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Let zh be the process obtained by linear interpolation from discrete observations of a diffusion X. In 

the first part of this paper we study the statistical properties of the observation sgn x,. In the second 

part we prove that the number of zero-crossings of x,, suitably normalized, converges in (L’-norm) to 

the zero local time of X. 

diffusion * local time * crossings * estimation 

1. Introduction 

Let X be a diffusion on R which is a solution of the stochastic differential equation 

dX,=b(X,,e)dt+dW,, X(,=x, 

where 13 is an unknown parameter. 

Let _%, be the process obtained from X by linear interpolation from the sequence 

{Xkd, ksO1. 
We are interested in the observation (2, = sgn Xkd, k 2 O}. From a statistical point 

of view, this observation is convenient and has some robustness, but it is not easy 

to compute its likelihood. In what follows, marginal likelihood functions are con- 

sidered (working as if 2, were independent or a Markov chain), giving asymptotically 

normal estimators. The variances of these estimators are functions of A and go to 

infinity when A goes to zero, as usual for discrete observations. The asymptotic is, 

of course, linked to stationarity and to positive recurrent models. 

Let us now consider a finite interval of observation, for instance [0, 11. The 

observations are Zp’ = sgn Xk,“. If we are able to prove that the number N,,, of 

zero-crossings of the process _% ,,n goes to the local time L, we have an interesting 

statistical interpretation of L. 

Thus, the last part of this paper is dedicated to proving that &a NA (t) -+ L(t) 

as A + 0 (in L*-norm). 

In Azais and Florens-Zmirou (1987) we prove a similar result for Gaussian 

processes and the two parts of this work are related to our work (Florens-Zmirou, 
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1988) where we studied the random discretization obtained from the excursions of 

X longer than A. 

2. Statistical model 

We consider the statistical model 

dX,=b(X,,B)dt+dW,, X0=x, BE@, 

where 0 is a compact subset of R. 

For each 0, ((Xt)rtn+, P,) is supposed to be a recurrent positive diffusion. The 

density of the transition probability ZI, is denoted by rrr(x, y) and that of the invariant 

probability is denoted by we(x) (we abuse the notation by setting ~#(f) = 

of/-+ dx). 
The true value of the parameter is denoted by BO. We denote by a comma the 

derivative with respect to x and by a dot the one with respect to 19. 

The following regularity hypotheses are used: 

(H.1) (x, e)+ b(x, f3) E C'. 

(H.2) There exist p and K such that for all 0, 

lim infm> - p, 

I+Q, X 

inf[b’(x,e)+b’(x,e)]>-K, K>O, 

b2(x, e)+b’(x, 0)=0(x2), x+00. 

(H.3) 

W.4) 

(x, 0) + p,,(x) is uniformly bounded. 

There exists A such that for all (0, x), 

I&(x, e)l s A exp hlx(, Id'(x, e)l s A exp A]x]. 

Let 

We set 

z, = 
( 

1 if X,, >O, 

-1 if X,, CO. 

I 

x 

J%(x) = /-Q(Y) dy, 
0 

From 

P 0.J = PPIX,~O, x, CO], q@ = P”[X,SO, x, >O]. 

now, we choose pu,(x) dx as the initial distribution. Then the process is 

stationary, and therefore pA = qd. Let us remark that from the exponential conver- 

gence of the transition probability to p, proved in Florens-Zmirou (1984), it is not 

too difficult to derive the case of any initial distribution. 
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We shall omit f3 when there is no ambiguity and we denote in an evident way 

n-l 

n+= c l(Zk=,)Y n-z n-n+, 
k=O 

n-1 n--l 

n +-= c 1~2,=,,2,+,=-l), 
k=O 

and net and n -_ by an evident analogy. 

We shall use as contrast functions the marginal likelihoods of Z,. The first one, 

denoted by Ai( 0), is the binomial distribution b(n, p’(O)) and the second one, 

denoted by .A&( 0), is the multinomial distribution M[ n, pd (O), pi -pA (O), pi - 
pd (O)]. The two contrasts are respectively, 

L~‘(6)=n+log~+(@)+n-log~*.-(8), 

L’,2’(0)=n+-logpd(f9)+n-+logp,(0) 

+n++ l&p+(8) -pA(B)) 

+ n-- h&-C@) -PA(~)). 

The law of large numbers proves that as n + CO, 

and 

where K is the Kullback distance. 

A, is a marginal model of A, and therefore 

Let i’,i’ = arg max L’,“( 0). (If there are several maxima, e^‘,” is the argument of one 

of them.) We make now the additional assumptions: 

(H.5) 0+/~+(e), B-+/Y(8)~ C*. 

