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Abstract

We consider a system of d non-linear stochastic fractional heat equations in spatial dimension 1 driven
by multiplicative d-dimensional space—time white noise. We establish a sharp Gaussian-type upper bound
on the two-point probability density function of (u(s, y), u(¢, x)). From this result, we deduce optimal
lower bounds on hitting probabilities of the process {u(z, x) : (¢, x) € [0, co[xR} in the non-Gaussian
case, in terms of Newtonian capacity, which is as sharp as that in the Gaussian case. This also improves
the result in Dalang et al. (2009) for systems of classical stochastic heat equations. We also establish
upper bounds on hitting probabilities of the solution in terms of Hausdorff measure.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

We consider a system of non-linear stochastic fractional heat equations with vanishing initial
conditions on the whole space R, that is,
d
Bu,- ..
5, 60 = D it x) + Y oyt NW (2, %) + bi(u(z, ), (1.1)
j=1
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for 1 <i <d,t€[0,T],x € R, where u := (uy, ..., uy), with initial conditions u(0, x) = 0
for all x € R. Here, W= (Wl, e, wd ) is a vector of d independent space—time white noises
on [0, T] x R defined on a probability space ({2, .#, P). The functions b;, o;; : RY — R are
globally Lipschitz continuous for all 1 < i, j < d. We set b = (b;), o = (0y;). The fractional
differential operator D* (1 < « < 2) is given by

D(x) = FH{— A" Flp(x); A}; x},

where .# denotes the Fourier transform. The operator D coincides with the fractional power
a/2 of the Laplacian. When o = 2, it is the Laplacian itself. For 1 < « < 2, it can also be
represented by

D(X(p(x) — Clx/ (0()6 + Y) |_y(|plg-fl) —Y® (x)

with certain positive constant ¢, depending only on «; see [16,17,19] and [6]. We refer to [21]
for additional equivalent definitions of D®.

Let I C]0,T]and J C R be two fixed compact intervals with positive length. We choose m
sufficiently large so that I x J C [0, m] x [—m, m]. We are interested in the hitting probability
P{u(I x J)N A # @}, where u(I x J) denotes the range of I x J under the random map
(t, x) — u(t, x). For systems of stochastic heat equations on the spatial interval [0, 1], in the
case where the noise is additive, i.e., 0 = Id, b = 0, Dalang, Khoshnevisan and Nualart [9]
have established upper and lower bounds on hitting probabilities for the Gaussian solution.
They show that there exists ¢ > 0 depending on M, I, J with M > 0, such that, for all Borel
sets A C [-M, M]?,

¢ 'Cap,_o(A) < Plu(I x J)N A # B} < c #;_¢(A), (1.2)

dy

where Cap, denotes the capacity with respect to the Newtonian B-kernel and 7 denotes the
B-dimensional Hausdorff measure (see (1.8), (1.9) for definitions). If the noise is multiplicative,
i.e., o and b are not constants (but are sufficiently regular), then using techniques of Malliavin
calculus, Dalang, Khoshnevisan and Nualart [10] have obtained upper and lower bounds on
hitting probabilities for the non-Gaussian solution. Indeed, they prove that there exists ¢ > 0
depending on M, I, J, n with M > 0, n > 0, such that, for all Borel sets A C [—-M, MY,

cICapy,,_6(A) < Plu(l x )N A # 0} < ¢ Hi__6(A). (1.3)

Furthermore, these results have been extended to higher spatial dimensions driven by spatially
homogeneous noise in [11]. This type of question has also been studied for systems of
stochastic wave equations in [12], and in higher spatial dimensions [14] and [15], and for
systems of stochastic Poisson equations [31].

The objective of this paper is to remove the 7 in the dimension of capacity in (1.3) so that
the lower bound on hitting probabilities is consistent with the Gaussian case in (1.2), and to
extend these results to systems of stochastic fractional heat equations.

Consider the following three hypotheses on the coefficients of the system (1.1):

P1 The functions o;; and b; are bounded and infinitely differentiable with bounded partial
derivatives of all orders, for 1 < i, j <d.

P1’ The functions o;; and b; are infinitely differentiable with bounded partial derivatives of
all positive orders, and the o;; are bounded, for 1 <i, j <d.

P2 The matrix o is uniformly elliptic, that is, |jo(x)&||> > p? > 0 for some p > 0, for all
xeRY g =1
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Notice that hypothesis P1’ is weaker than hypothesis P1, since in P1’, the functions b;,
i=1,...,d are not assumed to be bounded.

Adapting the results from [4] to the case d > 1, the R¢-valued random vector u(t, x) =
(u1(t, x), ..., uq(t, x)) admits a smooth probability density function, denoted by p; .(-) for all
(t,x) € [0, T] x R: see our Proposition 3.2. For (s, y) # (¢, x), let p; ., «(-, -) denote the joint
density function of the R?>?-valued random vector

(uls, y), u(t, x)) = (ui(s, y), ..., ua(s, y), us(t, x), ..., uq(t, x))
(the existence of py y.; (-, ) is a consequence of (2.4), Proposition 4.7 and [10, Theorem 3.1]).

Define the fractional parabolic metric

A((t,); (5, Y) = |t — 5| T + |x — y|“T", fort,se€[0,T] and x, y e R.  (1.4)

Theorem 1.1. Assume P1’ and P2. Fix T > 0 and let I C10,T] and J C R be two fixed
non-trivial compact intervals.

(a) The density p;(z) is a C* function of 7 and is uniformly bounded over z € R? and
(t,x)yel xJ.

(b) There exists ¢ > 0 such that for all s,t € I,x,y € J with (s, y) # (t,x), 21,22 € R?
and p > 1,

) 2 p/4d)
(Aa((t, ); (5, Y 1} . (5)

pS,)';t,x(Zlv 22) < C(Aot((t’ x); (s, y)))_d |: D
llz1 — 2zl

(c) Assume also PI. Then there exists ¢ > 0 such that for all s,t € I,x,y € J with
(s,¥) # (t,x) and 21,22 € RY,

_ 2
pS,)';[,x(Zlv ZZ) < C(Aot((t’ -x)v (S’ Y)))_d exp (_ C(A |(|(Ztl X)Zill y)))2> . (]6)

The right-hand side of (1.5) is larger than the r.h.s. of (1.6) (after adjusting the constant). In
fact, the boundedness of the functions b;, i = 1, ..., d in hypothesis P1 is only used when we
derive the exponential factor on the right-hand side of (1.6) by applying Girsanov’s theorem.
However, under the hypothesis P1’, when b; is not bounded, Girsanov’s theorem is no longer
applicable. We establish (1.5) in Section 4.3 and, following [11,15], show in Section 5.2 that
this estimate is also sufficient for our purposes.

We prove the smoothness and uniform boundedness of the one-point density (Theo-
rem 1.1(a)) in Section 3. We present the Gaussian-type upper bound on the two-point density
(Theorem 1.1(b)) in Section 4.3.

We will also need the strict positivity of p; (-).

Theorem 1.2. Assume P1' and P2. For all (t,x) € 10, T] x R and 7 € R?, the density p; ((z)
is strictly positive.

The proof of the strict positivity of the one-point density (Theorem 1.2) is quite similar
to that in [26], using the inverse function theorem and Girsanov’s theorem. We refer to
[28, Chapter 2.4] for a complete proof. We mention that Chen, Hu and Nualart [7] have recently
studied the strict positivity of the density on the support of the law for the non-linear stochastic
fractional heat equation without drift term and with measure-valued initial data and unbounded
diffusion coefficient.

361



R.C. Dalang and F. Pu Stochastic Processes and their Applications 131 (2021) 359-393

Our main contribution is to obtain the upper bounds in Theorem 1.1(b) and (c), which are
an improvement over [ 10, Theorem 1.1(c)]. There, for the stochastic heat equation, the optimal
Gaussian-type upper bound was shown to hold when ¢ = s, while an extra term 5 appeared in
the exponent when ¢ # s; see [10, Theorem 1.1]. We manage to remove this n in the Gaussian-
type upper bound on the joint density in [10, Theorem 1.1(c)], so that this becomes the best
possible upper bound, as in the Gaussian case. This requires a detailed analysis of the small
eigenvalues of the Malliavin matrix yz of Z = (u(s, y), u(t, x) —u(s, y)); see Proposition 4.8.
We prove Proposition 4.8 by giving a better estimate on the Malliavin derivative of the solution;
see Lemma A.4, which, for a certain range of parameters, is an improvement of Morien
[23, Lemma 4.2]; see also Lemma A.3. This estimate is used in Lemma 4.4 to obtain a bound
on the integral terms in the Malliavin derivative of u (compare with [10, Lemma 6.11]), then
in Proposition 4.8 to bound negative moments of the smallest eigenvalue of the Malliavin
matrix (compare with [10, Proposition 6.9]), and finally in Proposition 4.7 and Theorem 4.11
to bound negative moments of the Malliavin matrix (compare with [10, Proposition 6.6] and
[10, Theorem 6.3]). This improves the result of [10, Theorem 1.1(c)], and the method extends
to systems of stochastic fractional heat equations (1.1) for 1 < o < 2 with a unified proof.

Coming back to potential theory, let us introduce some notation, following [18]. For all Borel
sets F C RY, we define Z(F) to be the set of all probability measures with compact support
contained in F. For all integers k > 1 and p € P(R¥), we let Ig() denote the B-dimensional
energy of u, that is,

Ig(n) = // Kg(llx = yIDu(dx)u(dy),
where ||x|| denotes the Euclidean norm of x € R¥,

Kﬁ(f’) = I‘i’3 1“3>()} —+ 10g+(1/l’)1{ﬂ:0} + 1“3<()} (1.7)

where log, (x) := log(x V e).
For all 8 € R, integers k > 1, and Borel sets F C R, Capﬂ(F ) denotes the B-dimensional
capacity of F:

-1
Capﬁ(F) = [uei;f(ﬂ Iﬂ(u):| , (1.8)

where 1/00 := 0. Note that if 8 < 0, then Capg(-) = 1.
Given B8 > 0, the f-dimensional Hausdorff measure of F is defined by

— Tim i A\B - - .
JGB(F) = e]_l)I})lJr mf{;(Zr,) :F C UB(x,,r,), supr; < e}. (1.9)

i=1 izl

When g < 0, we define #3(F) to be infinite.

