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Abstract

We provide a framework for the martingale representation for futures prices which has some
concrete advantages over the classical treatments of Du1e (Dynamic Asset Pricing Theory, 3rd
Edition, Princeton University Press, Princeton, NJ, 2001) or Karatzas and Shreve (Brownian
Motion and Stochastic Calculus, 2nd Edition, Springer, New York, 1997). In particular, the new
formulation accommodates models where the distribution of the associated risk-free rate has
unbounded support. This relaxation is particularly useful in the theory of LIBOR futures.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

If �(t) denotes the futures price at time t for a commodity, a stock index, or an
interest rate index, then, in the context of the theory of complete Anancial markets,
�(t) is often represented by an identity of the form

�(t) = Ẽ(B|Ft); (1)

where, in the typical case, B is simply the spot price at time T of the underlying
asset. Here, of course, the indicated conditional expectation is taken with respect to the
so-called risk-neutral probability measure P̃, and Ft denotes the �-Aeld which ones
uses to indicate the ensemble of information which is assumed to be available at time t.
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Such a martingale representation is known to hold in those models where the in-
stantaneous risk-free interest rate r(·) is technically well behaved, and, for example,
Du1e (2001, p. 172) shows that martingale representation (1) holds if

P
(
A16 inf

06t6T
r(t)6 sup

06t6T
r(t)6A2

)
= 1 (2)

for some constants −∞¡A16A2¡∞. Karatzas and Shreve (1998, p. 45) also show
that one has a martingale representation for �(t) under the slightly weaker assumption
that the accumulation factor

�(t) = exp
(∫ t

0
r(s) ds

)
(3)

satisAes the almost sure boundedness condition

P
(
�16 inf

06t6T
�(t)6 sup

06t6T
�(t)6 �2

)
= 1 (4)

for some constants 0¡�16 �2¡∞.
Unfortunately, there are natural—and almost unavoidable—circumstances where both

of these conditions fail to be met. For example, in any model that leads to a marginal
Gaussian distribution for the risk-free rate r(t), the spot rate boundedness condition (2)
of Du1e will fail. Moreover, one can check without di1culty that the accumulation
factor condition (4) of Karatzas and Shreve also fails under some simple cases, such as
the Ho–Lee model where under the risk-neutral measure P̃ the risk-free rate r(t) has a
representation a g(t)+�B̃t for a deterministic function g and a P̃-Brownian motion B̃t .
To be sure, the Ho–Lee model is no longer anyone’s Arst choice as a model for the

risk-free rate, but analogous di1culties emerge with essentially all Gaussian term struc-
ture models, and sadly enough, it is di1cult to specify any feasible non-deterministic
model for the risk-free rate where the conditions (2) or (4) will apply, even though
parts of the conditions are easily met. For example, the lower bound on the deNa-
tor which one needs in the Karatzas–Shreve condition (4) is easy to satisfy; one just
needs a model with r(t)¿ 0 for all t ∈ [0; T ]. Nevertheless, it is a ticklish matter to
provide a feasible model for the process {r(t): t ∈ [0; T ]} which will guarantee that the
accumulation factor �(t) is bounded from above with probability one.
Fortunately, one can avoid these di1culties by a small technical modiAcation of

the usual speciAcation of a futures price process. The modiAcation yields a broadly
applicable su1cient condition for the martingale representation (1), and the two-sided
bound (4) of Karatzas and Shreve can be replaced with a simpler one-sided condition
that is more easily met. Despite the technical nature of the proposed changes, they
deserve to be made. As we detail below, they rescue the theory of interest rate futures
from the horns of a modelling dilemma.

2. The martingale representation of futures process

Like Karatzas and Shreve (1998), we take a cumulative income process to be a
semimartingale {�(t): 06 t6T}, and informally we view �(t) as the net amount of
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money received by the holder of an interest rate futures contact during the time interval
[0; t]. We then write �(·) in the usual semimartingale decomposition

�(t) = �(0) + �fv(t) + �lm(t); 06 t6T; (5)

where �fv(·) is a cQadlQag process with Anite variation and where �lm(·) is a P̃-local
martingale. Here, P̃ continues to refer to the equivalent martingale measure of an
underlying standard Anancial market model M (as deAned in Karatzas and Shreve
(1998, p. 17)), and the decomposition (5) is unique P̃-a.s. provided that we take
standardized initial values �fv(0) = 0 and �lm(0) = 0. To be completely precise, we
should call � a cumulative cash Now process associated with the market model M.
In parallel with Karatzas and Shreve (1998, p. 18), we say that the cumulative

income process �(·) associated with a market model M is integrable provided that it
satisAes the two integrability conditions

