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Abstract 

We consider general nonstationary max-autoregressive sequences {Xi, i>~ 1}, with 
X i = Z i max (Xi-1, Y3 where { Yi, i >~ 1 } is a sequence of i.i.d, random variables and {Zi, i >1 1 } 
is a sequence of independent random variables (0 ~< Z~ ~< 1), independent of { Y~}. We deal with 
the limit law of extreme values M. = max{X~, i~< n} (as n ~ oo) and evaluate the extremal 
index for the case where the marginal distribution of Y~ is regularly varying at oo. The limit of 
the point process of exceedances of a boundary u. by X i, i <~ n, is derived (as n ~ ~) by 
analysing the convergence of the cluster distribution and of the intensity measure. 

Keywords: Nonstationary; Extreme values; Point processes; Regular variation; Weak limits; 
Max-autoregressive sequences 

1. Introduction 

Let {Yi, i>~ 1} and {Zi, i~> 1} be independent sequences of independent random 
variables, where Y~ are identically distributed with common distribution G(.)  and 
Z~ with distribution Fi(.). We assume that P{0 ~< Z~ ~< 1} = 1 for all i's. This is 
essential for the following analysis of M. = max{Xi,0 ~< i ~< n}; otherwise, a rather 
different behaviour of the extremes of {Xi ,  i >>, 0} could be observed. We define the 
max-AR(1) sequence {X,  i ~> 1} by 

IXo if i = 0, 
X i  = Z ~ m a x { X ~ _ l , Y ~ }  if i>~ 1, (1) 

with any random variable Xo. Let H i ( . )  denote the marginal distribution of Xi .  

Extremal properties of a special case of our model where Z~ is a constant less than 
one is studied by Alpuim (1989). Alpuim and Athayde (1990) characterized the class of 
stationary distributions arising from the max-AR(1) sequence as defined in (1), 
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especially for Zi having a beta distribution. The solar thermal energy model 

X.  = max(czX._ 1, clc2X.- 1 + Y.), 

with cl e [0, 1], c2 e(0, 1), introduced by Haslett (1979) and further investigated by 
Daley and Haslett (1982), Hooghiemstra and Keane (1985) and Hooghiemstra and 
Scheffer (1986) reduces to a special case of our model if cl = 0. 

In the following we assume that for some • > 0, 

G ~ O(g~,), (2) 

i.e. G belongs to the domain of attraction of the extreme value distribution ~,,  which 
is equivalent to 

G"(a,x) --}exp( - x -~) = q~(x), Vx >0  

for some sequence of normalizing constants {a,,n~>0}. Since a, ~ 0% 
P{Xo > a,x} --* O, which means that Xo is asymptotically negligible. Moreover, we 

assume that 

supE(Z~) < 1 for some fl < • (3) 
i~>l 

implying 

supE(Z~) = s < 1. (4) 
i~>l 

In Section 2 we analyse the behaviour of the extremes of this max-AR(1) sequence. 
Assuming Z~ = C < 1 with probability 1 and that {X~} is a (strictly) stationary 
sequence, Alpuim (1989) showed that the exceedances do cluster if (2) holds. In this 
case, the cluster sizes are geometrically distributed with mean value 1/0, where 
0 = 1 - C" is the so-called extremal index (see O'Brien, 1974, 1987; Leadbetter, 1983 
or Leadbetter et al., 1983). 

We show that this property still holds true for the more general case with random 
Z~ and nonstationary sequence X~. Surprisingly, 0 depends only on the moments 
E(Z~) and not on the explicit form of the distributions of Zi. 

In Section 3 we deal with N., the point process of exceedances and prove that under 
additional conditions on the moments E(Z~) N. converges to a compound Poisson 
process, where the compounding distribution is geometric. 

