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Abstract

We consider the large deviations for the stationary measures associated to a boundary driven
symmetric simple exclusion process. Starting from the large deviations for the hydrodynamics
and following the Freidlin and Wentzell’s strategy, we prove that the rate function is given by
the quasi-potential of the Freidlin and Wentzell theory.
This result is motivated by the recent developments on the non-equilibrium stationary measures

by Derrida et al. (J. Statist. Phys. 107 (2002) 599) and the more closely related dynamical
approach by Bertini et al. (J. Statist. Phys. 107 (2002) 635).
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1. Introduction

A rigorous understanding of the steady states associated to nonequilibrium sys-
tems is far from being complete. In particular, the transport phenomena which take
place in some nonequilibrium systems induce, in general, long-range correlations in
the stationary measures, see e.g. Spohn (1983). For the moment, there is no analog
to the Gibbs equilibrium formalism and it is typically a very challenging problem
to describe the stationary measures of systems which are de?ned only by dynamical
prescriptions.
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A mathematical idealization of open systems is provided by stochastic models of
interacting particles systems. Consider a system of particles performing a reversible
hopping dynamics (Kawasaki dynamics) in a domain and some external mechanism
of creation and annihilation of particles on the boundary of the domain which make
the full process non-reversible. The hydrodynamic behavior, namely the law of large
numbers followed by the stationary measures, has been derived for important general
classes of models (we signal in particular Eyink et al. (1990) and Kipnis et al. (1995)).
In the case of the symmetric simple exclusion process (SSEP) hydrodynamic behavior
as well as further results on the Fuctuations can be obtained by using the speci?c
structure of the dynamics (see in particular Spohn (1983) and De Masi et al. (1982)).
More recently, breakthroughs were achieved by the derivation of a large deviation

principle for the stationary measures of the one-dimensional boundary driven SSEP.
Using exact computations, Derrida et al. (2002) obtained the explicit form of the
rate function for the large deviation principle. Another approach, relying on the large
deviations for the hydrodynamics, has been pursued by Bertini et al. (2002, 2003).
By generalizing the Freidlin and Wentzell’s theory in this context, they were able to
formulate a dynamical Fuctuation theory for the stationary non-equilibrium states. This
approach relies on the hypotheses that the rate function associated to the steady states
is given by a dynamical variational formula (the quasi-potential). As a consequence of
these hypotheses, some general principles are deduced among which are an extension
of the Onsager–Machlup theory and a nonlinear Fuctuation dissipation relation.
The non-local structure of the rate function is extremely hard to interpret physically

and therefore the result in Derrida et al. (2002) raises many questions for the general-
ization to a broader class of models. On the other hand, the dynamical approach seems
to be very promising since the static rate function can be identi?ed in a systematic
way with the quasi-potential. Unfortunately, the quasi-potential provides a very indirect
information and, at the moment, only partial results can be extracted from it. There
is no general procedure to analyze the quasi-potential. Inspired by the exact formula
in Derrida et al. (2002), Bertini et al. (2002, 2003) were able, in the case of SSEP,
to integrate the dynamical information contained in the quasi-potential and to recover
a tractable expression of the rate function by using a purely dynamical method. This
important step may open the way towards further generalizations.
In this paper our modest goal is to address one of the hypotheses on which the dy-

namical theory in Bertini et al. (2002, 2003) rests. In fact, we implement the Freidlin–
Wentzell theory in the context of the SSEP, by proving that the quasi-potential is the
large deviation functional of the steady state. This complements the results in Bertini
et al. (2002, 2003), providing thus an alternative proof of the result in Derrida et al.
(2002). We stress that, contrary to the original heuristic in Bertini et al. (2002, 2003),
the proof requires no hypotheses on the adjoint dynamics. We point out that this proof
uses essentially nothing of the details of the SSEP dynamics: a good large deviation
principle (Deuschel and Stroock, 1989) is the key ingredient, along with some prop-
erties of the macroscopic dynamics and therefore a good control of the hydrodynamic
equation and, above all, of the large deviation functional would lead to the generaliza-
tion of the result to a large class of interacting exclusion systems. We will address in
detail this issue in the last section.
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As a last remark, let us mention that an exact solution for the rate function of the
totally asymmetric exclusion process has been also derived (Derrida et al., 2003) and
it is an open problem to provide a dynamical counterpart similar to the results obtained
for the SSEP.