Using Theorems 1.1 and 1.2, together with results from Dalang, Khoshnevisan and Nu-
alart [9], we shall prove the following results for the hitting probabilities of the solution (note
that the constants depend on the fixed o €1]1, 2]).

Theorem 1.3. Assume P1’ and P2. Fix T > 0, M > 0andn > 0. Let  C10,T]and J CR
be two fixed non-trivial compact intervals.

(a) There exist ¢y > 0 depending on I, J and M, and c, > 0 depending on I, J and n such
that for all compact sets A € [—M, M1%,

1 Cap,; 2w (A) SPlu(l x J)NA # 0} < 2 ) 2011 (A).
a—1 a—1
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(b) For all t €10, T], there exist c; > 0 depending on J and M, and ¢, > 0 depending on
J and n such that for all compact sets A C [—M, M1,

ciCapy 2 (A) SPlu{ty x NNAAEB <y 2 (A

-1
(c) For all x € R, there exist ¢y > 0 depending on I and M, and ¢, > 0 depending on 1
and n such that for all compact sets A C [—M, M1,

ciCapy 2 (A) SPlu(l x xPNA# O < 2 20, (A).

The optimal lower bounds for the hitting probabilities on the left-hand sides of Theorem 1.3
are mainly the consequence of the sharp upper bound on the two-point density function in (1.5)
(or the sharp Gaussian-type upper bound (1.6) under the slightly stronger condition P1).

Remark 1.4. For « = 2, Theorems 1.1, 1.2, 1.3 (as well as Theorem 1.6) are also valid
for stochastic heat equations on a bounded interval with Neumann or Dirichlet boundary
conditions; see Remark 4.12. The upper bounds on hitting probabilities on the right-hand sides
of Theorem 1.3 are an extension to 1 < « < 2 of the corresponding results of [10, Theorem
1.2] for a = 2.

Remark 1.5. The main technical improvement in this paper, which yields the sharp upper
bound on the two-point density function (and hence optimal lower bounds on hitting probabil-
ities) can also be used for the solution to non-linear stochastic heat equations in higher spatial
dimension; see [13].

If o =1d and b = 0, by [35, Theorem 7.6], the upper bounds in Theorem 1.3 can be
improved to the best result available for the Gaussian case.

Theorem 1.6. Denote by v the solution of (1.1) with 0 = Id and b = 0. Fix T > 0.
Let I C10,T] and J C R be two fixed non-trivial compact intervals. The upper bounds in
Theorem 1.3(a), (b) and (c) hold when u is replaced by v and n is set to 0 in the Hausdorff
measure on the right-hand sides.

Theorems 1.3 and 1.6 will be proved in Section 5. We conclude this introduction by giving
a rigorous formulation of Eq. (1.1), following Walsh [32]. For ¢t > 0, let .%, = o{W(s, x),s €
[0, ], x € R} v N, where N is the o-field generated by P-null sets. A mild solution of (1.1)
is a jointly measurable R9-valued process u = {u(t, x),t > 0, x € R}, adapted to the filtration
(Z1)i>0, such that for i € {1, ..., d},

t d
ui(t, x) = / / Golt —r.x =) Y 0y (u(r, v)) W (dr, dv)
0 JR

j=1
+ / / Gyt —r, x — v)b;(u(r, v))drdv, (1.10)
0o Jr

where the stochastic integral is interpreted as in [32] and G, (¢, x) denotes the Green kernel
for the (fractional) heat equation. If « = 2, the Green kernel G,(¢, x) (denoted by G(¢, x)) for
the heat equation without boundary is given by G(z, x) = (4t)~"/? exp(—x2/(4t)). The Green
kernel for the fractional heat equation (1 < a < 2) is given via Fourier transform:

1
Golt, x) = E/exp(—i)»x — t|A%)d .
R
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We refer to [2,6,17,34] for the properties of the Green kernel. In fact, to make sense of the
stochastic integral in (1.10), the function (r,v) — 143Gy — r,x — v) must belong to
L?([0, T] x R). This explains the requirement 1 < o < 2; see also [6,17].

The problems of existence, uniqueness and Holder continuity of the solution to non-linear
stochastic fractional heat equations have been studied by many authors; see, e.g., [1,4,6,17]
and the references therein. Adapting these results to the case d > 1, one can show that there
exists a unique process u = {u(t, x),t > 0,x € R} that is a mild solution of (1.1), such that
forany T > 0 and p > 1,

sup  Eflui(t,x)|"] <00, ie€fl,....d}. (1.11)
(1,x)€[0, TIxR
Moreover, the following estimate holds for the moments of increments of the solution (see
[1, Theorem 3.1]): for all s,z € [0,T],x,y € Rand p > 1,

Elllu(t, x) — u(s, I’1 < Cr p(Ao (2, X); (5, )7, (1.12)

where A, is defined in (1.4).

Denote by K,, = [0,m] x [-m,m] and B, = 1 — 2414 with p > 225D By (1.12),
Kolmogorov’s continuity theorem (see [20, Theorem 1.4.1, p. 31] and [5, Proposition 4.2]),
the solution u has a continuous modification which we continue to denote by u that satisfies,

for all integers m and 0 < B8 < B,

. wp  me D —ue ol 013)
et [Aal(t,2; (5, )

2. Elements of Malliavin calculus

For the basic notions of Malliavin calculus, we refer to Nualart [25] (see also [30]). Let W =
{W(h), h € 2} denote the isonormal Gaussian process (see [25, Definition 1.1.1]) associated

with our space—time white noise W, where . is the Hilbert space L*([0, T] x R, RY). We

then have the notion of Malliavin derivative DG = (D, ,G = (D{)G, ..., D\G), (t,x) €

[0, T] x R) of a smooth random variable G, and for p, k > 1, the Sobolev space D%-P with the
seminorm || - ||¢,, defined by

k
IGIE, =BG+ Y E[IDIGI,, ]

j=1

where
> ~ 7 ! i .. pin g)
IDIGI e = f dtlfdxlmf dtj/;%dxj (D, - Dy, G)
el j=
We set D*° = ﬂ,,)l MNi>1 DFk-P.

The adjoint of the derivative operator D on L?(f2) is the Skorohod integral, denoted by §
and characterized by the duality relation

d T }
E[G 8(u)] = E Zf /DE{;G w;(t,x)dtdx |, forall Ge D"
=1 0 R

(see also [10, Section 3]).
364
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In [4], the Malliavin differentiability and smoothness of the density of the solution to
fractional SPDEs driven by spatially correlated noise were established when d = 1. These
can also be applied to SPDEs driven by space—time white noise and the extension to d > 1
under P1’ and P2 can easily be done by working coordinate by coordinate. In particular, for

any (r,x) € [0,T] x R, i,k € {1,...,d}, the derivative of u;(¢, x) satisfies the system of
equations

DX (ui(t, x)) = Go(t — r, x — v)oy(u(r, v)) + a;(k, r, v, 1, x), 2.1
where

d t
ai(k,r,v,t,x) = Z/ / Go(t — 0, x —n)D®)(0;; (8, n) W/ (6, dn)
j=1 r R

+ f / Golt — 0, x — m)DE)(b; (O, n)))dodn, (2.2)
r R

if r <t and Dg‘g(ui(t, x)) = 0 when r > t. By iterating the calculation which leads to (2.1), we
see that the order m derivative D™ u;(t, x) also satisfies a system of stochastic partial differential
equations which are analogous to the equations in Proposition 4.1 of [10]; see also [27, (6.29)].
Moreover, forany p > 1,m > 1 andi € {1, ...,d},

sup  E[||D"ui(t, x)|" en] < 0. (2.3)
(t,x)el0,T]xR

Furthermore, for all (¢, x) € [0, T] x R,

u(t, x) € (D>®), 2.4

3. Existence, smoothness and uniform boundedness of the one-point density

Our objective in this section is to prove Theorem 1.1(a) by using [10, Proposition 3.4]. Let
Yu(t.x) be the Malliavin matrix of u(#, x). The next result proves property (a) in [10, Proposition
3.4] when F is replaced by u(t, x).

Proposition 3.1. Fix T > 0 and assume hypotheses P1’ and P2. Then, for any p > 1,
E[(det Yu«.x)) P is uniformly bounded over (t, x) in any closed non-trivial rectangle I x J C
10, T] x R.

Proof. The proof follows along the same lines as [10, Proposition 4.2]; see also
[11, Proposition 4.1]. The main differences are the exponents appearing in the estimate. Let
(t,x) € I x J be fixed. We write

d
det yu(t,x) 2 ( inf ETVM(I,X)E> .
£cRY:||E||=1

Let £ € R? with ||£]] = 1 and fix € €10, 1[. Using (2.1) and the inequality

2
(a+b)?*> §a2 — 207, 3.1
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valid for all a, b € R, we see that

t
£yt = / dr / dv
0 R
1
2/ dr/dv
t(1—e) R

p d ,d 2
I =/ dr/ dv Z(Z Go(t — 1, x — v)ou(u(r, v))&-) ,
) ;

I, = / /dv (Za(k r,v,t, x)é,) ,
1(1—€)

and a;(k, r, v, t, x) is defined in (2.2). By hypothesis P2 and semi-group property of the Green
kernel [6, Lemma 4.1(iii)],

d 2
ZDr,v(ui(t,x»a'
i=1

2
/31 227

d
DDy (uilt, X))
i=1

where

t t
I > c/ / G2(t —r,x — v)dvdr = c/ Go(2(t — 1), 0)dr
(1—¢) t(1—e)

2

where in the third equality we use the scaling property of the Green kernel [6, Lemma 4.1(iv)],
and the constants ¢, ¢’ and ¢” are uniform over (f,x) € I x J.
Next we apply the Cauchy—Schwarz inequality to find that, for any ¢ > 1,

c 2te el
= —/ Go(r, 0)dr = ¢'2te)“a > c'e“a (3.2)
0

E[ sup |12|q:|<C(E[|121|q]+E[|[22|q]),
seR%: g =1

2
Iy = f / dv ( f / Galt — 0, x — D)oy (@, M)W (d6, dn))
t(1—e)

i,j,k=1

t 2
Iy = Z/ dr/dv (/ /Ga(t—G,x—n)D(k)(b (u(®, n)))d@dﬁ) .
k=1 J11=€) R r JR

The term I; is bounded in the same way as A; in [10, (4.5)], with G there replaced by our
G,. Instead of using their Lemmas 7.6, 7.3 and 7.5, we use Lemma A.2, (4.1) and Lemma A.3.
This leads to E[|1;|9] < Cre?@= D4/ where the constant Cy is uniform over (t,x) € I x J.
For details, see [28, Proof of Prop. 2.3.1].