Instead of (2) we might have assumed that G ~ D ( ~ )  or GeD(A), where 
~ P ~ ( x ) = e x p ( - ( - x ) ~ ) ,  for x~<0, and A ( x ) = e x p ( - e x p ( - x ) ) .  Under the 
assumption Zi = C < 1 and that {Xi} is stationary, the exceedances do not cluster in 
these cases assuming Xo = sup(x: G(x) < 1} > 0 (Alpuim, 1989). The same holds true 
for our general model under slightly different conditions than introduced so far. 
Assuming that for all i the distributions d~ of Z~ Y~ belong to D (Tt,) or D (A), we have to 
consider the following cases. Let X~,o denote the right endpoint of (7~. Then for the 
cases P{Z~ < 1} = 1 for all i, the exceedances do not cluster if 

(i) ~i~.D(lIXa) and Xi, o > 0 for all i, Xo < inflxi, o a.s., or 
(ii) (~i ~ D(A) for all i and Xo < infi Xl.o a.s.. 
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If in (i) xi.0 ~< 0 for all i, then we must have P { Z / >  1} = 1 for all i in order to prevent 

clustering of exceedances. Note that here P { Z / >  1} = 1, is a necessary condition 

since for example P{Zi  = 1} = p > 0 for all i would lead to clustering of exceedances. 

Although the results presented in Sections 2 and 3 are derived under the assumption 
(2), they are still applicable for instance for the following related models: 

(1) Let G ~ D ( ~ )  for some ~ > 0 with Xo = 0 and that {Xi} is as in (1). Let 

Y* = - 1/Yi, Z* = 1/Z/ where now P{Zi  >1 1} = 1 and supiE(Z7 ~) < 1 for some 

f l > a  and all i, and X * = - 1 / X o .  Then X * = - l / X i  is as in (1) with 

Y* ~ G* ~ D ( ~ ) .  
(2) Let G e D(A) with Xo = o¢ and Xi = Zi + max(X/_ 1~ Y/). Assume that G is such 

that Gn(anX + bn)~  A(x) with an = 1/a and some bn. Then define Y* = exp(Y/), 

Z* = exp(Z~) and X* = exp(X/), where Z~ ~< 0 with probability 1. This transforms the 

sequence {X/} to a sequence {X*} which satisfies the model (1) with Y* ~ G* ~ D ( ~ ) .  
Thus clustering occurs also in this different model {Xi}. 

Finally, note that the assumption P{0 ~< Z~ ~< 1} = 1 in model (1) is an important  

one, since allowing Z / >  1 would result in a rather different pattern of the extremal 
behaviour of {Xi, i >/0} such as rapid variation of the sequence around the threshold. 

In this case a different approach than the one introduced here is needed. 

2. Limiting distribution for the maximum 

We discuss now the limiting behaviour of the maximum 

Mn = max{Xi, 0 ~< i ~< n}. 

We use the same normalization an as for the sequence Yi, to show that also Mn/an has 
asymptotically a Frrchet-distribution. 

Lemma 1. Assume condition (2) holds. Then for any x > 0 and j >1 0 : 

nP{Zi . . .  Zi-~Yi-~ > a,x} --, x-~E(Z~) ... E(Z~_j) 

as n --* m, uniformly in i. 

Proof. The distribution G of the Y~ is regularly varying with exponent - ~ (see 

deHaan,  1970), thus 

n i l  - G(any)] ~ y-~ 

as n ~ m, uniformly for all y >~ Yo with any Yo > 0. Hence for any x > 0 and 
v, 0 ~< v ~< 1, we have obviously x/v >>. x and thus 

n[1 - G(anX/V)] --* x-zv  ~ 
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uniformly for all v. For  any e > 0 there exists no such that for all n >i no 

[nP{Zi... Z i - j Y i -  j > anX} -- x - a g ( z ~ ) " "  g(z~_j)[ 

< f ... f ln[1- G(a.x/(zi... z,_j)] - x-~z~.., z~_jldF,(zi)...dF,_j(z,_A 

<<. f . . . f edFi ( z i ) . . . dF i - j ( z ,_ j )=e  

by using the uniform bound for v = zi. . .  z i - j  e [0, 1]. []  

In the following we assume that for some j />  0, 

(l/n) ~ E(Z~). . .E(Z~_j)  ~ c j )  as n -~ oo. (5) 
i = j + l  

Theorem 1. Suppose that (2) and (5)for j = 0 hold. Then 

P{M, <<, a,x} ~ exp( - CoX -~) 

as n ~ oo for any x > O, where {a,} are the normalizing constants in (2). 

