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Abstract

The problem of finite-dimensional parameter estimation for a diffusion-type process is
considered. The proposed minimum distance estimate is introduced as a point where the
supremum norm of the difference between the observations and the corresponding deter-
ministic (limit) solution attains its minimum. Under some regularity conditions the consistency
of this estimate is established as the diffusion coefficient tends to zero and the limit distribution
is described.
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1. Introduction

Let us consider the problem of estimating the unknown parameter 6 of a diffu-
sion-type process:

dX, =86, X)dt +edW,, Xog=1x0, 01T, 8}

where S,(-, X') is a known measurable, nonanticipative functional, 8 € ©, an open
bounded set in R, d > 1, W, is a Wiener process and ¢ e (0, 1] (see, for example,
Liptser and Shiryayev, 1977).
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We are interested in the limiting properties of estimates of 6 as ¢ — 0. This
corresponds to the presence of small noise in the dynamical system:

d
S = S(0.x), %, 0< 1< T, 2)

The properties of maximum likelihood and Bayes estimates in this situation are
known (see, for example, Kutoyants, 1984). Another approach is to consider the

minimum norm estimates of 8, which could be described, for example, as follows. Set

b. = arg min | X — x(0)]], 3)
where O is the closure of @ and

T f £t dp,

for some finite measure y and we denote by x,(0) = x, the solution of Eq. (2). The
consistency and asymptotic normality of these minimum norm estimates are estab-
lished in Kutoyants (1991).
It is interesting also to consider the properties of estimate (3) with respect to the
uniform metric:
0Ff = argmin sup (X, — x,(6)|. 4
9 0<t<T
This paper is mainly concerned with the description of the asymptotics of the
estimate given by (3). If the equation
o SUP 1 Xe = x(6F)] = inf sup X, — x(0)]
has several solutions, then we call minimum distance estimate (MDE) any one of
them, for instance, that having a minimal norm.
We will prove the consistency of this estimate and describe its limit distribution.
There exists a direct analogy between this problem and the classical minimum
distance estimation problem, where starting with » i.i.d. observations with distribu-
tion function F(6,, x), the empirical distribution function F,(x) is constructed, and
then the minimum distance estimate 67 is defined by the equation

* __ : o
Bn—argrggg | Fo— F(8)],

where |-} is a norm in some Banach space B such that F,, F(#)eB and
|\ F, — F(8y)| = 0 as n - oo (Pollard, 1980; Millar, 1984).

Under certain regularity conditions this estimate is known to be consistent (Parr
and Schucany, 1982), and for a Hilbert space B, it is also asymptotically normal
{Millar, 1984); see also the references in Parr, 1981). The limit distribution of
ﬁ(@:‘ — 8) for Banach spaces is non-Gaussian (Pollard, 1980; Litell and Rao, 1982).
Millar (1984) has proved the asymptotic optimality in some sense of this estimate for
a Hilbertian B.
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2. Consistency

We investigate the properties of 6% under the following conditions.
(CI) The functional S,(8,-) is measurable, nonanticipative and satisfies the follow-

ing inequalities: for all t € [0, T} and X, Y e €[0, T,

18:(0, X) — S0, Y)| < L1J. X, — Ylds + Lo | X, — ¥,
0

ns,w,X)lsuf (1 + 1X,))ds + La(1 + X)), )
0

where L,, L, are positive constants.

(CII) The function S,(6, x) is measurable with respect to (¢, #) and for any v > 0, we
have

glvy=inf  sup jx,(0) —x(0)| >0.

8—60l =y 0 <1<

Let us denote by P§ the measure induced by process (1) in the measurable space
(C[0, T, B[O, T]) of continuous functions on [0, 7] (B[0, 77 is a sigma algebra of
borelian subsets).

Theorem 1. Let conditions (CI) and (CI1) be fulfilled. Then

82

2
PSZ){I@S‘—9012\’}S2exp{—?g(v) } ©)
where vy is some positive constant.

Proof. Condition (CI) ensures the existence and uniqueness of a strong solution of
Eq.(1) (Kutoyants, 1984, Theorem 4.6.). Moreover, under condition (5), with
Pﬁfg probability one, we also have the inequality

sup IX,—xt(Ho)lsCsoglgngW, (7

0<t<T

where C > 0 (Kutoyants, 1991, Lemma 3.4.4).