We next derive a similar bound for I,. First, we use the Cauchy—Schwarz inequality with
respect to the measure G,(t — 0, x — 1)dfdn to see that

where

d t t
In < Z fm_ )(:—r)drfRdu/ fRGa(z—e,x ) (D) (b; (u (@, n)))) dédn
i k=1 € r
d

rf dv/ /Ga(t—e,x — ) (Dﬁf‘g(bi(u(e,n))))zdedn.
r R

366
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|

2
dnG t—6,x—n) /dv( K w6, n))>
t(1—e€)

Since the partial derivatives of b; are bounded, by Fubini’s theorem,

dr
t(1—e€)

t 2
E[lln|’] < ¢ Z (te)qE{ dv Galt =6, x — n)(Dﬁ,’?(uz(G, n))) dfdn
R

L k=1

do
t(l1—e)

]

=c Z (te)"E{

1 k=1

Applying Holder’s mequality with respect to the measure G,(t — 6, x — n)d6dn,
/ a9 [ dnGutt—6.5 =)
Lk=1 =€)

f i / dn Gult — 6, x—n)E[ / / dU<D(k)(M1(9 n))>
t(1—e) t(1—e)

Using Lemma A.3, this yields E[|I5,|7] < Cr(te)i(te)(te)@D/% = Cp(te)3—1/a,
Thus, we have proved that

g—1

E[|/n]!] < ¢ Z(re)q

1

E[ sup |12|q}<cfez<°‘-”‘f/“, (3.3)
geRY:|||=1

where the constant Cr is clearly uniform over (¢, x) € I x J.

Finally, we apply [10, Prop. 3.5] with Z := il’lf”g”:l(éTVu(Lx)E), Yie=V = SUP| =1 b,
=10 =a = (x—1)/aand = f = 2a — D/a, to get E[(det yu4.x) "] < Cr,
where all the constants are independent of (#,x) e I x J. U

In [4], the authors established the existence and smoothness of the density of the solution of
one single stochastic fractional partial differential equation driven by spatially correlated noise.
For a system of d equations driven by space-time white noise, we have the following.

Proposition 3.2. Assume PI1’ and P2. Fix T > 0 and let I and J be compact intervals as
in Theorem 1.1. Then for any (t,x) €10, T] x R, u(t, x) € (D*®), dety ) € LP(82) for all
p = 1, and density function of u(t, x) is infinitely differentiable and uniformly bounded over
zeRYand (t,x) eI x J.

Proof. The conclusions follow from Proposition 3.1 and (2.4) together with [10, Theorem
3.1], (2.3) and [10, Proposition 3.4]. [

Proof of Theorem 1.1(a). This is an immediate consequence of Proposition 3.2. [

4. Gaussian-type upper bound on the two-point density
The aim of this section is to prove Theorem 1.1(b) and (c). We will follow the general
approach in [10, Section 6]; see also [11, Section 5].

4.1. Technical lemmas and propositions

In this subsection, we present several technical lemmas and propositions which will be used
for the analysis of the Malliavin matrix.
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Lemma 4.1 ([6, Proposition 4.4]). For any s,t € [0,T],s < t, and x,y € R, there exists a
constant Ct > 0 such that

T
a—1
/ / (8a(r, v))2drdv < Cr(lt —s|'@ + |x — y|[*™h),
0 R
where ga(r, 'U) = g?ﬁx‘&y(ry U) = 1{r<t}Ga(t —-nXx—- U) - 1{r<s}G0l(s —-ny—- U)'

The following identity, which follows from a simple calculation by using the semigroup
property and scaling property of Green kernel [6, Lemma 4.1(iii), (iv)], will be used several
times later on:

b
/ /Gi(t—r,x—v)dvdr:ca ((t—a)”T’l—(t—b)“T’l), a<b<t, 4.1
a R

where ¢, is a positive constant depending on «.
We next give an estimate on the L”-modulus of continuity of the derivative of the increment,
analogous to [10, Proposition 6.2], which is comparable to (1.12).

Proposition 4.2. For any p > 2,m > 1, there exists a constant C,r such that for all
s,t€[0, Tl,s <t,x,y eR,
a—1 _ .
E[[ D" @itt, ) = wils, W) Spon] < Cprlt —sI'@ +|x =yl )2, i=1,....4d.
4.2)
Proof. The proof is different from that of [10, Proposition 6.2], in particular regarding the

estimate for /3 in [10, Proposition 6.2].
Assume m = 1. Using (2.1), we see that, for any p > 2,

E[IID(u;(t, x) — ui(s, Y5, ] < ¢ B[IL1P2] + E[|LIP?] + E[ILI1P2] + E[11.1772])

(4.3)
where
d T
L=Y" / dr f dv (8o(r, V)ou(u(r, v))*
k=1 0 R
d T T 2
h=), / dr / dv ( / / ga(evU)Dﬁkg(aij(”(eyU)))Wj(de»dﬂ)) :
jrz17o R 0o JrR '
d T t 2
I = Z/ dr/ dv </ /Ga(t —0,x — DX b (u®, n)))dedn) ,
k=1 0 R K R
d T s
Iy = /dr/dv //G(s—@,y—n)
! k2=1: 0 R ( 0 R ¢
X Dbt =5+ 0, — v+ 1) — biu(®, M)dodn ) >
By hypothesis P1” and Lemma 4.1,
E[|L172] < Cporllt — 51 + x — y[*~)P/2. 4.4)
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For the term I,, we proceed as in [10, Proof of Prop. 6.2], using Lemma A.2, (2.3) and
Lemma 4.1 instead of their Lemma 7.6, (4.1) and Lemma 6.1, and we obtain

E[ILIP?] < Cprlt — s + |x — y|* )22, (4.5)

To estimate I3, denoting 6, = Dﬁf‘g(ul(e, 1)), we use the Cauchy—Schwartz inequality and
the Minkowski inequality with respect to the measure G, (t — 0, x — n)dfdn to get that

[|[3|p/2:| Cpr Z(t—s)l’/2E|: / d@/dnG (r—0, x—n)/ drfdv@kl p/]

k=1

<Cpr Z(t—v)"/2</ d@/dnGa(t—e x—n)

k=1
T 2/p\ &
p/2 2
X sup (EH/ dr/ dv @,31] :|> )
(0.mel0,T]xR 0 R ’

< Cpr(t =), (4.6)

where in the last inequality we use (2.3). Using Holder’s inequality with respect to the measure
Gy(t —0,x —n)dbdn,

d T N
ey [Car [av [ a0 [ anGas—o.y—n (DE Gt —s +0.x =y 4 )~ b, )
= R Jo R ’

We apply the chain rule to compute DX)b;(u(t — s + 6, x — y +n)) — DX)b;(u(6, 1)), subtract
and add the term Zldzl g—i’;(u(t —s+60,x —y+ n))D(k)u,(Q n). Then by hypothesis P1’, this
is bounded above by

ch dr/dv/ d@/dnG (s—0, y—n)(D(l‘)(ul(t—s+0 X—y4n)—w®, n)))

k=1

+ch dr/dv/ d@/dnG (s—0,y—n) (it —s+6,x—y+n) —u®, r])) le

k=1
= a1 + L.
Using the Minkowski inequality with respect to the measure G,(t — 0, x — n)d6dn, we have

[|142|1’/2 <c (/ dG/dnG (s—0,y—1)

k=1

T ) p/2 2/p\ p/2
(B[t =+ 0. =y —wo.nre ([ ar [aver, ) ]) )

By the Cauchy—Schwartz inequality, this is bounded above by

d p11/2
csP? Z [(f drf dv 6 1) :| E [|Ml(l —s+0,x—y+n—u@, 77)|2p]l/2
k=1 o, n)e[O T]><]R
< Cprs?(lt = s|*F + |x =y P2 4.7)
where we use (2.3) and (1.12).
Denote
: d 2Nk
o(h,2,0) = sup Y E[ f / (DRt + 6,2+ n) — w @, ) drdv)” |
’IERk,lzl R
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By Holder’s inequality,

d s L1,
2
E[[Ia|"?]<c) (/ fGa(s—e,y—mdedn) /d@/dnca(s—e,y—m
0 R 0 R

k=1

E[(/OT /R(D(k)(ul(t S0, x—y+ ) —w®, n)))zdrdv) ]

<Cpr / ot — s, x — y, 0)d0. 4.8)
0

Denote h =t — s and z = x — y. From (4.3)—(4.8), we conclude that for all # > 0, z € R,
se[0,T],yeRand 1 <i <d,

a—1 N
E[ID@i(h +s,z+y) —ui(s. Y% ] < Cpr(hl"a + 12/~ HP2 + C,,,T[ o(h, z,6)d6.
0

Taking the supremum over y € R on the left-hand side of the above inequality, we obtain that
forallh > 0,zeRand s € [0, T],

o(h, z,s) < c,,,T(|h|°’%l + z]*7 P2 + c,,,T/ o(h, z,0)d6.
0

By Gronwall’s lemma (see [29, p. 543]), we obtain that

a1 a—1\p/2
sup @(h,z,5) < Cpr(lhl @ + 2|77,
s€[0,7T]

which implies (4.2) with m = 1.
The case m > 1 follows along the same lines by using (2.3) and the stochastic partial
differential equations satisfied by the iterated derivatives (see [10, Proposition 4.1]). O

The following lemma is another version of [10, Lemma 6.11].