2. The model and the results

2.1. Boundary driven SSEP

Let �N = {−N;−N +1; : : : ; N} and N be a positive integer. The con?guration space
is �N = {0; 1}�N . The SSEP with reservoirs is de?ned as the Markov process {�t}t¿0,
with �t ∈�N for every t¿ 0, generated by

(LNf)(�) =
N 2

2

∑
x;y∈�

|x−y|=1

[f(�x;y)− f(�)] + N 2
∑

x:|x|=N

c(x; �x)[f(�x)− f(�)]; (2.1)

where f is any function from �N to R and �x and �x;y are de?ned in the standard
way, that is

�x(z) =

{
1− �(x) if z = x;

�(z) otherwise;
�x;y(z) =




�(x) if z = y;

�(y) if z = x;

�(z) otherwise:

(2.2)

The rates c(±N; ·) = c±(·) depend on the activities �±¿ 0 of the reservoirs

c+(�N ) = �+ + (1− �+)�N ; c−(�−N ) = �− + (1− �−)�−N : (2.3)

Let us remark that if �+ = �−(=�) then the model is reversible. Therefore to every
� is naturally associated the value of the (uniform) density of the equilibrium measure
in the in?nite volume measure: we call �+ (respectively �−) the density associated to
�+ (respectively �−)

�+ =
�+

1 + �+
; �− =

�−

1 + �−
: (2.4)

Call P� ≡ PN;� the path measure of the process {�t}t¿0 with �0 = �: it is of course
a measure on D([0;∞);�N ), the (Skorohod) space of CADLAG functions. If � is a
probability measure on (all subsets of) �N ; P�(·) =

∫
�N
P�(·)�(d�).

2.2. Hydrodynamics, invariant measure and hydrostatics

In Eyink et al. (1991) the hydrodynamic limit scaling for this system has been
proven. More precisely, we introduce the empirical measure for r ∈ [−1; 1]

�N� (r) =
N−1∑
x=−N

�x1[x;x+1)(rN ); (2.5)
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so �N� ∈M ≡ {�∈ L∞([−1; 1]): 06 �6 1 a:e:}, 1 and we assume that we are given
a sequence {�N}N and a function �0 ∈C0([−1; 1]; [0; 1]) such that the law of �N ◦
(�N· )

−1, measure on M, tends weakly, as N → ∞, to the measure concentrated
on �0. Then the law of the process {��tN2 }t∈[0;T ], under P�N , converges weakly to
the measure on C0([0; T ]; [0; 1]) concentrated on �, satisfying the energy condition∫
[0;T ]×[−1;1] |∇�(t; r)|2 dr dt ¡∞, unique weak solution of




@t�(t; r) = L�(t; r) for every (t; r)∈R+ × (−1; 1);
�(± 1; t) = �± for every t ∈R+;

�(0) = �0:

(2.6)

Moreover for every ?xed N , the unique invariant measure (steady state) is denoted
by �N . It has in fact been proven that the law of �N� , under �N (d�) converges weakly
as N tends to in?nity to the measure on M concentrated on the stationary solution of
(2.6) which is

M�(r) =
(�+ − �−)

2
r +

(�+ + �−)
2

: (2.7)

For a proof see Spohn (1983) or Eyink et al. (1990).

2.3. From dynamic to static large deviations

Call 〈· ; ·〉 the scalar product in L2([−1; 1]). For H ∈C1;2
0 ([0; T ] × [−1; 1]) (that is,

H (· ;± 1) ≡ 0) let

JH (�) = 〈�(T ); H (T )〉 − 〈�0; H (0)〉 −
∫ T

0
〈�(t); @tH (t) + LH (t)〉 dt

+ �+
∫ T

0
∇H (t; 1) dt − �−

∫ T

0
∇H (t;−1) dt

− 1
2

∫ T

0
〈�(�(t)); (∇H (t))2〉 dt; (2.8)

where �(x) = x(1− x) is the mobility. Set also

IT (�) = sup
H∈C1;2

0 ([0;T ]×[−1;1])

JH (�): (2.9)

For �0 ∈M we de?ne the LD rate function as

IT (� | �0) =
{

IT (�) if �(0) = �0

+∞ otherwise:
(2.10)

1 The topology of M is induced by the weak convergence: �n
n→∞→ � if

∫ 1
−1 �n(r)f(r) dr tends to∫ 1

−1 �(r)f(r) dr for every f∈C0
b ([−1; 1];R). See later for more on this (metrizable) topology. The �-algebra

of the measurable sets of M is chosen to be the Borel one.
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By exploiting the concavity of � one can show that IT is convex. Moreover, one can
show also that it is lower semicontinuous (l.s.c.) and that the level sets {�∈D([0; T ];
M) : I[0;T ](�)6 a} are compact for every a¿ 0. These properties extend to IT (· | �0).
In particular IT (· | �0) is a good rate function (i.e., it is l.s.c. and it has compact level
sets, Deuschel and Stroock (1989). A proof of these properties can be found in Kipnis
and Landim (1999, Chapter 10) and in Bertini et al. (2002, 2003).
The large deviation principle for boundary driven SSEP is derived in Bertini et al.