Proof. Note that the maximum M, can be written as 

M, = max {Xo, X1, ..., X,} = max {X0, Z1 Yl, Z2 Y2 . . . . .  Z ,  Y,} 

since the Z~ are concentrated on [0, 1]. Consequently, 

P { M ,  <~ a,x} = P{Xo <~ a,x} f i  P{ZiY,  <~ a,x}. 
i=1  

The convergence of this product to exp( - CoX -~) is equivalent to 

~ P{ZiY~ > a,x} ---, CoX -~. 
i = l  

Since by Lemma 1 each term of the sum can be approximzated uniformly by 
x-~E(Z~)/n, we get immediately that 

lim E P{Z,Y,  > a,x} = x -~ lim (l/n) ~ E(ZT) = x-~co 

by (5). [] 

For  a stationary sequence it is well-known that if n[1 - F ( u , ( z ) ) ]  -~ z for some 
normalization u,(z) and if weak mixing conditions hold, then P{Mn <~ u,(z)} 
converges to exp( - Oz)}, where 0 is a constant (~<1) not depending on z. 0 is called the 
extremal index and is related to the clustering of exceedances of the sequence. If 0 = 1 
then the exceedances do not cluster, i.e. the cluster sizes are asymptotically equal to 
i with probability 1. For  the max-AR(1) sequence this would be the case if G ~ D(A) or 
G e D(~a). Therefore these cases are of less interest for our purposes. 
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For nonstationary sequences the extremal index can be defined in a similar way (see 

Hiisler, 1986) 

0 = lim -- l ogP{M.  <~ uu(3)} 
. ~ o  Y.i.<. [1 - H,(u . ( z ) ) ] '  

where the H~'s are the marginal distributions of the nonstationary sequence X,. Here 
0 may depend on 3. However, for many nonstationary sequences 0 does not depend on 
3 and one can use the same interpretation of 0 as in the stationary case. We show that 
the extremal index exists for the max-AR(1) sequence {Xi} and that it does not depend 
on z. 

We use the following bounds for the regularly varying function G. 

Lemma 2. Assume condition (2) holds. Then for  any f i xed  x > 0 and e > 0, there exists 

no such that for  all n > no and all 0 <<, z ~ 1 

(1 - ~)z '+ 'x  -~ ~ n[1 - G(a .x / z ) ]  <<. (1 + e ) z ' - ' x  -~. 

This follows straightforward from the representation of regularly varying functions 
and Potter bounds (de Haan, 1970; Bingham et al., 1987). Using this lemma we now 
prove the central approximations needed for the main result of this section. 

Lemma 3. Let  { X i} be defined by (1). Assume that (2), (3) and (5)for all j >1 0 hold. Then 

for  any x > 0 
(i) as n ~ oo 

i~l a ,x}  ~ 1-1 - n i (a . x ) ]  - ~, P { Z i . . .  Z / _ j Y / _ j  > ~ 0 
i i < ~ n j = O  

(ii) 

n i - 1  

lim E Y ' , P { Z , ' " Z i - J Y i - J > a ,  x I = x - ~ ,  c j <  oo 
n ~ ° ° i = l  j=O j>~O 

and consequently 

lim ~ [1 - Hi(a.x)]  = x - 5  ~ cj. 
n--* °° i <~ n j >>. O 

Proof. From the definition of the sequence X /w e  have 

Xi  = max{Z/.- .  Z1Xo ,  Zi ... Z 1 Y l ,  Zi ... Z2 Y2, . . . ,  ZiYi} .  