Lemma 4.3. Assume PI’. Fix T > 0,q > 1. There exists a constant ¢ = c¢(q, T) €10, oo
such that for every 0 <2e < s <t < T and x € R,

d d
q
E[( E f dr/ dv E aiz(k, r,v,t, x)) i| et —s + e)eDa/agla=hag/a
k=1 v57€ IR

Proof. The proof follows the same lines as [10, Lemma 6.11]. Define

d s d
A:Z/ dr/dvzaiz(k,r,v,f’x)
k=1 7s5—¢ R o

From (2.2), we write E [|A|"] <c (E [|A1|"] +E [|A2|"]) , where

d p

Z / dr/dv

k=1Y%

Ay = / dr/dv
§S—€

i,k=1

2
Ay

/ / Galt — 0. x — ) DE 03O, )W (d6, dn)

(4.9)
2
(4.10)

/ / Go(t — 0, x — )DE)(b;i(u(®, n)))dodn
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We bound the gth moment of A; and A, separately. As regards A, we follow the calculation
in [10, pp. 416-417], with their G replaced by our G, and we use (4.1) instead of their Lemma
7.3 and our Lemma A.3 instead of their Lemma 7.5. This replaces their exponent % with "‘a;l,
and we obtain

E[1419] et — s + )7 9 a9, (4.11)

Next we derive a similar bound for A,. By the Cauchy—Schwartz inequality with respect to
the measure G,(t — 6, x — n)d6dn,

Zf dr/dv(t—r)f /G (t—0,x — )(Dﬁf‘,j(b,-(u(e,n))))zdedn

ik=1

(z —s+6)/ dr/ dv/ /G (t—0,x —n) (Dﬁf‘g(bi(u(e,n))))zdedn.

i,k=1

By hypothesis P1’ and Fubini’s theorem,

q
/ dr/ dv/ d@/ A1 Gt — 6, x — (DX (6. n)))z( }

2 q
[ anGoa o, x—n)/ dr/ dv D(k)(uz(H, n))) ’ ]

(4.12)
We apply Holder’s inequality with respect to the measure G,(t — 6, x — n)dfdn to find that

/ d@/dnG(t

E[|Alf] <ctt—s+ )7 Y [
k=1

:c(z—s+e)q [ do
k=1

-1
E[|A2] < ct —s+ e)q
k=1

[ d@/dnG (t—0, x—n)E|: dr dv (DX, 0, n))) ]
Lcelt—s+e) / d@/dnG(
—o(t — 5 + €)M T, (4.13)

where in the second inequality we use Lemma A.3. Hence (4.11) and (4.13) prove the
lemma. [

The following lemma improves Lemma 4.3 by using Lemma A.4. As we mentioned in
Section 1, this is a key ingredient in our improvement of the lower bound in (1.3), which
has also been adapted in [13] to prove the optimal lower bounds on hitting probabilities for
stochastic heat equations in higher spatial dimension (see [13, Lemma 5.3]).

Lemma 4.4. Assume PI’. Fix T > 0,co > 1 and 0 < yy < 1. For all ¢ > 1, there exists a

constant ¢ = c(cy, q, T) €10, oo[ such that for every 0 <2e¢ < s <t < T witht —s > cpe’®
and x € R,

d . d
q s a—1 Y0
2 L min((1+y0) 5=, 1= )q
E[(Zf edr/Rdeai(k,r,v,t,x)) } < ce .
k=1"“"" i=1
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Proof. We use again the notations from the proof of Lemma 4.3. From (4.9) and Burkholder’s
inequality for Hilbert-space-valued martingales (Lemma A.2), we have

E[1A117] <CZ [

k.l=1

q
ao | dn Gt — 6, x — n)/ dr[ dv D<k>(u,(9,n)))2( }

<A+ A+ A,
where fori = 1,2, 3,

d
A]l' =cC ZE[

k=1

bi
de

[ an Gt — x—n)/ dr/dv DO(wy(6, 1)) ’ }
with

ap=s—¢€, by=s, aa =35, by =5 +cpe’, a3 =5+ cpe’”, b3 =1, (4.14)
and from (4.12),

E[|4,17] <cZ [

k=1

< Ay + Ap + A,

q
a6 | dnGult —8.x =) / dr / dv(DEa®, )| }

where Ay; is defined in the same way as Aj;, but with Gi replaced by G, i = 1,2, 3.
We first bound E [|A1 |q]. We apply Holder’s inequality with respect to the measure G2(t —
0, x — n)dfdn to find that

A < cZ / d@/dnGz(t ex—n))ql

k=1 Y%
SAO 2 q
/ dr / dv (DX, n))) ‘ } (4.15)
s—€ R

xf de/dnag(t—e,x—n)E[
a; R

In the case i = 1, for 6 € [s — €, s], we have s — € > 6 — € > 0. Hence by Lemma A.3,

[/ dr/ dv D(k>(u1(9 n)) }<EU/ dr/dv D(k)(ul(e n))) ‘ ] <ceFh (4.16)
s—€ O—e

where ¢ € ]0, oo[ does not depend on (6, 7, s, t, €, x). Therefore, by (4.1),

_ s q
Ay < ceTa (/ d@/dnGi(t—e,x—n))
s—€ R

a—1 a—1 )q
= ce T ((t — 5+ )V (1 — )V L e T 4.17)

where, in the last inequality, we perform the same calculation as in (A.12) under the assumption
t— s > coe.
Similarly, by (4.15) and Lemma A.3,

s+cpe’0 1
A12<c</ d@/dnGz(t—H x—n)) a

a—1

a—1 —1\4
=c ((t —s) e —(t—s5— COGVO)T> € a1
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a—1 a—1\4 a-1
c ((CoGyO)T — (cpe™ — coeVO)T) €«

a—1 a—1 a—1
= c(cpe™) @ le @ 1 = c/eTWa (4.18)

where the second inequality holds by Lemma A.1(a).
To estimate A;3, we see that Lemma A.4 implies that for any 6 € ]s 4 coe™, ¢,

kll|:

where ¢ € ]0, oo[ does not depend on (6, 1, s, t, €, x). Thus, by (4.15) and (4.1),

dr

v ( D)0, n)) ‘ }gce“?”,

! 2 4 1 Yo a—1 1 Y 7 (1 Y
A3 <c / d@/ dnGy(t—0,x —n) €170 = ¢t — 5 — cpe?) @ 1el= L fel=a
R

s+coe’0

(4.19)

where in the last inequality, we bound r — s — cpe”® by T.
We proceed to derive a similar bound for E[|A2|q]. We apply Holder’s inequality with
respect to the measure G, (t — 6, x — 1)dfdn to find that

g—1

Azl\cz / dG/dr;G (t—6,x—n)

k,l=1

2 q
/ d@/dnG (t—0 x—n)E[ dr dv (D)6, n))) ‘ } (4.20)
In the case i = 1, by (4.16),

s q
Ay <ec f d@[dnGa(t—G,x—n) U0 = ¢TI, 4.21)

s—€ R

Similarly, by (4.20),

s-+coe’0
/ dO/dnGa(t— ,X—1n)| €
s R

It remains to estimate A,3. By (4.20) and Lemma A .4,
t

Sc/ dG/dnGa(t— R
s+coe’0 R

where, in the last inequality, we bound t — s — cpe” by T.
Finally, from (4.17), (4.18), (4.19), (4.21), (4.22) and (4.23), together with the choice of yy,
we obtain the desired result. [

q

l a—1 a—1
An < ¢ = c(cope?)le @ 1 = /@ 1),

(4.22)

_n _n _n
A el=%)a — ot —s — C()éy“)qe(l o ) < dell=% )q’

(4.23)

4.2. Study of the Malliavin matrix
Fix T > 0. For s, € [0,T],s < t, and x,y € R, consider the 2d-dimensional random

vector

= (u(s, y), u(t, x) — u(s, y)). (4.24)
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Let yz be the Malliavin matrix of Z. Note that yz = (Vz)m.))m.i=1
random matrix with four d x d blocs of the form

24 18 @ symmetric 2d x 2d

.....

a ()

Yz - Yz

Yz = :
y;) ygl)

where

vy = ((DGuils, ), DGuj(s, D)), oy g

v,” = ((DGuils, ), DGuj(t, x) = ujs, YD) ), ooy y

vy = ((DGi(t, x) = uils, ), Dy, D) ), iy g
<

yy" = ((Dit, x) = uils, ), D, x) = ui(s, ) ), iy 4

ij=1,
We let (1) denote the couples of {1,...,d}x{l,...,d}, (2) denote the couples of {1, ...,d}x
{d+1, ..., 2d}, (3) denote the couples of {d+1, ...,2d}x{l, ..., d} and (4) denote the couples
of {d+1,...,2d} x{d+1,...,2d}.

The next two results follow exactly along the same lines as [10, Propositions 6.5 and 6.7]
using (2.3) and Proposition 4.2, with A there replaced by A2. We omit the proofs.

Proposition 4.5. Fix T > 0 and let I and J be compact intervals as in Theorem 1.1. Let
Ay denote the cofactor matrix of yz. Assuming PI’, for any (s,y), (t,x) € I x J,(s,y) #
(t,x),p>1,

a—1 .
y cpr(t =s|'@ +x = yleh? L ifmD e,
E[[(ADmil?]"" <1 cprlt —s1F +1x =y Y2 if (m, 1) € (2) or 3),
a—1 .
cpr(t —sl'@ +x =y HT if m, 1) € @).

Proposition 4.6. Fix T > 0 and let I and J be compact intervals as in Theorem 1.1. Assuming
PL’, for any (s, y), (t,x) € I X J,(s,y) #(t,x),p > 1,
l/p Ck,p,T . . lf‘(ma l) € (l)r
E (10" 02l | <4 ciprl =51 +1x =y if (m.D) € @) or 3,
“ a—1 .
cipr(t =sI'@ +x=y[*h) if 1) € @)
The main technical effort in this subsection is the proof of the following proposition, which

improves [10, Proposition 6.6(a)] and is why the n can be removed in the lower bound on
hitting probabilities.

Proposition 4.7. Fix T > 0 and let I and J be compact intervals as in Theorem 1.1. Assume
PI’ and P2. There exists C depending on T such that for any (s, y),(t,x) € I x J,(s,y) #
t,x),p>1,

E[(etyz)"]"" < Ct =51 + |x — y[* ). (4.25)
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Proof. The proof has the same structure as that of [10, Proposition 6.6]; see also
[11, Proposition 5.5]. We write
2d
T i
detyz = [](¢') v2&", (4.26)
i=1
where £ = {£', ..., £%¢} is an orthogonal basis of R?? consisting of eigenvectors of y;.

