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Abstract 

The problem of finite-dimensional parameter estimation for a diffusion-type process is 
considered. The proposed minimum distance estimate is introduced as a point where the 
supremum norm of the difference between the observations and the corresponding deter- 
ministic (limit) solution attains its minimum. Under some regularity conditions the consistency 
of this estimate is established as the diffusion coefficient tends to zero and the limit distribution 
is described. 
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1. Introduction 

Let us consider the problem of estimating the unknown parameter Q of a diffu- 

sion-type process: 

dx, = S,(O, X) dt + Ed W,, X,, = x0, 0 5 t 2 T, (1) 

where S,(. , X) is a known measurable, nonanticipative functional, 0 E 0, an open 

bounded set in Rd, n 2 1, W, is a Wiener process and E E (0, I] (see, for example, 

Liptser and Shiryayev, 1977). 
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We are interested in the limiting properties of estimates of B as E -+ 0. This 

corresponds to the presence of small noise in the dynamical system: 

- = &(Q, x), x0, 0 s t 5 T. 
dt 

The properties of maximum likelihood and Bayes estimates in this situation are 

known (see, for example, Kutoyants, 1984). Another approach is to consider the 

minimum norm estimates of 8, which could be described, for example, as follows. Set 

8, = arg ~2: II X - 40) II , 

where 0 is the closure of 0 and 

Ilfll’ = ];f(t)‘dr,, 

(3) 

for some finite measure ~1 and we denote by x,(0) = x, the solution of Eq. (2). The 

consistency and asymptotic normality of these minimum norm estimates are estab- 

lished in Kutoyants (1991). 

It is interesting also to consider the properties of estimate (3) with respect to the 

uniform metric: 

This paper is mainly concerned with the description of the asymptotics of the 

estimate given by (3). If the equation 

has several solutions, then we call minimum distance estimate (MDE) any one of 

them, for instance, that having a minimal norm. 

We will prove the consistency of this estimate and describe its limit distribution. 

There exists a direct analogy between this problem and the classical minimum 

distance estimation problem, where starting with n i.i.d. observations with distribu- 

tion function F(QO, x), the empirical distribution function P,,(x) is constructed, and 

then the minimum distance estimate S,* is defined by the equation 

where // I/ is a norm in some Banach space B such that F^,, F(Q) E B and 

Ij 6, - F(B,) 11 + 0 as n + co (Pollard, 1980; Millar, 1984). 

Under certain regularity conditions this estimate is known to be consistent (Parr 

and Schucany, 1982), and for a Hilbert space B, it is also asymptotically normal 

(Millar, 1984); see also the references in Parr, 1981). The limit distribution of 

&( 9,* - 0,) for Banach spaces is non-Gaussian (Pollard, 1980; Litell and Rao, 1982). 

Millar (1984) has proved the asymptotic optimality in some sense of this estimate for 

a Hilbertian B. 
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2. Consistency 

We investigate the properties of 0: under the following conditions. 

(CI) The functional S,(Q, .) is measurable, nonanticipative and satisfies the follow- 

ing inequalities: for all t E [0, T] and X, YE %‘[O, 7’J, 

IS,(Q,X) - S,(R Y)l I L1 
s 

‘IX,- Y,lds+L,IX,-- Y,l, 
0 

IUR WI s Lx 
s 

‘(1 
0‘ 

+ IX,l)ds + Lz(l + IXtO, (5) 

where L1, Lz are positive constants. 

(CII) The function S,(0, x) is measurable with respect to (t, 6) and for any v > 0, we 

have 

g(v) = inf sup I.%(@ - x,(Qo)l > 0. 
JB--Boj>“O<t<T 

Let us denote by Pg) the measure induced by process (1) in the measurable space 

(C[O, T], B[ 0, r]) of continuous functions on [0, r] (B[O, 7'1 is a sigma algebra of 

borelian subsets). 

Theorem 1. Let conditions (CI) and (CII) be fulfilled. Then 

PfJ{J@ - 001 2 V} 5 2 exp{ - ~~~. 

where y is some positive constant. 

(6) 

Proof. Condition (CI) ensures the existence and uniqueness of a strong solution of 

Eq. (1) (Kutoyants, 1984, Theorem 4.6.). Moreover, under condition (5), with 

Pfi probability one, we also have the inequality 

where C > 0 (Kutoyants, 1991, Lemma 3.4.4). 