In the following we denote the sup-norm by | - ||. Let us introduce the set
Ho = Hy(v) = {a): inf |X —x(0)] < inf [X-— x(G){I}. (8)
16=80l<v 16— 80 v

Note that, for w € H,, the MDE 6% satisfies 6} € {6: |6 — 0] < v}.
Thus, we have

PR{10F — 0ol = v} = P§) {HS)
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so that we need to estimate the probability of HG (complement of H):

Py (H) < Péﬁ’{wjenfm(ux = x(B)l| + I1x(8) = x(60)1)

> inf  (}x(8) — x(Bo)ll — 1 X — X(GO)“)}

16 —00| =v
“’{HX—X(Go)H = g(v)— Ce o Sup IWI}

P{2C602111;S)T|W,| Zg(v)}z P{ozltxp | W} = (_v)}

— 2Ce
g(v) g(v)?
£4P{WT> 2&:}326’“’{“8%252 .

Here we have used the well-known properties of norms, the equality

inf | x(0) — x(bo)l| =0,

18—80l<v

inequality (7) and the following property of Wiener processes:

a2
P{Oil;lg W,>a} 2P{WT>a}<exp{ ZT}

3. Limit distribution

To describe the limit behavior of the normed difference u, = ¢~ 1(0* — ;) we
specialize the model and we suppose that the trend functional of the process (2) is of
the form

S0, X) = V(6,1, X,) + J K65, X,) ds. ©)
4]

We also need the following additional conditions:

(CIII) The measurable functions V(6,t, x) and K(8,t, 5, x) have two continuous
bounded derivatives with respect to  and x.

Let us denote by x,(6) the vector of derivatives of x,(8) with respect to ¢ (CIII)
allows one to prove its existence) and consider the matrix

Ji(0) = %(0)%(0)"

(where T denotes transposition).
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(CLV)
inf inf sup (e, J,(0)e) >0,

6@ jej=10<t<T
where e is a unit vector in R? and (-, ) is an inner product.

We introduce also a Gaussian process x!’ = x{’(#), which satisfies the equation

1

dxt” = [V, 1, x,) x! +J K0, 1,5 x)x"ds]dr +dW,, x' =0, 0 <t < T,
©
(10)

and is a derivative with probability one of X, with respect to ¢ at ¢ = 0 (see Kutoyants
(submitted), Chapter 7). Here V', and K are the derivatives of V(9,¢,x) and
K(3,t, s, x) with respect to x.

The random variable & = £(8) is defined by the equality

X = (& ¥(Bo)) ] = inf, 1xV — (1, %(6o)]].
(CV) This equation has a unique solution ¢ with probability 1.

Theorem 2. Under conditions (CIN-(CV) we have
Py, ~— 1%8‘1(62‘ —8)=¢.
Proof. First we localize the problem. Let v=v,=¢i, > 0and A, » + o ase¢ >0

and H, be defined as in (8). Then for w € Hy we have |68F — 0y < v,.
Let us denote

Fu) = sup_|x(80 +u) = x(00)]*

As it follows from condition (CIII),

L3up_[x,(0 + ) — x,(00) — (1 X(00))| = O(luP?).

So if we introduce
= 1(8,) = inf J
Ko =1#(0o) = inf sup (e Ji(0o)e),
which is by condition (CIV) positive, then we can find a neighborhood ¥V of zero such
that

F(u 1
|2 = 5’609

ueV lu

and we have for ue V: F(u) = 4 i |ut?.
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By condition (CII) the function F(u) is positive outside of V. Hence there exists
a positive constant x such that the inequality

Fu) = x|u)?
holds for all ue ® — 6,. Thus we obtain

inf sup [x{0p + u) — x,(00))* = xvZ.

juj>v.0<t<
Hence g(v) > /K v,, and from (6) we obtain
2
Péf}{[eé" = VE} < 26Xp{—y;c:—;} < 2€Xp{ —kalsz} 0.

Let us now consider the behavior of the norm || X — x(8)|, for fe{6:
{6 — 04| < v,}. We have 6 = 0, + eu and

X - x(6) = “X ~§(00) -=2 < O 1 — (u, %(00)) — r + all
where
= X~ x,(60) _ xgl)
€
and
r—= X.(00 + EZ) — x,{0) —(u, )%t(eo))

Condition (CIII) allows us to use the Taylor formula and to write

qup [0t = x(00) oo

O<t=T £

= sup_1( (5l 0o) =580 <Jul sup _[5(80) —%(00)] < Colul® <Cei.