We use the perturbation argument of [10, Proposition 6.6]. Let 0 € R¢. Consider the spaces
Ei={(x,0): 2 eR and E;, = {(0, ) : © € R?}. Each &' can be written

E =0 u) =B, 0)+/1 - X0, i), “.27)

where A\, ui € R, (A,0) € Ey, (0, i) € Ep, with [|[A]] = |@l = 1 and 0 < B < 1. In
particular, [[€7]1* = [|A7]1* + [|[/))* = 1.

By the argument between (6.10) and (6.11) in [10], Propositions 4.8 and 4.9 conclude the
proof of Proposition 4.7. O

Proposition 4.8. Fix T > 0. Assume P1’ and P2. There exists C depending on T such that
forall s,t € ,0<t—s<1,x,yeJ,(s,y) %, x), and p > 1,

—2dp
E[( inf sTyzé) ] < C(lt =% + |x — y|* )y, (4.28)
E=(0,peR¥:

207 4+ Nl =1
We are going to apply Lemma 4.4 to prove this proposition. This is an improvement over
the proof of [10, Proposition 6.9] in which an extra exponent 1 appears. Notice that a similar

improvement has been obtained in [13, Theorem 1.3] for stochastic heat equations in higher
spatial dimensions.

Proposition 4.9. Assume P1’ and P2. Fix T > 0, p > 1 and By > O sufficiently small. Let
K be a subset of {1, ...,2d} with |K| = d. Then there exists C = C(p, T) such that for all
s,telwitht>s,x,yelJ, (s,y) #(t,Xx),

-P
E [uk (ﬂ(&f)Tyzs’) } <c, (4.29)

iekK
where Ax = Niex {Bi = ol

Proof of Proposition 4.8. Since y; is a matrix of inner products, we can write
d T d 5
vzt =3 [ ar [ a3 (DR )+ DRt 1)~ D5, 3))
k=10 R i=1
From here on, the proof is divided into two cases.
Case 1. In the first case, we assume that t —s > 0 and |x — y|* <t — s. Choose and fix

an € €10, 8(r — s)[, where 0 < § < 1 is small but fixed; its specific value will be decided later
on (see the line above (4.35)). Then we may write

Ty e > I + ),
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where
2

d d
n=Y [ ar [ v (Z(x,» — WlGals — 7,y — V) w(r. ) + @ik, 1, v, 5, V)] + w) ,
k=1757¢ /R i=1

d '
J =2/ dr/dsz,
k=] V1€ R
ai(k,r,v,s,y) is defined in (2.2) and
W= [1:Gat — r, x — v)ouu(r, v)) + wia;(k, r, v, 1, )],
i=1

Sub-case A: € < 8(t —s)/70 with 0 < y < 1. In this sub-case, by the elementary inequality
3.1),

L 2Yie—Yie,

where

A L d 2
Yie:= 5,(2::/ drf dv(z,uiaik(u(r, v))) G,(t—r,x —v),
Yie:=2 sup / dr/dv Z,u,a,(k r,v,t, x))

lleli<1 k=1

In agreement with hypothesis P2 and by (4.1),
7 2 [ 2 Non2e %t
Yie 2 cllul dr | dvGy(t —r,x —v)=c||lule « .
t—e R

Next we apply Lemma 4.3 [with s := ¢] to find that E[lYl E|‘1’] ceXita , for any g > 1.
For J;, we find that

Jl 2 Y2,€ - YZ,Ev

where

d d

N 2 s 2

Prem 330 [ ar [ ao(3o00 — montutr ) Gis =y = vy
k=17s7¢ IR i

and
5= 6(W, + W, + W3),

where

2
= sup / dr/dv (Z wiGy(t — — v)oi(u(r, v))) ,

I&l=1 =y

, = sup Z f dr / dv (Z(x — paik, r, v, s, y)> (4.30)
lEl=1 1=y

3= sup Z/ dr/dv <Zu,a,(k r,v,t, x)) 4.31)
lgl= 1k !
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Hypothesis P2 implies that Y2 e =clh—plleT & . We next give an estimate on the gth moment
of W, which is better than in [10]. We apply the Cauchy—Schwartz inequality to find that, for
any q > 1,

d d q
E[IWi1] < sup [luf™ xEUZ/ dr/dv > (@ VPG~ rx = v)| }
k=1 75—¢€ R o

=1

Thanks to hypothesis P1’ and (4.1), this is bounded above by

s q _ a—
c / dr/ dv G2(t — 1, x — v)} =c(t—s+6) T —(t—5) T ) < elwn,
s—€ R

where, in the inequality, we perform the same calculation as in (A.12) under the assumption
t — s > coe” of the Sub-case A.
We bound the gth moment of W, similarly as in [10]: By the Cauchy—Schwarz inequality,

d d q
B(Warr) < sup .~ B[S [ ar [ a0y atr v |
k=177 IR

§l1=1
s d 1
chUZ/ dr/deaiz(k,r, v,s,y)) :|
k=175—¢€ R o

We apply Lemma 4.3 [with 7 := 5] to find that E[|W,|?] < ce ¥,
Furthermore, different from the estimate of the gth moment of W3 in [10], under the
assumption of the Sub-case A, by Lemma 4.4 we find that, for any ¢ > 1,

s d q . —
E[IW3]7] < sup ful* x E[)Z/ dr/ dvza,»z(k,r,v,t,X)’ ] < cemin0) G 1=50g
—1vs—e YR

I§l=1
The preceding bounds for Wi, W, and W3 prove, in conjunction, that
E[|V2 1] < cemin((1+y0) G 1=
Thus we have
a—1
W+ =Y <+ Ve =Yie =Yoo > c(lulP + 111 = pl)e =i = Yo
> ce ot Y., 4.32)
where Y, := Y  + > satisfies
E[IY.]7] < ce™Hm Gt 1= (4.33)

Sub-case B: §(t — 5)/70 < € < §(t — s). In this sub-case, we are going to give a different
estimate on J;:

Ji = Ye — AWy + W3),

where

d d 2
=iy [ arf dv(Z[(xi—mGa(s—r,y—v)+u,-Ga(r—r,x—v)]a,»k(uv, v)))
k=1v5"¢ i=1
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and W, and W3 are defined in (4.30) and (4.31). Using the inequality (a + b)? > a® — 2|ab|,
we see that

.4
Ye = Y2,e - gBia),

A —1
where as above, Y» . > c||A — ulleaT, and

d
D i = 1)Gals — 1,y — v)ou(u(r, v))
i=1

d s
B%S) = Z/ dr/dv
k=] V5—€ R i

d
x| Y " wiGalt — 1, x — v)ou(u(r, v))‘. (4.34)
i=1

Hypothesis P1’ assures us that
)BF)‘ gc/ dr[dvGa(s—r,y—v)Ga(t—r,x—v)
s—€ R

:c/ era(t—i—s—Zr,x—y):c/ dr Go(t —s 4+ 2r,x — y),
s—€ 0

where, in the first equality, we use the semi-group property of the Green kernel [6, Lemma
4.1(iii)]. Since for any ¢ > 0, the function x +— G(¢, x) attains its maximum at 0, this is
bounded above by

€ €
c/ era(t—s+2r,O)=5/ dr(t—s+2r_alzc’((t—s—i—Ze)aa;l—(t—s)anl)
0 0

, o=l 1 —3s a—1 I —S a1
:cea(( +2) @ —( )“)

€ €

ST (1542 —(1/8)F),

where the first equality is due to the scaling property of Green kernel [6, Lemma 4.1(iv)] and
in the inequality we use the assumption € < §(r — s) and Lemma A.1(a). Hence we have

A A 4
Ni+Dh 2Vt Yo - 5353) —4W, —4W5 — Yy

a—1 a—1 a—1 a—1
Sc(lull? +1r —plP)e @ —cea (1/8+2)"c —(1/8) @ ) —4Wr —4W3 — ¥
> o — e T 15+ DT —(1/8)°T ) — 4Ws — 4W3 — V)

We can choose § small so that ¢ > ¢’((1/8 + 2)“«1;l -1 /S)QT_I) and therefore,
i+ =T — AW, —4W; — Y, .. (4.35)

In this sub-case,

d g d 1
E[|W2|q] < sup A — )™ XEUZ/ dr/deaiz(k,r,v,s,y)) i|
[HE k=1 75—¢ R =i
d g d 1
chUZ/ drfdea?(k,r, v,s,y)) i|
k=] V5—€ R i=1
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We apply Lemma 4.3 to find that E[|W,|?] < ce 524, Similarly, we find using Lemma 4.3
and the assumption §(t — 5)!/70 < ¢ that

d s d 4
E[IWs]7] < sup [l xEUZ[ dr/dea?(k, oo, t,0)| ]
| k=1Ys—¢ IR

|&l1=1
azly 2l Y0 N aly a2ly (v %t g
Sclt—s+e)ele e (MM 4e)alead e ™ a1,

Combining (4.32) and (4.35), we have for € €]0, §(t — s)[,

inf &7yzk > ce'T — Z. (436)

where

Ze = Yeli oy gty T 4W2 + W3 + Y1) 5100 < cs0-))
and for all ¢ > 1,

B [1¥el gy I < cemm@om et 1=, (4.37)
and

E [|4(W2 F Wi+ Y0l {B(Z_S)l/m«d(t_x)}|4] < celFm%Fta, 4.38)

We use [10, Proposition 3.5] to find that

—2pd o
E[<|gﬁ1flnyzé> } <@ —s) U = - el ey
whence follows the result in the case that [x — y|* <t —s < 1.
Case 2. Now we work on the second case where |[x — y| > 0 and |x — y|* > r—s > 0. Let
€ > 0 be such that (1 + B)e'/* < 1|x — y|, where B > 0 is large but fixed; its specific value
will be decided on later (see the explanation for (4.49) and (4.50)). Then

Ty, > 1) + I,

where
d s d ;
I = Z/ dr/dv(gm + @), L= Z/ dr/dmp%,
k=] V5—€ R k=1 (t—€)Vs R

and

d
o1 =Y (i — m)Gals — 1,y — Vouu(r, v)) + aik, r, v, 5, Y],

i=l1

d
02 = Y [1iGalt — 1, x — V)ow(ulr, v)) + wiai(k, r, v, 1, x)].
i=1
From here on, Case 2 is divided into two further sub-cases.
Sub-Case A. Suppose, in addition, that € > §(t — s), where § is chosen as in Case 1. In this
sub-case, we are going to prove that

inf &7yt > €T — Zy, (4.39)
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where for all g > 1,