(2002, 2003).

Theorem 2.1. For every choice of {�N}N , �N ∈�N such that �N�N ∈M converges to
�0, the sequence of random functions {�N�N2·}N=1;2; ::: in D([0; T ];M); �0 = �N , obeys
a full Large Deviations principle with speed N and rate function IT (· | �0). That is,
for every A ⊂ D([0; T ];M), we have that

− inf
�∈A◦

IT (� | �0)6 lim inf
N→∞

1
N
logP�N (�

N
· ∈A◦)

6 lim sup
N→∞

1
N
logP�N (�

N
· ∈ MA)6− inf

�∈ MA
IT (� | �0); (2.11)

where A◦ denotes the interior of A and MA its closure.

Let us introduce the quasipotential (Freidlin and Wentzell, 1998; Bertini et al.,
2002, 2003): for every �∈M

V (�) = inf{IT (� | M�) : �(T ) = � and T ¿ 0}: (2.12)

Of course, the in?mum can be restricted to �∈D([0; T ];M) such that �(0)= M�. More-
over, it is not too diNcult to show (cf. Bertini et al. (2002, 2003) and
Deuschel and Stroock (1989)) that IT (�) = +∞ unless �∈C0([0; T ];M). Therefore,
we may restrict further this extremum to trajectories which are continuous in time.
Starting with the next statement, we will abuse of notation calling �N also the measure
�N ◦ (�N· )−1 on M.
We can now state the main result of this paper.

Theorem 2.2. The stationary measure �N obeys a full Large Deviations principle with
rate function V and speed N .

3. The proof

The scheme of the proof follows closely the one introduced by Freidlin and Wentzell
(1998, Section 4). This requires further notations on the topology of the functional
spaces.
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Recall that the space

M ≡ {�∈ L∞([−1; 1]): 06 �6 1}
was introduced in Section 2.2. The space M is metrizable: if we set f2n+1(r)=sin(�nr)
and f2n(r) = cos(�nr); n= 0; 1; : : :, we may de?ne the distance as

dist(�1; �2) =
∞∑
k=1

1
2k

|〈�1; fk〉 − 〈�2; fk〉|; (3.1)

for �1; �2 ∈M. Of course 〈· ; ·〉 is the scalar product in L2. Moreover for %¿ 0 and
�∈M, then the closed %-ball around � in the weak topology is denoted by

B%(�) = {’∈M | dist(�; ’)6 %}: (3.2)

On the dynamical level we will work with several spaces, but the basic one is the
Skorohod space D([0; T ];M): observe that �N· ∈D([0; T ];M). Let us be more precise
about this space and let us recall that it is a metric space: if we let � be the set of
increasing continuous functions ' of [0; T ] into itself, then a distance associated to the
Skorohod topology is given by

d(�; �′) = inf
'∈�

sup
t∈[0;T ]

{dist(�t; �′'(t)) + |'(t)− t|}; �; �′ ∈D([0; T ];M): (3.3)

For any � in D([0; T ];M), the %-neighborhood of � in the Skorohod topology is denoted
by V%

[0;T ](�). In the same way if A ⊂ D([0; T ];M); V%
[0;T ](A) =

⋃
�∈A V%

[0;T ](�).