Let Z*- ,,J := I]Jk = i Zk. Then 

i - ,  a,,x})(1 + o(1)) 1 -- n i ( a . x )  = P(Uj=o {Z*- j , iY i - j  > 
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uniformly in i, and using the inequali ty of  Bonferroni  we get 

i - 1  i - 1  j - 1  

Z P{Z*-j, iYi-j > a.x} - Z ~, P{Z*-j, iri-j  > a.x,Z*-k,iYi-k > a.x} 
j = 0  j = l  k = 0  

i - -1  

< 1 -- Hi(a.x) < Z P{Z*-j, iYi-j > a.x}. 
j=O 

The  double  sum is app rox ima ted  first. In the same way as in L e m m a  l, using 

L e m m a  2 and  letting e = ~ - fl > 0, we find that  each te rm of  the sum is bounded  

f rom above  by 

x-  2, , -  z(1 + e)ZE(Z~p) ... EtZ~_k)EtZ~_k_ ,)... EtZ~_j). 

Let g = supi ~> 1 E(Z~) < 1 by (3). Hence  also E(Z~ ~) <. g and 

i - l  j - 1  i - 1  

~, ~, P{Z*-j, iYi-j > a.x,Z*-k,iYi-k > a.x} <<. n-2x -2" (1  + e) 2 ~. j~J+ ' .  
j = l k = O  j = l  

By taking the sum on i we get 

n i - l  j - 1  

Z Z • P{Z*-i, iYi - j>a.x ,Z*-k , iYi -k>a.x}  
i = l j = l k = O  

n i - 1  
~ < " - 2 x - 2 ~ ( l + e )  2 Z Z J  gj+a 

i = l j = l  

= n - 2 x - 2 . ( 1  + e)20(n). 

Therefore,  taking the sum of the bounds  of 1 - H~(anX) and letting n --* 00, s ta tement  

(i) follows. 
To  prove  the second statement,  note that  

Z ~. P{Z*-I, iYI-j > a.x} = _1 nP{Z*-j, iYi-j > a.x}. 
i= l j=O j=O l~ i = j + l  

By L e m m a  1 each term nP{Z~_j,~Y~_~>a.x} converges uniformly (in i) to 
x-~E(Z~) ... E(Z~_j), so that  with (5) we get for fixed j 1> 0 

_1 
nP{Z*_j, iYi_j > a.x} ~ x-~cj (6) 

n i = j +  1 

as n ~ ~ .  Because of (3), the sum of cj is finite, since c~ is bounded  by s t+ 1 < gj+ 1. 

Therefore,  for any 6 > 0 there exists Jo such that  

Thus  

x -~' ~ cj <~ x -~' ~ §J < 6. (7) 
J=Jo j=Jo 
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Again by Lemma 2, there exists no such that for all n >/no, all 0 ~< zi, ... ,zi_s ~< 1 and 
any j >t 0 and e ~< min(~ - fl, 1) 

n[1 - G(a ,x / z i . . .  z i- j)]  <~ (1 + g)(zi.., z i - j )ax  -~ 

and consequently 

nP{Z*_j,iYi_ j > a ,x}  <<. (1 + e)E(Zei) ... E(Z~i_a)x -~ 

~<(1 + 0 x - ~ g  a+l. (8) 

For Jo such that (7) holds, we can select by (6) n~ >/no such that for all j < Jo and 
n>~nl 

i=j+ 1 

Then using these bounds for n ~> nl 

1 ~ np{Z,_a, iYi_ a > an,x } _ x-~ ~, 
~~' n i= j+  1 j=o 

c a 
a=o 

a ~  /1 - -  x_~ca) 
/ 

L L'L + x -~ cj + - nP{Z*_s, iYi_ a > a ,x}  
J=Jo J=Jo n i=j+ 1 

= Ia.I + B. + C.. (9) 

