) there is a unique mild solution
yh,n,x ∈ C([0, T ],Rd ) to the following ordinary integral equation with running value condition:

yh,n,x (t) = x(t) −

∫ r∨t

r
ḣ(s) − L̇n(yh,n,x )(s) ds for t ∈ [0, T ].

Moreover, the map C([0, T ],Rd ) → C([0, T ],Rd ), x ↦→ yh,n,x is Lipschitz continuous on
bounded sets and in particular, Borel measurable. These considerations allow us to define a
process h,n W ∈ C ([0, T ],Rd ) by h,n Wt := yh,n,W (t).

Given this constructed process, it follows from Lemma 35 that we obtain a martingale
h,n Z ∈ C ([0, T ],R) by requiring that h,n Z r

= 1 and

h,n Z t = exp
(∫ t

r
ḣ(s)′ − L̇n(h,n W )(s)′ dWs −

1
2

∫ t

r
|ḣ(s) − L̇n(h,n W )(s)|

2
ds

)
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for every t ∈ [r, T ] a.s. and we may define a probability measure Ph,n on (Ω ,F ) that is
equivalent to P by Ph,n(A) := E[1Ah,n ZT ]. According to the second part of Lemma 36, if

inf
n∈N

Ph,n({∥X − xh∥α,r ≥ ε} ∩ N c
α) < 1 for each ε > 0, (5.15)

then the closure of {xg | g ∈ H 1
r ([0, T ],Rd )} with respect to ∥ · ∥α,r is included in the

support of (5.14). Now Girsanov’s theorem implies that for each n ∈ N the process h,n W is a
d-dimensional (Ft )t∈[0,T ]-Brownian motion under Ph,n and X is a strong solution to (2.8) under
Ph,n .

Hence, by using uniqueness in law, an application of Theorem 7 in the case that B = b,
BH = σ , B = −σ and Σ = σ gives (2.7). As this readily implies (5.15), the proof is
complete. □
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