Ẽ
∫ T

0
�(t)−1 d�̂fv(t)¡∞ and Ẽ

∫ T

0
�(t)−2 d〈�lm〉(s)¡∞; (6)

where �̂fv(t) denotes the total variation of �fv(·) on [0; t] and 〈�lm〉(t) denotes the
quadratic variation of �lm(·) on [0; t]. Such an integrable cumulative income process
�(·) is called a European contingent claim associated with the market model M, and,
by the general theory of arbitrage prices (say as put in Proposition 2.3 of Karatzas and
Shreve (1998, p. 41)), we know that the unique arbitrage-free price at time t ∈ [0; T ]
of the European contingent claim �(·) is given by the classic pricing formula

�(t)Ẽ
[∫ T

t
�(s)−1 d�(s) |Ft

]
: (7)

We can now state our proposed deAnition for the futures price process associated with
a market model.

De�nition 1 (Futures price process). If {�(t): 06 t6T} is a European contingent
claim associated with the market model M, then �(·) is called a futures price process
with terminal value B∈FT provided that �(·) has the three following properties:

1. �(T ) = B,
2. the arbitrage-free price of �(·), which is given by formula (7), is equal to zero

P̃-a.s. for all t ∈ [0; T ], and Anally
3. the process �(·) satisAes the regularity condition

Ẽ〈�lm〉(T )¡∞; (8)

where 〈�lm〉(·) denotes the quadratic variation of �lm(·).

The Arst of these conditions just reNects the required terminal value of the futures
price process, while the second condition carries almost all of the modelling responsi-
bility. SpeciAcally, condition (2) reNects the fundamental fact that one can enter into
a futures contract at any time on either the long or short side with zero cost, so the
arbitrage free price of the associated cash Now must also equals zero—or else one
would have an arbitrage possibility.
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The third condition plays a technical role, and this only point where the DeAnition 1
diSers from earlier treatments. We intend to argue that the added condition (8) provides
a genuinely more appropriate setting for futures price modelling, but Arst we need a
representation theorem.

Theorem 1 (Representation of futures prices). Let B be an FT -measurable random
variable such that

Ẽ[B2]¡∞:

If a futures price process {�(t): 06 t6T} associated with an market model M has
terminal value B, then the process �(·) is a P̃-martingale on [0; T ], and we have the
representation

�(t) = Ẽ[B|Ft] for all 06 t6T: (9)

Conversely, if the martingale  (·) de:ned by

 (t) = Ẽ[B|Ft] for 06 t6T (10)

satis:es the integrability condition

Ẽ
[∫ T

0
�(t)−2 d〈 〉(t)

]
¡∞; (11)

where 〈 〉(·) denotes the quadratic variation of  (·), then the process  (·) is the
unique futures price process for M in the sense of De:nition 1.

Proof. We have P(�(t)= 0)= 0 for all t ∈ [0; T ], so, from the zero-price constraint in
the deAnition of a futures price process, we see that � satisAes

Ẽ
[∫ T

t
�(u)−1 d�(u) |Ft

]
= 0 P̃-a:s: for all t ∈ [0; T ]: (12)

If we deAne a new process I(·) by the stochastic integral

I(t) =
∫ t

0
�(u)−1 d�(u) 06 t6T;

then (12) tells us that for all t ∈ [0; T ] the process I(·) satisAes

Ẽ[I(T ) |Ft] =
∫ t

0
�(u)−1 d�(u) + Ẽ

[∫ T

t
�(u)−1 d�(u) |Ft

]
= I(t);

and from this identity we see that I(·) is a P̃-martingale. Now, by its construction,
I(·) has the stochastic diSerential dI(t) = �(t)−1d�(t), and, if multiply this equation
by �(t) and integrate, we And that �(·) is given by

�(t)− �(0) =
∫ t

0
�(u) dI(u):

This formula implies that the process �(·) is a P̃-local martingale, so, in its semi-
martingale decomposition we have �fv(·) ≡ 0 and �lm(·) = �(·)− �(0).
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These relations provide the required link to our condition (8) on the quadratic
variation of �lm(·), since it is well-known (say from Karatzas and Shreve (1997,
p. 38)) that a local martingale with an integrable quadratic variation must be an honest
square-integrable martingale. Thus �(·) is a martingale, and the proof of the direct half
of the theorem is complete.
To prove the converse we Arst note that the terminal condition is trivial, so it

su1ces to check that the process  (·) deAned by (10) is a European contingent claim
that satisAes the zero price condition of required by the deAnition of a futures price
process. By Jensen’s inequality and square integrability hypothesis on B we see that
the process  (·) is a square integrable P̃-martingale, so its canonical decomposition
as a semimartingale is trivially given by  fv(·) ≡ 0 and  lm(·) =  (·) −  (0) with
Ẽ〈�lm〉(T )¡∞. By our key assumption (11) on  (·) we have the second of the
two integrability conditions (6). For  (·) the Arst condition is vacuous, so  (·) is a
European contingent claim that satisAes the regularity condition (8).
Now, if we deAne a new process J (·) by the stochastic integral