We so obtain

sup sup |r,| < Cell.
w[<A:0<t<T

Using (1), (7), (9) and (10) we can write

X, —x
Iq,l=.——‘8 f— X

’ 1
- — Vi(Bo, v, x,) x3"

ft[sv(007 X) - Sv(007 x)

0
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—f K'(8o, 0, h, x;,)xi,”dh]du

0
i
S J\
0

V(QOaSs Xs)—‘ V(HO’Sa xs) ds

- V)IC(GOJ S, xs)x.(s‘“

&
t s K 0 ,Xv _K 3 ¥y Uy v
+j f (Bo, s, 0. X.) (B0, 5, v, x )—K;(Qo,s,v, x,) xM tdods
oJo &
t
L X, —x,
sj Vi(80, s, ) 5T 10, 5, x,) x| ds
0 &
b 2 X, — X,
+ J J Ki(0o, 5,0, K)o _ K (00, 5,0, %) x| dods
0J0 £
t - X. — t ~
S A M LRI NIAUNS 8
[¢) Q
(1) L 5 Xy — Xy )
— Vi(Bo,5, %)X 1ds+j f |Killo, sV, By 1| 22 - 0 duds
gJo

+f f \K.(80, 5, v, X,) — Ki(Bo, 5,5, %,)] x| dv ds

0J0

z t s
SClJ lqsldS+C2J.jlq.,|dvds+C3g sup |W,| sup |x{M],
0JO O0<t<T 0<t<T

0

with some constants C; >0,i=1,2,3.
From (10), condition (CIII) and Lemma 4.13 of Kutoyants (1984) we obtain

SUPTIXfI’l <C sup Wi

0<t<

This allows us to write the inequality

|q,|sclj|qs|ds+02”lqvndvds+<'fse sup | W2
o 0Jo 0<t<T

and using Lemma 4.13 of Kutoyants (1984) once more, we finally obtain the desired
expression

sup ls“(Xt—xx(Ho))—xi“lsCagggnglez- (12)

0<t<T
Now we return to the original problem and consider the difference

Xo= %O +ew) gy &,(90)».

Iflugizozl‘tlg?‘ £ t
X, — x(0 x, (6 + su) — x,(6 .
< sup sup { X = xl0o) _ xP1+ (8 ) = xd 0)—(u, %(6o)) }
|4l <A O<I=<T £ t £
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< su sup sup |r| < Ce sup |W,|% + Cel2,
—_Osthlqtl-F\qu;_[OsrngI'_ Ostls)Tl T

where we have used (11) and (12).
Hence, if we choose 4, such that ¢ 42 — 0 when ¢ — 0, then with probability one we
obtain

X —x(8
Sup ” X( 0 + 8“)” _ ” x(l) _ (U, )%(90)) H — 0.
Jul < A é

Therefore, for ¢ € [0, T}, we have uniform convergence of continuous functions of
u towards a continuous function and the minimizer (as a continuous functional of the
trajectory) converges to the minimizer of the limit process.

arg inf | X — x(0o + aw)| ~arg inf |xO — @, %(0o))] ¢ O

The random variable & could be approximated in the following way. Let us consider
points

0=t <t < - <t®=T suchthat max [, —P|—0
1

l<j<n-
when n - + oo and the random variables

Lo=arg inf max |x{V — (u, %,(60))]. 13)

juf<a. 1 <j<n

The process x" and the vector function %, are continuous with respect to t; hence
£, = Easn > + oc. Then xfjl,) and >°C,j appearing in (13) can be calculated. Moreover,
the inner product therein is linear with respect to the components of u. This expression
is similar to the linear regression model with minimax criteria (Millar, 1984). Theorem
3 1n Pilibossian (1977) can then be applied, for n > d. The direct resolution method,
developed in the same paper, could also be applied to calculate the value of ¢,.

Remark. The Condition (CV) in the one-dimensional (d = 1) case could be easily
verified if we suppose that X,(0,) > 0 for all r € (0, T']. Denote @,(u) = |x!V — ux,(8o)|
and @(u) = supg -, < r @:(¢). The function @(u) is convex on u and @(u) —» oo as
lul > oo, so the minimum of this function exists and is reached on the set U* = {u*:
o(u*) = inf (u)}. From the convexity of @(u) it also follows that U* = [«, ] and
suppose that o # 8. Fix ug € (2, f) and denote to(ug) = argsupe <, < @{to). Then
@(1o) = @(uo) = infp(u). Let uy # uy, uy € U*. Introduce ¢, = t;(u,). By the condi-
tion @u(uo) # @u(ur). Let @g(to) < @ro(u1), but @ (u1) < @, (u1) = @roltto) =
o{u*). This contradiction proves the result.
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