202
E[1Z1.c19] < e(g)e 0. (4.40)
Indeed, by the elementary inequality (3.1) we find that

2.
h> A - B" — B,

where
d s d 2
Y[ af dv(Z[w — 1)Gals — 1oy = V) i Galt — 1 x — Vo ut, v))) ,
k=1"5"¢ R i=1
d s d
BV = 4||x—u||22/ dr/ dv ) al(k.r.v.s.y), 4.41)
k=1"5—¢ R 5
d d
B = 4lluHZZ/ dr/ dvy al(k.r.v.1.x). (4.42)
k=1"5"¢ R 5

Using the inequality (a + b)? > a2 4+ b2 — 2|ab|, we see that A, > A + A, — 2Bf3), where

s 2
Ay = Z/ drf dU(Z()\; —w)Gu(s —r,y — v)oi (u(r, U))) ,
k=] V5—€ R i=1
d g d 2
Ay = Z/ drf dv(Z wiGo(t —r, x — v)ou(ulr, v)))
k=] V5—€ R i=1

and Bi3) has the same expression as in (4.34). We can combine terms to find that
2
1> S(Ar+ Ay) = (B" + B? +2BY).
Moreover, we appeal to the elementary inequality (3.1) to find that I, > %A3 — B,, where

2
Z/ / dv (Z wiGy(t —r, x —v)o(u(r, v)))
t—€)Vs

i=1

2
B> _22/ /dv (Z,u,a,(k ro,t, x)> (4.43)
(t—e)Vs

By hypothesis P2 and using (4.1) three times,

A+ A2+ A3
s s
> p2(||x ,M”zf dr/ dvGi(s —ry —v)+ ||u||2/ dr/ dvG2(t —r,x — v)
s—€ R s—€ R
t
+ lwll? drfdng(tfr,va))
(t—€)Vs R

= (I = P T 4l (¢ =5+ — (=9 +0 = - v)T))

= co?(In = wlPe’e + Il (¢ =5 + 0% — (=9 + (-9 r 0T ))

S a1 t—s a=1
@ +((7)/\1)0>>,
€

t—s a=1
=cple’a (IIK wll® + Nl ((TJrl)
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a—1

Denote ¢(x) = (x + 1)“771 —xa +xA l)aa;l, x € [0, oo[. Then it is clear that

Co:= min ¢(x)> 0. (4.44)

0<x<oo

Thus we have
a1 " a1
Avt Ao+ Ay > 0% 5 (Ih— P + éollul?) > e

We are aiming for (4.39), and will bound the absolute moments of Bfi),i =1,2,3 and B,,
separately. According to Lemma 4.3 with s =1,

E_zupl |Bz|q] < (@) T and E|:”§1”1pl |B§')|q} < c(g)e T, (4.45)
In the sa_lme way, we see that

E _zupl |BEZ)|Q} et —s+ )T, (4.46)
Since we are in the Sub-case A where t — s < 8 '€, we obtain

E _zupl |B§2)|"} < c(g)e T, (4.47)
We can _combine (4.45) and (4.47) as follows:

E _2upl (Bf“ + Bf”)q} < clq)e . (4.48)

Finally, we turn to bounding the absolute moments of BP). Hypothesis P1’ assures us that
N
|B§3)| < c/ dr/ dvGu(s — 1,y —v)Gu(t —r,x — V)
s—€ R

=c/ era(t—i—s—Zr,x—y):c/ dr Gu(t —s +2r,x — y),
s—€ 0

thanks to the semi-group property.
When @ = 2, we can follow the arguments of [10, p. 414] to find that

inf £Tys6 > ce'? — 74, (4.49)

where Z; . = Bfl) + sz) + B; satisfies E[|Z; (]7] < c1(q)e€?.
When 1 < a < 2, by the scaling property of the Green kernel [6, Lemma 4.1(iv)], and the
bound in [6, Lemma 4.1(vi)], we have

€
)Bf)‘ < c/ dr(t —s +2r)"*Go(1, (x — y)(t — s +2r)"1/%)
0

€ _ —1/a
< ¢K, / (t—s+2r)
0 1+ |(x—y)t —s+42r)1e

€ _ —1/a
(t—s+2r)
g CKO(/ 1 l+ozdr
0 |(x —y)(t — s 4 2r) 1|

=cKylx — y|_1_“/ (t — s +2r)dr = cKglx — y| 7' [t — $)e + €2].
0

’H-a r
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Since t —s < |x — y|* and (1 4+ B)e/® < %|x — y| (since we are in Case 2), this is bounded
above by

1 a—1 1
CKa x — _16 4lx = —l—a 2 < CK < €a 4+ 62—(]-}—0[)/0[)
(Ix =yl lx —yl7 ") < (118 1+ pytte

1 1 a1
K“<(1+ﬂ)+(1+ﬂ)‘+“>6 '

Therefore, for 1 < o < 2, we can choose and fix 8 large enough so that

||§1H1f1$ vz = ce ““ & —Zye, (4.50)

where for all ¢ > 1, E[|Z) (9] < e(q)e “@ 9, as in (4.39) and (4.40).
Sub-case B. In this final (sub-) case we suppose that € < §(t —s5) < §|x — y|*. Choose and
fix 0 < € < §(t — 5). During the course of our proof of Case 1, we established the following:

inf £7yz¢ > > v - Z,, (4.51)

where, for all ¢ > 1,
E [|Z€|q] < cemn(+m) 1=

(see (4.37) and (4.38)). This inequality remains valid in this Sub-case B.
Combine Sub-Cases A and B, and, in particular, (4.39) and (4.51), to find that for all
0<e<271+B)“x -yl
ﬂ ~
Hglﬁlflé yz& 2 ce @ — (Zljecsa—s) + Ziely_yes-1¢)-
Because of this and (4.40), by [10, Proposition 3.5], this implies that

—2pd
|:< inf & VZS) :| <clx — |Ot( 2d1))("‘ )< ¢ (Jx — y|a + |t _SI)( Ly(—2dp)

=1
a—1 —2dp
el =s" +lw—y)

This completes the proof of Proposition 4.8. O

Remark 4.10. From the proof of Proposition 4.8, we see that Propositions 4.7 and 4.8 are
also valid for the solutions of stochastic heat equations on a bounded interval with Neumann
or Dirichlet boundary conditions. This is because in this case, Lemma A.4 is still valid (see
Remark A.5) and implies Lemma 4.4, which is used to prove Propositions 4.8 and 4.7.

Proof of Proposition 4.9. The proof follows along the same lines as those of [10, Proposition
6.13]. Let‘O <€ <s <1 We fix igp € {1,...,2d} and write o = (A "’) and
Lo = (&, ..., ig). We look at (§°0)Tyz&0 on the event {B;, > Bo}. As in the proof of
Proposition 4.8 and using the notation from (4.27), this is bounded below by

Z/ dr/dv( ﬁ,ole(s—ry—v)
+ /120\/1 - IB,'O(Ga(t —rx—v)—Gols —r,y— U)))Uik(”(ra v))
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+ Bighlaik, v, s, y)

2
+ ﬂﬁo 1 - ﬂ,-zo(ai(k, rv,t,x)—aik,r,v,s, y))])

d t

d
- Z Kv(r—e) @ '/R dv<§[ﬁéom(}“0 —r,x — v)o(u(r, v))

k=1

2
+ A1 — BRaitk, r, v, 1, x)D : 4.52)

We seek lower bounds for this expression for 0 < € < €y where €, € ]0, %[ is fixed. Notice that

this expression corresponds to [10, (6.35)], with « there replaced by 8, G by G, and fol dv
by fR dv. By following essentially the same proof as in their Cases 1 and 2 [10, pp. 419-425],
we find that for 0 < € < €,

o
Ligiy2p0)(E) vz = 11g; >p0) Zs

where

Z = min (CP2€%+W —2b,, CG% =2 ey — jel{e<t—s})
where I3, I. and J. are random variables such that El[|7] < c(q)ezaa;l", E[L]7] <

c(q)e #‘1, and E[|J~€|q] < c(q)e(%+ﬂ)q (n > 0). Note that all the constants are independent
of ip. Then, using [10, Proposition 3.5], we deduce that for all p > 1, there is C > 0 such that

E [1{%2,30, ((siO)TyzS"O)f”] <E [1{,3,.0>5o}2‘/’] <E[Z7"]<C.

Since this applies to any p > 1, we can use Holder’s inequality to deduce (4.29). Details can
be found in [28, Proof of Proposition 2.5.11]. This proves Proposition 4.9. [

4.3. Proof of Theorem 1.1(b) and (c)

Fix two compact intervals I and J as in Theorem 1.1. Let (s,y),(t,x) € I x J,s <
t,(s,y) # (t,x), and 71,20 € RY. Let Z be as in (4.24) and let pz be the density of Z.
Then

Ds,yir.x(21, 22) = pz(21, 22 — 21).

Use [10, Corollary 3.3] with 0 = {i € {d +1,...,2d} : z;_d — z’i_d > 0} and Holder’s
inequality to see that

i=1
Therefore, in order to prove the desired results of Theorem 1.1(b) and (c), it suffices to prove
that:

a—1
IHa, . 20(Z, Dllop < cr(lt —s| @ + |x — y|*~ ™4/, (4.54)

.....

and

d 1 2

i i\ 71— 2
(P{1itr, ) =i, 901 = 125 = 2h1})* < cexp [— Iz1 ~ 22l
Zi er(e—s"@ +1x—y“~h

} (4.55)

1
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under the hypothesis P1, and

d N I SN LA
(P{luitr, ) = wits, 1 = 12— 41}) ¥ < 2
_ llz1 — z2ll

1

1

(4.56)

under the hypothesis P1’.

The proof of (4.55) under the hypothesis P1 is essentially the same as that of [10, (6.2)], with
A there replaced by A2, by using Lemma 4.1, the exponential martingale inequality [25, (A.5)]
and Girsanov’s theorem. As for the proof of (4.56) under the hypothesis P1’, it is analogous
to that of [11, Theorem 1.6(b)], with % there replaced by 0%1 and y there replaced by o — 1.
Details can be found in [28, Section 2.5.3].