(~.6) e+pd(e)~ c2. 
We need these assumptions for the proof of the consistency and normality of 

e^‘,“. Of course the hypotheses (Hl)-(H6) are not independent. It follows from (H.5) 

and (H.6) that 0-, (p+(e), p-(0), ~~(0)) are continuous and Theorem 3.2.8 of 

Dacunha-Castelle and Duflo (1986) can be applied to models A,( f3) in order to 

prove the consistency of $‘,‘I. 

The main result gives the expansion of the asymptotic variance with respect to A. 



142 D. Florens-Zmirou / Discretized diffusions 

Theorem 1. Under hypothesis (H): 

(1) Let I,(&,) be the Fisher information of~Q,(&). IfI,(&J#O then 

a (6’,“- 19,) Y’(p”o)+ N(0, (T:( 0,)) 

where CT:(&)= V”(eo)/l~(e,)+O(A), 

and M(x) = 5; p(u) du. 

(2) IfIl(O,) =0 (p+ and pL- do not depend on 0), then 

fi A3’4( e^‘,“‘- 0,) Y(pBU), N(0, (T;) 

with, for every e>O, a~(B,, A)~(l+~)~/l~(&Js (as soon as A<A(&)), where 

Z,( 0,) = [fi,,(0)]2/~L,,(O), and s is the lower strictly positive bound of the spectrum of 

the dz#ksion. 

Proof. By the law of large numbers, we have 

-t iI, + z,(e,) = 
[ 
b!$F+$IjT (0,). 

1 

In order to prove a central limit theorem for $,‘I, we need to know the behaviour of 

We apply our theorem (Florens-Zmirou, 1984) for functionals of the chain X,, : 

with Vy’= Ap(f2)+2p(fI14Fd) and FJ. = A CzZo II,& where 

In Florens-Zmirou (1984), we also proved that 

I’;‘= V’+O(A) 

with 

v0=4 +ffi&x)(dx) J 
2 

--co [ J &y xf(u)/4u) du 
0 1 

=4[ A+(s)‘+A-($)‘I. 
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Then, if I,( 0,) # 0, 

143 

J-& P(eo) -+ N(0, a:( 0,)) 
-moo) 

with af(O,) = V”( O,)/I:( 0,) + O(A). 

In order to prove that 

m (e^‘,” - 0,) + N(0, (r:( O,)), 

we apply Theorem 3.3.15 of Dacunha-Castelle and Duflo (1986). We have to check 

that 

lim lim sup 1,Ll,‘)(O)-Ll,“(Of)l=O; 
h+O n-c= (B-_B’,<h n 

this is a consequence of hypothesis (H.5) and of the law of large numbers. 

Let us study the case of J&(O). We have +- ++ 
!!___--- n 

P3 lI.+-Pd PA p --PA 

and we suppose that 0 + ,u+( 0) and 0 + p”-( 0) are constant. 

First, 

-1i’,Z’(Oo)-12(Oo) as. 
n 

where Iz(Oo) is the Fisher information of JIIz(Oo), given by 

p+ P- 
(CL+-pA)+(p--PA) 1 (00). 

In the same way as for the first result, Theorem 1 

that 

of Florens-Zmirou (1984) proves 

_& i’,“‘( 0,) u(po”), N (0, v’;eo)) 

with V:“=(17,0p)[Af2+2fFA] and FA =A I:=, rir,,f; where 

f(x y)=& PA 
(.~>O,XSO) 

-~ 
> 

PA p+ --PA 

1 (.Lvs-o,.x>o) 

lid IjA 
+- l~yrO,s=o) 

PA 

-___ 1+zO,x<O). 

p -PA 

Then, using 3.3.15 of Dacunha-Castelle and Duflo (1986) and (H6), we obtain 

a&)-O,) y(poo). N(0.a). 

It remains to get A-estimates of I$’ and 1,. 
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Lemma 1. Under hypothesis (H), ifp+(e) and p-(0) are constant: 

(a) %,A =&,A = t/‘~pce(0)+O(A) uniformZy in 0, 

(b) &,A =&,A = v'm /Le(0)+O(A) uniformly in 0. 

Proof. (a) We have 

where 

H(x,y)= ‘(b2+b’)((*-V)X+~y+~B,)dD 
I 0 

and B is a standard Brownian bridge (Dacunha-Castelle and Florens-Zmirou, 198( 

Let u = (y-x)/a and 

then 

x E[exp -AH(x, xt ufi)] dx; 

=dm 
I 

’ U e-u2'2pA(u) du. 
--03 

l If u s 0, set J(u, A) = {x; 1x1 s -uhf}; we have 

o~~~~~l(~(x)~(x+~u))1’2-~(o)l~ SUP II.L(x)-k40)1. 
xeJ(u,A) 

One has 

where here (and later) Ci denote constants independent of A (and of 0). 

l On the other hand, by hypothesis (H2), H 2 -K, and hence one has 

IE eeAH- l( == AE(HI eAK. 