J (t) =
∫ t

0
�(u)−1 d (u) t ∈ [0; T ];

then, by our hypothesis (11) on the quadratic variation of  (·) and the “well known
fact” used just a few lines ago, we see that the process J (·) is a square-integrable
P̃-martingale. From the martingale property of J (·), we trivially And

�(t)Ẽ[J (T )− J (t)|Ft] = 0; for all t ∈ [0; T ]:
This is the zero-price condition for the European contingent claim  (·), and the unique-
ness assertion is immediate from the Arst part of the theorem, so the proof of the
converse is complete.

3. The explicit connection

Theorem 1 quickly yields a martingale representation theorem for futures price pro-
cesses under conditions that liberalize those that have traditionally been imposed on
the short rate process.

Theorem 2. Let B be an FT -measurable random variable such that

Ẽ[B2]¡∞:

If the accumulation factor �(·) of the market model M satis:es the one-sided bound-
edness condition

P
(
�6 inf

06t6T
�(t)

)
= 1 (13)

for a constant 0¡�6∞, then there exists a unique futures price process  (·) asso-
ciated with the standard :nancial market and the terminal value B. Moreover,  (·)
has the martingale representation

 (t) = Ẽ[B|Ft] for all t ∈ [0; T ]: (14)
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Proof. According to Theorem 1, the process  (·) deAned by formula (14) must be an
honest futures price process if it satisAes the integrability condition (11), and, by our
hypothesis (13) on the accumulation factor, we And

Ẽ
∫ T

0
�(s)−2 d〈 〉(s)6 1

�2
Ẽ
∫ T

0
d〈 〉(s) = 1

�2
Ṽar(B)¡∞: (15)

Thus,  (·) satisAes the bound (11), and, by the Arst part of Theorem 1, we see that
 (·) is indeed the unique futures price process with terminal value B.

4. An example: the simplest LIBOR futures

Theorems 1 and 2 are pertinent to any futures price process, but to appreciate their
contribution one might speciAcally focus on interest rate futures. In this case no one can
argue that a deterministic model for the underlying risk-free rate would be reasonable.
Here we will consider a model for LIBOR futures where the associated term structure

is governed by the Ho–Lee model. Even though the Ho–Lee model is no longer at the
cutting edge, it does have the beneAt of requiring very little overhead, and models of
more contemporary interest are amenable to similar analyses.
Let {P(t; T )} denote a family of prices for zero-coupon bonds in accordance with

the Ho–Lee model, say as speciAed in Heath et al. (1992, p. 90). Next let L�(t) denote
the LIBOR quote at time t for a deposit of 360� days (so � = 1

4 corresponds to a
90-day term of deposit) and recall the bookkeeping relationship between zero-coupon
bond prices and LIBOR quotes:

L�(t) =
1
�

(
1

P(t; t + �)
− 1

)
: (16)

The converse half of Theorem 1 tells us that the process F�(t; T ) deAned by

F�(t; T ) = Ẽ[100(1− L�(T )) |Ft] 06 t6T; (17)

will be a futures price process with terminal value B=100(1−L�(T )) if we can check
two basic conditions. First, we need to show

Ẽ[B2]¡∞; (18)

and, more delicately, we need to show that the quadratic variation of the process
F�(t; T ) deAned by (17) satisAes the integrability condition

Ẽ
∫ T

0
�(s)−2 d〈F�(·; T )〉(s)¡∞: (19)

These tasks are addressed by the following proposition.