Thus IA.[ < 6 and also B. < 6 by (7) and the choice ofjo. Finally by (8), for n/> nl 

ix L 
c .  - -  (1 + 

J=Jo n i = j + l  

~<(1 + e)x -~ 
n - - j  ~j 

• . n ./=JO 

~< {1 + s)x-~ga°/(1 - g) <~ 26 

by (7). Therefore, (9) is bounded by 46, which proves statement (ii). []  

Remark. Note that the proof shows also that n( 1 - H i ( a , , x ) ) =  O(x-~), uniformly 
in i. 

Combining the results of Theorem 1, Lemma 3(ii) and Hiisler (1986), we get 
immediately. 

Theorem 2. Suppose that (2), (3) and (5),for each j >1 0, hold for  the max-AR(1)-random 
sequence {X,} defined in (1). Then {X,} has extremal index 0 = Co/gs~o ca- 
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Remarks. Note that the extremal index does not depend on x as mentioned above. In 
particular, ifZ~ = C with probability 1, for all i, then E Z ~  = C ~ = Co and cj = C "tj÷ 1~ 

This implies that 0 --- C~/(~1>~ ~ C "j) = 1 - C ~, which is the result obtained for the 
stationary case. But this particular result still holds, if only for instance E Z ~  = C a for 
all i >~ 1. Even weaker assumptions on {Zi} would lead to the same result. 

3. Point process of exceedances 

In this section we discuss the point process N. of exceedances of the boundary 
u.  = a . x  by {Xi} .  We define N. on [0, 1] by 

N. = ~ Ji/, 1 (Xi  > u,).  
i <~n 

Since the exceedances do cluster, as is shown in Section 2, we expect that N, converges 
asymptotically to a compound Poisson process with a certain distribution for the 
multiplicities representing the cluster sizes. To derive such a result, we assume in this 
section in addition to the previous assumptions that 

E ~ / / ~ c  a s i ~  ~. (10) 

This implies that (5) holds for all j ~> 0 with c i = c j÷ 1. In the stationary case with fixed 
nonrandom Zi it was shown by Alpuim (1988) that the cluster size distribution is 
asymptotically a geometric distribution. To derive a similar result for the 
nonstationary model, we use a general result for the convergence of point processes of 
exceedances given in Nandagopalan (1990) and Nandagopalan et al. (1992), which 
holds under certain mixing and smoothness conditions. 

The mixing condition A is the following: Let 

~k,(k2 U.) = a { { X ,  > u.},  k l  <~ i <~ k2} 

and for 1/n < I < (n - 1)/n define 

~.,t = sup { IP(A c~B) - P (A)P(B)[ ,  A e ~ ( u . ) ,  B e ~ ,  + t./j(u.), 

0 <~ m < m + [nl]  <~ n}.  

The condition A is said to hold if ~,,l, ~ 0 for some sequence I. ~ 0 as n ---, oo. 
Then there exists a sequence {k., n ~> 1} such that 

k .  ~ oo, k . / n  ~ O ,  k , (~ . , t ,  + l , ) - - ,O  a s n ~  ~.  (11) 

Take for instance k. --- min(x//-n, ct~,ll/2,1,- 1/2). 
In order that the limiting point process N is infinitely divisible and has independent 

increments, i.e. N ( B )  and N ( C )  are independent whenever B and C are disjoint subsets 
of [0, 1], we need in addition that the exceedances in small intervals are asymptotically 
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negligible, more precisely 

sup P { N . ( J )  v~O} ~ 0  a s n - o o o .  
J:m (J) <~ In 

where m(. ) denotes Lebesgue measure. This will follow from the verification of the 
following condition (12). 