In the following we denote the sup-norm by 

Ho = H,(v) = 0: inf /IX - x(0)1/ < 
10-Ool’v 

(7) 

// . 1). Let us introduce the set 

inf I[ X - x(e)jI . (8) 
le-eoi zv 

Note that, for o E Ho, the MDE (3: satisfies 0: E { B : ) f9 - Bo) < V} . 
Thus, we have 
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so that we need to estimate the probability of H’, (complement of He): 

P;“d{H’,} I PZ 
i 

inf (IIX - x(e0)ll + 11x(e) - x(e0)ll) 
IO-OOICV 

2 inf (Il.@) - WoH - I/X - x(e,)ll) 
je-eol ZY I 

Here we have used the well-known properties of norms, the equality 

,,_i& it 0) - hub) iI = 0, 

inequality (7) and the following property of Wiener processes: 

p i 02% wt ‘a I =2P{WT>a}Sexp -& . q 
i I 

3. Limit distribution 

To describe the limit behavior of the normed difference u, = s-i ((3: - 0,) we 

specialize the model and we suppose that the trend functional of the process (2) is of 

the form 

s I 

s,(e, x) = vu4 t, x,) + K (8, t, s, X,) ds. (9) 
0 

We also need the following additional conditions: 

(CIII) The measurable functions V(e, t, x) and K(& t, s, x) have two continuous 

bounded derivatives with respect to 8 and x. 

Let us denote by 5,(e) the vector of derivatives of x,(H) with respect to 8 (CIII) 

allows one to prove its existence) and consider the matrix 

J,(e) = iqegi,(e)~ 

(where T denotes transposition). 
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(CIV) 

inf inf sup (e, J,( 0) e) > 0, 
esa,e,=i O$fST 

where e is a unit vector in lRd and (. , .) is an inner product. 

We introduce also a Gaussian process x, - x, ( , (‘) - ‘I) 0) which satisfies the equation 

dx”’ = [ I”(0 t x )x(l) t x ,>t f + k,(O, c, s, x,)x:l’ds]dt +dII’,, xb” 
I 

=O,O<t<T, 
0 

(10) 

and is a derivative with probability one of X, with respect to F at E = 0 (see Kutoyants 

(submitted), Chapter 7). Here P’i and Kk are the derivatives of V(9, t, x) and 

K(9, t, s, x) with respect to x. 

The random variable 5 = t(fI,) is defined by the equality 

//XC') - (5, %eo))ll = inf I/X(~) - (u, %00))ll. 
u.w 

(CV) This equation has a unique solution 4 with probability 1. 

Theorem 2. Under conditions (CII)-(CV) we have 

PO0 - lpl(Hf - 0,) = 5. 

Proof. First we localize the problem. Let v = v, = ~1, -+ 0 and & -+ + cc as E + 0 

and Ho be defined as in (8). Then for o E Ho we have ItI,* - 19~ 1 < v,. 

Let us denote 

F(n) = o ;vp TIxl(OO + n) - xt(~o)?. 

As it follows from condition (CIII), 

o $y; T lx,(@o + n) - x,(00) - (4 %(eo))l = o(142). 

So if we introduce 

which is by condition (CIV) positive, then we can find a neighborhood V of zero such 

that 

inf F(u) I 
72 -ICI), 

uev Iu( 2 

and we have for u E I? F(u) 2 $1~~ 1~1~ 
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By condition (CII) the function F(u) is positive outside of V. Hence there exists 

a positive constant K such that the inequality 

F(Zd) r lc)u12 

holds for all u E 0 - go. Thus we obtain 

inf sup 
~ul>v,ostlT 

)x,(8, + u) - xl(go)jz 2 icvf . 

Hence g(v) 2 & v,, and from (6) we obtain 

Pit(l@ - go1 2 vE) 5 2exp 
i i 

-7~s 5 2exp{ -y#} -+O. 

Let us now consider the behavior of the norm I/ X - x(e) I/, for 6’ E { 0: 

18 - B. ( < v,}. We have 0 = B. + EU and 

s-1 j/x -x(e)lj = E - E 
/I 

x - 4eo) x(e) - 4eo) 

/I 
= 11 x(1) - (u, won - r + 4 /I3 

where 

4t = 
x, - x,(g,) _ X(1j 

f 
E 

and 

rt = 
X,(8, + y) - xt(eo) _ (u, i,(e,)). 