Since 

jH(x,x+u&%)(= ’ lb’+ b’[(x+vua+a B,) dv 
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and from (H2) it is clear that 

sup EIH(x,x+u~I~C,+C,u2A, 
xtJ(u,A) 

then (PA(u) =p(O)+S,(u, A) with S2(u, A)< C,lul~+C6u2A, u2 is integrable with 

respect to e -u2/2 du and the r e fore the first statement of lemma is proved. 

(b) We need an analogous result for IjA. Now (PA is sum of two terms, 

1 .(I) -_ PuJTi 1 

I ( 

G(x) @(x+X&4) 

(pA -uJz 0 2 ~(x)+~(x+J&J) > 
(P(X)F(X + uvQ))“2 

+ E[exp-AH(x, x-t ua)] dx, 

and 

1 

I 

+%A 
.(2) -_ 

‘PA -ufi 
(f++(x+~ .))1’2 

rJ 

* E[-A&I(x, x + ufi) exp- AH(x, x + u&i)] dx. 

Let us study the first term: 

Using (a) we get 

< 2h&i (u/ e*&I”’ by (H4). 

~~~‘-~(O)~~const.~Ju~e”~‘“‘. 

Next, + (2) has an expression analogous to (PA and then using (H4) and (a) we get 

@y2’( u) c const. A eAa”‘. 

Because of the integrability with respect to eu2’2 du, we get @A = m i (0) + 0( A ) 

and the lemma is proved. 

Now, we are able to compute V(d). Using Lemma 1 one has 

I, = 
J 

fJx 
MO)l’ 
----+0(a)= 

P(O) J 2 1,&i+ 0(&i). 
?r 

It is not possible to get an equivalent of V’,2’; 

VT’ = /.L 8 Ii&, (f’A + 2F,f) 

= A f2cx, y)TAd(x, Y)pu(x) dx dy 

+2 
I 

f(-T Y)FA~(Y)~A(X, Y)Pu(X) dx dY. 
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If 11 )( is the norm in L*(~.OIT~), one has Ijfll’=Iz and IIFdIl~Allfll/(l-e-““) 

where s>O is the lower strictly positive bound of the spectrum of the diffusion. 

Then for A CA(E), 

V%% IlfIl’+4lfll’. 

We get finally 

v(2) < 
A- 

J 

~I++R(A) with R(A) = O(A) 

and the asymptotic variance of &I( i’,” - 13,) is equal to (T:( &, A)/A”’ and if 

A <A(s), 

(~~(0, A)G[(~+E)]@ 2 9 
I@ . 

We studied in this first part the behaviour of the number of crossings of XA, when 

the interval of observation goes to infinity and A is fixed. In order to study, in a 

subsequent paper, the same problem for a discretization (X,,) with k = 1,. . . , n, 

A,, + 0, nd,, + CO, we study now the convergence of the number of crossings when 

A goes to zero and the interval of observation is fixed. 

3. Zero-crossings of X and zero local time of X 

Let L(t) be the zero local time of the diffusion (see Rice (1944) for references on 

local time), that we define here by 

l(-a,+s)(X) ds. 

If I=[a,b],O<a<b, L(I)=L(b)-L(a). 

Let NA (I) be the number of zero-crossings of XA between I. 

Theorem 2. If hypotheses (H.1) to (H.4) are satisfied (for a jixed e), we have 

We shall use the framework of Azema and Yor (1978) and Azais (1990). 

We need the following Lemma 2. First let us denote by fx,v,Z,,,, a continuous 

version of the density of random variables X, Y, 2,. . . with respect to Lebesgue 

measure (when its exits) and let 

J;,,,, =fx(r,),X(t*) 

and if ti # kA, i = 1,2, 
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Lemma 2. Under hypotheses (H.l) to (H.4) (for ajixed e), we have 

(1) .L,,,2(o, O)+g, t1 < t2, 

2 1 

(2a) fr~:;‘(xl, x2, zl , ~2) t1 < t2, 

(2b) lim d-0 f,~::‘,(O, 0, z I, z2) =.L,,,(O, 0) 

1 

- 237 exp -- z:+z: . 2 

(3a) 
G fff,,,(xI, x2, z) s ___ e 

-G/2 

Jt,-tl ’ tl < f2, 

(3b) ~-“,fr:,t~(o, 0, z) =f;,,& 0) $t$ 

with C, , C,, C, suitable constants. 

Suppose that we have proved Lemma 2. To prove Theorem 2 from Lemma 2, we 