3.1. Lower bound

It is suNcient to check that for any %¿ 0 and any � in M

lim inf
N→∞

1
N
log �N (B%(�))¿− V (�): (3.4)

By de?nition of V (recall that the in?mum may be restricted to continuous functions),
for every (¿ 0, there exists T and �∈C0([0; T ];M) such that

IT (� | M�)6V (�) + ( and �(T ) = �: (3.5)

By using de?nition (3.3), for any trajectory � in V%
[0;T ](�) we see that �T ∈B%(�)

(because '(T ) = T ). Since �N is the stationary measure of the dynamics

�N (B%(�))¿P�N (�
N
�T ∈B%(�))¿ E�N [P�0 (�

N
�· ∈V%

[0;T ](�)); �N�0 ∈B%N ( M�)]; (3.6)

for every %N ¿ 0, the hydrostatics results recalled in subsection 2.2 can be rephrased
as

for every (¿ 0; lim
N→∞

�N (B(( M�)) = 1: (3.7)

This is equivalent to the existence of a sequence {%N}N=1;2; :::; %N ↘ 0 as N → ∞, such
that �N (B%N ( M�)) converges to 1. Therefore, for N suNciently large

�N (B%(�))¿ 1
2 inf{P�N (�

N
�· ∈V%

[0;T ](�)): �
N s:t: �N�N ∈B%N ( M�)}; (3.8)
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where the factor 1
2 refers to the bound (3.7). Since %N ↘ 0 as N ↗∞, we may apply

the lower bound in Theorem 2.1 to obtain that

lim inf
N→∞

1
N
log �N (B%(�))¿− inf

�′∈V
%=2
[0;T ](�)

IT (�′ | M�)

¿−IT (� | M�)¿− V (�)− (: (3.9)

Since ( can be chosen arbitrarily small, (3.4) is proven and the lower bound in
Theorem 2.2 is established.

3.2. Upper bound

We are now going to check that for any closed subset C of M

lim sup
N→∞

1
N
log �N (C)6− V (C); (3.10)

where V (C) = inf �∈C V (�). Since, M�∈C the result is trivial, let us assume M� �∈ C.
Therefore, there exists (¿ 0 such that B4(( M�)∩C= ∅. We ?x ( throughout the proof
and set

#= B(( M�) and + = {�∈M | 3(6 dist( M�; �)6 4(}:
For any subset A of M, let ,A be the ?rst return time in A of the process {�N�t}t¿0.

We also introduce ,1 de?ned as follows:

,1 = inf{t ¿ 0: there exists s∈ [0; t) such that �N�s ∈+ and �N�t ∈#}: (3.11)

In order to state a classical representation of the invariant measure �N for the Markov
chain {�t}t¿0, we need to introduce some more notation. The ?rst step is to de?ne a
notion of discrete external boundary for #. Let @#N be the set of con?gurations �N

such that there exists k ∈N and a sequence of con?gurations �N;0; : : : ; �N;k = �N which
satisfy the following constraints:

(1) for every i, the con?guration �N; i+1 can be deduced from the con?guration �N; i by
spin exchange or spin creation according to the rule prescribed by the dynamics.

(2) �N;0 ∈+ and for every i¡ k, we have that �N; i �∈ B2(( M�) and �N;k ∈B2(( M�).

For any N , we consider a variant of the stopping time ,1

,N1 = inf{t ¿ 0: there exists s∈ (0; t) such that �N�s ∈+ and �t ∈ @#N}: (3.12)

The sequence of stopping times obtained by iterating this procedure is denoted by
{,Nk }. In this way an irreducible Markov chain {Xk}k=1;2; ::: is de?ned on @#N by
setting Xk = X �

,Nk
(see Remark 3.3 at the end of the proof).

Since the irreducible chain {Xk}k=1;2; ::: evolves on a ?nite state space, it has a unique
stationary measure �N on @#N . Following Freidlin and Wentzell (1998), we represent
the stationary measure of the process {�t}t¿0 as

�N (A) =
1
CN

∫
@#N

E�

(∫ ,N1

0
1A(�s) ds

)
d�N (�); (3.13)
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for every A ⊂ M, with

CN =
∫
@#N

E�(,N1 ) d�N (�): (3.14)

In order to estimate the probability of the set C, we observe that the strong Markov
property implies

�N (C)6
1
CN

sup
�∈@#N

P�(,C ¡,N1 ) sup
�∈C

E�(,N1 ): (3.15)

Moreover, we notice that there is c¿ 0 such that CN ¿ 1=cN 2: this comes from the
fact that the process, which jumps with jump rates of the order of N 2, has to leave
@#N before returning to it. By construction ,N1 6 ,1, thus

�N (C)6 cN 2 sup
�∈@#N

P�
N (,C ¡,1) sup

�∈C

E�N (,1): (3.16)

The upper bound of the large deviations (3.10) will therefore follow from the fol-
lowing lemma. Recall that most of the de?nitions we gave depend on a positive (and
suNciently small) parameter (.