We turn to proving (4.54), which requires the following estimate on the inverse of the matrix

Yz-

Theorem 4.11. Fix T > 0. Assume PI1’ and P2. Let I and J be compact intervals as in
Theorem 1.1. For any (s, y), (t,x) €I x J,s <t,(s,y) #(t,x),k >20and p > 1,

Chop.T | | fmDhe,
E[Itv2)ilep] < %Mwﬂ&yw—wﬁﬁywwemmm (4.57)
cepr(t —sI'@ +lx —y™H™" ifm, ) e @),

Proof. As in the proof of [10, Theorem 6.3], we shall use Propositions 4.5-4.7.

When k£ = 0, the result is a consequence of the estimates of Propositions 4.5 and 4.7, using
the fact that the inverse of a matrix is the inverse of its determinant multiplied by its cofactor
matrix. Comparing to the proof of [10, Theorem 6.3(a)], the extra exponent n does not appear
due to the optimal estimate of negative moments of det y; in Proposition 4.7.

For k > 1, we proceed recursively as in the proof of [ 10, Theorem 6.3], using Proposition 4.6
instead of Proposition 4.5. [

Proof of (4.54). The proof is similar to that of [10, (6.3)] by using the continuity of the
Skorohod integral & (see [25, Proposition 3.2.1] and [24, (1.11) and p. 131]) and Holder’s
inequality for Malliavin norms (see [33, Proposition 1.10, p. 50]); the main difference is
that A there is replaced by Ai. Comparing with the estimate in [10, (6.3)], we are able to
remove the extra exponent n because of the correct estimate on the inverse of the matrix yz
in Theorem 4.11. O

Remark 4.12. 'We conclude this section by remarking that (4.54), and therefore Theorem 1.1,
is also valid for the solutions of stochastic heat equations with Neumann or Dirichlet boundary
conditions, since the result of Theorem 4.11 is true in that case by applying Proposition 4.7;
see Remark 4.10. Because the proofs in the next section of Theorems 1.3 and 1.6 are based
on Theorem 1.1, these two theorems are also valid for the solutions of these stochastic heat
equations.

5. Proof of Theorems 1.3 and 1.6

In this section, we give the proof of Theorems 1.3 and 1.6. The organization of the proof
is similar to [11, Section 2.3].
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5.1. Proof of Theorem 1.3: upper bounds

2na 2n
For all positive integers n, set ¢! = k27«1, x = [27e«-T and I}! = [,/ ,], J' =
[x/', xi' 1 R, = I x JJ". By (1.13), we have
B[ sup e, ¥) — w517 | < €27, (5.1)
(t.0)eR],

where B is chosen as in (1.13).

Lemma 5.1.  Fix n > 0. There exists ¢ > 0 such that for all z € R?, n large and R}, C
I xJ,

P{u(R} )N B(z,27") # P} < 2747, (5.2)

Proof. The proof is similar to that of [9, Theorem 3.3], using Theorem 1.1(a) and (5.1); see
also [11, Lemma 2.2]. The details are left to the reader. [

Proof of Theorem 1.3: upper bounds. We start by proving the upper bound on hitting
probability in Theorem 1.3(a). Fix € €10, 1[ and n € N such that 277! < ¢ < 27", and
write

Plu(l x NNB. &) #B < > Plu(R; )N B2 #0}.

(k,1):RY NI X J#D

The number of pairs (k,[) involved in the sum is at most 22#@+D/@=D times a constant.
Lemma 5.1 implies that for all z € A, n > 0 and large n,

2n(a+1) d— 2(a+1)

P{u(l x J)N B(z,€) # B} < C27"@ M2 a1 L Ce?™ a1 71, (5.3)

Note that C does not depend on (7, €). Therefore, (5.3) is valid for all € €]0, 1[.
Now we use a covering argument (see also the end of the proof of Theorem 1.2(a) in [11,
p. 104]): Choose € €10, 1[ and let {B;}:2, be a sequence of open balls in RY with respective
radii r; € [0, €[ such that
> _2atD) -
ACUZB; and Y (2r)" e T My ren_ (A)+E. (5.4)
i=1

Because P{u(I x J) # @} is at most 221 P{u(I x J) N B; # #}, the bounds (5.3) and (5.4)
imply that

Plu(l x J) # %} < C (@_ﬂafjb_nm) n e) .

Let € — 0 to conclude that the upper bound in Theorem 1.3(a) holds.
The proof of the upper bounds on hitting probabilities in Theorem 1.3(b) and (c) is similar;
see also [9, Theorem 3.1(2), (3)]. O

5.2. Proof of Theorem 1.3: lower bounds

The proof is similar to that of [9, Theorem 2.1]; see also [11, Section 2.4], which requires
the following lemma analogous to [11, Lemma 2.3].
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Lemma 5.2. Fix N > 0and 8 > 0.

(a) For p > 4d(%—ﬁ—l), there exists a finite and positive constant C = C(I, J,d, N, p, o)
such that for all a € [0, N],

. 2 p/(4d)
[ar [as [ ax [ avau.on 6. [(A“((”x); SIRA 1}
I I 7 7 a

<C Kd— 2(a+11) (a). (5.5)

d 1 . . ..
(b) For p > 4d(5 — F)’ there exists a finite and positive constant C = C(I,d, N, p, B) such
that for all a € [0, N],

g |t_s|ﬂ p/4d)
dr [ dsit— s~ Al <CK, 3@, (5.6)
1 1

a?

Proof. We start by proving (a). Using the change of variables it =t — s (¢ fixed), v =x — y
(x fixed), we see that the integral on the left-hand side of (5.5) is bounded above by

1] 1] _a-1 a1, p/(4d)
- ael ol | (@2 + 0 2)
41 J| di dv@% +5°7 )4 | Al _
0 0 a

Another change of variables [i = (ua®)*/ =V, = (va®)"/@~V] implies that this is less than

\J|D"1a72 1/(a—1),,Q2—a)/(a—1)
2042 “ Y
Ca st / du / dv [+ v) A 1]P/ED,
0 0 (u + )2

Passing to the polar coordinates, this is bounded above by

ul(a—l)/aa—Z

2042 4
Ca o1 (11 + h(a)), 5.7
where
Ka™2

IEVN72 2 d 2
I =/ dp pa-1-2pP/4  and Iz(a)=/ dp pa-1-
0

[N

KN—2

with K = (|12~ Ve 4 J2@=1/2_ Clearly, I, < C < oo since a—il — % + 4 > —1 by the

hypothesis on p. Moreover, if ﬁ - % +1#£0,ie, % # d, then

_ 2@+ D/@=1) _ pd=2e+D/(@~1)
L(a) = K @+D/(@=1)—d/2 . (5.8)
(x+1D/(a—1)—4d/2
There are three separate cases to consider. (i) If % < d, then L(a) < C < oo for all
a € [0, N1. (i) If 220 > 4, then L(a) < ca® 2@ D/@=D_ (i) If 220 = 4, then

1 1
I(a) = 2(log — +log N) < (2log N +2)log, (~). (5.9)

We combine these observations to conclude that the expression in (5.7) is bounded above by
C dez(‘“'ll)(a)‘
Next we prove (b). Fix ¢ and change variables [u =t — 5] to see that

B p/(4d) |1 B p/@4d)

Z‘_

/dz/dsu—sr? t=sI” <2/ duu? | A1 . (5.10)
1 I a’ 0 a’
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Another change of variables [u = a*/#v!/#] simplifies this expression to

) [1Pa=2
Caﬁfd/
0

Observe that

dv v%f%fl [v A 1]P/64)

[1Pa—2 1_d
/ do vﬁ_f_l [V A 1]P/(4d) < I + I(a),
0

where
[1fa=2

[1/PN—2 L4 1 d
s—5-1+5 5—5—1
I, :=/ dvvp 2 4 and I(a) :=/ dvovf 2 .
0 [IIBN—2

Clearly, I} < C < oo provided that p > 4d(% — %). The remainder of the proof is the same
as that of (a). [

Proof of Theorem 1.3: lower bounds. We start by proving the lower bound on hitting
probabilities in (a). The proof follows along the same lines as the proof of [9, Theorem 2.1(1)],
therefore we will only sketch the steps that differ; see also the proof of [11, Theorem 1.2(b)].
We need to replace their 8 — 6 by d — %

We first note that our Theorems 1.1(a) and 1.2 imply that

inf /dt/dx Pix(2) =2 C >0, (5.11)
I J

llzll<M

which proves hypothesis A1’ of [9, Theorem 2.1(1)] (see [9, Remark 2.5(a)]).
y Let us now follow the proof of [9, Theorem 2.1(1)]. Define, for all z € R and € > 0,
B(z,€) :={y e R? : |y — 7| < €}, where |z| == max;g<q |2, and

1
J.(2) = W/Idt/de 130, 0, 1)), (5.12)

as in [9, (2.28)].
Assume first that d < % Using Theorem 1.1(b), we find, instead of [9, (2.30)],

E[(J.()] < ¢ / dr f ds / dx / dy [ Ag((t, %) (5, YT,
I I J J

The change of variables u =t —s (¢ fixed), v = x — y (x fixed), implies that the above integral
is bounded above by

I 11 . i —d Il
cf du/ dv (uzTcl + le) < c/f dut U5, ey o (@ 41D, (5.13)
0 0 0

where ¥ is defined by ¥, ,(p) := foa %, for all a, v, p > 0, as in (2.23) of [9]. Hence, by
Lemma 2.3 of [9], for all € > O,

1]
E[(J@)]<C / duK,_ o (u@ D4/
0 a—Dd

In order to bound the above integral, we consider three different cases: (i) If 0 < d <

a—il, then 1 — ﬁ < 0 and the integral equals |/|. (i) If o(le < d < 24D then

a—1
K, o (u@=D4/Co) = yl/e=@=1d/G2) and the integral is finite. (i) If d = —%;, then
(a—1d

1—
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Ko(u'/®) = log +(LFI/“‘) and the integral is also finite. The remainder of the proof of
Theorem 1.3(a) when d < % follows exactly as in [9, Theorem 2.1(1) Case 1].
Assume now that d > % Define, for all u € #(A) and € > 0,

1
Jo(u) = ey /I;d 'u(dZ)/,dt/de IE(Z,G)(u(t,x)), (5.14)
as [9, (2.35)]. Fix u € #(A) such that

I, 2« ————.
dﬁ%(u) Cap,_2+1)(A)

a—1
Analogous to the proof of [9, (2.41)], we use Theorem 1.1(b) and Lemma 5.2(a), to see that
forall e > 0

2C
E[(J0)] < Cal,_2ein () < 2

Cap,_ YatD) (A’

The remainder of the proof of Theorem 1.3(a) when d > % follows as in [9, Theorem
2.1(1) Case 2].