We assume that for each n > 0 there exists an interval partition {Ji = Ji(n), 
1 ~< i ~ k~} of [0, 1] such that 

7. = max P{Nn(J i )  v L 0} ~ 0 as n ~ oo. (12) 
1 .~i~kn 

With respect to this partition we define the (conditional) cluster size distribution 

n~.i(y) -- P { N , ( J i )  ~ y lS~(J , )  ~ 0}, y > O, i ~ k,, 

and set nn.x -- n~,~ whenever x eJ~. 
Moreover, we define for n > 0 the measures v~ for the occurrence of cluster of 

exceedances by 

k, m ( B ~ J i )  
v.(BI = P{N IJ, I 0} m(J,------f-' B c [0, 1]. 

i = l  

A smoothness condition is also required. For  each n > 0 and a e G where G is 
a nonempty open subset of ~+ \{0}, define the family of functions gn(., a) 

gn(x,a) = r (1 - exp( - ay))dnn,~(y).  
Jr > 0  

We suppose that for each a the family {g.(. ,  a), n/> 1} is equicontinuous, i.e. for each 
x e [ 0 , 1 ]  and e > 0 ,  there exists N ( x ) > 0  and 6 ( x ) > O  such that 

Ig,(x ,a)  - g~(x',a)l < e whenever n > ~(x)  and Ix - x'l < ,~(x). 
Finally we need that 

lim sup v,( [0, 1]) < oo. (13) 
n~>l 

If these mixing and smoothness conditions together with (12) and (13) hold and if in 
addition v. ~ v and also n..x ~ nx, v - a.e. x, then Corollary 5.3 of Nandagopalan 
et al. (19921 implies that N. ~ N, where N is a point process with Laplace transform 

--lOgLN(f) : Ix~[o, 1, fy >o 71 --exp(- yf(x))ld.x(y)dv(x ). 

We shall show that the cluster size distribution nx does not depend on x, which 
together with the representation of the Laplace transform above implies that the 
resulting limiting point process N is a compound Poisson process. 

(1) We begin by verifying condition (12). Let Ji = [(i - 1)/kn, i/kn), 1 <<, i <<, kn - 1 
and Jk. = [(k~ -- 1)/kn, 1] be an interval partition of [0, 1], with k~ ~ oo such that (11) 
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holds. Obviously, m(Ji) = 1/k. and 1/k. > I. because of (11). Now, 

P{N.(J,)  # O} ~< ~ (1 - Hj(u.)) = O(1/k.)  ~ 0 ,  
1 <~ jenJi  

since by the remark following Lemma 3, P{Xi  > u.} = 1 - Hi(u.) <<. O(1)x-=/n = 
O(1/n), for all n > no, uniformly in i. 

(2) To verify (13) note that by the definition of v., we have 

k. 

v . ( [0 ,1 ] )=  Z P{N. (J i )#O}  < E P { X j > u . } = O ( 1 )  
i = l  l <~j~n 

using (1). 
(3) We consider now the weak convergence of v,. A similar calculation as in the 

proof of Theorem 1 gives for any subinterval J of [0, 1] where m(J)-+ 0 and 
nm(J) -+ ~ as n -+ 

P{N.(J)  # 0 ~  P ~ m a x Z j Y j  > u.}  
( jEnJ 

~ Z P{ZjYj  > u.} 
jEnJ 

~ X Ez . (14) 
j~nJ  

The convergence of v. is now implied by (10) since 

-~(  y, "]m(Bc~Ji) 
v,,(B) ~ ~ x - EZ~ ~,cx-~'m(B) = v(B). (15) 

i<,k. n \ j~.j ,  / m(Ji) 

(4) We continue by analysing the convergence of the cluster size distribution n.,x. 
Let k be fixed, k/> 1. Again, we use first any subinterval J of [0, 1] introduced in (3). It 
follows easily that with 

Bj = {Xj ~ u,, Xj+I > u . . . . . .  Xj+k > u.}, 

j>>.O, 

P{N.(J)  >~ k} - P(Uj~,sBj)  = O((P{N.(J)  # 0}) 2) + O(1/n). 