Lemma 3.1. We have that (1) for every (

lim sup
N→∞

1
N
log sup

�∈C

E�(,1)6 0; (3.17)

for every %¿ 0 there is (0 such that for (∈ (0; (0)

lim sup
N→∞

1
N
log sup

�∈@#N
P�(,C ¡,1)6− V (C) + %: (3.18)

In the proof of Lemma 3.1, we will make use of the following technical result:

Lemma 3.2. There exists T0¿ 0; c¿ 0 and N0¿ 0 such that

sup
��∈#

P�(,# ¿T )6 exp(−c(T − T0)N ); (3.19)

for every T¿T0 and N¿N0.

Proof. The ?rst step is to check that there is T0¿ 0 and a¿ 0 such that if �∈D([0; T0];
M) is such that �(t)∈M\# for every t, then

I[0;T0](�)¿a: (3.20)

To establish this start by considering the following Cauchy problem: for given
�0 ∈M, we look for �(·)∈C0([0; T ];M) such that

〈J (T ); �(T )〉 − 〈J (0); �0〉 −
∫ T

0
〈(@t +L)J (t); �(t)〉 dt

+ �+

∫ T

0
∇J (t; 1)dt − �−

∫ T

0
∇J (t;−1)dt = 0; for every J∈C1;2

0 : (3.21)
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This Cauchy problem is well posed and the solution is classical for positive times. We
can see this by ?rst observing, for example via Fourier analysis, that there exists a so-
lution �∈C1;2((0; T ]× [−1; 1]) satisfying @t�(t) =L�(t) for t ∈ (0; T ]; �(t;± 1) = �±

and limt↘ 0 �(t) = �0 (in M, but also in L1). Uniqueness follows from the follow-
ing argument: for any function f0 ∈C2

0 ([−1; 1]), we consider the classical solution
f∈C1;2

0 ([0; T ] × [−1; 1]) of the heat equation with f(0) = f0. We are now going to
insert into equation (3.21) the test function J (r; t) = f(r; T − t). Since

@tJ (t) + LJ (t) = 0 for every t ∈ [0; T ];

the diOerential term in (3.21) disappears. Let us then assume that �; M�∈C0([0; T ′];M),
T6T ′, are two solutions of (3.21) with the same initial data. Let us set �̃ = � − M�.
By using the test function J and by linearity, we obtain∫ +1

−1
f0(r)�̃(T; r) dr = 0: (3.22)

Finally, by approximation we can extend the validity of (3.22) to every f0 ∈
C0
b ([−1; 1]). This implies that �̃(T ) = 0 and, since T is arbitrary, �̃ ≡ 0.
We claim now that the solution to (3.21) relaxes in L2([−1; 1]) exponentially fast

to the equilibrium pro?le. In fact, since by uniqueness �(·) is smooth, for t ¿ 0, we
have

1
2
@t‖�(t)− M�‖22 =−

∫ +1

−1
[∇(�(t; r)− M�(r))]2 dr: (3.23)

But the spectral gap of the Laplacian with Dirichlet boundary conditions is strictly
positive. So we get that for some c1¿ 0

@t‖�(t)− M�‖226− c1‖�(t)− M�‖22 (3.24)

for every t ¿ 0, and therefore the exponentially fast convergence to equilibrium. Since
06 �06 1, (3.24) implies that for every %¿ 0 there exists T ¿ 0 such that

∀t¿T; sup
�0∈M

‖�(t)− M�‖26 %: (3.25)

This ensures the existence of T ¿ 0 such that �(t)∈# for every t ¿T .
We set T0 = 2T and we want to show that (3.20) holds with this choice. Let us

assume that this is not the case: then there exists a sequence �k of trajectories in
D([0; T0];M\#) such that I[0;T0](�k)6 1=k. This, together with the fact that IT0 is l.s.c.
and has compact level sets, implies the existence of � in D([0; T0];M) taking values
in the closure of M\# and such that IT0 (�)=0. Then � solves (3.21), and, as we saw
in (3.25), �(t)∈# for t¿T , which contradicts the assumption and we are done with
proving (3.20).
From (3.20), we know that for some a¿0 there exists Ta such that any trajectory in

0(a) = {�∈C0([0; Ta);M) : ITa(�)6 a}; (3.26)

enters in the neighborhood B(=2( M�). Notice that the interior of the set 0(a) is empty
(recall that we are working with the Skorohod topology) and we therefore, choose to
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work with an open neighborhood of 0(a):