proceed as follows. Let 

l”(1) =m NA(Z) and q’(Z) =-$ 
I 

l,~s,sr(K) ds. 
I 

It is known (Rice, 1944) that n’(Z) goes to L(Z) (in L2-norm) when 6 goes to zero. 

Then we have to prove that 

lim E[~A(Z)-~S(Z)]2=0. 
(MI-0 

Let n = [[[/A + 1 and (I,, . . . , I,,) be a partition of I in n intervals of length A 

(except the last one). 

Let 5d=gA(Zi) and ~fi= v”(Z,). Set ZA ={(i,j); /j-i]> l} and _Zi = 

{( i,j); jj - iI S 1). 

First note that since the diffusion is stationary, if (i,j) E Ji, 

with E[l?]‘= $A( PA + qA) = O(A”“) from Lemma 1. Hence 

c E[5fltl+O as A-+0. 
(i,j)EJ; 

It remains only to prove that if (i, j) E Zd, 
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Let us remark that the trajectories of x4 are absolutely continuous and its 

derivative x>(t) is defined except at the points kA. The process T?A has finitely 

many local extrema on each bounded interval then we can apply Kac’s version of 

Rice’s formulas (Azais, 1990; see also Rice, 1944). 

So, for any (i,j)EJ4, 

where (from Lemma Z), 

and 

So, Lebesgue’s theorem implies that 

On the other hand, 

f ,, rf2 is continuous in (u, V) and by Lemma 2, 

So by Lebesgue’s theorem 

$2 E[q’(I)]‘= I f,,,,,(O, 0) dt, dt,. 
IX, 

We now want to compute 

First, note that if (i, j) E J”d, then 

where 
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and E[cd]* = 0(A3’*) by Lemma 1, so we get 

lim E C (vf.Jf)=O. 
(W)+O (i,j)E& 

Next note that for (i, j) E JA we get by Rice’s formulae, 

By Lemma 2 we know that 

and 

Finally, using Lebesgue’s theorem, this proves that as (6, A) + 0, 

Our theorem is an immediate consequence of the equality 

EEA(l) - vs(O12= ~~5A~~~12-~~~CA~~~rl~~~~l+~~~S~~~12. 

To complete this section it remains only to prove Lemma 2. 

Proof of Lemma 2. We have 

1 1 (Y-X)’ 
ft,.,,(x7y)=~~exp-2(t2_1,) [~u(x)~~~)l”~~(x,y, t2-tI) 

with H(x, y, t) = E exp -tH(x, y) (H was defined in part 1). 

SO 

by (H.2), so (1) is proved with C, =&enA“]J~U(I,. 

Let us now prove (2). Let ti = hiA + uiA, i = 1,2, with hi = [t,/A], 0s ui < 1, and 

suppose t, < t2 such that h, - h, = k > 1. Then we have 

XA(ti)=(l-ui)X(hiA)+uiX((h;+l)A). 

Thus, the density f$:', can be written as 

f;::‘,h X2, ZI, Z2) = 4-4x, -%a zhAd(x, - %a Zl, X,+(1 -%)a Z,) 

’ ~(bl)A(x, + c1 - %)a zl, x2- u,a z2) 

’ ~A((x2-u2~z2,xZ+(1-u2)~z2). 
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and using the expression of n,(x, y), we obtain 

1 1 
=-exp - 

z:+zz: 

v’-2r(k- 1)A exp - 

(x2-UzV5iz2-x,-(1-U,)%/zz,)2 

2n 2 2(k-1)A 

+_L(x,-u,~z,)/_L(x2+(1-u2)&iz2)]1’2 

. H(x, - u&i z, , x1 + (1 - u,)J;ij z, , A) 

. H(x,+(l-u,)&i z,,x,-u,fiz,,(k-1)A) 

.H(x,-u,~z,,x,+(l-u,)~z,,A). 

We can apply to I? the dominated convergence theorem in order to prove that 

lim fi(x, - u,&i z, , x, + (1 - u,)v% z, , A) = 1. 
A-O 

Now exp - tH(x, v) G exp tK by hypothesis (H.2), and using the same trick for the 

remaining two other terms in fi one has 

1 

J2dt2-t,) 
exp-(x2-xl)2/2(f2-tl)H(x,,x2, t2-4). 

Further we have, for A < A,, 

The dominated convergence theorem implies the convergence (2b) of the lemma. 

The third part can be proved, exactly in the same way as the second one. So Lemma 

2 and Theorem 2 are proved. 
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