In the same way with 

Aj = {Zj+ , Yj+ , > Yj+ z,Zj+ zZj+ , Yj+ , > Yj+ 3, ..., 

ZT+I. j+k_IYj+ 1 > Yj+k,Z~.+I,j+kYj+I > U.}, 

denoting the event that the weighted 'input' Yj+ 1 dominates the following k -  1 
'inputs' Yg+ z, . . . ,  Yj+k and remains above u, for the next k time points, we get 

k j ~ n J  ) j 
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Finally, we approximate the last term 

J J 

E * P{Zj+ 1,j+kYj+ a > u.} 
j e n J  

~ EZ~+ 1 "'" EZi+k" 
j~nJ FI 

Using (14) we get now 

P { ~ j B i l  N.(J) v~ O} = (l + o(1)) y'JE"J EZ'+ I "'' EZ'+k (16) 

Now taking the intervals of the partition and using (10), it follows that for any k ~> 1 
and any i ~< k. 

1 - rc.,,(k - 1) = P{N.(J,) >7 k lN.(J,) # O} 

ct ~t 
~JenJi g z j +  l ""  E Z j + k  ~ c k - 1 .  

Z1 <, j~.j, EZ~ 

Hence for all x ~ [0, 1], 7tx(k) --- 1 - c k is a geometric distribution, independent of x. 
The above approximation holds uniformly for i~< k. which implies that {#,} is 
equicontinuous and the corresponding smoothness condition is obviously satisfied. 

(5) Left to verify is the mixing condition A. If two events A and B are conditionally 
independent given E with P(E) > 0, it follows by a straightforward calculation that 

[P(Ac~B) - P(A)P(B)I <~ P(Ac~BIE ) - P(AIE)P(BIE)J + O(P(E~)) 

We consider first two special events A * e ~ '  and B*E~.+[.I .I  where 
0 ~< m < m + In/.] ~< n with I. = o(1), nl. -o oo (as n ~ ~): 

A* = j e I i  . 
J 

B * = {  ~ ( X j E I j ) } ,  
j = m + [nl,] 

where I i ~ S. := {0, ( - oo, u.], (u., oo), R}. 

Furthermore, let 

[nl~]- 1 [nl.] - 1 

E = U { Zm~+ 1 , m + J  x m  < Z.,+ff-+i} n N {Z.,+kY.,+k ~< u.}. 
j=l  k=l 
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E denotes  the event that  in the index set{m + 1, . . . ,  m + [nl.] - 1} the sequence X j  is 
at  least once exceeded by an input  Z j Y j  whereas all the inputs  fail to exceed u..  

Observe  that  

{Xm+t.t.l ~ I,.+t.t.]} = {Zm+t.l.]max(Z,.+ l.,.+t.l.]- lXm, * Zm+ 1,m+[nln]- 1 

Ym+ 1 . . . .  , Z,.+t . t . l -  x Ym+t.~.l- 1, Y,. +t.t.l) e Im +t.t.]} • 

Tak ing  the intersection with E we get 

{Xm+t.l.l e l,.+t.l.l} c~E = {Zm+[.,..lYm+tnz.] ~Im+t.t.l}c'.E. 

Therefore  

P ( B * n E )  = P{Zrn+[nt.]Ym+tnt.] elm+Inl,.l,Xk ~-Ik, m + [nl,.] + 1 ~ k <<. n}P(E) 

= P(B)P(E)  

where -~k = Z k m a x ( X k - 1 ,  Yk) for k > m + [n/ . ] ,~m+t . l . j  = Zm+t.l.]Ym+t.t.l, and 

/~ = { (-]7 =,. + r.,.] (~J e Ii)}; also 

P ( A * n B * n E )  = 1 ' ( A ' h E ) P ( 9 )  

which implies 

P ( A * n B * I E )  = P(A*IE)P(9)  = P(A*IE)P(B*IE).  