Proposition 1. Conditions (18) and (19) both hold under the Ho–Lee model, and
consequently the process F�(t; T ) given by (17) is a futures price process in the sense
of De:nition 1.
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Proof. From the bookkeeping identity for the LIBOR quotes (16) we see that to prove
(18), it su1ces to show that Ẽ(P(T; T + �)−2)¡∞. A short calculation analogous to
that of Heath et al. (1992, p. 91) conArms that

P(t; T ) =
P(0; T )
P(0; t)

exp
[
−�2

2
Tt(T − t)− �(T − t)B̃t

]
: (20)

From this formula, we see that P(T; T + �)−2 is a product of a deterministic function
and a random variable with a lognormal distribution under P̃, so P(T; T + �)−2 has a
Anite P̃-expectation, exactly as required.
To prove the quadratic variation bound (19), we Arst note (cf. Musiela and Rutkowski

(1997, p. 373)) that we have

F�(t; T ) = 100
(
1
�
+ 1

)
−
(
100
�

)
P(t; T )

P(t; T + �)
G(t; T; �); (21)

where G(t; T; �) = exp[(�2=8)(T − t)(T − t + 1=2)]. With help form the bond price
representation (20), this formula leads to an explicit formula for the quadratic variation
of F�(t; T ). SpeciAcally, if we use (20) to eliminate the bond prices from (21), we
And

F�(t; T ) = 100
(
1
�
+ 1

)
− D(t; T; �) exp(��B̃t);

where in the last summand we have

D(t; T; �) =
100
�

P(0; T )
P(0; T + �)

e�
2(T+�)t(T+�−t)=2−�2Tt(T−t)=2G(t; T; �):

The immediate application of Itô’s formula might seem natural here, but it would be
needlessly messy; one does much better to note Arst that the deAnition (17) of F�(t; T )
tells us F�(t; T ) is a P̃-martingale, so the drift term of dF�(t; T ) must be zero and
hence Itô’s formula must give us simply

dF�(t; T ) =−��D(t; T; �) exp[��B̃] dB̃t :

The quadratic variation 〈F�(·; T )〉(·) of the process F�(·; T ) therefore satisAes the SDE
d〈F�(·; T )〉(t) = �2�2D(t; T; �)2 exp[2��B̃t] dt. In the Ho–Lee model, the spot rate is
given by r(t) = f(0; t) + �2t2=2 + �B̃t so we And

�(t) = exp
[∫ t

0
(f(0; s) + �2s2=2 + �B̃s) ds

]
;

so the critical integral (19) has the representation∫ T

0
�(t)−2 d〈F�(·; T )〉(t)

=
∫ T

0
D1(t; T; �) exp

[
−
∫ t

0
2�B̃s ds+ 2��B̃t

]
dt; (22)

where we have set

D1(t; T; �) = �2�2D(t; T; �)2 exp
[
−
∫ t

0
(2f(0; s) + �2s2) ds

]
:
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By a short calculation with Itô’s formula and Itô’s isometry, we then And that

−
∫ t

0
2�B̃s ds+ 2��B̃t = 2�

∫ t

0
(s− �− t) dBs

d=N [0; 4�2{�3=3− (�− t)3=3}];

and this tells us that the inside integrand of the critical integral (22) has the lognormal
distribution. Thus, by the boundedness of the deterministic function D1(t; T; �), one
obtains the Aniteness of the expectation of (22) after routine estimates.

This proposition illustrates the relative ease with which Theorem 1 can be applied,
and it completes the program that began with the observation that the futures price
formulations Du1e (2001) and Karatzas andShreve (1998) do not accommodate the
Ho–Lee model. Obviously, analogous calculations apply model wherever one has log-
normal bond prices and accumulation factors.

5. Recommendations and further examples

We suggest that for a rigorous but Nexible theory of futures prices one should
assume both condition (6) and condition (8). This double assumption accommodates
every model that is covered by the formulations of Du1e (2001) and Karatzas and
Shreve (1998), and, for parts of the theory of interest rate futures, this suggestion
seems to provide one of the few viable alternatives.
Although the main example given here focused on a Gaussian models for the short

rate, but there are many non-Gaussian models where the new framework also oSers
help. All term structure models which have positive interest rates automatically satisfy
our condition (13) with � = 1, and many such models have been introduce. Among
these, the best known are probably the non-Gaussian models of Cox–Ingersoll–Ross
type, such as those as described by Baxter and Rennie (1996, p. 157) or BjVork and
Landen (2002, p. 130), but one also has non-negative interest rates in some more
specialized models such as the modiAed proportional models of Heath et al. (1992,
p. 95). In every case, the interest rates fail to be P̃-a.s bounded, and, in several
particular instances, the two-sided condition (4) also fails.
Finally, we should comment on the connection between Theorem 2 and the lognormal

Black–Karanski model and the consol model examined in Hogan (1993) and Hogan and
Weintraub (1993). For these models, the associated term structures have non-negative
interest rates, but Theorem 2 does not apply. Formally, this is because the terminal
value need not be square integrable, but there are also a priori structural reasons. In
particular, for the consol model Hogan (1993) Ands that there can be zero prices for
zero coupon bonds, so that model is not arbitrage free. In such a situation, one should
not expect a martingale representation such as that of Theorem 2.
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