0′(a) =V
(=2
[0;Ta](0(a)); (3.27)

and if �∈0′(a), then �(t)∈# for some t ∈ [0; Ta]. This implies that

{�∈D([0;∞);M) : ,# ¿Ta} ⊂ (0′(a))–:

Furthermore, by construction, for any � in (0′(a))– we have ITa(�)¿a.
We are now in the position of applying the dynamical large deviation principle:

observe that we can select a sequence {�̃N}N=1;2; ::: such that

max
�N : �N

�N
∈M\#

P�N (,# ¿Ta) = P�̃N (,# ¿Ta) (3.28)

and by compactness of M we can apply the large deviations upper bound (2.11) to
every subsequence of {�̃N}N=1;2; ::: such that �N�̃N converges in M to obtain that there
exists N0 such that for N ¿N0

sup
�N : �N

�N
∈M\#

P�N (,# ¿Ta)6 sup
�N : �N

�N
∈M\#

P�N ((0
′(a))–)6 exp

(
−a
2
N
)
: (3.29)

By using the Markov property we can iterate this procedure to get that for N ¿N0

sup
�N : �N

�N
∈M\#

P�N (,# ¿kTa)6 sup
�N : �N

�N
∈M\#

E�N (1{,#¿(k−1)Ta}P�(k−1)Ta
(,# ¿Ta))

6 exp
(
−ak

2
N
)
; (3.30)

where k is an arbitrary positive integer number. The proof is therefore complete.

Proof of Lemma 3.1. By construction C∩B4(=∅. Therefore, for N large enough, any
trajectory �N�· starting from C will cross + before touching # (the jumps of dist(�N�· ; M�)
are in fact of order 1=N ). This implies that ,1 can be replaced by ,# in (3.17). By
applying Lemma 3.2, we see that uniformly in �N such that �N�N ∈C for N ¿N0

E�N (,#)6Ta

(
1 +

∞∑
k=1

P�N (,#¿ kTa)

)
6Ta

∞∑
k=0

exp
(
−ak

2
N
)
: (3.31)

Therefore, (3.17) holds and the ?rst part of Lemma 3.1 is established.
In order to prove (3.18), it is enough to check that for every %¿ 0 we can ?nd

(¿ 0 such that

lim sup
N→∞

1
N
log sup

�∈#̃

P�(,C ¡,1)6− V (C) + %; (3.32)

where #̃ = B2(( M�). Lemma 3.2 ensures that there is T ¿ 0 and N0¿ 0 large enough
such that for N ¿N0

∀N¿N0; sup
�∈#̃

P�(,1¿T )6 exp(−N (V (C) + 1)): (3.33)
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Thus it remains to check that for N large

sup
�∈#̃

P�(,C6 ,16T )6 exp(−(V (C)− %)N ): (3.34)

Since C and # are closed sets, the set of trajectories such that {,C6 ,16T} is also
a closed subset (of D([0; T ];M)). Therefore, it is enough to check that for any � such
that �(0)∈ #̃ and �(t)∈C for some t ∈ [0; T ]

IT (�)¿V (C)− % (3.35)

for ( suNciently small. If this is not true then one can choose (=1=k and a sequence
�k in D([0; T ];M) such that for some 1¿ 0

lim sup
k→∞

IT (�k)¡V (C)− 1: (3.36)

But {�k(0)}k=1;2; ::: converges to M� and, since IT has compact level sets, one can extract
a subsequence of {�k}k=1;2; ::: which converges in D([0; T ];M) to � such that

�(0) = M�; ,C6T; and IT (�)6V (C)− 1; (3.37)

by lower semicontinuity of the functional IT . By the de?nition (2.12) of V , this is a
contradiction and this completes the proof of Lemma 3.1 and, with it, the proof of the
upper bound of Theorem 2.2.