Next  we show that  P(E) ~ 1 as n ~ ~ .  We rewrite E = Elc'.E.,, where 

and 

[nln]-I 

E1 = U 
j= l  

{Z,.+jY,.+j > Z.+ 1,,.+iX.,} 

[nln] - 1 

E2 = ('] {Z,.+jYm+j ~ u,.}. 
j = l  

[nl.] - 1 

P{(Ym+, <<- x) (~ {Ym+j <~ * Zm+ l,m+ j -  l X) } Hm(dx) 
j=2  

f P { Y . .  <. x, 1 [nl,,] - 1}H.,(dx) 

= f [ G ( x ) ] t . t . l -  1H,.(dx). 
3 

We get 

P(E]) = 

To see that  this bound  tends to 0, define the sequence n* by n* = [nl.]  - 1. We have 
n* --* ~ .  Split the integral into two par ts  with the point  xoa,., with Xo > 0. small. Fo r  
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all x <<, xoa,. 

[G(x)]"* ~< [G(xoa..)]"* 

-~ exp( - Xo ~) 

for Xo sufficiently small. The second part of the integral is bounded by 
1 - Hm(xoa..) = O(xo~/n*), uniformly for m, by the remark after Lemma 3. Hence the 
upper bound of P(E~) tends to zero as n --+ oo. By Lemma 2 we get that 

[nl . ] -  1 

P(E2) = U P(Z.+jYm+j ~ U.} 
j = l  

["ln]- 1 
ct-~ -or ~> I1 (1 -- (1 + e)E(Zm+j)x /n) 

j = l  

~> ( 1  - -  (1 + ~)x-~'/n) t"l"J- 1 __. 1, 

since l. ~ O. 
Combining these results we notice that P(E') <~ P(E]) + P(E~z) ~ 0 as n --* ~.  
This implies that the mixing property holds for the special events A* and B*. 
It remains to show that this implies also the mixing property for any events 

A E a { { X j > u . } ,  j<~m} and B E f f { { X j > u . } ,  m +  [nl.] <~j<~n}. Observing 
that ~"d(u.)=tr{{X~<~u.}, O<~j<~m}=a{(Xo . . . . .  X . , ) E l o x . . . x l , . ;  I~ES., 
0 ~<j ~< m} define 

cg~'(u.) = {(Xo, . . . ,X.,)  EIo x -.. xI , . ;  l i e S . ,  0 <~j ~ m} 

and c£~.+t.~.j(u.) similarly. Let 

9 ,  = {A e ~ ' (u . ) :  P(Ac~BIE) = P(AIE)P(BIE), B E cg~,+t.,.l(u.)}. 

91 is obviously a Dynkin system and 91 = rg~(u.). Since cg~(u.) is c~-stable, we have 
91 ~ a(c£~'(u.)) = ~ ' (u . ) .  Now define 

92 = {B e~,+t.,° |(u.):  P(Ac~BIE)= P(AIE)P(BIE), A e ~¢~'(u.)}. 

Again, 92 is a Dynkin system and 92 = cg~,+t./°j(u.). Since ~g~,+t.l.l(u.) is n-stable, we 
have 92 = a(cg~.+t.,.j(u.)) = ~,+t.,.l(u.). Therefore, we conclude that any two events 
A e ~ ' ( u . )  and B E ~,+t.z.l(u.) are conditionally independent given E. This together 
with P(E ~) ~ 0 implies the A mixing condition. 

Hence we proved 

Theorem 3. Suppose that (2), (3) and (5), for each j >1 O, and (10) hold for the 
max-AR(1)-random sequence defined in (1). Then 

N. ~ N as n ~ oo 

where N is a compound Poisson process with a geometric cluster size distribution 
zt(k) = 1 - c k, k >1 1 and intensity cx-L  
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