Condition (CIII) allows us to use the Taylor formula and to write 

sup 
OsrcT 

-%(go + s”,) - x@o) _ (u, i,(eo)) 

We so obtain 

sup sup lr,l I C&AZ. 
lu(<l,Ort<T 

Using (l), (7), (9) and (10) we can write 

lgtl = 
x, - x, ___ _ .Jl) f 

& 

t ISII w,, w - ue,, 4 = - v; (e,, U, x,) x:1) 
0 & 
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- K;(B,, v, h, x,,)x:l)dh dv 
3 I 

I 
V(Qo, s, X,) - V~O> s, x,) 

V; ( tlo, s, x,) .:l’ ds 
E 

K(oo, s, v, X,) - K(flo> s, v, x,) 
- K;( do, s, v, x,) x:) dv ds 

& 

I 
xs - x* 

K(Qo, s, x”s)----- - V;( do, s, x,) xl” ds 
& 

= X” - x, 

G(@o, s, 0, Xv)----- - K;( Go, s, t‘, x,) xl” dv ds 
E 

2 

s 

:” 

! s 

ds + ‘1 I’:(&,, s, x”,) 
0 0 

- 
K(Qo, s, x,)1 lx?1 ds + I&)[ +-xv (I) duds 

with some constants C, > 0, i = 1,2, 3. 

From (lo), condition (CIII) and Lemma 4.13 of Kutoyants (1984) we obtain 

This allows us to write the inequality 

and using Lemma 4.13 of Kutoyants (1984) once more, we finally obtain the desired 

expression 

sup IE-‘(x, - x,(eo)) - PI 5 c”,~~&lw12. 
OSf<T (12) 

Now we return to the original problem and consider the difference 

x, - x,(0, + EU) 
sup sup /U,<l. OS?< 7. 8 

- (x:” - (u, %(Qo))) 

I sup sup 
x, - x,(@o) _ x(l) 

,u,<l,O<t<T il E t + I I 

xddo + ““,’ - h(b) _ (& K,((j,)) 

Ii 
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where we have used (11) and (12). 

Hence, if we choose 2, such that E if -+ 0 when E + 0, then with probability one we 

obtain 

sup ‘IX - x(eo + &14)” - //x(l) -(u qe 
0 

))I/ _+ 0 

IUI < 1, c 

Therefore, for t E [0, T], we have uniform convergence of continuous functions of 

u towards a continuous function and the minimizer (as a continuous functional of the 

trajectory) converges to the minimizer of the limit process. 

The random variable 5 could be approximated in the following way. Let us consider 

points 

O=$)<t’,“)< . . . <t!,“)=T suchthat 

when y1 + + cc and the random variables 

The process xi” and the vector function I, are continuous with respect to t; hence 

5, --) 4 as n + + cc . Then xi:’ and glj appearing in (13) can be calculated. Moreover, 

the inner product therein is linear with respect to the components of U. This expression 

is similar to the linear regression model with minimax criteria (Millar, 1984). Theorem 

3 in Pilibossian (1977) can then be applied, for n > d. The direct resolution method, 

developed in the same paper, could also be applied to calculate the value of t,. 

Remark. The Condition (CV) in the one-dimensional (d = 1) case could be easily 

verified if we suppose that &(e,) > 0 for all t E (0, T]. Denote q,(u) = (xi’) - u&(0,)( 

and q(u)= SUPOst<T(Pt (u). The function cp( U) is convex on u and q(u) -+ cc as 

[ u( + cc , so the minimum of this function exists and is reached on the set U* = {u*: 

q(u*) = infgo(u)j. From the convexity of q(u) it also follows that U* = [a, /I] and 

suppose that CI # p. Fix u. E (a, p) and denote to(uo) = arg sup, S L s T cpt(uo). Then 

cp,,(uo) = cp(u,) = infq(u). Let u1 # uo, U, E U*. Introduce t, = tl(ul). By the condi- 

tion CP~UO) Z CP,(UI). Let vt,(uo) < R,(uI), but CP,,(~I) < cp,,(ul) = cpdu~) = 

cp(u*). This contradiction proves the result. 
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