Remark 3.3. While the irreducibility of the Markov process {�t}t¿0 is clear, we would
like to comment on the irreducibility of the chain {Xk}k introduced right after (3.12).
Let �(1); �(2) be in @#N . By de?nition of �(2), there is a sequence of (particle)

con?gurations {21; : : : ; 2k = �(2)} leading from + to �(2), keeping out of @#N except
for the last point (that is �(2)). Therefore, it is enough to check that one can ?nd a
sequence of con?gurations {�1; : : : ; �k′} which does not touch + and which leads from
�(1) to �(2): notice that we are allowed to go from one con?guration to another only
via the elementary steps of the dynamics. In fact, if we can ?nd it by considering the
sequence of con?gurations {�1 =�(1); : : : ; �k′ ; 2k−1; : : : ; 22; 21; 22; : : : ; 2k =�(2)} that starts
from �1 and intersects @#N for the ?rst time (after having touched +) at the point �(2),
we are done.
As # is convex, the functions {uk ≡ (k=K)�N�(1) + (1 − (k=K))�N�(2)}06k6K belong

to B2(( M�) for any K ∈N. Choose K much bigger than 1=( and consider only integer
k’s: it should be clear that we are done if we show how to go, for N suNciently
large, from � to �; dist(�N� ; �

N
� )6 2=K passing through con?gurations 2 such that

dist(�N2 ; �
N
� )6 4=K . This is achieved by taking into account that:

(1) By choosing N suNciently large we may assume that birth or death is allowed
at any point of the system: for example for a birth at a site x, choose the ?rst
particle on the right and displace it by elementary hops till x and restart, till there
is no particle on the right and just have one be born and displace it till the right
position. Analogous reasoning for the death of a particle.

(2) Partition [−1; 1] in (say) at least K2 (but no more than 2K2) intervals of equal
length. Two functions in M which diOer only on one of these subintervals are
closer than 1=K2.
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(3) Finally, by taking N suNciently large we may assume that we can approximate
two functions u and v in M which diOer only on one of the subintervals via two
particle con?gurations � and � such that dist(�N� ; u)6 1=K3 and dist(�N� ; v)6 1=K3.

By using the three steps above, one performs the requested path.

4. About more general exclusion processes

The aim of this short section is to stress that the proof of Theorem 2.2 is very little
model dependent, once a result like Theorem 2.1 is known. Therefore, we expect it to
be susceptible of generalization to a broad class of model. This however passes through
clarifying a number of issues, that are of analytical rather than probabilistic nature. We
will not attempt to solve these points here: we merely list them and connect them with
the argument presented in this note.

4.1. Boundary driven exclusion processes: hydrodynamics and hydrostatics

A natural generalization of the boundary driven SSEP are boundary driven Kawasaki
dynamics. By this we mean processes generated by operators of the form

LNf(�) =
N 2

2

∑
x;y∈�N

c(x; y; �)[f(�x;y)− f(�)]

+
∑

x∈�N : |x|=N

c(x; �)[f(�x)− f(�)]; (4.1)

which clearly generalizes (2.1). The arising process is clearly the superposition of a
dynamics with a conservation law (Kawasaki dynamics: the rates are c(x; y; �)), acting
on the whole of �N , and a dynamics without conservation laws (Glauber dynamics or
birth and death dynamics: the rates are c(x; �)), acting only at the boundary. Some
hypotheses on the rates should be imposed and we present them in a rather informal
way, we refer to Eyink et al. (1990) for precise de?nitions: consider ?rst the class of
?nite range non-degenerate models of particles hopping on �N , with birth and death
at the boundary, which are reversible (cf. Spohn, 1991, pp. 161–164) with respect to
a ?nite volume Gibbs measure associated to a translation invariant family of speci-
?cations. Of course, the chemical potential of the Gibbs measure will be related to
the (equal at ±N !) activity of the birth and death process at the boundary. Moreover,
the value of the mean density (or expected value of the occupation number, under the
Gibbs measure), which will be independent of the space coordinate, is determined by
the chemical potential. Under these prescriptions, the Kawasaki rates are (unlike the
Glauber rates) independent of the chemical potential. The general class of dynamics
of interest corresponds to choosing the Kawasaki rates exactly like in the previous ex-
ample, but this time we allow the possibility of choosing Glauber rates c(±N; �) with
diOerent activities at ±N . Thus, while the dynamics is locally reversible, in general it
is not globally reversible and one has no expression for the invariant measure.
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4.2. Hydrodynamics, invariant measure and hydrostatics

In Eyink et al. (1991) it has been proven that the hydrodynamic limit of such systems
are described by parabolic non-degenerate equations