The case d = % is proved exactly along the same lines as the proof of [9, Theorem
2.1(1) Case 3], appealing to (5.11), Theorem 1.1(b) and Lemma 5.2(a).

The proof of lower bounds on hitting probabilities in (b) and (c) follows similarly by using
Theorem 1.1(b) and Lemma 5.2(b). [

5.3. Proof of Theorem 1.6

In the case b = 1 and o0 = 1, the components of v = (vy, ..., vy) are independent and
identically distributed.

Proposition 53. For any 0 < tn < T, p > 1 and K a compact set, there exists
c1 = c1(p, to, K) > 0 such that for any to < s <t <T,x,y €K,

p a1 a—1 P2
E [lvi(t, x) — vi(s, )] = 1 <|t—s| T4 x — ) . (5.15)

Proof. The proof is similar to that of Proposition 2.1 of [11]. Details can be found in
[28, Proposition 2.2.2] [

Proof of Theorem 1.6. As in [11, Theorem 1.5], we first apply [35, Theorem 7.6] to prove
that the upper bound holds in Theorem 1.3(a) when u is replaced by v and 7 is set to O in the
Hausdorff measure on the right-hand side. For this, it suffices to verify Conditions (C1) and
(C2) of [35, Section 2.4, p. 158] with N =2, H; = 41, H, = &1

First, we observe that E[v;(z, x)*] = co[t‘%1 (see (4.1)), which implies that there are positive
constants ci, ¢, such that for all (¢, x), (s,y) € I x J,

c1 < E[ui(t, x)*] < ea. (5.16)

By (5.15) and (1.12), there exist positive constants cs3, ¢4 such that for all (¢, x), (s, y) €
I xJ,

e3(Ag((t, x); (s, VN < E[ui(t, x) — vils, »IP] < calAa((t, x); (s, )% (5.17)
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Hence condition (C1) is satisfied by (5.16) and (5.17). Condition (CZ) holds by applying the
fourth point of Remark 2.2 in [35], since (¢, x) — E[v(z, x)] = cat @ is continuous in I x J
with continuous partial derivatives.

The rest of the proof of Theorem 1.6 follows the same lines by using (5.16), (5.17) and
the fact that (¢, x) — E[vi(¢, x)] = cat%1 is continuous in / x J with continuous partial
derivatives.

Therefore we have finished the proof of Theorem 1.6. [
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Appendix

We first state an elementary fact that is used several times.

Lemma A.1. Fix y €]0, 1[ and n > 0.

(a) The function x +— (x + p)¥ — x¥ is nonincreasing on [0, co[ and the function x +—>
xV — (x — w)? is nonincreasing on [, ool.

(b) (1 +x)Y — 1< yx forall x > 0.

We recall Burkholder’s inequality for Hilbert-space-valued martingales; see also
[3, Eq.(4.18)] and [10, Lemma 7.6].

Lemma A.2 (/22, E.2. p. 212]). Let H, , be a predictable L2(([0, t]1xRY", da)-valued process,
where m > 1 and da denotes Lebesgue measure. Then, for any p > 2, there exists C > 0 such

that
P
il Jef }
([0,r]xRy™

The next result is an extension of Morien [23, Lemma 4.2] for the solution of the fractional
stochastic heat equation (1.1).

/ /H (@)W (ds. dy)‘ da

ny(a)da‘dyds

([0,1]xR)™

Lemma A.3. Assume PI. For all p > 1,T > 0 there exists C > 0 such that for all
T>2t>s>e>0andx eR,

S P
2 E [(/ dr / dv| D(k)(ui(t,x))|2) }gcém_w/a'

k,i=1

Proof. The proof follows the same lines as [23, Lemma 4.2]. We include it because the
ingredients will be needed for Lemma A.4. We define

Hi(t, x) _E[</ drfdv|D(k)(u (t, x))| ) ] (A1)
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and

Ky(t) = sup sup H;(x, ) (A2)
i—1 s<AStE yeR

which are finite by (2.3). Thanks to formula (2.1), we have

s P
H,«(z,x)gc(/ dr/du(;g(r—r,x—v))
s—€ R

d s t ® N 29p
— — .. J
”;E[[/Hdr[l;d”q, fRGaa 0. x — Do 0. MW 0. )| ]
s t
+cE[[ / dr / dv(/ / Gaa—e,x—n)Dﬁf‘3<b,~(u(9,n)))dedn)z]”}
s—€ R r JR

= A1+ Ay + As. (A3)

By (4.1), we see that

o

/ dr/ VGt —rx—v)=ct—s+6)T —(t—5)T) < eT, (A4)
s—€ R
by Lemma A.1(b). This implies that

Ay < cpe b/, (A.5)

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma A.2) first, and then
the Cauchy—Schwarz inequality together with the fact that the partial derivatives of o;; are
bounded, we obtain

d s SAB 2
Az < CEE[[/H d@/Rdn/s_e dr/Rdvci(:—e,x—n) <D£f‘3(u,(9, ) ] ]
d t SN .
240, x — )
+c§E|:[/ d@/Rdan dr/RdvGa(z 0,x —1n) (Dm(ul(e, n))) } ]

= Az + An. (A.6)

We now use Holder’s inequality with respect to the measure G2(t — 6, x — n)dfdn to find that

N P
[ o [ ancza-o. sup [(/ ar [ av (o e, n)))) }
s—€ R (CA n)e[() T1xR

< ce@ /e (A7)

Ay <c

where the last inequality follows from (2.3) and (A.4). Again, applying Holder’s inequality
with respect to the measure Gi(t —6,x —n)dbdn, we see that

p—1

t
A22 < & do

dnGi(t —6,x — )
R

t d N P
x/ d@/dnci(t—e,x—n)ZE[(/ dr/dv (DX, 1)) ) ]
s R =1 s—€ R

t
< C(I—S)aa;l(l)—l)/ d@/dnGi(t—@,x—n)Ks(Q)
K R

c/ (t — 6)" @ K,(6)d6. (A.8)
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We handle the third term in (A.3) in a similar way. First, by the Cauchy—Schwarz inequality
with respect to the measure G,(t — 6, x — n)d6dn, we have

[ ps t d p
A3 < cE / dr/ dv/ / Golt —0,x — U)Z(Dg?(ul(g, )’ d@dn] }
s—e€ R r R
_ -
=cE / d@/ dnf /dv Gt —0,x — ”)Z (DX, 8, n)))
- - .
<cE f defdr;c (t—0, x—n)Zf /dv (DX, 8, n)))
L 4 -
+cE f dG/ dnGu(t —0,x — 1) Zf dr/ dv (DE)(u (0, n)))2
K R 1 ]
= A3 + Az (A9)
By Holder’s inequality with respect to the measure G,(t — 6, x — n)d0dn,
s p d T 2\ P
Ay <e / de[ dnGalt—6,x—m)| 3 sup E[(/ dr/ dv (D&, ) ) }
s—€ R =1 @.mel0,TIxR 0 R
<ceP L celebr/e (A.10)

where in the third inequality we use [6, Lemma 4.1(i)] and (2.3). Similarly,

Az < d@ dﬂ Gu(t —

K p
xf d@/dnGa(t—G,x—n)ZE[</ dr/dv (DX, 0, r))))2> }
s R =1 s—€ R

r—1l nt
/ d@/dnGa(t—Q,x—ﬁ)Ks(Q)
K R

'
do

dnGDt(t _9,)( - 77)
R

t
cf K (6)d6. (A.11)
Finally, we put (A.3) and (A.5)—(A.11) together and obtain that

t t
K,(t) < ce(“_l)”/“+c/ (1+(t—6)")K,(0)d6 < ce<“—'>ﬂ/“+z/ (t—6)"a K,(6)d6.

s s

Define K,(1) := K;(A + s). From the above inequality we have
1—s
Kt —s) < ce@Drle +5/ (t —s —6) «K,(0)do.
0

By Gronwall’s lemma [8, Lemma 15], we have
Kt) =Kt —s)<ce“ Drle forall s <r. O

The following lemma is an improvement of Lemma A.3.
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Lemma Ad4. Fix T > 0,co > 1and 0 < yy < 1. For all p > 1 there exists C > 0 such that
forallT}t/ >e>0witht —s > coe” and x € R,

[(/ dr/ dv (DB, x))) > } < Cel=@r,
k,i=1

Proof. We use the same notations as in the proof of Lemma A.3. First, under the condition
t —s > coe”, using (4.1), we have

/‘ dr/dvGi(t—r,x—v):c((t—s—i—e)anl—(t—S)aa;l)
s—€ R

< Cl@e + )T = (@) ) = clege™) T (1 + ¢y F — 1)
R B BV S Y B
< c(cpe™) @ ¢y e (a—1)/a=ccy, "€ (¢ — /e, (A.12)

where the first inequality follows from Lemma A.1(a) because t — 5 > cpe’, and the second
inequality is due to Lemma A.I(b). Therefore, A; < 6(1 2l Using (A.12) instead of
(A.4), we see that Ay; < ce(l’%o)l’. Due to the choice of yy and by (A.10), we have
Az < ce? < c’e('_g)” . The estimates for other terms remain the same as in the proof
of Lemma A.3. Therefore, we have obtained that

K p t & -2, = | @

s() <C€ +c | 4+ —-0)"2)K,0)d0 <ce" " P+ | (t—0) 2K (0)do.
s s

Applying Gronwall’s lemma ([8, Lemma 15]), we have K(r) < cel=Dr forall s <t O

Remark A.5. The result of Lemma A.4 is also valid for the solutions of stochastic heat
equations with Neumann or Dirichlet boundary conditions in which case o« = 2. This is because
the Green kernel of the heat equation with Neumann or Dirichlet boundary conditions shares
similar properties with the Green kernel of heat equation, which enables us to derive the same
estimates as in (A.12) and the lines that follow, for the solutions of stochastic heat equations
with Neumann or Dirichlet boundary conditions.
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