@t�(t; r) =∇[D(�(t; r))∇�(t; r)] for every (t; r)∈R+ × (−1; 1); (4.2)

with �(t;± 1) = �± for every t ∈R+. We remark here that in Eyink et al. (1991)
such a result is proven only for gradient models (Kipnis and Landim, 1999): in this
case it is easy to see that D(·) is a smooth function, see Eyink et al. (1990) formula
(3.5). The result may be extended to non-gradient models (Kipnis and Landim, 1999):
then D(·) can be expressed in terms of a Green–Kubo formula, see e.g. Spohn (1991,
p. 180), and it is not as easy to obtain its regularity properties. We would like to stress
that, at least in one-dimensional cases, the hydrodynamic limit problem (the law of
large numbers) with boundaries is rather well understood as long as the corresponding
problem without boundaries (say, on a torus) is understood. Moreover, these results
rely on the absence of phase transitions, which of course is ensured for local models
in d = 1.
Once again for every ?xed N the assumptions we make on the rates are (largely)

suNcient to ensure the existence of a unique invariant measure (steady state) that we
will call �N . In Eyink et al. (1990), for the gradient case, and in Kipnis et al. (1995)
and Landim et al. (2001) for some non-gradient ones, a law of large numbers for {�N}N
has been established. It has in fact been proven that the law of the empirical ?eld on
the steady state converges as N tends to in?nity to the measure on M concentrated
on the unique solution M� of the non-degenerate elliptic equation

∇[D( M�(r))∇ M�(r)] = 0; for every r ∈ (−1; 1); (4.3)

and M�(± 1) = �±.

4.3. From dynamic to static large deviations

It is not diNcult to guess what the dynamical large deviation function should be in
this general case: going back to Section 2.3, it suNces to replace formula (2.8) with

JH (�) = 〈�(T ); H (T )〉 − 〈�0; H (0)〉 −
∫ T

0
[〈�(t); @tH (t)〉+ 〈6(�(t));LH (t)〉] dt

+ 6(�+)
∫ T

0
∇H (t; 1) dt − 6(�−)

∫ T

0
∇H (t;−1) dt

− 1
2

∫ T

0
〈�(�(t)); (∇H (t))2〉 dt; (4.4)

where 6(0) = 0; 6′ = D and � is a function from [0; 1] to [0;∞). The function �
(mobility, conductivity) is related to the diOusion coeNcient D via the so called Ein-
stein relation (Spohn, 1991). D and � coincide up to a multiplicative density-dependent
factor (compressibility), which is a thermodynamical coeNcient which depends only
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on the equilibrium measure, and therefore it is regular. Of course, the expected large
deviations functional for {�N}N is still given by the quasi-potential (2.12).
The argument of this note goes through word by word if

(1) One has the generalization of Theorem 2.1. It should be noted that the hydro-
dynamic limit technology (Kipnis and Landim, 1999; Varadhan and Yau, 1997)
naturally provides the super-exponential probabilistic estimates that allow to ana-
lyze large deviation events and leads to the proof of a full upper bound and a lower
bound for neighbors of smooth trajectories. The full lower bound is recovered if
one can show that I[0;T ](�n) → I[0;T ](�) for a sequence of smooth functions �n
which tends to � in C0([0; T ];M) (in the SSEP case this is shown by using some
convexity properties that are absent in the general context). Moreover we require
I[0;T ] to be a good rate functional: while the compactness of the level sets follows
by the standard arguments, one has to provide a proof of lower semicontinuity.

(2) One has uniqueness to the weak formulation of the limit PDE (4.2), that is there
exists a unique �∈C0([0; T ];M) such that I[0;T ](�|�0) = 0; �0 ∈M. This result
is already known, see Kipnis and Landim (1999, th. 4.1 page 365), with periodic
boundary conditions. We remark that we used also the regularity of � for positive
times, and therefore � is a classical solution to (4.2) for t ¿ 0: however this
requirement may be weakened and the argument goes through, once uniqueness
is established, if there exists a standard weak solution (in the H1 sense) to (4.2)
for positive times. Standard parabolic regularity results may be applied if D is
diOerentiable and in this case there exists a classical solution to (4.2).

In higher dimensions d¿ 2, we can consider also a stochastic evolution with reser-
voirs in the domain �d

N = {−N; : : : ; N}d by de?ning creation/annihilation rates equal
to �+ on the face {x1 = N} and �− on the face {x1 = −N}. In this case, if an
hydrodynamic large deviation principle holds for which the previous assumptions on
the large deviation functional are satis?ed then our proof would also imply that the
static large deviation functional is equal to the quasi-potential. Unfortunately besides
the one-dimensional SEP, there is no other instance for which the quasi-potential can
be explicitely computed (cf. Bertini et al. (2002, 2003); Derrida et al. (2002)) and
higher-dimensional models remain an important source of open problems.
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